
A Process Algebra for Link Layer Protocols

Rob van Glabbeek1,2, Peter Höfner1,2 and Michael Markl1,3

1 Data61, CSIRO, Australia
2 Computer Science and Engineering, University of New South Wales, Australia

3 Institut für Informatik, Universität Augsburg, Germany

Abstract. We propose a process algebra for link layer protocols, fea-
turing a unique mechanism for modelling frame collisions. We also for-
malise suitable liveness properties for link layer protocols specified in this
framework. To show applicability we model and analyse two versions of
the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA)
protocol. Our analysis confirms the hidden station problem for the ver-
sion without virtual carrier sensing. However, we show that the version
with virtual carrier sensing not only overcomes this problem, but also
the exposed station problem with probability 1. Yet the protocol cannot
guarantee packet delivery, not even with probability 1.

1 Introduction

The (data) link layer is the 2nd layer of the ISO/OSI model of computer network-
ing [18]. Amongst others, it is responsible for the transfer of data between adja-
cent nodes in Wide Area Networks (WANs) and Local Area Networks (LANs).

Examples of link layer protocols are Ethernet for LANs [16], the Point-to-
Point Protocol [24] and the High-Level Data Link Control protocol (e.g. [14]).
Part of this layer are also multiple access protocols such as the Carrier-Sense Mul-
tiple Access with Collision Detection (CSMA/CD) protocol for re-transmission
in Ethernet bus networks and hub networks, or the Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol [19,17] in wireless networks.

One of the unique characteristics of the link layer is that when devices at-
tempt to use a medium simultaneously, collisions of messages occur. So, any
modelling language and formal analysis of layer-2 protocols has to support such
collisions. Moreover, some protocols are of probabilistic nature: CSMA/CA for
example chooses time slots probabilistically with discrete uniform distribution.

As we are not aware of any formal framework with primitives for mod-
elling data collisions, this paper introduces a process algebra for modelling and
analysing link layer protocols. In Section 2 we present an algebra featuring a
unique mechanism for modelling collisions, ‘hard-wired’ in the semantics. It is
the nonprobabilistic fragment of the Algebra for Link Layer protocols (ALL),
which we introduce in Section 3. In Section 4 we formulate packet delivery, a
liveness property that ideally ought to hold for link layer protocols, either out-
right, or with a high probability. In Section 5 we use this framework to formally
model and analyse the CSMA/CA protocol.

2 R. van Glabbeek, P. Höfner and M. Markl

Our analysis confirms the hidden station problem for the version of CSMA/
CA without virtual carrier sensing (Section 5.2). However, we also show that
the version with virtual carrier sensing overcomes not only this problem, but
also the exposed station problem with probability 1. Yet the protocol cannot
guarantee packet delivery, not even with probability 1.

2 A Non-Probabilistic Subalgebra

In this section we propose a timed process algebra that can model the collision
of link layer messages, called frames.1 It can be used for link layer protocols that
do not feature probabilistic choice, and is inspired by the (Timed) Algebra for
Wireless Networks ((T-)AWN) [12,13,2], a process algebra suitable for modelling
and analysing protocols on layers 3 (network) and 4 (transport) of the OSI model.

The process algebra models a (wired or wireless) network as an encapsulated
parallel composition of network nodes. Due to the nature of the protocols un-
der consideration, on each node exactly one sequential process is running. The
algebra features a discrete model of time, where each sequential process main-
tains a local variable now holding its local clock value—an integer. We employ
only one clock for each sequential process. All sequential processes in a network
synchronise in taking time steps, and at each time step all local clocks advance
by one unit. Since this means that all clocks are in sync and do not run at
different speeds it is clear that we do not consider the problem of clock shift.
For the rest, the variable now behaves like any other variable maintained by a
process: its value can be read when evaluating guards, thereby making progress
time-dependant, and any value can be assigned to it, thereby resetting the local
clock. Network nodes communicate with their direct neighbours—those nodes
that are in transmission range. The algebra provides a mobility option that al-
lows nodes to move in or out of transmission range. The encapsulation of the
entire network inhibits communications between network nodes and the outside
world, with the exception of the receipt and delivery of data packets from or to
clients (the higher OSI layers).

2.1 A Language for Sequential Processes

The internal state of a process is determined, in part, by the values of certain
data variables that are maintained by that process. To this end, we assume a
data structure with several types, variables ranging over these types, operators
and predicates. Predicate logic yields terms (or data expressions) and formulas
to denote data values and statements about them. Our data structure always
contains the types TIME, DATA, MSG, CHUNK, ID and P(ID) of discrete time values,
which we take to be integers, network layer data, messages, chunks of messages
that take one time unit to transmit, node identifiers and sets of node identifiers.
We further assume that there are variables now of type TIME and rfr of type
CHUNK. In addition, we assume a set of process names. Each process name X

1 As it is the nonprobabilistic fragment of a forthcoming algebra we do not name it.

A Process Algebra for Link Layer Protocols 3

comes with a defining equation

X(var1, . . . , varn)
def
= P ,

in which n ∈ IN, vari are variables and P is a sequential process expression
defined by the grammar below. It may contain the variables vari as well as
X. However, all occurrences of data variables in P have to be bound.2 The
choice of the underlying data structure and the process names with their defining
equations can be tailored to any particular application of our language.

The sequential process expressions are given by the following grammar:

P ::= X(exp1, . . . , expn) | [ϕ]P | [[var := exp]]P | α.P | P + P

α ::= transmit(ms) | newpkt(data, dest) | deliver(data)

Here X is a process name, expi a data expression of the same type as vari, ϕ
a data formula, var := exp an assignment of a data expression exp to a variable
var of the same type, ms a data expression of type MSG, and data, dest data
variables of types DATA, ID respectively.

Given a valuation of the data variables by concrete data values, the sequential
process [ϕ]P acts as P if ϕ evaluates to true, and deadlocks if ϕ evaluates to
false. In case ϕ contains free variables that are not yet interpreted as data
values, values are assigned to these variables in any way that satisfies ϕ, if
possible. The process [[var := exp]]P acts as P , but under an updated valuation of
the data variable var. The process P +Q may act either as P or as Q, depending
on which of the two processes is able to act at all. In a context where both are able
to act, it is not specified how the choice is made. The process α.P first performs
the action α and subsequently acts as P . The above behaviour is identical to
AWN, and many other standard process algebras. The action transmit(ms)
transmits (the data value bound to the expression) ms to all other network
nodes within transmission range. The action newpkt(data, dest) models the
injection by the network layer of a data packet data to be transmitted to a
destination dest. Technically, data and dest are variables that will be bound to
the obtained values upon receipt of a newpkt. Data is delivered to the network
layer by deliver(data). In contrast to AWN, we do not have a primitive for
receiving messages from neighbouring nodes, because our processes are always
listening to neighbouring nodes, in parallel with anything else they do.

As in AWN, the internal state of a sequential process described by an ex-
pression P is determined by P , together with a valuation ξ associating values
ξ(var) to variables var maintained by this process. Valuations naturally extend
to ξ-closed expressions—those in which all variables are either bound or in the
domain of ξ. We denote the valuation that assigns the value v to the variable
var, and agrees with ξ on all other variables, by ξ[var := v]. The valuation ξ|S
agrees with ξ on all variables var ∈ S and is undefined otherwise. Moreover we

2 An occurrence of a data variable in P is bound if it is one of the variables vari, one
of the two special variables now or rfr, a variable var occurring in a subexpression
[[var := exp]]Q, an occurrence in a subexpression [ϕ]Q of a variable occurring free in
ϕ, or a variable data or dest occurring in a subexpression newpkt(data, dest).Q.
Here Q is an arbitrary sequential process expression.

4 R. van Glabbeek, P. Höfner and M. Markl

use ξ[var ++] as an abbreviation for ξ[var := ξ(var) + 1], for suitable types.

To capture the durational nature of transmitting a message between network
nodes, we model a message as a sequence of chunks, each of which takes one time
unit to transmit. The function dur : MSG→ TIME>0 calculates the amount of time
steps needed for a sending a message, i.e. it calculates the number of chunks.
We employ the internal data type CHUNK := {m:c | m ∈ MSG, 1 ≤ c ≤ dur(m)} ∪
{conflict, idle}. The chunk m:c indicates the c th fragment of a message m.
Data conflicts—junk transmitted via the medium—is modelled by the special
chunk conflict, and the absence of an incoming chunk is modelled by idle.

Our process algebra maintains a variable rfr of type CHUNK, storing the
fragment of the current message received so far.

rfr ch rfr ? ch
∗ conflict conflict

∗ idle idle

∗ m:1 m:1
m:c m:c+1 m:c+1
rfr m:c+1 conflict

if rfr 6= m:c

As a value of this variable, m:c indicates that the
first c chunks of message m have been received in
order; conflict indicates that the last incoming
chunk was not the expected (next) part of a mes-
sage in progress, and idle indicates that the chan-
nel was idle during the last time step. The table on
the right, with ∗ a wild card, shows how the value
of rfr evolves upon receiving a new chunk ch.

Specifications may refer to the data type CHUNK only through the Boolean
functions new—having a single argument msg of type MSG—and idle, defined
by new(msg) := (rfr = (msg : dur(msg)) and idle := (rfr = idle). A guard
[new(msg)] evaluates to true iff a new message msg has just been received; [idle]
evaluates to true iff in the last time slice the medium was idle.

The structural operational semantics of Table 1 describes how one internal
state can evolve into another by performing an action. The set Act of actions
consists of transmit(m:c, ch), wait(ch), newpkt(d, dest), deliver(d), and in-
ternal actions τ, for each choice of m∈ MSG, c∈{1, . . . , dur(m)}, ch ∈ CHUNK,
d∈ DATA and dest∈ ID, where the first two actions are time consuming. On every
time-consuming action, each process receives a chunk ch and updates the vari-
able rfr accordingly; moreover, the variable now is incremented on all process
expressions in a (complete) network synchronously.

Besides the special variables now and rfr, the formal semantics employs an
internal variable cntr∈ IN that enumerates the chunks of split messages and is
used to identify which chunk needs to be sent next. The variables now, rfr and
cntr are not meant to be changed by ALL specifications, e.g. by using assign-
ments. We call them read-only and collect them in the set RO = {now, rfr, cntr}.

Let us have a closer look at the rules of Table 1.

The first two rules describe the sending of a message ms. Remember that
dur(ms) calculates the time needed to send ms. The counter cntr keeps track
of the time passed already. The action transmit(m:c, ch) occurs when the node
transmits the fragment m:c; simultaneously, it receives the fragment ch.3 The

3 Normally, a node is in its own transmission range. In that case the received chunk
ch will be either the chunk m:c it is transmitting itself, or conflict in case some
other node within transmission range is transmitting as well.

A Process Algebra for Link Layer Protocols 5

(1
)

ξ,
tr
a
n
sm

it
(m

s)
.P

t
r
a
n
s
m

it
(ξ

(m
s)
:c
+
,c
h
)

−−
−−
−−
−−
−−
−−
−−
→
ξ[cnt

r
++

r
f
r
:=

r
f
r
?
c
h

n
o
w
++

] ,t
ra

n
sm

it
(ξ

(m
s)

).
P

(ifc
+
<

d
u
r
(ξ

(m
s)
))

(∀ch
∈

C
H
U
N
K
)

(2
)

ξ,
tr
a
n
sm

it
(m

s)
.P

t
r
a
n
s
m

it
(ξ

(m
s)
:c
+
,c
h
)

−−
−−
−−
−−
−−
−−
−−
→
ξ[cnt

r
:=

0
r
f
r
:=

r
f
r
?
c
h

n
o
w
++

] ,P
(ifc

+
=

d
u
r
(ξ

(m
s)
))

(∀ch
∈

C
H
U
N
K
)

(3
)

ξ,
n
e
w
p
k
t(
d
a
t
a
,d
e
s
t
).
P

n
e
w

p
k
t
(d
,d
e
st
)

−−
−−
−−
−−
−→

ξ[dat
a
:=

d
d
e
s
t
:=

d
e
st

] ,P
(∀d
∈

D
A
T
A
,
d
e
st
∈

I
D
)

(4
)

ξ,
n
e
w
p
k
t(
d
a
t
a
,d
e
s
t
).
P

w
a
it
(c

h
)

−−
−−
−→

ξ[rfr
:=

r
f
r
?
c
h

n
o
w
++

] ,n
e
w
p
k
t(
d
a
t
a
,d
e
s
t
).
P

(∀ch
∈

C
H
U
N
K
)

(5
)

ξ,
d
e
li
v
e
r(
d
a
t
a
).
P

d
e
li

v
e
r
(ξ

(d
a
t
a
))

−−
−−
−−
−−
−−
→

ξ,
P

(6
)

ξ,
[[v
a
r

:=
ex
p
]]P

τ −→
ξ[va

r
:=

ξ
(e
x
p
)] ,

P

(7
)

ξ |
R
O

[var
i
:=

ξ
(e
x
p
i
)] n i=

1
,P

a −→
ζ
,P
′

ξ,
X

(e
x
p
1
,.
..
,e
x
p
n
)

a −→
ζ
,P
′

(X
(v
a
r
1
,
.
.
.
,
v
a
r
n
)

d
e
f

=
P
)

(∀a
∈

A
c
t
−
{w

a
it
(c
h
)
|c

h
∈

C
H
U
N
K
})

(8
)

ξ |
R
O

[var
i
:=

ξ
(e
x
p
i
)] n i=

1
,P

w
a
it
(c

h
)

−−
−−
−→

ζ
,P
′

ξ,
X

(e
x
p
1
,.
..
,e
x
p
n
)

w
a
it
(c

h
)

−−
−−
−→

ξ[rfr
:=

r
f
r
?
c
h

n
o
w
++

] ,X
(e
x
p
1
,.
..
,e
x
p
n
)

(X
(v
a
r
1
,
.
.
.
,
v
a
r
n
)

d
e
f

=
P
)

(∀ch
∈

C
H
U
N
K
)

(9
)

ξ,
P

w
a
it
(c

h
)

−−
−−
−→

ξ[rfr
:=

r
f
r
?
c
h

n
o
w
++

] ,P
(ifξ

(P
)↑
)

(∀ch
∈

C
H
U
N
K
)

(1
0
)

ξ,
P

a −→
ζ
,P
′

ξ,
P

+
Q

a −→
ζ
,P
′

ξ,
Q

a −→
ζ
,Q
′

ξ,
P

+
Q

a −→
ζ
,Q
′

(∀a
∈

A
c
t
−
{w

a
it
(c
h
)
|c

h
∈

C
H
U
N
K
})

(1
1
)

ξ,
P

w
a
it
(c

h
)

−−
−−
−→

ζ
,P
′
ξ,
Q

w
a
it
(c

h
)

−−
−−
−→

ζ
′ ,
Q
′

ξ,
P

+
Q

w
a
it
(c

h
)

−−
−−
−→

ζ
,P
′
+
Q
′

(∀ch
∈

C
H
U
N
K
)

(1
2
)

ξ
ϕ →
ζ

ξ,
[ϕ
]P

τ −→
ζ
,P

ξ
ϕ −6→

ξ,
[ϕ
]P

w
a
it
(c

h
)

−−
−−
−→

ξ[rfr
:=

r
f
r
?
c
h

n
o
w
++

] ,[
ϕ
]P

(∀ch
∈

C
H
U
N
K
)

T
a
b
le

1
.
S
tr
u
ct
u
ra
l
o
pe
ra
ti
o
n
a
l
se
m
a
n
ti
cs

fo
r
se
qu

en
ti
a
l
p
ro
ce
ss

ex
p
re
ss
io
n
s

6 R. van Glabbeek, P. Höfner and M. Markl

counter cntr is 0 before a message is sent, and is incremented before the trans-
mission of each chunk. So, each chunk sent has the form ξ(ms):ξ(cntr)+1. To
ease readability we abbreviate ξ(cntr)+1 by c+. In case the (already incre-
mented) counter c+ is strictly smaller than the number of chunks needed to send
ξ(ms), another transmit-action is needed (Rule 1); if the last fragment has been
sent (c+ = dur(ξ(ms))) the process can continue to act as P (Rule 2).

The actions newpkt(d, dest) and deliver(d) are instantaneous and model the
submission of data d from the network layer, destined for dest, and the delivery
of data d to the network layer, respectively. The process newpkt(d, dest).P has
also the possibility to wait, namely if no network layer instruction arrives.

Rule 6 defines a rule for assignment in a straightforward fashion; only the
valuation of the variable var is updated.

In Rules 7 and 8, which define recursion, ξ|RO[vari := ξ(expi)]
n
i=1 is the valu-

ation that only assigns the values ξ(expi) to the variables vari, for i = 1, . . . , n,
and maintains the values of the variables now, rfr and cntr. These rules state
that a defined process X has the same transitions as the body p of its defining
equation. In case of a wait-transition, the sequential process does not progress,
and accordingly the recursion is not yet unfolded.

Most transition rules so far feature statements of the form ξ(exp) where exp
is a data expression. The application of the rule depends on ξ(exp) being defined.
Rule 9 covers all cases where the above rules cannot be applied since at least one
data expression in an action α is not defined. A state ξ, P is unvalued, denoted
by ξ(p)↑, if P has the form transmit(ms).P , deliver(data).P , [[var := exp]]P
or X(exp1, . . . , expn) with either ξ(ms) or ξ(data) or ξ(exp) or some ξ(expi)
undefined. From such a state the process can merely wait.

A process P + Q can wait only if both P and Q can do the same; if either
P or Q can achieve ‘proper’ progress, the choice process P + Q always chooses
progress over waiting. A simple induction shows that if ξ, P wait(ch)−−−−−→ ζ, P ′ and
ξ,Q wait(ch)−−−−−→ ζ ′, Q′ then P = P ′, Q = Q′ and ζ = ζ ′.

The first rule of (12), describing the semantics of guards [ϕ], is taken from
AWN. Here ξ

ϕ→ ζ says that ζ is an extension of ξ, i.e. a valuation that agrees
with ξ on all variables on which ξ is defined, and evaluates other variables oc-
curring free in ϕ, such that the formula ϕ holds under ζ. All variables not free
in ϕ and not evaluated by ξ are also not evaluated by ζ. Its negation ξ ϕ−6→ says
that no such extension exists, and thus, that ϕ is false in the current state, no
matter how we interpret the variables whose values are still undefined. If that is
the case, the process [ϕ]p will idle by performing the action wait(ch).

2.2 A Language for Node Expressions

We model network nodes in the context of a (wireless) network by node expres-
sions of the form id :(ξ, P):R .

Here id ∈ ID is the address of the node, P is a sequential process expression
with a valuation ξ, and R ∈P(ID) is the range of the node, defined as the set
of nodes within transmission range of id. Unlike AWN, the process algebra does

A Process Algebra for Link Layer Protocols 7

P wait(idle)−−−−−−→ P ′

id :P :R traffic(∅,∅)−−−−−−−→ id :P ′:R

P transmit(m:c,idle)−−−−−−−−−−−−→ P ′

id :P :R traffic({(r,m:c) |r∈R},∅)−−−−−−−−−−−−−−−−→ id :P ′:R

P wait(ch)−−−−−→ (ch6=idle)

id :P :R traffic(∅,{(id, ch)})−−−−−−−−−−−−→ id :P ′:R

P transmit(m:c,ch)−−−−−−−−−−−→ P ′ (ch6=idle)

id :P :R traffic({(r,m:c) |r∈R},{(id, ch)})−−−−−−−−−−−−−−−−−−−−−→ id :P ′:R

P deliver(d)−−−−−−→ P ′

id :P :R id :deliver(d)−−−−−−−−→ id :P ′:R

P newpkt(d,dest)−−−−−−−−−→ P ′

id :P :R id :newpkt(d,dest)−−−−−−−−−−−−→ id :P ′:R

P τ−→ P ′

id :P :R τ−→ id :P ′:R

id :P :R connect(id,id′)−−−−−−−−−→ id :P :R ∪ {id ′} id :P :R disconnect(id,id′)−−−−−−−−−−−→ id :P :R− {id ′}

id :P :R connect(id′,id)−−−−−−−−−→ id :P :R ∪ {id ′} id :P :R disconnect(id′,id)−−−−−−−−−−−→ id :P :R− {id ′}
id 6∈ {id ′, id ′′}

id :P :R connect(id′,id′′)−−−−−−−−−−→ id :P :R

id 6∈ {id ′, id ′′}

id :P :R disconnect(id′,id′′)−−−−−−−−−−−−→ id :P :R

Table 2. Structural operational semantics for node expressions

not offer a parallel operator for combining sequential processes; such an operator
is not needed due to the nature of link layer protocols.

In the semantics of this layer it is crucial to handle frame collisions. The idea
is that all chunks sent are recorded, together with the respective recipient. In
case a node receives more than one chunk at a time, a conflict is raised, as it is
impossible to send two or more messages via the same medium at the same time.

The formal semantics for node expressions, presented in Table 2, uses tran-
sition labels traffic(T ,R), id : deliver(d), id : newpkt(d, id ′), connect(id, id ′),
disconnect(id, id ′) and τ , with partial functions T ,R : ID⇀ CHUNK, id, id ′ ∈ ID,
and d ∈ DATA.

All time-consuming actions on process level (transmit(m:c,ch) and wait(ch))
are transformed into an action traffic(T ,R) on node level: the first argument
T maps dest to m:c if and only if the chunk m:c is transmitted to dest. The
second argument R maps id to m:c if and only if the chunk m:c is received on
process level at node id. For the sos-rules of Table 2 we use the set-theoretic
presentation of partial functions. The two rules for wait set T := ∅, as no
chunks are transmitted; the rules for transmit allow a transmitted chunk m:c
to travel to all nodes within transmission range: T := {(r,m:c) |r ∈ R}. In case
that during the transmission or waiting no chunk is received (ch = idle) we set
R = ∅; otherwise R = {(id, ch)}, indicating that chunk ch is received by node id.

The actions id : newpkt(d, dest) and id : deliver(d) as well as the internal
actions τ are simply inherited by node expressions from the processes that run
on these nodes.

The remaining rules of Table 2 model the mobility aspect of wireless networks;
the rules are taken straight from AWN [12,13]. We allow actions connect(id, id ′)
and disconnect(id, id ′) for id, id ′ ∈ ID modelling a change in network topology.
These actions can be thought of as occurring nondeterministically, or as actions
instigated by the environment of the modelled network protocol. In this formali-
sation node id ′ is in the range of node id, meaning that id ′ can receive messages

8 R. van Glabbeek, P. Höfner and M. Markl

M a−→M ′

M‖N a−→M ′‖N
N a−→ N ′

M‖N a−→M‖N ′
M a−→M ′

[M] a−→ [M ′]

(
∀a∈

{
τ, id :deliver(d),
id :newpkt(d, id),

})

M a−→M ′ N a−→ N ′

M‖N a−→M ′‖N ′
M a−→M ′

[M] a−→ [M ′]

(
∀a∈

{
connect(id, id′),
disconnect(id, id′)

})

M traffic(T1,R1)−−−−−−−−−→M ′ N traffic(T2,R2)−−−−−−−−−→ N ′

M‖N traffic(T1] T2,R1]R2)−−−−−−−−−−−−−−−−→M ′‖N ′
M traffic(R,R)−−−−−−−−→M ′

[M] tick−−→ [M ′]

Table 3. Structural operational semantics for network expressions

sent by id, if and only if id is in the range of id ′. To break this symmetry, one
just skips the last four rules of Table 2 and replaces the synchronisation rules for
connect and disconnect in Table 3 by interleaving rules (like the ones for de-
liver, newpkt and τ) [12]. For some applications a wired or non-mobile network
need to be considered. In such cases the last six rules of Table 2 are dropped.

Whether a node id :P :R receives its own transmissions depends on whether
id ∈ R. Only if id ∈ R our process algebra will disallow the transmission from
and to a single node id at the same time, yielding a conflict.

2.3 A Language for Networks

A partial network is modelled by a parallel composition ‖ of node expressions,
one for every node in the network. A complete network is a partial network
within an encapsulation operator [], which limits the communication between
network nodes and the outside world to the receipt and delivery of data packets
to and from the network layer.

The syntax of networks is described by the following grammar:

N ::= [MT
T] MT

S1∪·S2
::= MT

S1
‖MT

S2
MT
{id} ::= id :(ξ, P):R ,

with {id} ∪ R ⊆ T ⊆ ID. Here MT
S models a partial network describing the

behaviour of all nodes id ∈ S. The set T contains the identifiers of all nodes that
are part of the complete network. This grammar guarantees that node identifiers
of node expressions—the first component of id :P :R—are unique.

The operational semantics of network expressions is given in Table 3. In-
ternal actions τ as well as the actions id : deliver(d) and id : newpkt(d,id) are
interleaved in the parallel composition of nodes that makes up a network, and
then lifted to encapsulated networks (Line 1 of Table 3).

Actions traffic and (dis)connect are synchronised. The rule for synchro-
nising the action traffic (Line 3), the only action that consumes time on the
network layer, uses the union] of partial functions. It is formally defined as

(R1]R2)(id) :=

conflict if id ∈ dom(R1) ∩ dom(R2)
R1(id) if id ∈ dom(R1)− dom(R2)
R2(id) if id ∈ dom(R2)− dom(R1) .

A Process Algebra for Link Layer Protocols 9

The synchronisation of the sets Ri and Ti has the following intuition: if a node
identifier id ∈ ID is in both dom(T1) and dom(T2) then there exist two nodes that
transmit to node id at the same time, and therefore a frame collision occurs.
In our algebra this is modelled by the special chunk conflict. The sos rules of
Tables 2 and 3 guarantee that there cannot be collisions within the set of received
chunks R. The reason is that each node merely contributes to R a chunk for
itself; it can be the chunk conflict though. Therefore we could have written
R1 ∪R2 instead of R1]R2 in the sixth rule of Table 3.

The last rule propagates a traffic(T ,R)-action of a partial network M to a
complete network [M]. By then T consists of all chunks (after collision detection)
that are being transmitted by any member in the network, and R consists of all
chunks that are received. The condition R = T determines the content of the
messages in R. The traffic(T ,R)-actions become internal at this level, as they
cannot be steered by the outside world; all that is left is a time-step tick.

2.4 Results on the Process Algebra

As for the process algebra T-AWN [2], but with a slightly simplified proof, one
can show that our processes have no time deadlocks:

Theorem 2.1. A complete network N in our process algebra always admits a
transition, independently of the outside environment, i.e. ∀N, ∃a such that N a−→
and a 6∈ {connect(id, id ′),disconnect(id, id ′), id :newpkt(d,dest)}.
More precisely, either N tick−−→, or N id : deliver(d)−−−−−−−−→ or N τ−→.

The following results (statements and proofs) are very similar to the results
about the process algebra AWN, as presented in [13]. A rich body of foundational
meta theory of process algebra allows the transfer of the results to our setting,
without too much overhead work.

Identical to AWN and its timed version T-AWN, our process algebra admits
a translation into one without data structures (although we cannot describe the
target algebra without using data structures). The idea is to replace any variable
by all possible values it can take. The target algebra differs from the original only
on the level of sequential processes; the subsequent layers are unchanged. The
construction closely follows the one given in the appendix of [2]. The inductive
definition contains the rules

Tξ(deliver(data).P) = deliver(ξ(data)).Tξ(P) and
Tξ([[var := exp]]P) = τ.Tξ

[
var := ξ(exp)

] (P).
Most other rules require extra operators that keep track of the passage of time
and the evolution of other internal variables. The resulting process algebra has a
structural operational semantics in the (infinitary) de Simone format, generating
the same transition system—up to strong bisimilarity, ↔—as the original. It
follows that ↔, and many other semantic equivalences, are congruences on our
language [23].

Theorem 2.2. Strong bisimilarity is a congruence for all operators of our lan-
guage.

10 R. van Glabbeek, P. Höfner and M. Markl

This is a deep result that usually takes many pages to establish (e.g. [25]). Here
we get it directly from the existing theory on structural operational semantics,
as a result of carefully designing our language within the disciplined framework
described by de Simone [23]. ut

Theorem 2.3. The operator ‖ is associative and commutative, up to ↔.

Proof. The operational rules for this operator fits a format presented in [6],
guaranteeing associativity up to ↔. The ASSOC-de Simone format of [6] applies
to all transition system specifications (TSSs) in de Simone format, and allows
7 different types of rules (named 1–7) for the operators in question. Our TSS
is in de Simone format; the four rules for ‖ of Table 3 are of types 1, 2 and
7, respectively. To be precise, it has rules 1a and 2a for a ∈ {τ , id : deliver(d),
id : newpkt(d, dest)}, rules 7(a,b) for

(a, b) ∈ {(traffic(T1,R1), traffic(T2,R2)) | R1,R2, T1, T2 ∈ ID⇀ CHUNK}

and rules 7(c,c) for c ∈ {connect(id, id ′),disconnect(id, id ′) | id, id ′ ∈ ID}.
Moreover, the partial communication function γ : Act× Act ⇀ Act is given by
γ(traffic(T1,R1), traffic(T2,R2)) = traffic(T1] T2,R1]R2) and γ(c, c) = c.
The main result of [6] is that an operator is guaranteed to be associative, provided
that γ is associative and six conditions are fulfilled. In the absence of rules
of types 3, 4, 5 and 6, five of these conditions are trivially fulfilled, and the
remaining one reduces to

7(a,b) ⇒ (1a ⇔ 2b) ∧ (2a ⇔ 2γ(a,b)) ∧ (1b ⇔ 1γ(a,b)) .

Here 1a says that rule 1a is present, etc. This condition is trivially met for ‖ as
there neither exists a rule of the form 1traffic(T,R) nor of the form 2traffic(T,R),
or 1c, 2c with c as above. As on traffic actions γ is basically the union of partial
functions (]), where a collision in domains is indicated by an error conflict, it
is straightforward to prove associativity of γ.

Commutativity of ‖ follows by symmetry of the sos rules. ut

3 An Algebra for Link Layer Protocols

We now introduce ALL, the Algebra for Link Layer protocols. It is obtained
from the process algebra presented in the previous section by the addition of a
probabilistic choice operator

⊕n
0 . As a consequence, the semantics of the algebra

is no longer a labelled transition system, but a probabilistic labelled transition
system (pLTS) [8]. This is a triple (S,Act,→), where

(i) S is a set of states

(ii) Act is a set of actions

(iii) → ⊆ S × Act × D(S), where D(S) is the set of all (discrete) probability
distributions over S: functions ∆ : S → [0, 1] with

∑
s∈S ∆(s) = 1.

A Process Algebra for Link Layer Protocols 11

As with LTSs, we usually write s α−→ ∆ instead of (s, α,∆) ∈ →. The point
distribution δs, for s ∈ S, is the distribution with δs(s) = 1. We simply write
s α−→ t for s α−→ δt. An LTS may be viewed as a degenerate pLTS, in which only
point distributions occur. For a uniform distribution over s0, . . . , sn ∈ S we write
Uni=0si. The pLTS associated to ALL takes S to be the disjoint union of the pairs
ξ, P , with P a sequential process expression, and the network expressions. Act
is the collection of transition labels, and → consists of the transitions derivable
from the structural operational semantics of the language.

Rules (1)–(6), (9), (11) and (12) of Table 1 are adopted to ALL unchanged,
whereas in Rules (7), (8) and (10) the state ζ, P ′ (or ζ,Q′) is replaced by an
arbitrary distribution ∆. Add to those the following rule for the probabilistic
choice operator:

ξ,

n⊕
i=0

P τ−→ Uξ(n)i=0 ξ
[
i := i

]
, P

Here the data variable i may occur in P . The rules of Tables 2 and 3 are adapted
to ALL unchanged, except that P ′, M ′ and N ′ are now replaced by arbitrary
distributions over sequential processes and network expressions, respectively.
Here we adapt the convention that a unary or binary operation on states lifts
to distributions in the standard manner. For example, if ∆ is a distribution over
sequential processes, id ∈ ID and R ⊆ ID, then id :∆ :R describes the distribution
over node expressions that only has probability mass on nodes with address id
and range R, and for which the probability of id :P :R is ∆(P). Likewise, if ∆ and
Θ are distributions over network expressions, then ∆‖Θ is the distribution over
network expressions of the form M‖N , where (∆‖Θ)(M‖N) = ∆(M) ·Θ(N).

4 Formalising Liveness Properties of Link Layer Protocols

Link layer protocols communicate with the network layer through the actions
id : newpkt(d, dest) and id : deliver(d). The typical liveness property expected
of a link layer protocol is that if the network layer at node id injects a data
packet d for delivery at destination dest then this packet is delivered eventually.
In terms of our process algebra, this says that every execution of the action
id : newpkt(d, dest) ought to be followed by the action dest : deliver(d). This
property can be formalised in Linear-time Temporal Logic [22] as

G
(
id : newpkt(d, dest)⇒ F(dest : deliver(d))

)
(1)

for any id, dest∈ID and d∈DATA. This formula has the shape G
(
φpre ⇒ Fφpost

)
,

and is called an eventuality property in [22]. It says that whenever we reach a
state in which the precondition φpre is satisfied, this state will surely be followed
by a state were the postcondition φpost holds. In [7,13] it is explained how action
occurrences can be seen or encoded as state-based conditions. Here we will not
define how to interpret general LTL-formula in pLTSs, but below we do this for
eventuality properties with specific choices of φpre and φpost .

Formula (1) is too strong and does not hold in general: in case the nodes
id and dest are not within transmission range of each other, the delivery of

12 R. van Glabbeek, P. Höfner and M. Markl

messages from id to dest is doomed to fail. We need to postulate two side
conditions to make this liveness property plausible. Firstly, when the request
to deliver the message comes in, id needs to be connected to dest. We intro-
duce the predicate cntd(id, dest) to express this, and hence take φpre to be
cntd(id, dest)∧ id : newpkt(d, dest). Secondly, we assume that the link between
id and dest does not break until the message is delivered. As remarked in [13],
such a side condition can be formalised by taking φpost to be dest : deliver(d)∨
disconnect(id, dest). Thus the liveness property we are after is

G
(
cntd(id, dest) ∧ id : newpkt(d, dest)⇒

F(dest : deliver(d) ∨ disconnect(id, dest) ∨ disconnect(dest, id))
) (2)

We now define the validity of eventuality properties G
(
φpre ⇒ Fφpost

)
. Here

φpre and φpost denote sets of transitions and actions, respectively, and hold
if one of the transitions or actions in the set occurs. In (2), φpre denotes the
transitions with label id : newpkt(d, dest) that occur when the side condition
cntd(id, dest) is met, whereas φpost = {dest : deliver(d),disconnect(id, dest),
disconnect(dest, id)} is a set of actions.

A path in a pLTS (S,Act,→) is an alternating sequence s0, α1, s1, α2, . . . of
states and actions, starting with a state and either being infinite or ending with a
state, such that there is a transition si

αi+1−−−→ ∆i+1 with ∆i+1(si+1) > 0 for each i.
The path is rooted if it starts with a state marked as ‘initial’, and complete if
either it is infinite, or there is no transition starting from its last state. A state
or transition is reachable if it occurs in a rooted path.

In a pLTS with an initial state, an eventually formula G
(
φpre ⇒ Fφpost

)
,

with φpre and φpost denoting sets of transitions and actions, holds outright if all
complete paths starting with a reachable transition from φpre contain a transition
with a label from φpost .

Definitions 3 and 5 in [9] define the set of probabilities that a pLTS with
an initial state will ever execute the action ω. One obtains a set of probabilities
rather than a single probability due to the possibility of nondeterministic choice.
This definition generalises to sets of actions φpost (seen as disjunctions) by first
renaming all actions in such a set into ω. It also generalises trivially to pLTSs
with an initial transition. For t a transition in a pLTS, let Prob(t, φpost) be the
infimum of the set of probabilities that the pLTS in which t is taken to be the
initial transition will ever execute φpost . Now in a pLTS with an initial state, an
eventually formula G

(
φpre ⇒ Fφpost

)
holds with probability at least p if for all

reachable transitions t in φpre we have Prob(t, φpost) ≥ p.
Possible correctness criteria for link layer protocols are that the liveness prop-

erty (2) either holds outright, holds with probability 1, or at least holds with
probability p for a sufficiently high value of p.

Sometimes we are content to establish that (2) holds under the additional
assumptions that the network is stable until our packet is delivered, meaning that
no links between any nodes are broken or established, and/or that the network
layer refrains from injecting more packets. This is modelled by taking

φpost = {dest : deliver(d),disconnect(∗, ∗), connect(∗, ∗),newpkt(∗, ∗)}. (3)

A Process Algebra for Link Layer Protocols 13

We will refer to this version of (2) as the weak packet delivery property. Packet
delivery is the strengthening without newpkt(∗, ∗) in (3), i.e. not assuming that
the network layer refrains from injecting more packets.

5 Modelling and Analysing the CSMA/CA Protocol

In this section we model two versions of the CSMA/CA protocol, using the
process algebra ALL. Moreover, we briefly discuss some results we obtained
while analysing these protocols.

The Carrier-Sense Multiple Access (CSMA) protocol is a media access con-
trol (MAC) protocol in which a node verifies the absence of other traffic before
transmitting on a shared transmission medium. If a carrier is sensed, the node
waits for the transmission in progress to end before initiating its own transmis-
sion. Using CSMA, multiple nodes may, in turn, send and receive on the same
medium. Transmissions by one node are generally received by all other nodes
connected to the medium.

The CSMA protocol with Collision Avoidance (CSMA/CA) [19,17]4 improves
the performance of CSMA. If the transmission medium is sensed busy before
transmission then the transmission is deferred for a random time interval. This
interval reduces the likelihood that two or more nodes waiting to transmit will si-
multaneously begin transmission upon termination of the detected transmission.
CSMA/CA is used, for example, in Wi-Fi.

It is well known that CSMA/CA suffers from the hidden station problem (see
Section 5.2). To overcome this problem, CSMA/CA is often supplemented by the
request-to-send/clear-to-send (RTS/CTS) handshaking [19]. This mechanism is
known as the IEEE 802.11 RTS/CTS exchange, or virtual carrier sensing. While
this extension reduces the amount of collisions, wireless 802.11 implementations
do not typically implement RTS/CTS for all transmissions because the trans-
mission overhead is too great for small data transfers.

We use the process algebra ALL to model both the CSMA/CA without and
with virtual carrier sensing.

5.1 A Formal Model for CSMA/CA

Our formal specification of CSMA/CA consists of four short processes written in
ALL. It is precise and free of ambiguities—one of the many advantages formal
methods provide, in contrast to specifications written in English prose.

The syntax of ALL is intended to look like pseudo code, and it is our belief
that the specification can easily be read and understood by software engineers,
who may or may not have experience with process algebra.

As the underlying data structure of our model is straightforward, we do not
present it explicitly, but introduce it while describing the different processes.

4 The primary medium access control (MAC) technique of IEEE 802.11 [19] is called
distributed coordination function (DCF), which is a CSMA/CA protocol.

14 R. van Glabbeek, P. Höfner and M. Markl

The basic process CSMA, depicted in Process 1, is the protocol’s entry point.

Process 1 The Basic Routine

CSMA(id)
def
=

1. newpkt(data,dest). INIT(id,0,dataframe(data,id,dest))
2. + [new(dataframe(data,src,id))] deliver(data) .
3. (
4. [[timeout := now + sifs]] [now ≥ timeout]
5. transmit(ackframe(src)) . CSMA(id)
6.)

This process maintains a single data variable id in which it stores its own iden-
tity. It waits until either it receives a request from the network layer to transmit a
packet data to destination dest, or it receives from another node in the network
a CSMA message (data frame) destined for itself.

In case of a newly injected data packet (Line 1), the process INIT is called; this
process (described below) initiates the sending of the message via the medium.
When passing the message on to INIT we use a function dataframe : DATA×ID×
ID → MSG that generates a message in a format used by the protocol: next to
the header fields (from which we abstract) it contains the injected data as well
as the designated receiver dest and the sender id—the current node.

In case of an incoming dataframe destined for this node (the third argument
carrying the destination is id) (Line 2)—any other incoming message is ignored
by this process—the data is handed over to the network layer (deliver(data))
followed by the transmission of an acknowledgement back to the sender of the
message (src). CSMA/CA requires a short period of idling medium before send-
ing the acknowledgement: in [19] this interval is called short interframe space
(sifs). The process waits until the time of the interframe spacing has passed,
and then transmits the acknowledgement. The acknowledgement sent is not al-
ways received by src, e.g. due to data collision; therefore src could send the
same message again (see Process 4) and id could deliver the same data to the
network layer again.

Process 2 Protocol Initialisation

INIT(id,tries,dframe)
def
=

1. [tries ≤ max retransmit]
2. [[cw := cwmin× 2tries]]
3.

⊕cw−1
b=0 CCA(id,b,tries,dframe) /* choose a backoff from {0, . . . , cw−1} */

4. + [tries > max retransmit]
5. deliver(channel access failure) . CSMA(id)

The process INIT (Process 2) initiates the sending of a message via the
medium. Next to the variable id, which is maintained by all processes, it main-
tains the variable tries and dframe: tries stores the number of attempts al-
ready made to send message dframe. When the process is called the first time
for a message dframe (Line 1 of Process 1) the value of tries is 0.

A Process Algebra for Link Layer Protocols 15

The constant max retransmit specifies the maximum number of attempts
the protocol is allowed to retransmit the same message. If the limit is not yet
reached (Line 1) the message dframe is sent. As mentioned above, CSMA/CA
defers messages for a random time interval to avoid collision. The node must start
transmission within the contention window cw, a.k.a. backoff time. cw is calcu-
lated in Line 2; it increases exponentially.5 After cw is determined, the process
CCA is called, which performs the actual transmit-action. In case the maximum
number of retransmits is reached (Line 4), the process notifies the network layer
and restarts the protocol, awaiting new instructions from the application layer,
or a new incoming message.

Process 3 takes care of the actual transmission of dframe. However, the
protocol has a complicated procedure when to send this message.

Process 3 Clear Channel Assessment With Physical Carrier Sense

CCA(id,b,tries,dframe)
def
=

1. [new(dataframe(data,src,id))] deliver(data) .
2. (
3. [[timeout := now + sifs]] [now ≥ timeout]
4. transmit(ackframe(src)) . CCA(id,b,tries,dframe)
5.)
6. + [idle]
7. [[timeout:=now+difs]] /* start wait for duration difs */
8. (
9. [¬idle] CCA(id,b,tries,dframe)

10. + [idle ∧ now ≥ timeout]
11. [[timeout := now + b]]
12. (
13. [¬idle] /* busy during backoff time */
14. [[b := timeout− now]] CCA(id,b,tries,dframe)
15. + [idle ∧ now ≥ timeout] /* idle for backoff time */
16. transmit(dframe) .
17. ACKRECV(id,tries,now+max ack wait,dframe)
18.)
19.)

First, the process senses the medium and awaits the point in time when it is
idle (Line 6). In case, before this happens, it receives from another node in the
network a CSMA message destined for itself (Line 1), this message is handled
just as in Process 1, except that after acknowledging this message the protocol
returns to Process 3.

To guarantee a gap between messages sent via the medium, CSMA/CA (as
well as other protocols) specifies the distributed (coordination function) inter-
frame space (difs ∈ TIME), which is usually small,6 but larger than sifs, so
that acknowledgements get priority over new data frames. When the medium

5 A typical value for cwmin is 16; it must satisfy cwmin > 0.
6 Recommended values for the constant difs are given in [19].

16 R. van Glabbeek, P. Höfner and M. Markl

becomes busy during the interframe space, another node started transmitting
and the process goes back to listening to the medium (Line 9). In case nothing
happens on the medium and the end of the interframe space is reached (Line 10),
the process determines the actual time to start transmitting the message, taking
the backoff time b into account (Line 11). If the medium is idle for the entire
backoff period (Line 15), the message is transmitted (Line 16), and the process
calls the process ACKRECV that will await an acknowledgement from the recipient
of dframe (Line 17); the third argument specifies the maximum time the process
should wait for such an acknowledgement. (As mentioned before an acknowl-
edgement may never arrive.) If another node transmits on the medium during
the backoff period, the protocol restarts the routine (Lines 13 and 14), with an
adjusted backoff value b—the process already started waiting and should not be
punished when the waiting is restarted; this update guarantees fairness of the
protocol.

The process awaiting an acknowledgement (Process 4) is straightforward. It
waits until either it receives a CSMA message destined for itself (Line 1), or it
receives an acknowledgement (Line 6), or it has waited for this acknowledgement
as long as it is going to (Line 8).

In the first case, the message is handled just as in Process 1, except that after
acknowledging this message the protocol returns to Process 4. In the second case
the network layer is informed that the sending of dframe was successful and the
process loops back to Process 1 (Line 7). Line 8 describes the situation where no
acknowledgement message arrives and the process times out. Here CSMA/CA
retries to send the message; the counter tries is incremented.

Process 4 Receiving an ACK

ACKRECV(id,tries,acktimeout,dframe)
def
=

1. [new(dataframe(data,src,id))] deliver(data) .
2. (
3. [[timeout := now + sifs]] [now ≥ timeout]
4. transmit(ackframe(src)) . ACKRECV(id,tries,acktimeout,dframe)
5.)
6. + [new(ackframe(id))] /* acknowledgement received */
7. deliver(success) . CSMA(id)
8. + [now ≥ acktimeout] INIT(id,tries+1,dframe)

5.2 The Hidden Station Problem

As mentioned in the introduction to this section, CSMA/CA suffers from the
hidden station problem. This refers to the situation where two nodes A and C
are not within transmission range of each other, while a node B is in range of
both. In this situation C may be transmitting to B, but A is not able to sense
this, and thus may start a transmission to B at roughly the same time, leading
to data collisions at B.

A Process Algebra for Link Layer Protocols 17

sender receiver

RTS

CTS

Data

ACK

Fig. 1. RTS/CTS exchange

While CSMA/CA is not able to avoid such collisions as a whole—it is always
possible that two (or more) nodes hidden from each other happen to (randomly)
choose the same backoff time to send messages—it is the exponential growth of
the backoff slots that makes the problem less pressing in the long run, as the
following theorem shows.

Theorem 5.1. If max retransmit=∞ then weak packet delivery holds with
probability 1.

Proof sketch. Since the number of messages that nodes transmit is bounded, and
all nodes select random times to start transmitting out of an increasing longer
time span, with probability 1 each message will eventually go through. 2

In practice, max retransmit is set to a value that is not high enough to approx-
imate the idea behind the above proof. In fact, the transmission time of a single
message may be larger than the maximal backoff period allowed. For this reason
the hidden station problem does occur when running the CSMA/CA protocol,
as studies have shown [5]. Nevertheless, the above analysis still shows that link
layer protocols can be formally analysed by process algebra in general, and ALL
in particular.

5.3 A Formal Model for CSMA/CA with Virtual Carrier Sensing

To overcome the hidden station problem the usage of a request-to-send/clear-
to-send (RTS/CTS) handshaking [19] mechanism is available. This mechanism
is also known as virtual carrier sensing. The exchange of RTS/CTS messages
happens just before the actual data is sent, see Figure 1. The mechanism serves
two purposes: (a) As the RTS and CTS messages are very short—they only
contain two node identifiers as well as a natural number indicating the time it
will take to send the actual data (plus overhead)—the likelihood of a collision
is reduced. (b) While the handshaking does not help with solving the hidden
station problem for the RTS message itself, it avoids the problem for the sending
of data. The reason is that a hidden node, which could interfere with the sending
of data will receive the CTS message from the designated recipient of data and
the hidden node will remain silent until the data has been sent.

As for the CSMA/CA protocol we have modelled this extension in ALL,
based on the model of CSMA/CA we presented earlier.

18 R. van Glabbeek, P. Höfner and M. Markl538 M. Calder, M. Sevegnani

Fig. 1. The use of virtual channel sensing using CSMA/CA

The main contributions of this paper are the following:

• extension of SBRS to PSBRS with sharing;
• an application of PSBRS with sharing to the 802.11 CSMA/CA RTS/CTS protocol for anywireless network

topology, including interference;
• analysis of example properties for quantitative analysis.

Some aspects of the CSMA protocol have been modelled previously: for example collision detection on Ether-
net is modelled by a MDP (Markov Decision Process) in [DFH+05]. A similar approach was taken in [KNS02]
where probabilistic timed automata are used to model the basic two-way handshake mechanism1 of the 802.11
protocol. The authors assume a fixed network topology consisting of two senders and two receivers. Furthermore,
in their model there is exactly one shared signal, and thus each station can sense any other station. Properties
of the system are specified in CSL (Continuous Stochastic Logic) [ASSB96] and automatically verified using
probabilistic model checker PRISM [KNP11]. The model we present here differs in the following significant
ways: support for arbitrary network topologies, and explicit representation of potentially overlapping wireless
signals for all the stations in the network. These features are essential to represent networks in which two or more
stations transmit to the same receiver and they cannot sense each other, thus causing a transmission collision.
This is generally known in the literature as the hidden node problem.

The paper is organised as follows. The protocol is described informally in the next section and in Sect. 3 we
give a brief overview of SBRS with sharing. Section 4describes the bigraphical model for WLANs with arbitrary
network topology. In Sect. 5 we present the graphical form of the reaction rules used to model the protocol. The
evolutions of an example WLAN of three stations is given in Sect. 6. Section 7outlines the CTMC encoding and
some analysis results. Conclusions and directions for future work are in Sect. 8.

2. The protocol: IEEE 802.11 CSMA/CA with RTS/CTS handshake

We now describe informally the functioning of the protocol. Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) is the basic access mechanism in the 802.11 protocol [IEE05]. CSMA/CA adopts a slotted
binary exponential backoff scheme to reduce collisions due to stations transmitting simultaneously. It defines
two access mechanisms: the default, two-way handshaking technique called basic access and the optional four-
way handshaking RTS/CTS reservation scheme. We focus on the latter here. Observe that this mechanism is
more complicated because an extra handshake is introduced to reduce the collisions caused by the hidden node
problem.

1 Note that this protocol is different from RTS/CTS.

Fig. 2. The use of virtual channel sensing using CSMA/CA [3]

Our extended model uses two functions to generate rts and cts messages,
respectively. The signature of both is ID × ID × TIME → MSG. The first argu-
ment carries the sender (source) of the message, the second the indented des-
tination, and the third argument a duration (time period) of silence that is
requested/granted. For example, before the message rts(src,dest,d) is trans-
mitted, the time period d is calculated by

[[d := sifs+dur cts+sifs+dur(dataframe(data,id,dest))+sifs+dur ack]] .

The calculation is straightforward as it follows the protocol logic and determines
the amount of time needed until the acknowledgement would be received (see
Figure 2). After the rts message has been received the medium should be idle
for the interframe space sifs; then a cts message is sent back, which takes time
dur cts; then another interframe space is needed, followed by the actual trans-
mission of the message—the sending will take dur(dataframe(data,id,dest))
time units; after the message is received (hopefully) another interframe space is
required before the acknowledgement is sent back.

Process 2 remains essentially unchanged; it is merely equipped with the des-
tination dest of the message that needs to be transmitted, and an additional
timed variable nav ∈ TIME. These variables are not used in this process, but
required later on. Variable nav holds the point in time until the process should
not transmit any rts or cts message. This period of silence is necessary as the
node figures out that until time nav another node will transmit message(s).7

Process 5 is the modified version of Process 1. Identical to Process 1 it awaits
an instruction from the network layer, or an incoming CSMA message destined
for itself. Lines 1–3 are identical to Process 1. Lines 4–11 handle the two new
message types. In case an rts message rts(src,dest,d) is received that is in-
tended for another recipient (dest 6= id) the node concludes that another node
wants to use the medium for the amount of d time units; the process updates
the variable nav if needed, indicating the period the node should remain silent,
by taking the maximum of the current value of nav, and now+d, the point in
time until the sender src of the rts message requires the medium. The same
behaviour occurs if a cts message is received that is not intended for the node
itself (Line 4). If the incoming message is an rts message intended for the node
itself (Line 6) by default the node answers with a clear-to-send message back
to the sender (Line 9). However, when the receiver of the rts has knowledge

7 After a successful RTS/CTS exchange, communicating nodes proceed with trans-
mitting the data and an acknowledgement regardless of the value of nav.

A Process Algebra for Link Layer Protocols 19

Process 5 The Basic Routine (RTS/CTS)

CSMA(id,nav)
def
=

1. newpkt(data,dest). INIT(id,dest,0,dataframe(data,id,dest),nav)
2. + [new(dataframe(data,src,id))] deliver(data) . [[timeout := now + sifs]]
3. [now ≥ timeout] transmit(ackframe(src)) . CSMA(id,nav)
4. + [(new(rts(src,dest,d))∨new(cts(src,dest,d)))∧ dest 6= id∧ nav < now+d]
5. [[nav := now+d]] CSMA(id, nav)
6. + [new(rts(src,id,d)) ∧ now > nav] [[timeout := now + sifs]]
7. (
8. [¬idle ∧ now > timeout−sifs] CSMA(id, nav)
9. + [idle ∧ now ≥ timeout] transmit(cts(id,src,d−dur cts−sifs)) .

10. [[nav := now+d−dur cts−sifs]] CSMA(id, nav)
11.)

about other nodes requiring the medium (now ≤ nav), a clear-to-send cannot be
granted, and the request is dropped (Line 6). Similar to the sending of an ac-
knowledgement (Line 2), the process waits for the short interframe space (sifs)
before sending the CTS (Line 6). Line 8 handles the case where the medium
becomes busy (¬idle) during this period; also here a clear-to-send cannot be
granted, and the request is dropped.8 Only when the medium stays idle during
the entire interframe space the node id can inform the source of the rts message
that the medium is clear to send; the cts is transmitted in Line 9. The time
a receiver of this message has to be silent is adjusted by deducting the time
elapsed before this happens. In Line 10 the process resets nav to remind itself
not to issue any rts message until the present exchange has been completed.9

Process 6 is the modified version of Process 3. The goal of this process is to
send an rts message (Line 22). Before it can start its work, it waits until the
medium is idle, and any time it is required to be silent has elapsed (Line 11).
Until this happens incoming data frames, rts or cts messages are treated just
as in Process 5: Lines 1–10 copy Lines 2–11 of Process 5, except that afterwards
the process returns to itself. Then Lines 12–20 are copied from Lines 7–15 from
Process 3. Line 21 calculates the time other nodes ought to keep silent when
receiving the rts message, and Line 23 passes control to the process CTSRECV,
which awaits a cts response to the rts message transmitted in Line 22. The
fourth argument of CTSRECV specifies the maximum time that process should
wait for such a response; a good value for max cts wait is sifs + dur cts.

Process CTSRECV listens for this time to a cts message with source dest and
destination id. In case the expected cts message arrives in time (Line 1), the
node waits for a time sifs (Line 2) and then transmits the data frame and pro-

8 The condition now > timeout−sifs prevents the process from dropping the request
in the very first time slice that CSMA is running. Here the medium counts as busy,
but only because we have just received an rts message.

9 A case new(cts(src,dest,d)) ∧ dest = id is not required as a cts message is only
expected in case an rts was sent, and hence handled in process RTSREACT.

20 R. van Glabbeek, P. Höfner and M. Markl

Process 6 Clear Channel Assessment With Virtual Carrier Sense

CCA(id,dest,b,tries,dframe,nav)
def
=

1. [new(dataframe(data,src,id))] deliver(data) . [[timeout := now + sifs]]
2. [now ≥ timeout] transmit(ackframe(src)) . CCA(id,dest,b,tries,dframe,nav)
3. + [(new(rts(src,dest,d))∨new(cts(src,dest,d)))∧ dest 6= id∧ nav < now+d]
4. [[nav := now+d]] CCA(id,dest,b,tries,dframe,nav)
5. + [new(rts(src,id,d)) ∧ now > nav] [[timeout := now + sifs]]
6. (
7. [¬idle ∧ now > timeout−sifs] CCA(id,dest,b,tries,dframe,nav)
8. + [idle ∧ now ≥ timeout] transmit(cts(id,src,d−dur cts−sifs)) .
9. [[nav := now+d−dur cts−sifs]] CCA(id,dest,b,tries,dframe,nav)

10.)
11. + [idle ∧ now > nav]
12. [[timeout:=now+difs]]
13. (
14. [¬idle] CCA(id,dest,b,tries,dframe,nav)
15. + [idle ∧ now ≥ timeout]
16. [[timeout := now + b]]
17. (
18. [¬idle] /* busy during backoff time */
19. [[b := timeout− now]] CCA(id,dest,b,tries,dframe,nav)
20. + [idle ∧ now ≥ timeout] /* idle for backoff time */
21. [[d := sifs + dur cts + sifs + dur(dframe) + sifs + dur ack]]
22. transmit(rts(id,dest,d)) .
23. CTSRECV(id,dest,tries,now + max cts wait,dframe,nav)
24.)
25.)

ceeds to await an acknowledgement (Line 3). The fourth argument of ACKRECV
specifies the maximum time the process should wait for such an acknowledge-
ment; a good value for max ack wait is sifs+dur ack. If the cts message does
not arrive in time (Line 6), the process returns to INIT to send another rts

message, while incrementing the counter tries (Line 7). While waiting for the
cts message, any incoming rts or cts message destined for another node is
treated exactly as in Process 5 (Lines 4–5). Incoming data frames cannot arrive
when this process is running, and incoming rts messages to id are ignored.

Process 7 Receiving a CTS

CTSRECV(id,dest,tries,ctstimeout,dframe,nav)
def
=

1. [new(cts(dest,id,d))]
2. [[timeout := now + sifs]] [now ≥ timeout]
3. transmit(dframe) . ACKRECV(id,dest,tries,now + max ack wait,dframe,nav)
4. + [(new(rts(src,dest,d))∨new(cts(src,dest,d)))∧ dest 6= id∧ nav < now+d]
5. [[nav := now+d]] CTSRECV(id,dest,tries,ctstimeout,dframe,nav)
6. + [now ≥ ctstimeout]
7. INIT(id,dest,tries+1,dframe,nav)

A Process Algebra for Link Layer Protocols 21

Process 8 Receiving an ACK

ACKRECV(id,dest,tries,acktimeout,dframe,nav)
def
=

1. [new(ackframe(id))]
2. deliver(success) . CSMA(id,nav)
3. + [(new(rts(src,dest,d))∨new(cts(src,dest,d)))∧dest 6= id∧nav < now+d]
4. [[nav := now+d]] ACKRECV(id,dest,tries,acktimeout,dframe,nav)
5. + [now ≥ timeout] /* nothing received */
6. INIT(id,dest,tries+1,dframe,nav)

Process 8 handles the receipt of an acknowledgement in response to a success-
ful data transmission. If an acknowledgement arrives, it must be from the node
to which id has transmitted a data frame. In that case (Line 1), the network
layer is informed that the sending of dframe was successful and the process loops
back to Process 5 (Line 2). Line 5 describes the situation where no acknowledge-
ment message arrives and the process times out. Also here CSMA/CA retries
to send the message; the counter tries is incremented. Lines 3–4 describe the
usual handling of incoming rts or cts messages destined for another node.

5.4 The Exposed Station Problem

Another source of collisions in CSMA/CA is the well-known exposed station
problem. This refers to a linear topology A−B−C−D, where an unending stream
of messages between C and D interferes with attempts by A to get a message
across to B. In the default CSMA/CA protocol as formalised in Section 5.1,
transmissions from A to B may perpetually collide at B with transmissions
from C destined for D. CSMA/CA with virtual carrier sensing mitigates this
problem, for a cts sent by B in response to an rts sent by A will tell C to
keep silent for the required duration. In fact, we can show that in the above
topology, if max retransmit=∞ then packet delivery holds with probability 1.
A non-probabilistic guarantee cannot be given since nodes A and C could behave
in the same way, meaning if one node is sending out a message the other does
the same at the very same moment, and if one is silent the other remains silent
as well. In this scenario all messages to be sent are doomed.

Based on our formalisation, we can prove that once the RTS/CTS handshake
has been successfully concluded, meaning that all nodes within range of the
intended recipient have received the cts, then packet delivery holds outright. So
the only problem left is to achieve a successful RTS/CTS handshake. Since rts

and cts messages are rather short, even by modest values of max retransmit it
becomes likely that such messages do not collide.

In spite of this, CSMA/CA with (or without) virtual channel sensing cannot
achieve packet delivery with probability 1 for general topologies. Assume the
following network topology

22 R. van Glabbeek, P. Höfner and M. Markl

B A

C1 D1

C2 D2

C3 D3

Here it may happen that one of the Cis is always busy transmitting a large
message to Di; any given Ci is occasionally silent (not sending any message), but
then one of the others is transmitting. As Ci is disconnected from Cj , for j 6= i,
coordination between the nodes is impossible. As a consequence, the medium at
A will always be busy, so that A cannot send an rts message to B.

6 Related Work

The CSMA protocol in its different variants has been analysed with different
formalisms in the past.

Multiple analyses were performed for the CSMA/CD protocol (CSMA with
collision detection), a predecessor of CSMA/CA that has a constant backoff, i.e.
the backoff time is not increased exponentially, see [10,11,26,20,21]. In all these
approaches frame collisions have to be modelled explicitly, as part of the pro-
tocol description. In contrast, our approach handles collisions in the semantics;
thereby achieving a clear separation between protocol specifications and link
layer behaviour.

Duflot et al. [10,11] use probabilistic timed automata (PTAs) to model the
protocol, and use probabilistic model checking (PRISM) and approximate model
checking (APMC) for their analysis. The model explained in [26] is based on
PTAs as well, but uses the model checker Uppaal as verification tool. These
approaches, although formal, have very little in common with our approach. On
the one hand it is not easy to change the model from CSMA/CD to CSMA/CA,
as the latter requires unbounded data structures (or alike) to model the expo-
nential backoff. On the other hand, as usual, model checking suffers from state
space explosion and only small networks (usually fewer than ten nodes) can be
analysed. This is sufficient and convenient when it comes to finding counter ex-
amples, but these approaches cannot provide guarantees for arbitrary network
topologies, as ours does.

Jensen et al. [20] use models of CSMA/CD to compare the tools SPIN and
Uppaal. Their models are much more abstract than ours. It is proven that no
collisions will ever occur, without stating the exact conditions under which this
statement holds.

To the best of our knowledge, Parrow [21] is the only one who uses process
algebra (CCS) to model and analyse CSMA. His untimed model of CSMA/CD
is extremely abstract and the analysis performed is limited to two nodes only,
avoiding scenarios such as the hidden station problem.

There are far fewer formal analyses techniques available when it comes to
CSMA/CA (with and without virtual medium sensing). Traditional approaches

A Process Algebra for Link Layer Protocols 23

to the analysis of network protocols are simulation and test-bed experiments.
This is also the case for CSMA/CA (e.g. [4]). While these are important and
valid methods for protocol evaluation, in particular for quantitative performance
evaluation, they have limitations in regards to the evaluation of basic protocol
correctness properties.

Following the spirit of the above-mentioned research of model checking CSMA,
Fruth [15] analyses CSMA/CA using PTAs and PRISM. He considers properties
such as the minimum probability of two nodes successfully completing their
transmissions, and maximum expected number of collisions until two nodes have
successfully completed their transmissions. As before, this analysis technique
does not scale; in [15] the experiments are limited to two contending nodes only.

Beyond model checking, simulation and test-bed experiments, we are only
aware of two other formal approaches. In [1] Markov chains are used to derive
an accurate, analytical model to compute the throughput of CSMA/CA. Cal-
culating throughput is an orthogonal task to our vision of proving (functional)
correctness.

An approach aiming at proving the correctness of CSMA/CA with virtual
carrier sensing (RTS/CTS), and hence related to ours, is presented in [3]. Based
on stochastic bigraphs with sharing it uses rewrite rules to analyse quantita-
tive properties. Although it is an approach that is capable to analyse arbitrary
topologies, to apply the rewrite rules a particular topology needs to be modelled
by a directed acyclic graph structure, which is part of the bigraph.

7 Conclusion

In this paper we have proposed a novel process algebra, called ALL, that can
be used to model, verify and analyse link layer protocols. Since we aimed at a
process algebra featuring aspects of the link layer such as frame collisions, as
well as arbitrary data structures (to model a rich class of protocols), we could
not use any of the existing algebras. The design of ALL is layered. The first
layer allows modelling protocols in some sort of pseudo code, which hopefully
makes our approach accessible for network and software researchers/engineers.
The other layers are mainly for giving a formal semantics to the language. The
layer of partial network expressions, the third layer, provides a unique and so-
phisticated mechanism for modelling the collision of frames. As it is hard-wired
in the semantics there is no need to model collisions manually when modelling a
protocol, as it was done before [21]. Next to primitives needed for modelling link
layer protocols (e.g. transmit) and standard operators of process algebra (e.g.
nondeterministic choice), ALL provides an operator for probabilistic choice.

This operator is needed to model aspects of link layer protocols such as the
exponential backoff for the Carrier-Sense Multiple Access with Collision Avoid-
ance protocol, the case study we have chosen to demonstrate the applicability
of ALL. We have modelled and analysed two versions of CSMA/CA, without
and with virtual carrier sensing. Our analysis has confirmed the hidden station
problem for the version without virtual carrier sensing. However, we have also

24 R. van Glabbeek, P. Höfner and M. Markl

shown that the version with virtual carrier sensing overcomes not only this prob-
lem, but also the exposed station problem with probability 1. Yet the protocol
cannot guarantee packet delivery, not even with probability 1.

To perform this analysis we had to formalise suitable liveness properties for
link layer protocols specified in our framework.

Acknowledgement: We thank Tran Ngoc Ma for her involvement in this
project in a very early phase. We also like to thank the German Academic Ex-
change Service (DAAD) that funded an internship of the third author at Data61,
CSIRO.

References

1. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications 18(3), 535–547
(2000), https://doi.org/10.1109/49.840210

2. Bres, E., van Glabbeek, R.J., Höfner, P.: A timed process algebra for wireless
networks with an application in routing (extended abstract). In: Thiemann, P.
(ed.) European Symposium on Programming (ESOP’16). LNCS, vol. 9632, pp.
95–122. Springer (2016), https://doi.org/10.1007/978-3-662-49498-1_5

3. Calder, M., Sevegnani, M.: Modelling IEEE 802.11 CSMA/CA RTS/CTS with
stochastic bigraphs with sharing. Formal Aspects of Computing 26(3), 537–561
(2014), https://doi.org/10.1007/s00165-012-0270-3

4. Chhaya, H.S., Gupta, S.: Performance modeling of asynchronous data transfer
methods of IEEE 802.11 MAC Protocol. Wireless Networks 3, 217–234 (1997),
https://doi.org/10.1023/A:1019109301754

5. Comer, D.: Computer Networks and Internets. Pearson Education Inc., Upper
Saddle River, NJ (2009)

6. Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In:
Conference on Concurrency Theory (CONCUR’08). LNCS, vol. 5201, pp. 447–461.
Springer (2008), https://doi.org/10.1007/978-3-540-85361-9_35

7. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. Journal
of the ACM 42(2), 458–487 (1995), https://doi.org/10.1145/201019.201032

8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks on
testing probabilistic processes. In: Cardelli, L., Fiore, M., Winskel, G. (eds.) Com-
putation, Meaning, and Logic: Articles dedicated to Gordon Plotkin, Electronic
Notes in Theoretical Computer Science, vol. 172, pp. 359–397. Elsevier (2007),
https://doi.org/10.1016/j.entcs.2007.02.013

9. Deng, Y., van Glabbeek, R.J., Morgan, C.C., Zhang, C.: Scalar outcomes suffice
for finitary probabilistic testing. In: De Nicola, R. (ed.) European Symposium on
Programming (ESOP’07). LNCS, vol. 4421, pp. 363–378. Springer (2007), https:
//doi.org/10.1007/978-3-540-71316-6_25

10. Duflot, M., Fribourg, L., Herault, T., Lassaigne, R., Magniette, F., Messika, S.,
Peyronnet, S., Picaronny, C.: Probabilistic model checking of the CSMA/CD, pro-
tocol using PRISM and APMC. In: Automated Verification of Critical Systems
(AVoCS’04). Electronic Notes in Theoretical Computer Science Series, vol. 128,
pp. 195–214 (2004), https://doi.org/10.1016/j.entcs.2005.04.012

https://doi.org/10.1109/49.840210
https://doi.org/10.1007/978-3-662-49498-1_5
https://doi.org/10.1007/s00165-012-0270-3
https://doi.org/10.1023/A:1019109301754
https://doi.org/10.1007/978-3-540-85361-9_35
https://doi.org/10.1145/201019.201032
https://doi.org/10.1016/j.entcs.2007.02.013
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1016/j.entcs.2005.04.012

A Process Algebra for Link Layer Protocols 25

11. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D., Peyronnet, S., Picaronny,
C., Sproston, J.: Practical applications of probabilistic model checking to com-
munication protocols. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for In-
dustrial Critical Systems: A Survey of Applications, pp. 133–150. IEEE (2013),
https://doi.org/10.1002/9781118459898.ch7

12. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks. In: Seidl, H. (ed.) European
Symposium on Programming (ESOP’12). LNCS, vol. 7211, pp. 295–315. Springer
(2012), https://doi.org/10.1007/978-3-642-28869-2_15

13. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks used for modelling, verifying
and analysing AODV. Technical Report 5513, NICTA (2013), http://arxiv.org/
abs/1312.7645

14. Friend, G.E., Fike, J.L., Baker H. C.and Bellamy, J.C.: Understanding Data Com-
munications. Howard W. Sams & Company, 2nd edn. (1988)

15. Fruth, M.: Probabilistic model checking of contention resolution in the IEEE
802.15.4 low-rate wireless personal area network protocol. In: Leveraging Applica-
tions of Formal Methods, Second International Symposium (ISoLA’06). pp. 290–
297. IEEE Computer Society (2006), https://doi.org/10.1109/ISoLA.2006.34

16. IEEE: IEEE standard for ethernet (2016), https://doi.org/10.1109/IEEESTD.
2016.7428776

17. IEEE: IEEE standard for low-rate wireless networks (2016), http://doi.org://
10.1109/IEEESTD.2016.7460875

18. ISO/IEC 7498-1: Information technology — open systems interconnection — basic
reference model: The basic model (1994), https://www.iso.org/standard/20269.
html

19. ISO/IEC/IEEE 8802-11: Information technology — telecommunications and in-
formation exchange between systems — local and metropolitan area networks —
specific requirements — part 11: Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications (2018), https://www.iso.org/standard/
73367.html

20. Jensen, H.E., Larsen, K.G., Skou, A.: Modelling and analysis of a collision avoid-
ance protocol using Spin and Uppaal. In: The Spin Verification System. Dis-
crete Mathematics and Theoretical Computer Science, vol. 32, pp. 33–50. DI-
MACS/AMS (1996), see https://doi.org/10.7146/brics.v3i24.20005

21. Parrow, J.: Verifying a CSMA/CD-protocol with CCS. In: Aggarwal, Sab-
nani (eds.) IFIP Symposium on Protocol Specification, Testing and Verification
(PSTV’88). pp. 373–384. North-Holland (1988)

22. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science
(FOCS’77). pp. 46–57. IEEE (1977), https://doi.org/10.1109/SFCS.1977.32

23. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. TCS 37, 245–
267 (1985), https://doi.org/10.1016/0304-3975(85)90093-3

24. Simpson, W.: The point-to-point protocol (PPP). RFC 1661 Internet Standard
(1994), http://www.ietf.org/rfc/rfc1661.txt

25. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Science in Computer Programming 75, 440–469 (2010), https://doi.
org/10.1016/j.scico.2009.07.008

26. Zhao, J., Li, X., Zheng, T., Zheng, G.: Removing irrelevant atomic formulas for
checking timed automata efficiently. In: Larsen, K., Niebert, P. (eds.) Formal Mod-
eling and Analysis of Timed Systems (FORMATS’04). LNCS, vol. 2791, pp. 34–45.
Springer (2004), https://doi.org/10.1007/978-3-540-40903-8_4

https://doi.org/10.1002/9781118459898.ch7
https://doi.org/10.1007/978-3-642-28869-2_15
http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1312.7645
https://doi.org/10.1109/ISoLA.2006.34
https://doi.org/10.1109/IEEESTD.2016.7428776
https://doi.org/10.1109/IEEESTD.2016.7428776
http://doi.org://10.1109/IEEESTD.2016.7460875
http://doi.org://10.1109/IEEESTD.2016.7460875
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/73367.html
https://www.iso.org/standard/73367.html
https://doi.org/10.7146/brics.v3i24.20005
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0304-3975(85)90093-3
http://www.ietf.org/rfc/rfc1661.txt
https://doi.org/10.1016/j.scico.2009.07.008
https://doi.org/10.1016/j.scico.2009.07.008
https://doi.org/10.1007/978-3-540-40903-8_4

	A Process Algebra for Link Layer Protocols

