
Verified Compilation on a Verified Processor
Andreas Lööw

Chalmers University
Gothenburg, Sweden

Ramana Kumar
DeepMind
London, UK

Yong Kiam Tan
CMU

Pittsburgh, PA, USA

Magnus O. Myreen
Chalmers University
Gothenburg, Sweden

Michael Norrish
Data61, CSIRO and ANU

Canberra, Australia

Oskar Abrahamsson
Chalmers University
Gothenburg, Sweden

Anthony Fox
Arm Limited
Cambridge, UK

Abstract
Developing technology for building verified stacks, i.e., com-
puter systems with comprehensive proofs of correctness,
is one way the science of programming languages furthers
the computing discipline. While there have been successful
projects verifying complex, realistic system components, in-
cluding compilers (software) and processors (hardware), to
date these verification efforts have not been compatible to
the point of enabling a single end-to-end correctness theorem
about running a verified compiler on a verified processor.

In this paper we show how to extend the trustworthy de-
velopment methodology of the CakeML project, including
its verified compiler, with a connection to verified hardware.
Our hardware target is Silver, a verified proof-of-concept
processor that we introduce here. The result is an approach
to producing verified stacks that scales to proving correct-
ness, at the hardware level, of the execution of realistic soft-
ware including compilers and proof checkers. Alongside our
hardware-level theorems, we demonstrate feasibility by host-
ing and running our verified artefacts on an FPGA board.

CCS Concepts • Hardware → Hardware description
languages and compilation;Theoremproving and SAT
solving; • Software and its engineering→ Software ver-
ification; Compilers.

Keywords verified stack, program verification, hardware
verification, compiler verification

ACM Reference Format:
Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen,
Michael Norrish, Oskar Abrahamsson, and Anthony Fox. 2019. Ver-
ified Compilation on a Verified Processor. In Proceedings of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . .$15.00
https://doi.org/10.1145/3314221.3314622

40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3314221.
3314622

1 Introduction
A verified stack is a computer system that is demonstrably
correct. Specifically, it is a system with a formal proof of
correctness that covers all layers of the implementation, from
the hardware through to the application code. Enabling the
construction of verified stacks is a guiding light for the field
of formal verification; several projects have made progress
towards its achievement [2, 3, 33]. In this paper, we report
on a milestone in this tradition: a verified stack consisting of
a verified processor that we have synthesized for an FPGA
board on which we can run a realistic and verified compiler.

To reach this milestone, we have developed a new verified
processor called Silver1 that is simple but general-purpose,
and have extended the trustworthy chain in the CakeML
project with a link to Silver. The Silver processor was ver-
ified with ease thanks to a new proof-producing hardware
generator that is grounded in a semantics for the hardware
description language (HDL) Verilog. To produce machine
code for Silver, we use the CakeML translator [16, 29] and
compiler [14, 34]. We obtain end-to-end correctness the-
orems by composing the CakeML compiler’s correctness
theorem with the Silver processor’s correctness theorem.
Our combination of Silver with CakeML yields a general

method for verification down to the hardware level. Given a
high-level executable specification of behaviour, our method
produces machine code for Silver plus an end-to-end cor-
rectness theorem stating that the verified Silver hardware
will have the observable behaviour of the original high-level
specification, provided the generated Silver machine code is
initially present in memory.

We demonstrate our method on several applications taken
from CakeML’s library, including word-count, sort, a proof-
checker for OpenTheory proofs [18], and the CakeML com-
piler itself. To our knowledge, this is the first verified stack
development that scales to the point of executing a realis-
tic compiler on top of verified hardware, in a setting with

1As silverware may be used in consuming cakes and other food, Silver is
hardware that can run CakeML as well as other programs.

https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/3314221.3314622

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Lööw, Kumar, Tan, Myreen, Norrish, Abrahamsson, Fox

a single correctness theorem that covers the full end-to-end
composition.
Previously, the CakeML compiler targeted only architec-

tures without verified implementations [14], such as x86 and
ARM. When the target architecture has no correctness proof,
the hardware and runtime environment must be modelled as
assumptions on the compiler’s correctness theorem. In this
paper, by targeting the verified Silver processor, we address
the question “How can the CakeML compiler (and other veri-
fied compilers) be extended to reduce assumptions about the
hardware and environment?” In explaining this, we make
the following contributions:
• We exhibit sufficient properties that, if proved about
a compiler and a processor, enable them to be used
together for constructing verified stacks. The shape of
the correctness proofs in our method (§2) should be
informative for other verified stacks.
• We show how we constructed and verified (§3) the
Silver processor (§4) down to its implementation in
Verilog, a mainstream low-level hardware description
language. (The software side of our method has been
described elsewhere [29, 34].)
• We address claims [21, 34] that the assumptions on
the CakeML compiler’s correctness theorem (§5) are
reasonable, by showing how they can be satisfied (§6),
and highlight minor changes that were required (§6.1).
• Finally, we contribute the Silver processor and exten-
sions to CakeML to support Silver as re-usable artefacts
for constructing verified stacks.

The whole development, including the CakeML compiler
and the Silver processor, has been built using the HOL theo-
rem prover [32]; the source code and proofs are available at
https://github.com/CakeML/cakeml and https://github.com/
CakeML/hardware.

2 Approach
Our approach to building verified stacks divides concerns,
just as in the traditional approach to building (unverified)
systems, with steps including:

1. Write functional specifications for the application.
2. Implement the specifications as source code in a high-

level programming language.
3. Compile the source code to machine code.
4. Link the application machine code with code imple-

menting any required system calls.
5. Run the resulting machine code on a processor (con-

nected to memory and I/O devices).
The main omission is interaction with an operating system:
at present, we focus on applications that run on “bare metal”.
In order to produce verified stacks, we have a verification
story for each of the steps above, and we produce a single
end-to-end theorem that composes the correctness theorems
associated with each step.

Now, let us turn to the specific components we use to
instantiate the template above, and their associated verifica-
tion story. To make things concrete, we consider an example
application, namely, wc, a program that counts the words it
receives as input.

2.1 Specification
We write formal specifications in higher-order logic, specif-
ically by defining functions in the HOL theorem prover.
For wc, these include functions used in logical expressions
such as: |tokens is_space input |, which is the length | . . . |
of the tokens function applied to the is_space function and
input. We summarise the specification for wc as a relation,
wc_spec input output, between input and output strings.

2.2 High-Level Implementation
We implement the application in CakeML, generating code
from the specification whenever possible. To do this, we use
the CakeML translator [16, 29], which, given specifications
that are pure functions or monadic functions representing
impure computations, produces both an implementation in
CakeML code and a certificate theorem.2 Ultimately, we ob-
tain a proof that a CakeML program, wc_prog in our example,
successfully terminates3 with output conforming to the spec-
ification4:

⊢ ∃ io.
cakeml_sem ([“wc”],fsin input) wc_prog =
{ Terminate Success io } ∧

wc_spec input (get_stdout io)

(1)

Here [“wc”] represents the command line and fsin input rep-
resents the filesystem state when the program starts, in this
case with no files but with the string input to be read on
standard input.

2.3 Compilation to Machine Code
We compile the CakeML code to Silver machine code using
the optimising CakeML compiler, selecting the new target,
Silver (ag32), that we have added to the compiler backend.
The compiler is proved correct once and for all, with a cor-
rectness theorem of this form:

⊢ cakeml_sem (cl,fs) prog = behaviours ∧
Fail < behaviours ∧
compile confAg prog = Some compiled_prog ∧
installedAg compiled_prog (basis_ffi cl fs) ms ⇒
machine_sem (basis_ffi cl fs) ms ⊆
extend_with_oom behaviours

(2)

2If parts of the desired implementation cannot be translated from the speci-
fication, we write CakeML code by hand and verify it using Characteristic
Formulae [15] in the tradition of Hoare logic.
3CakeML supports correctness proofs for non-terminating programs, but
we do not cover them in this paper.
4Equality (=) binds tighter than conjunction (∧); termination and confor-
mance are represented by the two conjuncts.

https://github.com/CakeML/cakeml
https://github.com/CakeML/hardware
https://github.com/CakeML/hardware

Verified Compilation on a Verified Processor PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Here, basis_ffi cl fs models the behaviour of system calls that
access the command line cl and file system fs as expected
by CakeML’s basis library; machine_sem produces a set of
behaviours by repeatedly stepping the machine state ms,
applying external interference and executing system calls
according to the basis_ffi model [14]; and extend_with_oom
adds additional behaviours to the compiled program, namely,
allowing it to terminate prematurely with an out-of-memory
error, having done only a prefix of the correct I/O events.
We execute the compiler inside the theorem prover (es-

sentially by rewriting with its definition) in order to obtain a
compiled program (i.e., bytes of machine code), here wc_ag32,
and a compilation theorem:

⊢ compile confAg wc_prog = Some wc_ag32 (3)

Instantiating the compiler correctness theorem (2) with the
compilation theorem (3) and the application semantics theo-
rem (1), we obtain a correctness theorem about the applica-
tion machine code. For wc, the theorem is:

⊢ installedAg wc_ag32 (basis_ffi [“wc”] (fsin input)) ms ⇒
∃ io.
machine_sem (basis_ffi [“wc”] (fsin input)) ms ⊆
extend_with_oom { Terminate Success io } ∧

wc_spec input (get_stdout io)

(4)

This theorem, relating the semantics of a machine code pro-
gram, wc_ag32, to the high-level specification, wc_spec, is
what the CakeML project provided prior to this paper. Cru-
cially, this theoremhas an assumption constraining the initial
machine state, namely installedAg wc_ag32 . . ., which states
that the compiled program is loaded correctly and that the
external environment (via system calls and interference) be-
haves as modelled (§5). By targeting a verified processor
and verifying the system library, we reduce this assumption,
replacing substantial parts of it by proofs.

2.4 Verified System Calls
CakeML programs interact with their environment via sys-
tem calls for reading command-line arguments and read-
ing/writing to standard streams and files. For Silver, we have
realised the standard streams std{in,out,err}, and the
command line, as in-memory devices accessed by Silver ma-
chine code that we have verified to implement the system
calls required by CakeML. The input devices are pre-filled
before execution, and the output devices are connected to
a text terminal. As we are developing bare-metal applica-
tions, the verified system calls code is included as part of the
memory image loaded at startup.
Our theorems about the system calls (§6) enable us to re-

place the installedAg assumption in theorem (4) with a simpler
assumption, initAg . . ., merely stating that the compiled code,
system calls code, and input data is in memory. The resulting

theorem has this form:
⊢ |input | ≤ stdin_size ∧
initAg wc_ag32 ([“wc”],input) ms ⇒
∃ io k.
machine_sem (basis_ffi [“wc”] (fsin input))
(Nextk ms) ⊆
extend_with_oom { Terminate Success io } ∧

wc_spec input (get_stdout io)

(5)

Here, Nextk ms is the result of k steps of execution from
the initial machine state ms, corresponding to execution of
startup code that sets a few registers to satisfy the initialisa-
tion assumptions of CakeML (§5); and stdin_size is a constant
representing the maximum amount of pre-filled input we
support (about 5 MB).
Working through the definition of machine_sem (essen-

tially, repeated application of Next, using basis_ffi to handle
system calls), and using our verified system calls code, we
obtain the following version of this theorem phrased entirely
in terms of the Silver ISA and its next-state function Next:

⊢ |input | ≤ stdin_size ∧
initAg wc_ag32 ([“wc”],input) ms ⇒
∃ io. FG k.
wc_spec input (get_stdout io) ∧
is_haltedAg (Nextk ms) ∧
stdoutAg (Nextk ms).io_events ≼ get_stdout io ∧
(exit_code_0Ag (Nextk ms) ⇒
stdoutAg (Nextk ms).io_events = get_stdout io)

(6)

We use the FG operator here to capture the notion that a
predicate becomes true at some unspecified point in the fu-
ture, and then remains true thereafter.5 Thus we see that the
Terminate Success io behaviour of machine_sem corresponds
to execution for some number of steps, at which point the
machine reaches a halting state (is_haltedAg . . .), which is a
program-specific location where the machine remains for
any further steps. Furthermore, at this point, the trace of
writes to stdout (stdoutAg . . .) will be a prefix (≼) of the
specified output, attaining equality if the machine exited suc-
cessfully (exit_code_0Ag . . .) without running out of memory.
The assumptions on theorem (4) that we have proved to

reach theorem (6) cannot be discharged when developing
applications for unverified operating systems. In particular,
to reach theorems (5) and (6), we must prove (see §6) that
the system calls run correctly under the same ISA semantics,
Next, that runs the application code.

2.5 Execution on a Verified Processor
We have proved that the Silver processor, as a hardware
circuit, silver_cpu_verilog, implemented in the HDL Verilog,
implements the Silver ISA (with next-state function Next). To
prove this, we used our new proof-producing Verilog code

5The FG operator, based on temporal logic, is defined as:

(FG t . P t)
def
= ∃ t0 . ∀ t . t0 ≤ t ⇒ P t

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Lööw, Kumar, Tan, Myreen, Norrish, Abrahamsson, Fox

generator (§3). The processor correctness theorem for Silver
is as follows:

⊢ let vstep = verilog_sem env silver_cpu_verilog init in
is_lab_env acc_env_verilog vstep env ∧
ag32_eq_init_isa_verilog (env 0) ms init ⇒
∀ k. ∃m fin.
vstep m = Ok fin ∧
ag32_eq_isa_verilog (env m) (Nextk ms) fin

(7)

Here, vstep m is the state of the Silver processor imple-
mentation after m clock cycles. The env function is used
to represent processor-external entities (is_lab_env . . .), such
as memory. The two relations ag32_eq_init_isa_verilog and
ag32_eq_isa_verilog belong to a family of relations used to ex-
press equality between processor states at different abstrac-
tion levels and specify the values of various implementation-
level registers (see §4). The theorem thus states that any
number of steps k taken by the ISA can be simulated by a
number of stepsm by the implementation.
Combining theorem (7) with theorem (6), and working

through some details about the processor state, we obtain:6

⊢ let vstep = verilog_sem env silver_cpu_verilog init in
|input | ≤ stdin_size ∧
is_lab_env acc_env_verilog vstep env ∧
verilog_initAg wc_ag32 ([“wc”],input) init env ⇒
∃ output. FG m. ∃ fin.
wc_spec input output ∧ vstep m = Ok fin ∧
verilog_is_haltedAg fin ∧
stdoutAg (env m).io_events ≼ output ∧
(verilog_exit_code_0Ag fin ⇒
stdoutAg (env m).io_events = output)

(8)

Theorems of this form are our milestone: working from a
high-level specification (wc_spec), theorem (8) states that a
piece of hardware (described in Verilog) implements that
specification. Importantly, the creative verification work of
the programmer is done at the high level of a CakeML pro-
gram, not at the hardware level of Verilog.
From the verified circuit silver_cpu_verilog, we have syn-

thesised the Silver processor for an FPGA board. (This is
possible because our code generator produces synthesisable
Verilog.) If we load a memory image (§6) containing the
machine code wc_ag32, the input text, and the system calls
code onto the board with the synthesised processor and set
it running, the board outputs the number of words in the
input (i.e., it runs wc).
The software half of the approach (the production of

verified machine code from functional specifications) is ex-
plained in detail in previous work [14, 29, 34] that we do not
repeat. Our focus is on the hardware side and the software-
hardware connection. We start by explaining how we devel-
oped and verified Silver (§3, §4), then describe the connection
to CakeML (§5) including verification of the system calls (§6),
and finally present the hardware-level correctness theorem
6The predicates with a verilog_ prefix are analogues of those in theorem (6)
defined at the Verilog rather than the ISA level.

for the CakeML compiler itself (§7) and discuss what remains
in the trusted computing base (§8).

3 Producing Verified Hardware
We have developed a new proof-producing Verilog code gen-
erator that translates HOL functions modelling circuits to
deeply embedded Verilog programs. The Verilog programs
are animated by a new operational semantics for a subset of
Verilog that we have developed in parallel with the code gen-
erator. The code generator enables relating circuit verifica-
tion results to a deeply embedded semantics for amainstream
low-level HDL (here, Verilog), which is novel (see §9). The
output from the Verilog code generator can be pretty-printed
and fed into synthesis toolchains, such as Xilinx’s Vivado
Design Suite which we have used, to produce FPGA artefacts.

Example. The code generator takes as input a circuit func-
tion in HOL. A circuit function takes a world-state function
env, a circuit-state s, and a clock n, and returns the circuit
state after n cycles. Circuit functions are expressed in terms
of next-state functions representing Verilog processes. Our
example circuit AB consists of two processes A and B that
count the number of pulses (env.pulse) and set done to true
(T) after 10 pulses. Here 1w and 10w are word literals (with
lengths inferred from context); <+ denotes unsigned less-
than; with updates a record; and ⟨| . . . |⟩ constructs a record:

A env s def
=

if env.pulse then s with count := s.count + 1w else s

B s def
=

if 10w <+ s.count then s with done := T else s

AB env s 0 def
= s

AB env s (Suc n) def
=

let s′ = AB env s n in
⟨|count := (A (env n) s′).count;
done := (B s′).done|⟩

If, as in AB, the input processes do not interfere with each
other—i.e., all writes to variables used for communication
between processes can be handled by Verilog’s non-blocking
assignment construct—then the code generator produces a
(deeply embedded) Verilog process for each HOL next-state
function and then composes them into a complete Verilog
module. For the AB example, the code generator produces a
Verilog module ABv containing the following code:

always_ff @ (posedge clk) // A
if (pulse) count <= count + 8'd1;

always_ff @ (posedge clk) // B
if (8'd10 < count) done = 1;

The code generator is proof-producing: for each run it
produces a correspondence theorem stating that the gener-
ated Verilog program has the same behaviour as the input
HOL circuit function. This correspondence theorem enables
us to transfer properties proved about HOL-level hardware

Verified Compilation on a Verified Processor PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

descriptions to the Verilog level. To illustrate, if we assume
that the input pulse to AB is high infinitely often,

pulse_spec env def
= ∀n. ∃m. (env (n + m)).pulse,

then we can easily prove

⊢ pulse_spec env ⇒ ∃ n. (AB env init n).done,

which in turn can be transported to the level of the Verilog
semantics using the generated correspondence theorem:

⊢ pulse_spec env ∧ vars_has_type s ABtypes ⇒
∃ n s′.

verilog_sem env ABv s n = Ok s′ ∧
verilog_get_var s′ “done” = Ok (VBool T)

Tool implementation. Our Verilog code generator is in-
spired by the CakeML translator [16, 29], and the Verilog
semantics that goes with it is based on the official Verilog
standard [1]. We aimed at soundly capturing the standard for
a restricted subset of Verilog that we found to be sufficient
for describing simple synthesisable synchronous hardware.
In our semantics, we consider a flattened module hier-

archy, where all processes correspond to always_ff proce-
dural blocks waiting on a program-common clock’s posedge.
We limit the amount of concurrency we need to model by
only considering non-interfering processes, where all non-
blocking writes are saved in a queue during cycle execution.
The contents of this queue is merged into the program state
at the end of every clock cycle.
The code generator translates HOL Booleans to Verilog

Booleans, and HOL words to Verilog arrays. The Verilog
Booleans in our semantics only take on the standard Boolean
values true (1) and false (0), as we do not consider wires
driven by multiple drivers (Z) in our formalisation, and un-
known values (X) are modelled using quantification inside
the logic. The details of the code generator and the semantics
are described in more detail in Lööw and Myreen [25].

4 The Silver CPU
In this section, we present the Silver ISA, the Silver FPGA
implementation and the environment it executes in, and the
correctness theorem relating the ISA and its implementation.
Figure 1 outlines the relationships between the different
layers of the implementation of the Silver ISA.

4.1 The Silver ISA
The Silver ISA (instruction set architecture) is the target
of the CakeML compiler’s Silver backend. As shown in the
topmost layer of Figure 1, the ISA is written in the L3 lan-
guage [13], a domain-specific language for ISAs that is also
used for the other CakeML compiler targets, and can be
transformed into HOL definitions by the L3-to-HOL com-
piler. Neither the L3 ISA nor the L3-to-HOL compiler are
part of the trusted base of the Silver processor: L3 is merely a
convenient way to generate HOL definitions of the Silver ISA

(1) L3 ISA

(2) HOL ISA

(3) Implementation as HOL next-state function

(4) Implementation as Verilog AST in HOL

(5) Implementation as bitstream for FPGA board

Unverified compilation

Correspondence proof

Proof-producing code generation

Unverified Verilog synthesis

Figure 1. The layers involved in the construction and verifi-
cation of the Silver processor.

that can be independently inspected. The generated ISA—the
second layer in Figure 1—is what is used in our proofs.
The Silver ISA in HOL is an operational semantics over

a machine state represented as a HOL record ⟨|. . .|⟩. The ma-
chine state contains memory (a function from addresses to
bytes), registers (a function from register indices to words),
the current program counter (PC), some flags, and a trace
of I/O events. The semantics, Next, is a fetch-execute func-
tion that retrieves the bytes from memory pointed to by the
program counter, decodes them into an instruction, then
executes the instruction by updating the machine state. For
example, the execute part of Silver’s LoadConstant instruction
is described as follows:

LoadConstant (reg,negate,imm) s def
=

let v = w2w imm in
s with
⟨|R := s.RLreg←if negate then −v else vM;
PC := s.PC + 4w |⟩

Here w2w is an unsigned resizing of words, with updates a
record, f Lk←vM denotes a function identical to f except that
f k = v, and 4w is a word literal. The reg, negate, and imm
parameters are information from the instruction decoder
specifying which register to update with what content. We
see that the function LoadConstant updates the state record
fields R (registers) and PC (program counter). There are simi-
lar semantics functions for each instruction in the Silver ISA.

4.1.1 Instruction Listing
The Silver ISA is a general-purpose RISC ISA designed to sup-
port CakeML. Each instruction is 32-bits long and operates
over 32-bit words. The Silver ISA has its roots in Thacker’s
Tiny 3 computer [35], but has since evolved significantly.

Loading constants into registers. The CakeML compiler
frequently wants to load large constants into registers. The

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Lööw, Kumar, Tan, Myreen, Norrish, Abrahamsson, Fox

Silver ISA supports loading a 23-bit immediate (or its nega-
tion) into the lower bits of a register. With another instruc-
tion, Silver supports loading a 9-bit immediate value into the
upper bits of a register.

ALU operations. The Silver ISA provides instructions for
two-argument ALU operations. The ALU supports integer
addition, integer add with carry, integer subtraction, incre-
ment by one, decrement by one, multiplication (with 64-bit
output), logical and, logical or, logical xor, equality, unsigned
less-than, signed less-than, retrieving the current carry flag,
retrieving the current overflow flag, and simply returning the
second operand. The add and subtraction operations update
the carry and overflow flags.

Shifts and rotations. Separately from the ALU instructions,
there are bit-shift and bit-rotation instructions, in both signed
and unsigned variants where necessary.

Memory. Memory can be stored or loaded either as words
or individual bytes.

Jumps. The Silver ISA supports conditional and uncondi-
tional PC-relative jumps, as well as unconditional jumps
to absolute addresses. Jump offsets (or addresses) can be
computed (i.e., obtained from a register), which is impor-
tant when tail-calling a closure or returning from a function
(moving the value of the link register into the PC).

Interrupt. The Silver ISA includes an Interrupt instruction,
which is used for notifying external hardware of an observ-
able event. In the implementation, Interrupt notifies external
hardware and waits for a response before continuing execu-
tion. In the semantics of the ISA, Interrupt silently records
the current state of memory by pushing it onto the trace of
I/O events.

4.2 The Silver Implementation
We have constructed a Silver processor, implementing the Sil-
ver ISA, that is designed for the PYNQ-Z1 FPGA SoC board.
The target board is relevant in that any implementation
must be adapted to the I/O and memory devices available.
The centrepiece of our implementation is an environment-
independent processor core, which is connected to the run-
time environment by a layer of environment-dependent glue.
The PYNQ board hosts an FPGA chip, an ARM core run-

ning Linux which is accessible over SSH, and a DRAM mod-
ule that is shared between the FPGA chip and the ARM core.
In our “lab setup”, when we execute a program compiled by
the CakeML compiler, we use the ARM core first to load the
synthesised Silver processor, as an FPGA bitstream, onto the
FPGA chip, and then to preload the shared DRAM module
with the appropriate memory image (the image (§6) contains
machine code produced by the compiler, our system calls
code, and data for the command line and standard input).

Formally, we represent the external environment the pro-
cessor interacts with as a function env from timesteps to the
state of the world. The environment is assumed to include
a memory interface (is_mem, the DRAM module), an ini-
tialisation interface (is_mem_start_interface, notifying when
memory is correctly pre-filled), and an interrupt handling
interface (is_interrupt_interface, invoked when an Interrupt
instruction is executed):

is_lab_env accessors step env def
=

is_mem accessors step env ∧ is_mem_start_interface env ∧
is_interrupt_interface accessors step env

The accessors argument is an implementation detail and
makes the definitions usable at multiple abstraction levels.
As an example, the initialisation interface is formalised as:

is_mem_start_interface env def
=

∃ n.
(∀m. m < n ⇒ ¬(env m).mem_start_ready) ∧
(env n).mem_start_ready

In our lab setup, the interrupt interface is connected to
the ARM core, and is used to notify the core of, e.g., system
calls it must react to, such as text output calls.

To produce a hardware description of the Silver processor
inside HOL—that is, layer 3 in Figure 1—we refined the HOL
ISA step by step into a hardware description. The implemen-
tation is not pipelined, and executes instructions in-order,
and is consequently similar, at a high-level, to the ISA.

The main difference between the implementation and the
ISA is that the implementation must interact with the ex-
ternal interfaces defined above, e.g., instead of updating an
abstract memory map as in the ISA, the implementation
must access external memory (using the interface defined
by is_mem). As a result, the implementation has additional
wait states that do not correspond to any state in the ISA, as
the processor sometimes has to wait for external interfaces,
such as memory, to respond to requests. Because of these
additional states, there are two different notions of time. In
the ISA, a “step” corresponds to an instruction cycle, whereas
an implementation-level “step” corresponds to a clock cycle;
an instruction cycle takes multiple clock cycles to realise in
hardware.
Another important step in the refinement process was

de-duplication of some elements of the ISA. For illustration,
consider the definition of the LoadConstant instruction given
above. The computation of the next PC is computed directly
in the definition of the instruction’s semantics. This pattern
is repeated for every instruction (except, e.g., jump instruc-
tions, where the next PC is computed by more complicated
means). One does not want to translate descriptions of in-
structions such as these to hardware naively, because then
the hardware component computing the next PC would be
duplicated one time per instruction, wasting hardware re-
sources. Computing the next PC should instead be carried

Verified Compilation on a Verified Processor PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

out by a single, shared, hardware component. So, part of the
manual refinement process was to identify which parts of
the ISA should be implemented by shared hardware com-
ponents, and which could be implemented in a more direct
way, similar to the structure suggested by the ISA.

4.3 Algorithmic Correctness of Silver
To show that the implementation correctly implements the
ISA, we have proved a simulation correspondence between
the two levels, saying that for any n instruction cycles the
ISA can take, these steps can be simulated by running the
implementation m clock cycles:

⊢ let cstep = silver_cpu init env in
ag32_eq_init_hol_isa (env 0) init s ∧
is_lab_env acc_env cstep env ⇒
∀n. ∃m.
ag32_eq_hol_isa (env m) (cstep m) (Nextn s)

(9)

The relation ag32_eq_init_hol_isa belongs to the family of
state relations mentioned in §2, and says that all ISA-visible
state components at the two levels must be equal, e.g., that
the memories have the same content and the registers are
element-wise equal. The relation also says that some im-
plementation registers must be in their start-up states. The
relation ag32_eq_hol_isa is similar to ag32_eq_init_hol_isa in
that it also says that all ISA-visible state components (again
including memory) must be equal, but differs by stating
that some implementation registers must now be in their
in-execution states. The two different state-equality rela-
tions are needed as the implementation initially needs to
wait for memory to respond with a first instruction before
it can proceed in in-execution mode. Lastly, silver_cpu is the
HOL hardware description of the processor, in the form of
a next-state function expressed such that it is accepted as
input by our Verilog code generator.
The simulation correspondence is quite weak, as it does

not provide any information about what happens during the
implementation’s execution of an instruction. In particular,
it does not tell us anything about the wait states mentioned
in the previous section. For example, in terms of the wc
example in §2, to prove theorem (8), beyond theorem (7)
and theorem (6), we needed a separate lemma saying that
the processor “does nothing” after a CakeML program has
terminated; or, in other words, a lemma stating that the ISA-
visible state is unchanged at any clock cycle after program
termination, not just at any instruction cycle.

4.4 Correctness of the Verilog Implementation
The correspondence between the HOL processor implemen-
tation and the Verilog processor implementation is more
direct than the correspondence between the HOL processor
implementation and the processor ISA. More precisely, with
the help of the Verilog code generator invoked on the HOL

processor, we can prove the following theorem:

⊢ ag32_eq_hol_verilog init vs ⇒
∃ vs′.
verilog_sem env silver_cpu_verilog vs n = Ok vs′ ∧
ag32_eq_hol_verilog (silver_cpu init env n) vs′

(10)

Here ag32_eq_hol_verilog is another relation from the state-
equality family, again requiring that its two parameters rep-
resent the same machine state at two different abstraction
levels. As seen previously, the verilog_sem function runs Ver-
ilog programs in our Verilog semantics, and silver_cpu_verilog
refers to the Verilog program the translator built out of the
HOL processor implementation silver_cpu.
The derivation of theorem (10) is mostly automated by

the code generator; the main obligation to discharge as a
user of the code generator is to express the input circuit as a
hardware description at the same level as the example from
§3. To derive the ISA and Verilog implementation correspon-
dence theorem (7) from §2, we simply compose theorem (10)
with the implementation correctness theorem (9).

For synthesis for our FPGA board, we have used the Ver-
ilog code generated by the process described in this section in
combination with some Verilog glue to connect the processor
to its environment (see the discussion in §8).

5 CakeML’s Assumptions
The CakeML compiler’s correctness theorem makes a long
list of assumptions regarding the execution environment of
the generated code. This section presents what the assump-
tions are, while the next section explains how we have met
these assumptions with the verified Silver processor and
verified implementation of system calls.

The compiler’s correctness theorem, an instance of which
is theorem (2) in §2.3, includes the following assumption:

installedAg compiled_prog (basis_ffi cl fs) ms,

which encapsulates the assumptions about the execution
environment of the generated code. It relates the generated
code compiled_prog, the command-line arguments cl, the
state of the file system fs, and the Silver ISA machine state
ms. Informally, it requires that ms is set up correctly for
execution of compiled_prog to begin.

The formal definition of installedAg is too long to reproduce
in full here, but the following list outlines its contents:

(i) Registers 1–4 provide accurate information on where
the part of memory usable by compiled_prog is located
in machine state ms.

(ii) The read-only data of compiled_prog is stored in mem-
ory, where it is expected to be (based on registers 1–4).

(iii) The machine code of compiled_prog is stored in mem-
ory, and the program counter of ms points at the first
address of this machine code.

(iv) The code and data sections do not overlap and various
pointers are aligned to word boundaries.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Lööw, Kumar, Tan, Myreen, Norrish, Abrahamsson, Fox

(v) Calls to external functions (i.e., system calls) behave
according to the modelled behaviour of the filesystem
fs and command line cl.

The last point (v) above is by far the most complicated
assumption. It requires that each time the CakeML-generated
code jumps to external code (e.g., code for reading external
input), the external code will execute and safely return to
the CakeML code according CakeML’s calling convention
for external calls. Furthermore, each execution of external
code must adhere to the CakeML basis library’s assumption
basis_ffi cl fs, explained in detail below.
The formal definition (omitted) of (v) is slightly unintu-

itive because the property is defined in terms of restrict-
ing the freedom of an oracle function. This oracle function,
which we call the interference oracle of the foreign-function
interface (FFI), is an argument to the operational semantics
machine_sem that is used in the correctness theorem for the
CakeML compiler. For the most part, machine_sem executes
the next instruction using the Silver ISA’s next-state func-
tion Next. However, when machine_sem encounters an entry
point to external code (an FFI call), the semantics consults
the interference oracle to determine what the resulting Silver
ISA state should be.
The interference oracle is restricted to leave unchanged

the part of the machine state that is private to CakeML code;
the oracle is obliged to write the correct return value (ac-
cording to basis_ffi cl fs, see below) to the shared array that
is used for communicating between CakeML code and the
external code; and the interference oracle is forced to set the
program counter to the correct return address (in order to
continue execution of the CakeML code).

So, what is basis_ffi cl fs? It encapsulates the assumptions
that the CakeML standard basis library makes of its foreign-
function interface. In the context of bare-metal systems, this
is the interface to system calls that support the I/O func-
tions in the basis library. Concretely, basis_ffi is defined as
a record that defines (1) an oracle function basis_ffi_oracle,
which specifies the behaviour of each call, and (2) the cur-
rent state of the external world consisting of a command
line (cl) and a filesystem (fs). The basis_ffi_oracle recognises
calls to: “read”, “write”, “get_arg_count”, “get_arg_length”,
“get_arg”, “open_in”, “open_out”, “close”, and “exit”. An ex-
cerpt of its definition is shown below:

basis_ffi_oracle name (cl,fs) conf bytes def
=

if name = “read” then
case ffi_read conf bytes fs of
FFIfail ⇒ Oracle_final FFI_failed
| FFIreturn bytes fs ⇒ Oracle_return (cl,fs) bytes
| FFIdiverge ⇒ Oracle_final FFI_failed

else . . .

When the FFI with name “read” is called, basis_ffi_oracle
delegates the task to ffi_read, which receives configuration
conf , input bytes and the current state of the filesystem fs

as arguments. The conf and bytes are arguments that the
CakeML programmer passed to the call at the source level.
From the programmer’s perspective, bytes is a byte array that
they have made the FFI call with, in this case, expecting it
to be filled with characters from reading a file. The function
ffi_read is defined as:

ffi_read conf (b0::b1::b2::b3::bytes) fs
def
=

do
assert (|bytes | ≥ w22n [b0; b1] ∧ |conf | = 8);
(l,fs′) ← read (w82n conf) fs (w22n [b0; b1]);
FFIreturn
([0w] ++ n2w2 |l | ++ [b3] ++ map c2w l ++
drop |l | bytes) fs′

od otherwise (FFIreturn (1w ::b1::b2::b3::bytes) fs)

When ffi_read receives a bytes argument of sufficient length,
it calls a read function from the filesystem model. This read
function (definition omitted) is given a file handler, a filesys-
tem state and the maximum length it is allowed to read. The
read function returns (l,fs′), where l is the number of bytes
that were actually read and fs′ is the new filesystem state.
The complicated list expression passed to FFIreturn specifies
how the length of list l and its content is communicated
in the shared array on return. On failure, ffi_read returns
1w in the first element of the array. All of the functions in-
volved here are defined in a monadic style (do . . . od, etc.)
since there can be assertion failures at many different points.
The w22n, w82n, n2w2, and n2w functions are conversions
between bytes and natural numbers.

6 Setting Up Silver for CakeML
In this section, we explain how we transition from theo-
rem (4) to theorem (6) in §2, i.e., how we prove the installedAg
assumption in order to move our correctness theorem from
a property about CakeML’s machine_sem down to Silver’s
Next. We make this transition by fixing a memory layout
that includes code implementing the required system calls,
and verifying that code. The memory layout that we use is
shown in Figure 2.

Recall from §5 that machine_sem either takes an ordinary
step of executing a CakeML-generated Silver instruction
or takes an interference oracle step representing a call to
a foreign function. To move from the machine_sem level to
the Silver ISA level, we define a predicate, interference_impltd,
which states that the effect of the interference oracle step can
be obtained by normal execution of machine code located
somewhere in memory (separate from CakeML-generated
code). This predicate bridges the gap between machine_sem
and our verification of the system call code at the ISA level.

The first theorem we prove about interference_impltd con-
nects it to machine_sem. It states that interference_impltd Rffi,
for an arbitrary relation Rffi between the Silver machine
state ms and FFI oracle state ffi, implies that a terminating
machine_sem can be replaced by a sequence of Next steps

Verified Compilation on a Verified Processor PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

that preserve Rffi. The FFI oracle states ffi, ffi′ in this the-
orem are records of the same type as basis_ffi cl fs. Recall
that basis_ffi cl fs is the initial FFI oracle state from which a
CakeML program is started (featuring, e.g., in theorem (6));ffi
andffi′ are a pair of FFI oracle states reached by the CakeML
program at runtime. The md argument gives the memory
domain in which the system call code is expected to reside:

⊢ interference_impltd Rffi md ms ∧ Rffi ms ffi ∧
machine_sem ffi ms ⊆
extend_with_oom { Terminate Success io } ⇒
∃ k ffi′.
Rffi (Nextk ms) ffi′ ∧ is_haltedAg (Nextk ms) ∧
ffi′.io_events ≼ io ∧
(exit_code_0Ag (Nextk ms) ⇒ ffi′.io_events = io)

(11)

The second theorem provides a concrete relation, ffi_relAg,
andmemory domain, ffi_mem_domainAg, and proves that they
satisfy interference_impltd:
⊢ . . . ⇒ interference_impltd ffi_relAg ffi_mem_domainAg ms (12)

The omitted assumptions (. . .) are routine: e.g., that the
FFI oracle state’s command line and file system are well-
formed, the code is correctly placed in memory (e.g., within
the domain), and so on. We omit these routine assumptions
here and below for brevity.
The proof of theorem (12) involves showing that each

piece of system call code correctly implements the call as
specified by basis_ffi_oracle, which we saw in §5. We prove a
theorem of the following form (shown here for “read") for
each system call:
⊢ . . . ∧ md = prog_mem_domainAg . . . ∧ ffi_relAg ms ffi ∧
index_of “read” ffi_names = Some index ∧
call_FFI ffi “read” conf bytes = FFI_return ffi′ bytes′ ⇒
∃ k.
ffi_interferAg md (index ,bytes′,ms) = Nextk ms ∧
ffi_relAg (Nextk ms) ffi′

(13)

Here, call_FFI is a wrapper around basis_ffi_oracle that takes
an initial FFI oracle state ffi and returns a new FFI oracle
state ffi′ along with the bytes returned by basis_ffi_oracle.
The conclusion of this theorem has two parts. First, it shows
that the FFI call (ffi_interferAg, described below) is identical
to stepping Next k times. Second, it shows that the ffi_relAg
relation is preserved across these k steps.
So what is the ffi_interferAg function? It is a concrete in-

terference oracle instance for CakeML’s FFI semantics, that
specifies the effect on a machine statems of running a system
call that returns bytes′. Themd argument indicates the mem-
ory domain (prog_mem_domainAg) that CakeML uses, i.e., the
parts with a CakeML prefix in Figure 2. The index argument
indicates which FFI call is made (in this case “read"). The
ffi_interferAg function updates the machine state by writing
bytes′ to the part of md used for communicating with the
external call, updating registers and the PC according to the
calling convention, and, based on index, updating memory
(outside of md) used for book-keeping by the external FFI

startup code (depends on size of code+data)

command line: length | contents
standard input: length | offset | contents
output buffer: id | length | contents
system calls: called id | code
CakeML-usable memory (initially zeros)

CakeML-generated code+data

Figure 2. Thememory layout for running CakeML programs
bare-metal on Silver. When preparing the initial memory,
parts with a white background are application-independent,
parts with an intermediate background are application-
dependent, and parts with the darkest background are input
for each execution.

call. Thus to verify each piece of system call code, we must
show that executing the code has the effect of ffi_interferAg.
Each system call is verified in two refinement steps. The

first step abstracts from the machine code implementing a
system call to a logical specification of its effect. For example,
the logical specification for the code implementing “read” is
a theorem of the form:

⊢ . . . ⇒ ∃ k. Nextk ms = ffi_readAg ms

The omitted assumptions (. . .) ensure, e.g., that the relevant
code and data are placed in memory correctly and that the
program counter is currently pointing at the start of the code.
The theorem’s conclusion shows that stepping by k steps
yields the machine state given by ffi_readAg ms. This logical
specification (ffi_readAg) is the glue to the second refinement
step.

The second step connects ffi_readAg to ffi_interferAg assum-
ing the ffi_read specification (§5) from CakeML’s basis li-
brary:

⊢ . . . ∧ ffi_read conf bytes fs = FFIreturn bytes′ fs′ ⇒
ffi_readAg ms = ffi_interferAg md (index ,bytes′,ms)

As before, the omitted assumptions (. . .) are routine ones
about how the initial machine statems is set up. At the point
of writing, both refinement steps were verified manually
with the help of some specially written automation. We are
confident, however, that the first step can be fully automated
with decompilation tools [28].

As discussed in §5, the most complicated part of the exist-
ing CakeML assumption are the ones asserting that the sys-
tem calls are correctly implemented according to CakeML’s
basis library assumptions. This assumption is concretely dis-
charged in a few steps, but mainly using the composition of
theorems (11) and (12) discussed in this section. Discharging
this assumption is what allows us to go from theorem (4) to
theorem (6) in §2. It is also in this step where the routine

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Lööw, Kumar, Tan, Myreen, Norrish, Abrahamsson, Fox

(omitted) assumptions from earlier are discharged. This dis-
charging step is done automatically for concrete compiled
programs such as wc_ag32. Crucially, the only remaining
assumptions are the ones shown in theorem (6).

The remaining assumptions inside installedAg are straight-
forward compared to the FFI ones. They concern putting
the machine in an appropriate initial state for CakeML code
to run. Their verification did, however, lead to some minor
surprises as we detail next.

6.1 Changes to the Assumptions
In proving installedAg to move from theorem (4) to theo-
rem (6), we found that some parts of installedAg were in-
consistent, specifically point (iv) in §5 about pointers being
aligned (which is independent of the ag32 target). Although
the inconsistency was easy to fix, it was not caught previ-
ously and had appeared in the final top-level theorem for
the CakeML compiler. This highlights the value of reducing
the assumptions, ideally by proving them away, in any large
formal development.
More substantially, we made some changes to CakeML’s

target machine semantics, machine_sem. On the one hand,
the design of machine_sem that allows arbitrary interference
to non-CakeML parts of the machine state whenever an
external call is made, is vindicated by our instantiation of the
interference oracle with a concrete implementation of system
calls. On the other hand, the invariants about both CakeML
steps and interference steps needed to be strengthened: we
needed to know, in both cases, that memory not used by the
currently running code does not change, and that the PC
stays within the correct part of memory. The invariants that
are now present in our definitions are sufficient for proving
correctness of the sequence of calls from CakeML to external
code and back on the same machine.
Finally, the extend_with_oom feature of the CakeML com-

piler’s correctness theorem was previously (ab)used to allow
compiler-generated startup checks to fail at runtime. They
failed unexpectedly when we first tried running programs on
Silver, because we had the memory layout and startup code
slightly wrong. These dynamic checks have now all been
replaced by checks that resort to a valid default configuration
instead of causing runtime failures; in otherwords, CakeML’s
new startup code will never cause an out-of-memory error.

7 Results
The process described so far does not just work for the word-
counting (wc) application. We can establish the same sorts
of connection between other pieces of verified software and
the verified Silver platform, creating verified software-to-
hardware stacks for a variety of tools. These applications
have all been verified previously: the hard intellectual work
has already been performed (at the level of HOL and/or

CakeML functions). Here, we confirm that the same applica-
tions can be compiled for and executed on the Silver platform.
First, we have successfully run all of the programs men-

tioned in the introduction (§1) on our FPGA board. Silver is
not a high-performance processor, but small programs such
as sort complete almost instantaneously when run on small
inputs. Running sort on a 1000-line file takes a few seconds.
Silver’s low performance is more noticeable for larger pro-
grams, such as the compiler itself. For example, compiling a
one-line hello world program on a modern Intel processor
takes around two to three seconds, whereas compiling the
same program on Silver takes around four hours.

Second, the verification story (establishing HOL theorems
of correctness) for these applications follows the pattern
already described in the paper to this point. For example,
the correctness statement for the CakeML compiler on Sil-
ver (14) has much the same assumptions as for the wc ex-
ample (8); that is, the machine has been correctly initialised
(verilog_initAg), and the input is not too large, among others:

⊢ let vstep = verilog_sem env silver_cpu_verilog init in
cl_ok cl ∧ |input | ≤ stdin_size ∧
is_lab_env acc_env_verilog vstep env ∧
verilog_initAg compiler_ag32 (cl,input) init env ⇒
∃ stdout stderr . FG k. ∃ fin.
compiler_spec input cl stdout stderr ∧
vstep k = Ok fin ∧ is_halted compiler_ag32 fin ∧
stdoutAg (env k).io_events ≼ stdout ∧
stderrAg (env k).io_events ≼ stderr ∧
(verilog_exit_code_0Ag fin ⇒
stdoutAg (env k).io_events = stdout ∧
stderrAg (env k).io_events = stderr)

(14)

In addition, because the compiler takes the name of its in-
put file as its command-line argument, we have a predicate
cl_ok asserting that the command-line is well-formed (es-
sentially, that it is not too large). As before, the conclusion
states that execution will eventually result in a final state
(vstep k = Ok fin) satisfying the user-level specification of
the compiler behaviour. That specification (compiler_spec)
describes how standard output contains a textual represen-
tation of the machine code for the input program.

The definition of compiler_spec makes this clear:

compiler_spec input cl stdout stderr def
=

(stdout,stderr) =
if has_version_flag (tail cl) then
(explode current_build_info_str,“”)

else
let (cout,cerr) = compile_32 (tail cl) input in
(explode (concat (append cout)),explode cerr)

The compile_32 function mentioned here is a (somewhat com-
plicated) wrapper around a call to the compile function of our
initial correctness result for the compiler (2). In this way, our
theorem asserts the correctness of the bootstrap of CakeML
on Silver.

Verified Compilation on a Verified Processor PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

8 Discussion
The promise of a verified stack is the ability to construct sys-
tems that have formal evidence for their correct implemen-
tation. Such evidence, in the form of mechanically checked
proofs, is always subject to implicit and explicit assumptions,
which collectively represent the trusted computing base (TCB)
of the verified stack. The TCB is all the things that need to
be trusted if we are to believe the stack operates correctly. In
stack constructions, alongside the proof checker itself, only
the top and bottom layers contribute to the TCB since there
are proofs in between.

In this section, we describe the TCB of the bottom layer of
stacks constructed using our methodology and discuss the
(necessarily non-formal) ways in which we can justify the
trust we put into these assumptions. We also show where
we have reduced the TCB, compared to previous CakeML
work, by replacing assumptions with proofs.

Verilog semantics. We assume that our formal model of
Verilog is accurate with respect to the Vivado toolchain that
takes Verilog input and produces our hardware. Relatedly,
we assume that:
• the printing of Verilog abstract syntax trees from HOL
is faithful; and
• the Vivado toolchain taking Verilog to FPGAbitstreams
is bug-free.

We address these assumptions by using a simple subset
of Verilog, one where the semantics is uncontroversial, and
where we can be relatively confident that the implementa-
tion will be straightforward. Code implementing the pretty-
printing of ASTs is not complicated, so informal code in-
spection is helpful with respect to this assumption. Though
we have not done this, we could gain assurance by imple-
menting this code in CakeML, developing a parser for the
printed syntax, and proving that the composition of parser
and printer is the identity. The second item could be further
addressed by standard industrial tools such as formal equiv-
alence checkers, but such tools would not produce proofs
composable with our formal development.

Hardware. In our lab setup (§4.2), we have aimed for con-
venience rather than a minimal TCB. Consequently, some
of the assumptions required by the current lab setup could
be significantly reduced with little effort. Concretely, we are
dependent on both the correct operation and the correct ini-
tialisation of the various hardware components that realise
our final system. For example, we assume that:
• the FPGA chip works correctly;
• the shared DRAM module (and other board modules)
works correctly;
• the Python script, running on the ARM core, that we
use to pre-load memory and handle interrupts (such
as text output requests) sent to the core is operating
correctly; and

• the Verilog glue code used to connect the Silver pro-
cessor to its environment works correctly. E.g., some
interfaces, such as to the DRAM module, are exposed
as AXI3 interfaces [24]—but as we are not interested in
the details of AXI3 in particular, we expose simplified
interfaces to the processor.

The dependence on theARM core (and the Linux operating
system it is running) for pre-loading memory and interrupt
handling is clearly tangential, and could be improved by pre-
loading memory by more primitive means and using, e.g.,
seven-segment displays for text output.

Comparison to previous work. The bottom-layer TCB de-
scribed above is different to, and a clear improvement on,
the bottom-layer TCB accompanying verified software de-
veloped with CakeML previously. The assumptions about
Verilog and the hardware have replaced enormous, unveri-
fied components. In particular, previous work [14, 21] had
to assume:
• the correctness of the underlying operating system
and its tools to link and run our executables (loading
it into memory, connecting it to I/O streams, etc.);
• the correctness of our hardware semantics for targets
such as ARM and x86; and
• the correctness of those hardware semantics’ realisa-
tion in the silicon on which the software was being
executed.

9 Related Work
The CLI stack. An early attempt at constructing a verified
stack was made in the late 1980s and early 1990s in the CLI
stack project [4, 33], which was built using the Nqthm theo-
rem prover, a precursor to ACL2. The stack included, among
other components, a verified processor and two verified com-
pilers, for Pascal-like and Lisp-based languages, targeting
the verified processor. A version of the stack was built for
the verified FM9001 processor. FM9001 was described in a
custom HDL called DUAL-EVAL, which was translated to
LSI Logic’s Netlist Description Language for fabrication by
LSI Logic on a gate-array [8].
Moore [33], one of the stack’s principal architects, de-

scribes the compilers’ languages as “too simple to be of prac-
tical use”, lacking e.g., I/O mechanisms. Furthermore, it was
not possible to run the verified compilers on top of their stack.

The Verisoft stack. A later attempt at a verified stack
was made in the 2000s in the Isabelle/HOL-based Verisoft
stack project [2]. The processor used in the Verisoft stack
is called VAMP, first developed in PVS [6], and later ported
to Isabelle/HOL [36]. Beyer et al. [6] call the CLI stack’s
FM9001 processor “very simple” and note that the VAMP is
much more complex as it is both pipelined and capable of
out-of-order instruction execution. In comparison with the
VAMP processor, our Silver processor must also be described
as “very simple”. On the other hand, the VAMP processor

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Lööw, Kumar, Tan, Myreen, Norrish, Abrahamsson, Fox

was also synthesised for FPGAs, but was not verified down
to the Verilog code used for synthesis. Instead, for the PVS
version, a tool operating outside the formal development
called pvs2hdl [5] was used to produce the Verilog code out
of a gate-level PVS description. Similarly, i.e., also without
proof, the Isabelle/HOL VAMP version used an unverified
tool called IHaVeIt [36] to translate Isabelle/HOL hardware
descriptions to Verilog.
The Verisoft stack also included a verified compiler for

C0 [22], a language similar to a subset of C plus garbage col-
lection. The C0 compiler provides similar FFI functionality as
the CakeML compiler, called XCalls, allowing programmers
to embed VAMP assembly code inside C0 programs. Leinen-
bach and Petrova [22] describe the compiler as “simple”. In
contrast with CakeML, it does not include any optimisation
passes. The C0 compiler consists of a verified compilation
algorithm accompanied by a partly verified C0 implementa-
tion. Unlike the CakeML compiler, the implementation is not
automatically derived from the compilation algorithm. In-
stead, a Hoare-logic based C0 verification environment was
used to prove the implementation correct. This means that
manual work is needed to keep the compilation algorithm
and implementation in sync when new features are added to
the compiler. Moreover, only the code generation implemen-
tation (approximately 1500 lines of C0) was proved correct;
parsing and I/O were left unverified. A VAMP machine code
implementation is needed to run the compiler on top of the
VAMP processor, but they do not provide a way to compile,
with proofs, the C0 implementation to a machine code im-
plementation (such as running the C0 compiler in-logic, as
the CakeML compiler does when compiling itself to machine
code). In other words, not all pieces for running the compiler
on top of the VAMP stack are present.

Other verified stack work. In the ongoing Coq-based
DeepSpec stack project [3], the Kami project [11] enables
Bluespec development and verification inside Coq. A pipe-
lined in-order multicore processor has been developed inside
the Kami project as a case study, but is not yet part of a larger
stack. The Coq world’s analogue to the CakeML compiler,
the CompCert compiler [23], does not have a implementation
verified down to machine code, so obtaining a correctness
guarantee about running CompCert on top of a Coq-verified
processor is non-trivial (as doing this requires having access
to a verified machine code implementation).
There have also been processors developed and (some-

times partly) verifiedwithout being part of full-stack projects.
Though such components might fit into a verified stack, with-
out actually carrying out the necessary integrations, this re-
mains a “might” rather than a demonstrated “can”. Beyer et
al. [6] enumerate a few verified processors published before
their PVS VAMP paper, and note that of the processor papers
they cite, only papers about the FM9001 processor (i.e., the
processor from the CLI stack) state that the processor has

been synthesized. By their account, the remaining proces-
sor papers rely on “several simplifications and abstractions”.
Given the controversies around the Viper processor [12, 26],
it is clear that when claiming a processor “verified”, one must
be precise about what has actually been proved, and down
to what abstraction level the proofs reach.

Correct hardware. Neither the stack work cited in this
section, nor other ITP hardware verification work [7, 11,
17, 19, 31], has combined the verification with a formal se-
mantics for a mainstream low-level HDL such as Verilog or
VHDL (instead relying on, e.g., unverified extraction). Pre-
vious formal semantics work exists for Verilog [20, 27], but
those projects do not seriously consider ITP verification.

Verified low-level systems code. Unlike high-level ap-
plication code which can be compiled by the CakeML com-
piler down to Silver machine code, we implemented and veri-
fied the system calls for our stack by hand. This was manage-
able for the CakeML basis library but verifying more compli-
cated system calls would require (or at least, be significantly
aided by) low-level programming and verification frame-
works [9, 10, 30] and automated decompilation tools [28].

10 Conclusion
This paper has reported on a novel workflow for producing
verified stacks that connect verified hardware to verified
programs that run on top of it. Our approach connects the
CakeML compiler to a new verified Silver processor. We
have a unique and novel contribution, which enables the
proof of single end-to-end correctness theorems for realistic
user-level programs, such as the CakeML compiler itself. In
other words, not only does the CakeML compiler have a new
target, the verified Silver hardware design, but it can itself
be run on that hardware. This work is a relief: we now know
that the assumptions made at the bottom of the CakeML
compiler proof can be met by underlying verified hardware.

At certain points, we have taken the shortest route to our
final end-to-end results, which means that there is room
for improvement in individual parts of the project. Improve-
ments of one part can be carried out independently of other
parts as long as the interfaces between all parts stay the same.
We intend to improve our hardware implementation of

Silver. The processor ought to be pipelined and otherwise
optimised to support higher clock frequencies in order to
produce faster applications. We will do this without funda-
mentally changing the Silver ISA because we want to keep
the ISA at an abstraction level that does not expose imple-
mentation techniques in the hardware implementation.
We also want to make it less labour-intensive to develop

and set up verified systems code that interfaces with the
CakeML generated code. The set up work required for this
paper was significantly more labour-intensive than expected.

Acknowledgements. This work was partly supported by
the Swedish Foundation for Strategic Research.

Verified Compilation on a Verified Processor PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References
[1] 2018. IEEE Standard for SystemVerilog–Unified Hardware Design,

Specification, and Verification Language. IEEE Std 1800-2017 (Revision
of IEEE Std 1800-2012) (2018). https://doi.org/10.1109/IEEESTD.2018.
8299595

[2] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W.
Schirmer, and Artem Starostin. 2008. The Verisoft Approach to Sys-
tems Verification. In Verified Software: Theories, Tools, Experiments
(VSTTE). https://doi.org/10.1007/978-3-540-87873-5_18

[3] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.
Position paper: the science of deep specification. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 375, 2104 (2017). https://doi.org/10.1098/rsta.
2016.0331

[4] William R. Bevier, Warren A. Hunt, J Strother Moore, and William D.
Young. 1989. An approach to systems verification. Journal of Auto-
mated Reasoning 5, 4 (1989). https://doi.org/10.1007/BF00243131

[5] Sven Beyer, Christian Jacobi, Daniel Kroening, and Dirk Leinenbach.
2002. Correct Hardware by Synthesis from PVS. Technical Report.
http://www-wjp.cs.uni-sb.de/publikationen/BJKL02.pdf

[6] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and
Wolfgang J. Paul. 2006. Putting it all together – Formal verification
of the VAMP. International Journal on Software Tools for Technology
Transfer (STTT) 8, 4 (2006). https://doi.org/10.1007/s10009-006-0204-6

[7] Thomas Braibant and Adam Chlipala. 2013. Formal Verification of
Hardware Synthesis. In Computer Aided Verification (CAV). https:
//doi.org/10.1007/978-3-642-39799-8_14

[8] Bishop C. Brock and Warren A. Hunt. 1997. The DUAL-EVAL Hard-
ware Description Language and Its Use in the Formal Specification
and Verification of the FM9001 Microprocessor. Formal Methods in
System Design 11, 1 (1997). https://doi.org/10.1023/A:1008685826293

[9] Adam Chlipala. 2011. Mostly-automated Verification of Low-level Pro-
grams in Computational Separation Logic. In Programming Language
Design and Implementation (PLDI). https://doi.org/10.1145/1993498.
1993526

[10] Adam Chlipala. 2013. The bedrock structured programming system:
combining generative metaprogramming and hoare logic in an ex-
tensible program verifier. In International Conference on Functional
Programming (ICFP). https://doi.org/10.1145/2500365.2500592

[11] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, and Arvind. 2017. Kami: A Platform for High-
level Parametric Hardware Specification and Its Modular Verification.
Proceedings of the ACM on Programming Languages 1, ICFP (2017).
https://doi.org/10.1145/3110268

[12] Avra Cohn. 1989. The notion of proof in hardware verification. Journal
of Automated Reasoning 5, 2 (1989). https://doi.org/10.1007/bf00243000

[13] Anthony Fox. 2012. Directions in ISA Specification. In Interactive
Theorem Proving (ITP). https://doi.org/10.1007/978-3-642-32347-8_23

[14] Anthony Fox, Magnus O. Myreen, Yong Kiam Tan, and Ramana Kumar.
2017. Verified Compilation of CakeML to Multiple Machine-code
Targets. In Certified Programs and Proofs (CPP). https://doi.org/10.
1145/3018610.3018621

[15] Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael
Norrish. 2017. Verified Characteristic Formulae for CakeML. In Eu-
ropean Symposium on Programming (ESOP). https://doi.org/10.1007/
978-3-662-54434-1_22

[16] Son Ho, Oskar Abrahamsson, Ramana Kumar, Magnus O. Myreen,
Yong Kiam Tan, and Michael Norrish. 2018. Proof-Producing Synthesis
of CakeML with I/O and Local State from Monadic HOL Functions.
In International Joint Conference on Automated Reasoning (IJCAR).
https://doi.org/10.1007/978-3-319-94205-6_42

[17] Warren A. Hunt, Matt Kaufmann, J Strother Moore, and Anna Slo-
bodova. 2017. Industrial hardware and software verification with

ACL2. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 375, 2104 (2017).
https://doi.org/10.1098/rsta.2015.0399

[18] Joe Hurd. 2011. The OpenTheory Standard Theory Library. In NASA
Formal Methods (NFM). https://doi.org/10.1007/978-3-642-20398-5_14

[19] Juliano Iyoda. 2007. Translating HOL functions to hardware. Tech-
nical Report UCAM-CL-TR-682. University of Cambridge, Computer
Laboratory.

[20] Wilayat Khan, Alwen Tiu, and David Sanán. 2017. VeriFormal: An
Executable Formal Model of a Hardware Description Language. In
Singapore Cyber-Security RandD Conference (SG-CRC). https://doi.org/
10.3233/978-1-61499-744-3-19

[21] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O. Myreen.
2018. Software Verification with ITPs Should Use Binary Code Extrac-
tion to Reduce the TCB (Short Paper). In Interactive Theorem Proving
(ITP). https://doi.org/10.1007/978-3-319-94821-8_21

[22] Dirk Leinenbach and Elena Petrova. 2008. Pervasive Compiler Verifi-
cation – From Verified Programs to Verified Systems. Electronic Notes
in Theoretical Computer Science 217 (2008). https://doi.org/10.1016/j.
entcs.2008.06.040

[23] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
munications of the ACM 52, 7 (2009). https://doi.org/10.1145/1538788.
1538814

[24] Arm Limited. 2017. AMBA AXI and ACE Protocol Specification. Techni-
cal Report ARM IHI 0022F.b.

[25] Andreas Lööw and Magnus O. Myreen. 2019. A Proof-Producing
Translator for Verilog Development in HOL. In Formal Methods in
Software Engineering (FormaliSE). To appear.

[26] Donald MacKenzie. 1991. The fangs of the VIPER. Nature 352, 6335
(1991). https://doi.org/10.1038/352467a0

[27] Patrick Meredith, Michael Katelman, José Meseguer, and Grigore Roşu.
2010. A formal executable semantics of Verilog. In Formal Methods and
Models for Codesign (MEMOCODE). https://doi.org/10.1109/MEMCOD.
2010.5558634

[28] Magnus O. Myreen. 2009. Formal verification of machine-code programs.
Ph.D. Dissertation. University of Cambridge.

[29] Magnus O. Myreen and Scott Owens. 2014. Proof-producing trans-
lation of higher-order logic into pure and stateful ML. Journal
of Functional Programming 24, 2-3 (2014). https://doi.org/10.1017/
S0956796813000282

[30] Zhaozhong Ni and Zhong Shao. 2006. Certified Assembly Program-
ming with Embedded Code Pointers. In Principles of Programming
Languages (POPL). https://doi.org/10.1145/1111037.1111066

[31] João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. 2018.
Pi-Ware: Hardware Description and Verification in Agda. In Types
for Proofs and Programs (TYPES 2015). https://doi.org/10.4230/LIPIcs.
TYPES.2015.9

[32] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4.
In Theorem Proving in Higher Order Logics (TPHOLs). https://doi.org/
10.1007/978-3-540-71067-7_6

[33] J Strother Moore. 2003. A Grand Challenge Proposal for Formal
Methods: A Verified Stack. In Formal Methods at the Crossroads. From
Panacea to Foundational Support, 10th Anniversary Colloquium of
UNU/IIST. https://doi.org/10.1007/978-3-540-40007-3_11

[34] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J.
Fox, Scott Owens, and Michael Norrish. 2016. A new verified com-
piler backend for CakeML. In International Conference on Functional
Programming (ICFP). https://doi.org/10.1145/2951913.2951924

[35] Chuck Thacker. 2007. A Tiny Computer. (2007). Unpublished memo,
available online.

[36] Sergey Tverdyshev. 2009. Formal Verification of Gate-Level Computer
Systems. Ph.D. Dissertation. Saarland University.

https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1007/978-3-540-87873-5_18
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1007/BF00243131
http://www-wjp.cs.uni-sb.de/publikationen/BJKL02.pdf
https://doi.org/10.1007/s10009-006-0204-6
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1023/A:1008685826293
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/3110268
https://doi.org/10.1007/bf00243000
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1007/978-3-642-20398-5_14
https://doi.org/10.3233/978-1-61499-744-3-19
https://doi.org/10.3233/978-1-61499-744-3-19
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1016/j.entcs.2008.06.040
https://doi.org/10.1016/j.entcs.2008.06.040
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1038/352467a0
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1145/1111037.1111066
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-40007-3_11
https://doi.org/10.1145/2951913.2951924

	Abstract
	1 Introduction
	2 Approach
	2.1 Specification
	2.2 High-Level Implementation
	2.3 Compilation to Machine Code
	2.4 Verified System Calls
	2.5 Execution on a Verified Processor

	3 Producing Verified Hardware
	4 The Silver CPU
	4.1 The Silver ISA
	4.2 The Silver Implementation
	4.3 Algorithmic Correctness of Silver
	4.4 Correctness of the Verilog Implementation

	5 CakeML's Assumptions
	6 Setting Up Silver for CakeML
	6.1 Changes to the Assumptions

	7 Results
	8 Discussion
	9 Related Work
	10 Conclusion
	References

