
Verifying the LTL to Büchi
Automata Translation via Very Weak

Alternating Automata

Simon Jantsch1(B) and Michael Norrish2

1 TU Dresden, Dresden, Germany
simon.jantsch@gmail.com

2 Data61, CSIRO and Australian National University, Canberra, Australia

Abstract. We present a formalization of a translation from LTL formu-
lae to generalized Büchi automata in the HOL4 theorem prover. Transla-
tions from temporal logics to automata are at the core of model checking
algorithms based on automata-theoretic techniques. The translation we
verify proceeds in two steps: it produces very weak alternating automata
at an intermediate stage, and then ultimately produces a generalized
Büchi automaton. After verifying both transformations, we also encode
both of these automata models using a generic, functional graph type,
and use the CakeML compiler to generate fully verified machine code
implementing the translation.

1 Introduction

As the goal of verification techniques is to give the user of a system guarantees
about its behaviour, bugs in verification tools can potentially have severe conse-
quences and considerably reduce the trust of users in the techniques. While new
verification algorithms are usually proven correct on paper, the gap between the
abstract proof and any actual implementation can be large. Many times different
representations are used and optimizations are added that are not considered in
the proofs.

Our aim is to bridge this gap for one standard algorithm used for automata-
basedLTLmodel checking.The algorithm, byGastin andOddoux [7] (G&Ohence-
forth), improves on the efficiency of the translation of LTL formulae into automata.
Rather than moving directly from such formulae into generalized Büchi automata
(GBA), it introduces an intermediate step, the rather complicated alternating
automata. Whereas the efficient translation from LTL to alternating automata was
knownbefore,G&Oshowed that a property, namely veryweakness, of the resulting
automata can be exploited for the translation to GBA.

This new step represents an advantage on earlier techniques in part because
automata-optimizations can be applied in both phases. Optimizing the alternat-
ing automaton is especially interesting as it is linear in the size of the formula,

The author was supported by the European Master’s Program in Computational
Logic (EMCL).

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 306–323, 2018.
https://doi.org/10.1007/978-3-319-94821-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_18&domain=pdf


Verifying the LTL Translation via Very Weak Alternating Automata 307

even though the final GBA may still be of exponential size. As noted in Schimpf
et al. [15], the original tool implementing this algorithm contained a bug that
went unnoticed for several years despite widespread use.

Translations of LTL formulae to automata play a core role in LTL model
checking. In the usual approach, an LTL formula ϕ is given together with a
labeled transition system S, and the questions is whether all executions of S
satisfy the formula ϕ. To check this, an automaton is constructed for ¬ϕ, which is
then combined with an automaton describing all executions of S. If the combined
automaton is empty, S indeed satisfies the property specified by ϕ, otherwise a
counterexample to this claim can be given.

To obtain a formally verified implementation of the algorithm in G&O, we
proceed as follows: first we formalize the procedure in an abstract way, using
set notation and mathematical functions. We prove correctness of this function,
which is a mechanization of the proof given in G&O. Then we implement another
version of the algorithm, now defined on concrete data structures that represent
the automata in a compact way. In contrast to the first function, this second
version describes an algorithm: a step-by-step expansion of a graph.

The relation between our two versions is established by defining abstraction
functions from our concrete automata to their abstract counterparts. Using these
functions, we show that the automata we obtain in our concrete algorithm coin-
cide with the abstract automata, for which we have proved the desired property.
One strength of this approach is that it lets us separate the correctness proofs of
the main function and the restriction to reachable states on the abstract level,
while still combining the two functions on the concrete level in a single expansion
algorithm. We believe that this idea can be extended to add optimizations to the
translation in a manageable way by defining them as seperate transformation
steps on the abstract level, and efficiently embedding them into the expansion
algorithm on the concrete level.

Finally, we compile our function into machine code using the CakeML com-
piler. This adds another guarantee to our implementation, as we do not have
to trust the translation of the algorithm as expressed in HOL4 into SML, nor
the correctness of an SML compiler. The proof scripts and definitions for our
translation are available as part of the HOL4 system, and the scripts to compile
the algorithm with CakeML are available on Gitlab.1

The paper is structured as follows: Sect. 2 introduces LTL and the automata
models we consider. Section 3 recalls the algorithm in G&O, and Sect. 4 discusses
our formalization in HOL4. Section 5 gives an overview of related work, and we
conclude in Sect. 6.

1 For the abstract and concrete algorithms, see the examples/logic/ltl directory in
HOL4 after commit b4576ed, and see https://gitlab.com/simon-jantsch/ltl2baHol-
paper/tree/master/cmlltl for our CakeML translations, which in turn depend on
CakeML commit 891cbf4a.

https://gitlab.com/simon-jantsch/ltl2baHol-paper/tree/master/cmlltl
https://gitlab.com/simon-jantsch/ltl2baHol-paper/tree/master/cmlltl


308 S. Jantsch and M. Norrish

2 Preliminaries

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic that extends propositional logic with
temporal operators. We define it using unary X (“next”) and binary U (“until”).

Definition 1 (Syntax of LTL). Given a set of atomic propositions AP , the
set of LTL formulae over AP is defined with the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where p ∈ AP

An interpretation of an LTL formula is a sequence of propositional valuations
over AP , one for each point in time. This sequence is viewed as an infinite word
over P(AP ) (we write P(S) to mean the powerset of S). The symbol of w at
position i is denoted by w[i] and the suffix of w starting at position i by w[i..].
Given w ∈ (P(AP ))ω, we define

Definition 2 (Semantics of LTL)

w |= p iff p ∈ w[0], for all p ∈ AP

w |= ¬ϕ iff w �|= ϕ

w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |= Xϕ iff w[1..] |= ϕ

w |= ϕ1Uϕ2 iff ∃i. w[i..] |= ϕ2 and ∀j < i. w[j..] |= ϕ1

As we want to use a negation normal form we introduce the dual operators ∨
and ϕ1Rϕ2 = ¬(¬ϕ1U¬ϕ2). An LTL formula ϕ is in negation normal form if
all occurrences of ¬ are directly in front of an atomic proposition. We call a
formula a temporal formula if it is a (possibly negated) atomic proposition or if
its outermost operator is X, U or R. We use L(ϕ) = {w ∈ (P(AP ))ω | w |= ϕ}
to denote the language of an LTL formula.

As the semantics of LTL is defined using infinite words, questions about LTL
formulae can often be formulated as word problems. This is where automata, in
our case recognizing languages of infinite words, come into play. In the following
sections we introduce the two automata types used in G&O, beginning with
alternating automata.

2.2 Co-Büchi Alternating Automata

In an alternating automaton, each state nondeterministically chooses between
sets of successor states. Intuitively, a word w = a0a1 . . . is accepted from a state
q if there exists a successor set S reachable via the symbol a0 such that a1a2 . . .
is accepted from all states in S.



Verifying the LTL Translation via Very Weak Alternating Automata 309

Definition 3. A co-Büchi alternating automaton is a tuple A = (Q,Σ, δ, I, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q → P(P(Σ) ×
P(Q)), I ⊆ P(Q) is the set of initial sets and F ⊆ Q is the set of final states.

Alternating automata can be defined with different acceptance conditions but
we will always mean co-Büchi alternating automata in what follows. In HOL4
we use the following datatype for abstract alternating automata:

(α, σ) ALTER_A = <|

states : σ set;
alphabet : α set;
trans : σ → (α set × σ set) set;
initial : σ set set;
final : σ set

|>

The transition function δ assigns to each state in the automaton a set of pairs
(A,S), where A ⊆ Σ and S ⊆ Q. Such a pair stands for a transition that is active
for every symbol in A and has successor set S. This definition of alternating
automata was introduced in G&O and differs from the more usual definition,
where the transition function is defined using positive boolean formulae over the
states (e.g. Löding [11] or Vardi [17]). As noted in G&O, the two can easily be
transformed into each other: the presented definition corresponds closely to the
disjunctive normal form of the positive boolean formula.

Following Löding [11] we define a run of an alternating automaton A on
a word w ∈ Σω as a directed acyclic graph ρ = (V,E), where V ⊆ Q × N,
E ⊆

⋃
i≥0(Q × {i}) × (Q × {i + 1}) and

– {q | (q, 0) ∈ V } ∈ I;
– for all (q, i) ∈ V there exists (A,S) ∈ δ(q) such that w[i] ∈ A and

{q′ | ((q, i), (q′, i + 1)) ∈ E} = S; and
– for all (q, i) ∈ V where i > 0, there exists some (qp, i − 1) ∈ V such that

((qp, i − 1), (q, i)) ∈ E.

For co-Büchi automata, acceptance is defined as follows: a run ρ is accepting
if there is no path through ρ that visits a state in F infinitely often. The lan-
guage of a co-Büchi alternating automaton is defined as L(A) = {w ∈ Σω |
there exists an accepting run of A on w}.

Note that the transition function allows empty successor sets. Such a transi-
tion corresponds to the empty conjunction (i.e. true) and leads to direct accep-
tance of any suffix word for which it is active.

An alternating automaton is very weak if there is a partial order R on Q,
such that whenever (A,S) ∈ δ(q) and q′ ∈ S then R q′ q. As Q is finite, this
implies that all loops in the automaton are self-loops and every path in a run ρ
ultimately stabilizes on some state.



310 S. Jantsch and M. Norrish

2.3 Generalized Büchi Automata

The algorithm we consider produces generalized Büchi automata (GBA), where
the acceptance condition is defined using the edges, rather than the states, of
the automaton.

Definition 4. A generalized Büchi automaton is a tuple G = (Q,Σ, δ, I, T ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q → P(P(Σ) × Q)
is the transition function, I ⊆ Q is the set of initial states and T = {T1, T2, . . .},
with Ti ⊆ Q × P(Σ) × Q, is a set of sets of accepting edges.

A run r = q0q1 . . . ∈ Qω of a GBA G on a word w ∈ Σω is a sequence of
states such that q0 ∈ I and for all i there exists a pair (A, qi+1) ∈ δ(qi) such that
w[i] ∈ A. It is accepting if for all T ∈ T there exist infinitely many positions
i such that for some A: (A, qi+1) ∈ δ(qi), w[i] ∈ A and (qi, A, qi+1) ∈ T . The
language of a GBA is defined accordingly: L(G) = {w ∈ Σω | there exists an
accepting run of G on w}.

GBA can be transformed into ordinary Büchi automata via a standard linear
transformation called degeneralization. The emptiness check, which is required
for LTL model checking, can be done on Büchi automata efficiently [2]. However,
approaches have been developed to use the GBA directly to check emptiness,
thereby omitting degeneralization [3].

3 Translating LTL to GBA

We now recall the translation presented in G&O. The algorithm proceeds in two
steps: it first translates an LTL formula into an equivalent very weak alternating
automaton (VWAA), and then translates that VWAA into a GBA. By “equiv-
alent”, we mean that the words accepted by the VWAA are exactly the words
that satisfy the formula, as per Definition 2.

We introduce two functions that we need for the definition, ϕ gives an approx-
imation of the DNF of ϕ without simplifying temporal subformulae. ⊗ is an oper-
ation on the transitions of the VWAA that corresponds to conjunction on the for-
mula level. From now on we consider all formulae to be in negation normal form.

Definition 5. Let ϕ be an LTL formula. ϕ = {{ϕ}} if ϕ is a temporal formula,
ϕ ∧ ψ = {S1 ∪ S2 | S1 ∈ ϕ and S2 ∈ ψ} and ϕ ∨ ψ = ϕ ∪ ψ.

Let D1,D2 ∈ P(P(Σ)×P(Q)). D1 ⊗D2 = {(A1 ∩A2, S1 ∪S2) | (A1, S1) ∈
D1 and (A2, S2) ∈ D2}.

Now we can define the first step of the translation. It models the boolean struc-
ture of the formulae with the transitions of the VWAA and makes use of the
equalities ϕUψ = ψ ∨ (ϕ ∧ X(ϕUψ)) and ϕRψ = ψ ∧ (ϕ ∨ X(ϕRψ)).



Verifying the LTL Translation via Very Weak Alternating Automata 311

Definition 6. Let ϕ be an LTL formula over AP . We define Aϕ =
(Q,Σ, δ, I, F ), where Q is the set of temporal subformulae of ϕ, Σ = P(AP ),
I = ϕ, F is the set of subformulae of ϕ of the type ψ1Uψ2 and δ is defined by:

δ(p) = {(Σp, ∅)}, where Σp = {A ∈ Σ | p ∈ A}
δ(¬p) = {(Σ¬p, ∅)}, where Σ¬p = Σ \ Σp

δ(Xψ) = {(Σ,S) | S ∈ ψ}
δ(ψ1Uψ2) = Δ(ψ2) ∪ (Δ(ψ1) ⊗ {(Σ, {ψ1Uψ2})})
δ(ψ1Rψ2) = Δ(ψ2) ⊗ (Δ(ψ1) ∪ {(Σ, {ψ1Rψ2})})

Δ(ψ) = δ(ψ), if ψ is a temporal formula
Δ(ψ1 ∧ ψ2) = Δ(ψ1) ⊗ Δ(ψ2)
Δ(ψ1 ∨ ψ2) = Δ(ψ1) ∪ Δ(ψ2)

As every transition contains only subformulae of the considered formula, we
see that Aϕ is very weak. In G&O the following theorem is stated without a
complete proof. We discuss our proof and its mechanization in Sect. 4. A proof
for the standard setting, which simplifies the proof, can be found in Vardi [17].

Theorem 1. L(Aϕ) = L(ϕ)

The second step of the algorithm is a translation of a VWAA into a GBA. We
first define a relation � on transitions that we use in the later definition. Let
t1 = (S,A1, S

′
1) and t2 = (S,A2, S

′
2) be transitions of the GBA. Then t1 � t2 if

A2 ⊆ A1, S′
1 ⊆ S′

2 and for all T ∈ T : t2 ∈ T ⇒ t1 ∈ T .

Definition 7. Let A = (Q,Σ, δ, I, F ) be a VWAA. We define GA = (P(Q),
Σ, δ′, I, T ), where

– δ′({q0, q1, . . . , qn}) is the set of �-minimal transitions in
⊗n

i=0 δ(qi)
– T = {Tf | f ∈ F}, where

Tf = {(S,A, S′) | f /∈ S′ or there is (B,X) ∈ δ(f) such that A ⊆ B and
f /∈ X ⊆ S′}

An example of the translations to VWAA and GBA is given in Fig. 1.

Theorem 2. L(GA) = L(A)

Proof. See G&O for a proof.

4 Verifying the Algorithm

Note that the way the translation is presented is far from an actual implementa-
tion. In particular the worst case complexity is always exhibited as nonreachable
states are not excluded. Also the way the transitions are defined, where the first



312 S. Jantsch and M. Norrish

Fig. 1. Translation of the formula GFa into a VWAA (left) and a GBA (right). Here
Fϕ (eventually) and Gϕ (always) abbreviate trueUϕ and ¬F¬ϕ respectively. Transi-
tions conjoined with • are conjunctive transitions to multiple successors. Recall that Σa

is the set of all elements in Σ that contain a. Arrows with no successor node indicate
transitions to the empty set. Final states in the VWAA are indicated by doubled circles
and accepting transitions (of the single acceptance set) in the GBA are indicated by a
dotted line.

component is a set of subsets of AP , is prohibitively inefficient. These repre-
sentations are convenient for the proofs, but the question is how exactly any
concrete algorithm relates to this abstract description. We introduce a more
compact representation and define its relation to the abstract one.

Figure 2 visualizes our approach. As in G&O, we do not worry about reach-
able states in our main correctness proof; rather we implement the restriction
on the reachable states as a separate function (restr states in Fig. 2).

Fig. 2. Dividing the formalization into abstract and concrete parts. Thick arrows rep-
resent concrete functions, thin arrows represent abstract functions, and dotted arrows
are abstractions from concrete to abstract automata. An r in the subscript stands for
a restriction to reachable states.

4.1 Mechanizing the Abstract Proofs

Our abstract formalizations in HOL4 are basically identical to the mathematical
definitions given in Sect. 2. This allows us to closely follow the proof of Theorem 2
from G&O. First, we discuss the proof of Theorem 1, which is not presented
in G&O:

� L φ = LAA (ltl2vwaa φ)



Verifying the LTL Translation via Very Weak Alternating Automata 313

In the proof we fix a formula φ and with it the alphabet we are considering,
namely P(props φ), where props is the function that collects all atomic proposi-
tions that occur in a formula. Then we show the claim for all subformulae of φ
by structural induction on LTL formulae.

The base case is the translation of an atomic proposition p ∈ props φ. The
corresponding automaton Ap has one state with transitions to the empty set for
all elements in P(props φ) that contain p. Thus the automaton accepts exactly
the words w for which such a transition is active, which is the case exactly if
p ∈ w[0].

In the other cases, we show how accepting runs of the sub-automata can
be used to build accepting runs of the automata of the current case. Consider
the case Xψ. For any word w such that w |= Xψ we get w[1..] |= ψ and by
induction hypothesis an accepting run of Aψ on w[1..]. By shifting this run by
one and adding the vertex (Xψ, 0), we get an accepting run of AXψ. For the
other direction we start with an accepting run of AXψ on w. By the structure
of AXψ we can extract a run of Aψ on the word w[1..]. This is done by again
shifting the run by one, but now in the other direction. Applying the induction
hypothesis yields w[1..] |= ψ, from which we can conclude w |= Xψ.

The existence of these two runs is shown in the proofs for the following
lemmata:2

� runOfAA (ltl2vwaaφ ψ) r w [1..] ∧ word range w ⊆ P(props φ) ⇒
∃ r ′. runOfAA (ltl2vwaaφ (X ψ)) r ′ w

� runOfAA (ltl2vwaaφ (X ψ)) r w ⇒ ∃ r ′. runOfAA (ltl2vwaaφ ψ) r ′ w [1..]

The expression ltl2vwaaφ ψ denotes the automaton for ψ, as defined by
Definition 6, with respect to the alphabet P(props φ). (In particular,
ltl2vwaa φ = ltl2vwaaφ φ.) The condition runOfAA aut r w states that r is a
run of aut on w .

To show acceptance of the runs we construct in this case we use the fact that
the final states of the automata Aψ and AXψ are the same, as no “until”-formula
is added to the automaton in the X case. So it is enough if we can map every
path in the run we construct to some path in the old run that visits the same set
of nodes infinitely often. This is clearly possible as the only way we transformed
the runs was to shift them by one.

The most interesting cases are the temporal operators U and R, where the
acceptance conditions become important. In ϕUψ, for example, we first show
that the automaton cannot stay in the state ϕUψ forever, as this would lead to
a rejecting path in the corresponding run. This is because all “until”-formulae
are final states in our automata, and the co-Büchi condition requires an accept-
ing run to have no paths visiting infinitely many final states. At the position
where ϕUψ no longer loops, its next transition needs to be a transition of ψ,
by Definition 6. Thus we can extract an accepting run of Aψ for the suffix word

2 We need the precondition word range w ⊆ P(props φ) to make sure that w is a
word over the alphabet P(props φ) as we have no restriction on w[0] otherwise.



314 S. Jantsch and M. Norrish

starting at that position. For all positions until that point we can extract runs
of Aϕ and thus, via induction hypothesis, show that the word satisfies ϕUψ.

The correctness of the second part, from VWAA to GBA, is captured in the
following theorem.

� isVeryWeakAA aAA ∧ FINITE aAA.alphabet ∧ FINITE aAA.states ∧
isValidAA aAA ⇒

LGB (vwaa2gba aAA) = LAA aAA

We have to show that for every accepting run of the VWAA on a word w,
there exists an accepting run of the GBA on w, and vice versa. By the way
the GBA transitions are defined it can be seen that the sequence of layers in a
run of the VWAA corresponds to a run of the GBA. The two main difficulties
are to cope with the reduction of transitions by � in Definition 7 and to show
acceptance of the runs. As our formalization follows the proof in G&O closely,
we omit the details here.

Finally we show that we can restrict our automata to reachable states, by
proving that no state that is not reachable can appear in any run of the corre-
sponding automaton. We define a function for each automata model, with the
overloaded name restr states, that implements this restriction.

� LAA aAA = LAA (restr states aAA)
� isValidGBA aGB ⇒ LGB aGB = LGB (restr states aGB )

4.2 Concrete Data Structures

We use the following generic finite graph type to implement concrete represen-
tations of our automata in HOL4:

(α, ε) gfg = <|

node info : α spt;
followers : (ε × num) list spt;
preds : (ε × num) list spt;
next : num

|>

The α spt type implements a dictionary with keys that are natural numbers
and values of type α. Thus, a graph contains a set of nodes uniquely labeled
with natural numbers. Each node is associated with “node information” (the α
type parameter). In addition, dictionaries map each node label to outgoing and
incoming edges, where each edge connects to another node (identified by the
num), and “edge information” (the ε parameter). Finally, the next field tracks
the next node label, to be used when a node is inserted. This representation is
inspired by Erwig [4], and is readily translated into CakeML.



Verifying the LTL Translation via Very Weak Alternating Automata 315

The types used to capture node and edge information are given in Fig. 3. As
the transition structure of alternating automata allows conjunctive transitions
to several successors we cannot directly map it into the transition structure of
the graph. To solve this we extend the edge labels by a field called edge grp.
Multiple edges with the same value of edge grp are meant to belong to the same
conjunctive edge of the alternating automaton. The set of symbols of Σ for which
the transition is active is represented using two lists of atomic propositions, one
for positive and one for negative occurrences. This is possible because the first
component of any transition is always the result of intersecting sets Σ, Σp and
Σ¬p, by Definition 6, which was observed in G&O. This explains the type of our
edge labels α edge_labelAA as defined in Fig. 3.

Fig. 3. Encoding the concrete representation of alternating automata.

Another aspect of alternating automata that cannot be captured immedi-
ately in the graph are transitions to an empty set of successors. One way to
handle them is to add a state representing true from which any suffix word is
accepted. As we do not have this state in our abstract automata in general, this
would break the direct correspondence of states in our abstract and concrete
models. We encode this information in the node labels of our concrete structure
(α node_labelAA). Any edge label that appears in the field true labels corresponds
to an edge with the empty successor set in our abstract model.

Fig. 4. The types used to encode the concrete representation of GBAs.



316 S. Jantsch and M. Norrish

Using these two types we define our concrete alternating automata by com-
bining the graph with a list of atomic propositions and an init field corresponding
to the set of sets given by I in the abstract automaton.

As the GBA transition structure corresponds to an ordinary graph, we can
define it in the natural way (see Fig. 4). By Definition 7, the states of the GBA
are sets of states of the VWAA, which are LTL formulae in our case, so we label
the GBA states by lists of LTL formulae. The acc set field is a list of formulae for
which the edge is accepting. So rather than grouping all the accepting edges in a
set Tf , every edge that is accepting for f should contain f in the field acc set. Addi-
tionally the field all acc frmls declares all acceptance sets that exist in the GBA.

4.3 Abstraction Functions

To establish the correspondence between our concrete and abstract automata
we define abstraction functions that take a concrete automaton and return its
abstract counterpart. These abstraction functions can be seen as defining the
semantics of the concrete structure.

To abstract the states of the automaton we visit all nodes in the graph and
read their labels. For the transitions we introduce the following function:

transform label AP pos neg =
FOLDR (λ a sofar . char (P(AP)) a ∩ sofar)

(FOLDR (λ a sofar . char neg (P(AP)) a ∩ sofar) (P(AP))
neg) pos

The functions char and char neg are defined exactly as the sets Σp and Σ¬p

in Definition 6, where Σ = P(AP ) in this case. The function transform label

defines how the fields pos lab and neg lab of the concrete edge labels should be
interpreted. It computes all subsets of Σ that contain all atomic propositions in
pos and do not contain any atomic proposition in neg .

Note that different values of pos and neg can lead to the same abstract
interpretation by transform label. One reason is that the order of the lists does
not matter, the other is that whenever some atomic proposition appears in both
lists, the value of transform label is the empty set.

To abstract the transition function we have to compute a set of abstract
transitions given a formula ϕ. We do this by finding the node labeled by ϕ in
the graph, grouping its outgoing edges by the value of edge grp, looking up all
the identifiers of the successor states and computing the first components of
the transitions using transform label. If there is no such node in the graph, the
function returns the empty set. We call this function abstr transAA. The procedure
for the abstract GBA follows the same idea but does not have to bother with
conjunctive edges.

The final states are abstracted by collecting all states of the concrete VWAA
that have is final set to true. From the concrete GBA we get the sets Tf by
collecting all transitions where the acc set field in the edge label contains the
formula f .



Verifying the LTL Translation via Very Weak Alternating Automata 317

4.4 Concrete Translations

Concrete LTL to VWAA. First we describe our concrete algorithm for the
first part of the translation, from LTL formulae to VWAA, now encoded with the
concrete graph types described in Sect. 4.2. We reimplement the core functions
ϕ and ⊗ and a concrete version of δ, called concr trans, using lists, and show that
when abstracted with transform label, concr trans corresponds to δ.

Theorem 3

� set (MAP (abstr edge AP) (concr trans φ)) = trans (P(AP)) φ

Here trans is δ, computed for a specific alphabet, and abstr edge applies
transform label to the lists of positive and negative atomic propositions of a con-
crete edge, and transforms the list of successors into a set.

Additionally we specify functions for adding nodes and edges to the graph rep-
resenting the alternating automaton, add state and add edge. The function add state

is a wrapper around the generic function of the graph type for adding nodes that
additionally decides whether or not a state should be final by checking if the for-
mula is an “until”-formula. The function add edge decides whether to add the edge
to the true labels field of the node, which it does if the set of successors is empty, or
by using real edges in the graph. Because add edge may be called for a node that is
not in the graph, its return value uses the option type.

Using these auxiliaries, we define a recursive function called expand graph (see
Fig. 5). It maintains a list of nodes to process and the current state of the graph.
In every iteration the first element of the list is processed by computing its
outgoing transitions with concr trans and adding the successors and the edges to
the graph. The list of nodes that still need to be processed is extended by the
new successors if they have not been processed already. For a given formula ϕ,
expand graph is initially called with the list of formulae in ϕ (the set of initial
states by Definition 6), and, as its first parameter, the graph containing only
these formulae and no edges.

To show termination of expand graph we use the fact that in the list of nodes
to be processed we always remove one element f and replace it with its sucessors,
all of which are subformulae of f . As the “subformulae of” relation is a partial
order, this lets us use the multiset ordering to define a wellfounded order on the
second argument of expand graph that decreases in every iteration.

Concrete VWAA to GBA. The second part of the concrete translation, from
VWAA to GBA, takes a concrete alternating automaton as input and computes a
concrete GBA. The states of the GBA are labeled by lists of states of the VWAA.
As the set of outgoing transitions of a GBA state depends on the transitions of
the VWAA states in its label, we need to compute these from the input VWAA.
We do this by defining a concrete version of the function abstr transAA called
get concr transAA.



318 S. Jantsch and M. Norrish

Fig. 5. Concrete function implementing LTL to VWAA. The first argument is the
graph of an alternating automaton and the second argument is the list of nodes that
still need to be processed.

To compute the transition of a GBA state labeled by a list of VWAA states
L, we compute get concr transAA for every q in L and then apply a fold with our
concrete version of ⊗ to the list of transitions. For every edge we then need to
check for which of the final states f of the VWAA the conditions of Tf , given
in Definition 7, apply. Remember that this includes a check whether there is a
transition in δ(f) that does not contain f in its successor set. To perform these
checks more efficiently, we precompute the transitions for all final states of the
VWAA.

Finally we need to remove all transitions that are not �-minimal. To do this
we define a concrete counterpart of �. Having defined this relation, we find the
minimal elements by comparing all the computed transitions of a state pairwise.
We then add the successor states and the edges to the graph and extend the list
of nodes to be processed by the new nodes.

Showing termination of this function is more involved than for the first part.
The reason is that there is no partial order on the states of the GBA in general,
indeed it can have non trivial cycles. To show termination we use the following
insight: either the statespace of the graph grows, or it stays the same and the
list of nodes to be processed becomes shorter. The first part is a wellfounded
relation, as there is an upper bound on the total number of possible states,
namely the powerset of the states of the alternating automaton, P(Q). Here we
need to show that all new states computed by concr trans are really in P(Q).
If the statespace of the graph does not grow in some iteration of expand graph,
we know that all successors of the currently processed node must already have
been processed. Thus the list of nodes to be processed gets shorter by one, as



Verifying the LTL Translation via Very Weak Alternating Automata 319

the current node is removed. Combining these two orders lexicographically leads
to a wellfounded relation. The same approach to prove termination of a graph
expansion algorithm was adopted in Schimpf et al. [15].

4.5 Verifying the Concrete Functions

After having defined our concrete automata types and concrete functions that
implement the translations we show two things. First, they never return NONE

on any reasonable input. For the VWAA to GBA translation we require a con-
crete alternating automaton as produced by the concrete LTL to VWAA trans-
lation. Second, applying the abstraction functions gives us exactly the abstract
automata that we get by chaining the abstract translation function with the
restriction to reachable states. For the LTL to VWAA translation we prove
the following theorem, which essentially corresponds to the left hand side of
Fig. 2. The function concr ltl2vwaa computes the list of initial states and calls
expand graph.

� ∀ϕ.

∃ cAA.

concr ltl2vwaa ϕ = SOME cAA ∧
abstr AA cAA = restr states (ltl2vwaa ϕ)

To show the first part we need to show that we do not call add edge for a node
that is not in the graph, since this is the only possibility for expand graph to
return NONE (see Fig. 5). We do this by showing that all nodes in the list that
still have to be processed must have been added to the graph already.

The second part amounts to showing that, after applying the abstraction
functions, the states, the transition function, the initial and the final states are
equal to the corresponding fields in the result of the abstract translation.

Using Theorem 3 we show that for every state q that has already been pro-
cessed it holds that all states that are one step reachable from q are either already
in the graph, or in the list of nodes to be processed. Reachability here means
the reflexive and transitive closure of δ. From this lemma follows that we will
eventually include all reachable states of the abstract automaton. To show that
only such states are included we again use Theorem 3 and show the invariant
that every state in the graph is indeed reachable. In these two steps we use
the assumption that the initial states are computed correctly, which we prove
independently.

For the transition function we need to show that add edge adds the edges
computed by concr trans in the intended way. To show this we show that for all
nodes in the graph g that have been processed already, abstr transAA g q is equal
to δ(q).

The proofs for the abstractions of final and initial states amount to showing
that the concrete computation of ϕ corresponds to the abstract function, and
that exactly the nodes labeled by an “until” formula have is final set to true.



320 S. Jantsch and M. Norrish

For the second part of the translation, from concrete VWAA to concrete
GBA, we prove the following theorem, which corresponds to the right hand side
of Fig. 2:

� concr ltl2vwaa ϕ = SOME cAA ∧ aAA = abstr AA cAA ⇒
∃ cGB .

concr vwaa2gba cAA = SOME cGB ∧
abstr GBA cGB = restr states (vwaa2gba aAA)

We have similar proof obligations here as in the previous case, we need to show
that states, transition function and initial states are correctly abstracted. For
the acceptance condition we show that for all f in all acc frml of the concrete
automaton: if we collect all transitions in the concrete graph labeled by f , we get
exactly the set Tf . Additionally, for every f in all acc frml we show that Tf ∈ T ,
and for the other direction if Tf ∈ T , then f is in all acc frml.

The states are handled by showing that the concrete computation of the
transition function corresponds to the abstract definition and then using the
same ideas as in the first translation step. For the transition function we have
the advantage that it is more directly encoded in the edges of the graph. On the
other hand we need to compute the transition functions of the VWAA states,
that the GBA state is labeled by, correctly, and handle the minimization by �.
For the minimization we need to show that two concrete transitions are related
by our concrete version of � if and only if their abstract counterparts are related
by �. This implies that we are removing the right transitions in the concrete
function.

Translation to CakeML. The CakeML ecosystem includes a general mechanism
for translating (a subset of) HOL functions into provably equivalent CakeML
ASTs (Myreen and Owens [13]). We use this technology to transform our con-
crete algorithm into CakeML syntax, to which we can then apply the CakeML
compiler, generating assembly code. Under minimal assumptions (including:
CakeML’s model of the hardware corresponds to that of the chip that actu-
ally executes the code, and the correctness of the assembler and linker used to
generate the final executable), the correctness of the CakeML compiler lets us
conclude that this machine code will implement the algorithm exactly as written
in the HOL formulation. In turn, the abstraction proofs described earlier then
give us a high-assurance connection between the machine code that executes and
the mathematical results of G&O.

At this stage, we embody our algorithms in a simple tool that parses an
LTL formula on standard input, and prints out the two translated automata as
(typically rather large) S-expressions. We have not benchmarked our executable’s
performance to any degree. Certainly, we are confident that CakeML-compiled
code and a näıve representation of graphs/automata will not perform as well as
hand-tuned C tools that have had extensive development. On the other hand,
the development in HOL4 and CakeML gives us extremely high assurance that
our tool is correct.



Verifying the LTL Translation via Very Weak Alternating Automata 321

5 Related Work

The most complete verification effort of algorithms in the context of LTL model
checking was done by Esparza et al. [6]. They describe a fully verified imple-
mentation of an LTL model checker in the Isabelle theorem prover. The work
builds on a previously described verification [15] of the LTL to generalized Büchi
automata translation which was introduced by Gerth et al. [8]. The algorithm
uses a tableau construction and is more amenable to a direct verification as it
does not include the intermediate step of alternating automata. The work has
been extended to use Promela as input language to describe systems [14] and
to use partial order reductions [1]. Additional optimization techniques for Büchi
automata have been verified as independent functions in Schimpf and Smaus [16].
Another mechanization of a translation algorithm from LTL to automata was
reported on in Esparza et al. [5]. The authors introduce a new algorithm target-
ing deterministic automata and emphasize the importance of interactive theorem
provers, which allowed them to uncover errors in their original proofs.

One approach that has been developed to refine abstract definitions into
efficient code is the Isabelle Refinement Framework [9,10]. Both powerful and
generic, it allows the refinement of abstract types into more efficient data struc-
tures. We believe that our rather custom abstraction would have been hard to
achieve in this framework, as the structure of the abstract automata are quite
different to the concrete ones, and multiple abstract details are encoded in the
same concrete types. For example, consider the accepting edges of the GBA.
While the abstract automaton provides all these edges in a set of sets, in the
concrete world they are embedded in the graph using the edge labels.

Alternating automata in the context of interactive theorem proving were pre-
viously addressed by Merz [12]. This work mechanizes a proof of the closure of
weak alternating automata under complementation, using winning strategies of
logical games. As an application, Merz presents a translation from LTL into very
weak alternating automata. The translation mechanized by Merz generates more
states than G&O (all sub-formulae and negations vs. only temporal subformu-
lae), and he does not address the second, exponential, translation to GBAs. This
work also remains completely abstract, without mentioning concrete algorithms.

6 Conclusion

In this paper we have presented a formalization of the algorithm for translating
LTL formulae into generalized Büchi automata presented in G&O, which uses
very weak alternating automata as an intermediate representation.

We introduce an encoding of both alternating automata and generalized
Büchi automata in a compilable, generic graph type that uses an efficient lookup
structure. This is especially interesting for alternating automata, as they are a
powerful computational model leading to elegant algorithms, e.g., Vardi [18].



322 S. Jantsch and M. Norrish

To cope with the complexity of the algorithm, we divide the formalization
into an abstract and a concrete part. In the abstract part we mechanize the
proofs and show correctness of the translation as it is presented in G&O. The
correspondence between the abstract and concrete models is established using
abstraction functions that map concrete automata to abstract ones. We imple-
ment the algorithm on our concrete types and show that applying the abstrac-
tions to the resulting automata leads to the automata given by the abstract
translation.

This approach turned out to be fruitful: we were able to reproduce the
abstract correctness results fairly quickly. Not having to additionally cope with
arguments about concrete data structures, termination and details concerning
our graph type, made a big difference. We would like to extend our ideas to
include optimization steps in the translation, by showing independent correct-
ness in the abstract world and efficiently embedding them in the expansion
algorithm. So far, efficiency has not been a big concern for us; rather we have
focused on producing verified code for the algorithm in G&O. In future work we
would like to optimize the code and provide an empirical comparison to existing
tools.

Finally we use the CakeML compiler to produce fully verified code imple-
menting our concrete functions. This step significantly strengthens the confidence
we can have in the machine code, as we do not have to trust a standard compiler.
Translation of LTL formulae into automata is only one part of a complete model
checker, but our experience suggests that an extremely high assurance model
checker embodying sophisticated optimizations is entirely feasible.

References

1. Brunner, J., Lammich, P.: Formal verification of an executable LTL model checker
with partial order reduction. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016.
LNCS, vol. 9690, pp. 307–321. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40648-0 23

2. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Meth. Syst. Des. 1(2),
275–288 (1992)

3. Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for
generalized Büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 169–184. Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 15

4. Erwig, M.: Functional programming with graphs. In: Simon, L., Jones, P., Tofte,
M., Berman, A.M. (eds.) Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming (ICFP 1997), Amsterdam, The Nether-
lands, 9–11 June 1997, pp. 52–65. ACM (1997)

5. Esparza, J., Křet́ınský, J., Sickert, S.: From LTL to deterministic automata - a
safraless compositional approach. Form. Meth. Syst. Des. 49(3), 219–271 (2016)

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 31

https://doi.org/10.1007/978-3-319-40648-0_23
https://doi.org/10.1007/978-3-319-40648-0_23
https://doi.org/10.1007/11537328_15
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31


Verifying the LTL Translation via Very Weak Alternating Automata 323

7. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 6

8. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) Protocol
Specification, Testing and Verification XV, PSTV 1995. IFIP Advances in Informa-
tion and Communication Technology, pp. 3–18. Springer, Boston (1996). https://
doi.org/10.1007/978-0-387-34892-6 1

9. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2 9

10. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32347-8 12

11. Loding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS
2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44929-9 36

12. Merz, S.: Weak alternating automata in Isabelle/HOL. In: Aagaard, M., Harrison,
J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 424–441. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44659-1 26

13. Myreen, M.O., Owens, S.: Proof-producing synthesis of ML from higher-order logic.
In: Thiemann, P., Findler, R.B. (eds.) ACM SIGPLAN International Conference
on Functional Programming, ICFP 2012, Copenhagen, Denmark, 9–15 September
2012, pp. 115–126. ACM (2012)

14. Neumann, R.: Using promela in a fully verified executable LTL model checker.
In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp.
105–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3 7

15. Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi automata for LTL
model checking verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) Theorem Proving in Higher Order Logics: Proceedings of 22nd
International Conference, TPHOLs 2009, Munich, Germany, 17–20 August 2009,
pp. 424–439. Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-
9

16. Schimpf, A., Smaus, J.-G.: Büchi automata optimisations formalised in
Isabelle/HOL. In: Banerjee, M., Krishna, S.N. (eds.) ICLA 2015. LNCS, vol.
8923, pp. 158–169. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-45824-2 11

17. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 116

18. Vardi, M.Y.: Alternating automata: unifying truth and validity checking for tem-
poral logics. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 191–206.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6 19

https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44659-1_26
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/978-3-642-03359-9
https://doi.org/10.1007/978-3-642-03359-9
https://doi.org/10.1007/978-3-662-45824-2_11
https://doi.org/10.1007/978-3-662-45824-2_11
https://doi.org/10.1007/3-540-57887-0_116
https://doi.org/10.1007/3-540-63104-6_19

	Verifying the LTL to Büchi Automata Translation via Very Weak Alternating Automata
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Co-Büchi Alternating Automata
	2.3 Generalized Büchi Automata

	3 Translating LTL to GBA
	4 Verifying the Algorithm
	4.1 Mechanizing the Abstract Proofs
	4.2 Concrete Data Structures
	4.3 Abstraction Functions
	4.4 Concrete Translations
	4.5 Verifying the Concrete Functions

	5 Related Work
	6 Conclusion
	References




