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ABSTRACT
Mixed-criticality systems (MCS) combine real-time components of

different levels of criticality – i.e. severity of failure – on the same

processor, in order to obtain good resource utilisation. They must

be able to guarantee deadlines of highly-critical threads without

any dependence on less-critical threads. This requires strong tem-

poral isolation, similar to the spatial isolation that is traditionally

provided by operating systems, without unnecessary loss of proces-

sor utilisation. We present a model that uses scheduling contexts as
first-class objects to represent time, and integrates seamlessly with

the capability-based protection model of the seL4 microkernel. We

show that the model comes with minimal overhead, and supports

implementation of arbitrary scheduling policies as well as criticality

switches at user level.
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1 INTRODUCTION
Emerging cyber-physical systems have conflicting requirements

that challenge operating system (OS) design: they require mutually

distrusting components of different criticalities to share resources,

and must degrade gracefully in the face of failure. For example, an

autonomous aerial vehicle (AAV) has multiple inputs to its flight-

control algorithm: object detection, to avoid flying into obstacles,

and mission control (navigation), to get to the desired destination.

Clearly the object detection is more critical than navigation, as

failure of the former can be catastrophic, while the latter would only

result in a non-ideal route. Yet the two subsystems must cooperate,

accessing and modifying shared data, thus cannot be fully isolated.

The isolation requirements for such systems go beyond the

spatial isolation and sharing that is well-supported by present

OSes; cyber-physical systems have strict temporal requirements, for

which OS support is lacking. Specifically, existing OSes conflate the

notions of priority, time sensitivity and criticality (i.e. importance).

For example, the AAV’s flight-control algorithm may only run

ten times a second with 2ms to complete, while network and bus

drivers should be serviced at a much higher rate and should be able

to preempt flight control as long as there is sufficient time for flight

control to execute. This implies that networking runs at higher

priority than flight control. However, while occasional packet loss

is tolerable, a failure of the flight control algorithm to complete on

time is not. This requires a notion of temporal protection, even in

the presence of sharing, that is not available in present OSes.

The AAV is an example of a mixed-criticality system (MCS), a no-

tion that originates in avionics and its need to reduce space, weight

and power (SWaP), by consolidating growing functionality onto a

smaller number of physical processors. In safety-critical systems,

criticality is a well-defined concept, indicating the severity of failure.
Standards require that the safe operation of a particular component

must not depend on any less-critical components [ARINC 2012]; in

other words, a critical component must not trust a less-critical one

to behave correctly.

While MCS are becoming the norm in avionics, this is presently

in a very restricted form: the system is orthogonally partitioned

spatially and temporally, and partitions are scheduled with fixed

time slices [ARINC 2012]. This limits integration and cross-partition

communication, and implies long interrupt latencies and poor re-

source utilisation.

https://doi.org/10.1145/3190508.3190539
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High system utilisation is essential for addressing SWaP chal-

lenges, and high responsiveness is important for much of a system’s

desirable functionality. But high utilisation is a challenge in critical

real-time systems, whose core integrity property is that deadlines

must always be met, meaning that there must always be time to let

threads execute their full worst-case execution time (WCET). This

may be orders of magnitude larger than the typical execution time,

and computation of safe WCET bounds for non-trivial software

tends to be highly pessimistic [Wilhelm et al. 2008]. Consequently,

most of the time the highly-critical components leave plenty of

slack, which should be usable by less critical components. In terms

of schedulability analysis, this constitutes an overcommitted system,

where not everything is guaranteed to be schedulable. In case of

actual overload, the system must guarantee sufficient time to the

critical components at the expense of the less critical ones.

These challenges are not unique to avionics: top-end cars ex-

ceeded 70 processors ten years ago [Broy et al. 2007]; with the robust

packaging and wiring required for vehicle electronics, the SWaP

problem is obvious, and will be magnified by the move to more

autonomous operation. Other classes of cyber-physical systems,

such as smart factories, will experience similar challenges.

The upshot is that MCS require OS support for a form of temporal
isolation, where (lower criticality) high-priority threads can pre-

empt (highly critical) threads, but cannot monopolise the processor;

the OS must limit their time consumption, in order to guarantee

sufficient time to the critical threads. This isolation must be en-

forced even when components of different criticality share data

or services, e.g. flight control must be able to access a consistent

waypoint state while remote operators and collision avoidance of

the AAV concurrently update waypoints.

Our goal is to design and implement an OS that provides the

right mechanisms for efficiently supporting MCS, and reason about

their safety. For spatial isolation, capabilities [Dennis and Van Horn

1966] have become the accepted mechanism that allows reasoning

about access control at a fine granularity, and are therefore used in

security-oriented designs, such as KeyKOS [Bomberger et al. 1992],

EROS [Shapiro et al. 1999] and seL4 [Klein et al. 2009]. We similarly

aim to provide a capability-based model for access to CPU time,

without forcing a particular scheduling model on the system.

Specifically, we make the following contributions:

• A capability system for time that imposes low overhead;

• a notion of CPU-time budgets that is compatible with fast

IPC implementations traditionally used in high-performance

microkernels, and is compatible with established real-time

resource-sharing policies;

• an exploration of implementation in the non-preemptible

seL4 microkernel and its interaction with the kernel’s model

of user-level management of kernel memory, which is a

critical enabler of strong spatial isolation;

• an implementation of a dynamic-priority system in a user-

level scheduler on top of the kernel’s static priorities, demon-

strating that arbitrary scheduling policies can be imple-

mented at low overhead;

• a demonstration that, without further kernel mechanisms, a

notion of criticality and criticality switches can be efficiently

implemented at user level.

2 BACKGROUND
2.1 Real time theory basics
Standard real-time (RT) theory uses the term “task”, which effec-

tively maps onto the OS concept of a thread. To avoid confusion

we will stick with the OS terminology.

RT scheduling theory generally assumes periodically executing
threads, which maps well onto typical control systems, where dif-

ferent activities execute periodically albeit with different periods.

Aperiodic (“sporadic”, i.e. interrupt-driven) threads are incorpo-

rated in such a model by requiring a defined minimum arrival time,
corresponding to a maximum interrupt rate, which is used as the

thread’s period for the schedulability analysis. RT threads have a

deadline by which a computation must be finished, which may be

an explicit (specified), or implicit (end of the period).

Priorities can be static (fixed) or dynamic. The optimal static

scheme is rate-monotonic priority assignment (RMPA), where the

rate (the inverse of the period) becomes the priority; RMPA can guar-

antee schedulability of arbitrary thread sets as long as the total util-

isation is below a limit that is asymptotically log 2 ≈ 69% [Liu and

Layland 1973]. The overall optimal scheme is earliest-deadline first
(EDF), a dynamic-priority scheme which always picks the thread

whose deadline is closest; EDF can schedule any set of threads

whose total utilisation does not exceed 100%.

A system whose total utilisation exceeds the schedulability

threshold is overcommitted, and can become overloaded, i.e. un-
able to meet all deadlines. By definition of priority, the deadlines

missed will be of the lowest-priority threads. For RMPA this affects

a well-defined subset (the threads with the longest period). EDF

victimises whatever thread happens to be furthest from its deadline,

leading to apparently random threads being victimised. This causes

EDF’s reputation as being poorly behaved under overload, the main

reason EDF is unpopular in industry [Buttazzo 2005].

An established way of limiting the amount of CPU time a

thread can consume are resource reservations [Mercer et al. 1993;

Oikawa and Rajkumar 1998], which can be implemented as peri-

odic [Lehoczky et al. 1987] or sporadic servers [Sprunt et al. 1989]

for RMPA and constant-bandwidth servers (CBS) [Abeni and But-

tazzo 2004] for EDF.

Reservations present a guarantee by the kernel that the reserved

bandwidth is available. This means that they do not support over-

committing. Also, the kernel must perform a schedulability analysis

as admission control whenever a reservation is created. Schedulabil-

ity tests can be complicated and frequently constitute a trade-off

between cost of the test and achievable utilisation.

2.2 Criticality, time-sensitivity and trust
Criticality and time-sensitivity are attributes of system components

that are often conflated. However, they are different, and, in general,

not aligned.

The criticality of a component reflects its importance to the

overall system mission. Criticality may reflect the impact of fail-

ure [ARINC 2012] or the utility of a function. An MCS should

degrade gracefully, with components of lower criticality (which

we will refer to as low components) suffering degradation before

higher criticality (high) components.
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Time sensitivity refers to how important it is for a thread to get

access to the processor at a particular time. For best-effort activities,

time is fungible, in that only the amount of time allocated is of

relevance. In contrast, for a hard RT component, time is largely

unfungible, in that the allocation has no value if it occurs after the

deadline; soft RT components are in between.

Most OSes only have a single parameter for controlling both

attributes, priority. For example, Linux aligns priority with time-

liness, by running priority-based threads at the highest overall

priorities, followed by deadline-scheduled threads with CBS reser-

vations and best-effort below. Similarly, RBED [Brandt et al. 2003],

as used by Barrelfish [Peter et al. 2010], prioritises threads based

on time sensitivity. In NOVA [Steinberg and Kauer 2010] and Fi-

asco.OC [Lackorzyński et al. 2012] priority implies criticality.

Finally, trust refers to the degree of reliance in the correct be-

haviour of a component. Untrusted components may fail completely

without affecting the core system mission, while a component

which must be assumed to operate correctly for achieving the over-

all mission is trusted. A component is trustworthy if it has under-

gone a process that establishes that it can be trusted, the degree
of trustworthiness being a reflection of the rigor of this process

(testing, certification, formal verification) [Veríssimo et al. 2003].

In practice, criticality and trust are closely aligned, as the most

critical parts should be the most trustworthy. However, criticality

must be decoupled from time sensitivity in MCS. Referring back to

the example in the introduction, interrupts from networks or buses

have high time sensitivity, but low criticality (i.e. deadline misses

are tolerable), while the opposite is true for the flight control com-

ponent. Similarly, threads (other than the most critical ones which

should have undergone extensive assurance) cannot be trusted to

honour their declared WCET.

We need mechanisms that provide enforceable time limits, such

that the timeliness of critical threads can be isolated from those of

untrusted less critical ones. Reservation-based kernels often allow

for a form of over-committing where best-effort threads are run

in the slack time left by unused reservations or unreserved CPU.

However, this also aligns criticality and time-sensitivity, and en-

forces a two-level scheduling model (the drawbacks of hierarchical

scheduling are explained in Section 2.3).

Static mixed criticality schedulers [Baruah et al. 2011] have

emerged in real-time theory, where criticality is orthogonal to

priority. Each thread has a criticality level L, and, in addition, there

is a system criticality level LS . The system maps thread priorities

onto internal system priorities by adding pmax to the priority of

all threads with L ≥ LS , where pmax is the highest thread priority.

This puts the priority of critical threads above all less-critical ones.

Under normal operation LS = 0, i.e. all threads get scheduled

according to their priorities. If the system becomes critical, i.e.

misses deadlines, LS can be increased, which prioritises threads

where L ≥ LS , any other threads then only run in slack time left by

critical ones. The criticality switch is a get-out-of-jail card for the

system, and basically requires dynamic changes of priority.

2.3 Capabilities to time
Capabilities [Dennis and Van Horn 1966] are an established mecha-

nism for fine-grained access control to spatial resources. The seL4

microkernel uses capabilities to provide a memory-management

model that delegates all management decisions to userland, includ-

ing allocation of kernel memory, resulting in a largely policy-free

kernel [Elkaduwe et al. 2008; Heiser and Elphinstone 2016]. How-

ever, seL4’s present capability system does not apply to time.

Prior uses of capabilities for controlling time include

KeyKOS [Bomberger et al. 1992], which had meters; these granted
the holder the right to execute for the unit of time held by the

meter. However, the KeyKOS model treats time as fungible, with no

guarantee of when the time will be provided, making this approach

unsuitable for RT use.

Real-timeMach [Mercer et al. 1993] introduced processor capacity
reserves, which were also implemented in EROS and combined with

capabilities [Shapiro et al. 1999]. However, these reserves were

optional: a two level scheduler first scheduled the reserves with

available capacity, then threads with no or exhausted reserves are

scheduled. Like any hierarchical scheduling model, this enforces a

policy that reduces flexibility.

Furthermore, hierarchical delegation has the significant disad-

vantage of algorithmic utilisation loss [Lackorzyński et al. 2012];

this is a direct result of the unfungible nature of time. Consider real

estate: like time, it is (arbitrarily) divisible but not fungible: If a block

is too small to build a house, then having a second, disconnected

block of the same size is of no help (unlike spatial resources in a

kernel, which can be mapped side-by-side). The implication is that

capabilities for time have a different flavour from those for spatial

resources. They cannot support hierarchical delegation without

loss, and cannot be recursively virtualised. While delegation is an

attractive property of spatial capabilities, this delegation is not their

defining characteristic, which is actually prima facie evidence of
access privilege; in the case of time capabilities, the access is to

processor time.

2.4 Resource sharing
As indicated in the introduction, integrity of critical components

must be assured even when threads communicate and share re-

sources, e.g. the waypoints in our AAV example. A standard ap-

proach is to encapsulate the shared data and the code that accesses

and modifies it into a single-threaded resource server [Brandenburg
2014]. This is a simple and effective way to achieve the necessary

transaction semantics.

If the shared server is accessed by clients of different priority, this

creates (temporary) priority inversion, where a low-priority thread

can lock out a high-priority one. Unless priority-aware locking

protocols are used, sharing can also lead to permanent priority

inversion, when a thread of intermediate priority monopolises the

processor while the low-priority thread holds the critical section.

Standard approaches to mutual exclusion in fixed-priority RT

systems [Sha et al. 1990], include non-preemptive critical sections

(NCP), the priority inheritance protocol (PIP), and the immediate

and original priority ceiling protocols (IPCP
1
and OPCP). For RT

systems, an important consideration for mutual exclusion is the

bound on priority inversion. Given the safety-critical nature of such

systems, implementation complexity (and the resulting potential

1
IPCP is also known as highest-lockers protocol, stack-based priority-ceiling protocol,

and PRIO_PROTECT in POSIX.
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for bugs) is also of high importance. For efficient systems, the main

concern is performance overheads, for secure systems the main

concern is the avoidance of covert channels.

-
Priority inversion bound

6
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Figure 1: Comparison of RT locking protocols based on im-
plementation complexity and priority inversion bound.

Figure 1 compares the four protocols, none is a silver bullet. PIP

comes with high implementation complexity, has potentially high

blocking times and can produce deadlock if resource ordering is

not used; it is nevertheless popular as it is simple to use. NCP is

simplest but has the longest blocking time, while IPCP is also simple

but requires the priorities of all lockers to be known a priori. OPCP
has the shortest blocking time but is even more complex than PIP,

and requires global state to be maintained across all locks in the

system; this is not acceptable for our purpose, as it introduces covert

channels and is incompatible with seL4’s decentralised user-level

resource management. We will show in Section 3.5 how IPCP can

be easily implemented without the kernel requiring knowledge

about critical sections.

3 MCS SCHEDULING MODEL
3.1 Requirements
We now propose a model for mixed-criticality scheduling that is

suitable for high-assurance systems, such as seL4. The model should

satisfy the following requirements:

Capability-controlled enforcement of time limits: Capa-
bilities help to reason about access rights. They allow a

seamless integration with the existing capability-based

spatial access control of security-oriented systems such as

seL4.

Policy freedom: In line with microkernel philosophy [Heiser

and Elphinstone 2016], the model should not force systems

into a particular resource-management policy. In particular,

it should support a wide range of scheduling policies and

resource-sharing models, such as locking protocols.

Efficient: The model should add minimal overhead over the

best existing implementations. In particular, it should be

compatible with fast message-passing (IPC) implementations

in high-performance microkernels, such as seL4.

Temporal isolation: The model must allow system designers

to create systems where a temporal failure in one component

cannot cause a temporal failure in another part of the system,

even in the case of shared resources.

The model provides fundamental kernel-level isolation mecha-

nisms, while allowing for complex scheduling policies to be imple-

mented at user level. We target modern, multicore hardware with

caches and virtual memory, where WCET estimates are pessimistic

by orders of magnitude, allowing for much slack to be exploited in

the system.

3.2 High-level concepts
By definition, priority determines what is scheduled next, i.e. the

highest-priority runnable thread. In order to support MCS, we do

not change themeaning of priority, but what it means for a thread to

be runnable: We associate each thread with a budget, and make the

thread non-runnable if it has exhausted its budget. We retain a static

priority model, i.e. the kernel will not adjust priorities on its own

(but they can be changed through a system call). We avoid limiting

to a specific class of scheduling models by making it possible to

implement dynamic priorities at user level (as we will demonstrate

in Section 5.5).

3.2.1 Budgets and scheduling contexts. At the core of the model

is the scheduling context (SC) as the fundamental abstraction

for time allocation. An SC is a representation of a reservation in

the object-capability system, which means that SCs are first-class

objects, like threads, address spaces, or communication endpoints

(ports). An SC is represented by a capability to a scheduling context

object (scCap).

An scCap represents the privilege to access the processor, it is a
capability to time. In order to run, a thread needs an scCap, which

represents the maximum CPU bandwidth the thread can consume.

The unfungible nature of time in RT systems requires that the

bandwidth limit must be enforced within a certain time window.

We achieve this by representing an SC by a period, T , and a budget,
C , where C ≤ T is the maximum amount of time the SC allows to

be consumed in the period.U = C
T represents the maximum CPU

utilisation the SC allows. The SC can be viewed as a generalisation of

the concept of a time slice that is used on many systems (including

present mainline seL4).

In a multicore system, an SC represents the right to access a

particular core. Core migration, e.g. for load balancing, is policy

that should not be imposed by the kernel but implemented at user

level. A thread is migrated by replacing its SC with one tied to a

different core.

Setting budgets is admission control and requires appropriate

privilege. The total available time on a core is represented in a (vir-

tual) per-core scheduling-control capability, sched_control, which
provides this privilege.

2

3.2.2 Priorities. Fiasco.OC introduced scheduling contexts into

an L4 microkernel [Lackorzyński et al. 2012], They are superfi-

cially similar to ours, although Fiasco.OC SCs are not capability-

controlled. Furthermore, Fiasco.OC makes priority an SC attribute.

In contrast, we retain priority as a thread attribute. The advantage

of keeping priority and SCs orthogonal will become evident in

Section 3.5.

Like Fiasco.OC, we retain priorities as static attributes (but

changeable by user-level through system calls), for a number of

reasons. Firstly, fixed-priority scheduling is familiar and widely

used in industry (which tends to treat EDF with a high degree of

2
This is analogous to how seL4 controls the right to receive interrupts: Associating a

handler with an IRQ is controlled by the IRQ_control capability. Like time, IRQ sources

are non-fungible.
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suspicion). It also supports a graceful adaptation of the existing

model used in seL4, logically replacing the time-slice attribute with

the scCap. Furthermore, it is straightforward to implement EDF on

top of this model by using a single priority for EDF’s dynamic pri-

orities (and we will demonstrate in Section 5.5 that this can be done

with low overhead). The opposite is not true: mapping the dynamic

priorities of EDF to a fixed-priority is non-trivial and would come

with high overheads. This means that while the kernel provides a

particular policy (fixed-priority scheduling), our approach retains

the freedom of implementing other policies efficiently.

The final reason to base the approach on fixed priorities is the

ability to reason about the behaviour of an overcommitted system.

Overcommitting, i.e. the sum of utilisations allowed by all SCs

exceeding the schedulability threshold, is important for achieving

high actual system utilisation, given the large time buffers required

by critical hard real-time threads. It is also core to keeping the

kernel policy-free: The degree and nature of overcommitment is a

core policy of a particular system. For example, the policy might

require that the total utilisation of all high threads is below the

RMS schedulability limit of 69%, while low threads can overcommit,

and the degree of overcommitment may depend on the mix of hard

RT, soft RT and best-effort threads. Such policy should be defined

and implemented at user level rather than in the kernel.

As indicated in Section 2.1, the result of overcommitting in an

EDF-based system is hard to predict, and such a system is hard

to analyse. In contrast, with fixed priority the result is easy to

understand: If the sum of utilisations of threads at priority ≥ P is

below the utilisation bound, then all those threads will meet their

deadlines, while any thread with priority < P may miss. This allows

easy analysis of schedulability.

3.3 Criticality
We do not alter the kernel in order to support a criticality switch

as introduced in Section 2.2. This is an action to be performed

by a user-level manager (which must hold the sched_control
capability); the kernel will not change priorities on its own. Oneway

for detecting the need for such a switch is to give critical threads a

budget corresponding to an optimistic execution-time bound that is

sufficient for normal operation (and supports high utilisation). If, in

an exceptional situation, the critical thread exceeds this budget, it is

given a larger budget (corresponding to a safe WCET estimate) and

criticality is raised to remove interference from high-priority low-

criticality threads. The mechanism for detecting deadline misses

are timeout exceptions, explained in Section 3.4.2.

3.4 Mechanics
3.4.1 Replenishment. A thread with a full SC, where C = T ,

may monopolise whatever CPU bandwidth is left over from higher-

priority threads. This is useful for best-effort threads which run in

slack time. It can also be used for critical threads that are trusted not

to use more than a small share of the CPU except in emergencies.

Threads with a full budget incur no inherent overhead other than

the preemption rate 1/T .
Threads with partial SCs, where C < T , are not runnable once

they have used up their budget, until it is replenished. For replenish-

ment, we use the sporadic servers model [Sprunt et al. 1989] with an

implementation based on the algorithms presented by Stanovic et al.

[2010]. Sporadic servers work by preserving the sliding window
constraint, meaning that during any time interval not exceeding the

period, no more than C can be consumed. This stops a thread from

saving budget until near the end of its period, and then running

uninterrupted for more than C . It is achieved by tracking any left-

over budget when a thread is preempted at time t , and scheduling

a replenishment for time t +T .
In practice, we cannot track an infinite number of replenishments,

so in a real implementation, once the number of queued replenish-

ments exceeds a threshold, any excess budget is discarded. If the

threshold is one, the behaviour degrades to polling servers [Sprunt

et al. 1989] where any unused budget is lost and the thread cannot

run until the start of the next period.

There is an obvious cost to replenishment fragmentation that

will arise from preemptions, and polling servers are more efficient

in the case of frequent preemption [Li et al. 2014]; an arbitrar-

ily high threshold therefore makes little sense. The optimal value

depends on implementation details of the system, as well as the

characteristics of the underlying hardware. We therefore make the

threshold an attribute of the SC. SCs are variably sized, such that

system designers can set this bound per-SC.

If a replenishment is ready at the time the budget expires, the

thread is immediately runnable. It is inserted at the end of the ready

queue for its priority, meaning that within a priority, scheduling of

runnable threads is round-robin.

3.4.2 Budget overrun. Threads may exhaust their budgets for

different reasons. A budget may be used to rate-limit a best-effort

thread, in which case budget overrun is not different to normal

time-slice preemption of best-effort systems. A budget can be used

to force an untrusted thread to adhere to its declared WCET. An

overrun is then a contract violation, which may be reason to sus-

pend the thread or restart its subsystem. Finally, an overrun by a

critical thread can indicate an emergency situation; for example,

critical threads may be scheduled with an optimistic budget to pro-

vide better service to less critical threads, and overrun may require

provision of an emergency budget.

The handling of overrun is a system-specific policy, and the ker-

nel should only provide appropriate mechanisms for implementing

the desired policy. Our core mechanism is the timeout exception,
which is raised when a thread is preempted. To allow the system to

handle the exceptions, each thread is optionally associated with a

timeout-exception handler, which is the temporal equivalent to a

(spatial) protection exception handler. When a thread is preempted,

the kernel notifies its handler via an IPC message. The exception is

ignored when the thread has no timeout-exception handler.

The handler has the choice of a range of overrun policies, in-

cluding (i) providing a one-off (emergency) budget to the thread

and letting it continue, (ii) permanently increasing the budget

in the thread’s SC, (iii) changing the system’s criticality by de-

prioritising less critical threats, (iv) killing/suspending the thread

and, or (v) abandoning the request and rolling the server back. Obvi-

ously, these are all subject to the handler having sufficient authority

(e.g. sched_control for budget).
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3.5 Resource sharing
Access to encapsulated, shared resources requires cross-address-

space IPC. For minimising invocation cost, it is essential that sched-

uler invocations are avoided during IPC. This has historically been

done by L4 microkernels [Heiser and Elphinstone 2016]. Not by-

passing the scheduler is the main reason why IPC on most other

systems is significantly slower than that of L4 kernel, e.g. at least a

factor of four in CertiKOS [Gu et al. 2016].

Past L4 kernels avoided the scheduler by time-slice donation,

where a server could execute on the client’s time slice. While fast,

this model is unprincipled and hard, if not impossible, to analyse.

For example, the time slice may expire during the server’s execu-

tion, after which the server will run on its own time slice. The

server’s execution time is not consistently accounted, and there is

no temporal isolation.

Our model supports shared servers, including scheduler bypass,

in a principled way through scheduling-context donation: A client

invoking a server can pass its SC along, so the server executes on

the client’s SC, until it replies to the request. This ensures that time

consumed by the server is billed to the client requesting the work.

Such a shared server is implemented as passive, meaning it has

no SC of its own, and is therefore not runnable, except on a client’s

borrowed SC. In contrast, an active server, which has its own SC, ex-

ecutes “for free” from the client’s point of view. The model supports

both, as not all systems require strict temporal isolation.

Passive servers effectively provide a migrating-thread

model [Ford and Lepreau 1994; Gabber et al. 1999], but without

requiring the kernel to manage stacks. They also provide a simple,

and essentially free, implementation of IPCP (recall Section 2.4):

The server is configured with the ceiling priority of its clients,

making its execution atomic with respect to all clients. This is

possible thanks to decoupling SCs from priorities. The main

drawback of IPCP, namely the requirement that all lockers’

priorities are known a priori, is easy to enforce in a capability-based

system: The server can only be accessed through an appropriate

invocation capability, and it is up to the system designer to ensure

that such a capability can only go to a thread whose priority is

known or appropriately controlled.

Figure 2 shows a simplified architecture of the AAV discussed in

Section 1. There are a number of passive components, which are

essentially encapsulated shared datastrcutureas that require trans-

action semantics. Most communication is by RPC-type message-

passing. Device drivers signal I/O completion via Notifications

(dashed arrows), such communication generally uses shared-

memory buffers.

3.6 Timeout exceptions
If a passive server exhausts its budget, it and any waiting clients

are blocked until the budget is replenished. On its own, this means

that a client not only has to trust its server, but all the server’s

other clients. This would rule out sharing a server between clients

of different criticality.

Timeout exceptions are the mechanism for avoiding this need for

trust, allowing a server to be shared across criticalities. The server’s

timeout handler can implement any of the options discussed in

Section 3.4.2. A server running out of budget constitutes a protocol
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Figure 2: Simplified AAV design, showingmain components
(seL4 address spaces). Solid frames indicate active compo-
nents, broken frames passive ones. Solid arrows indicate
RPC-style server invocation, dashed arrows are completion
signals. For clarity we do not show most invocations of the
logging service, this would add a solid arrow from each com-
ponent to the “Logging” box. Most critical components are
shown in red, least-critical ones in white.

violation by the client, and it makes sense to penalise that client by

aborting. This option is attractive, as it minimising the amount of

budget that must be reserved for overruns.

In contrast, helping schemes, such as PIP or bandwidth inher-

itance, as implemented in Fiasco.OC [Lackorzyński et al. 2012],

make the waiting client pay for another client’s contract violation.

This not only weakens temporal isolation, it also implies that the

size of the required reserve budget must be server’s full WCET. This

places a restriction on the server that no client request exceed a

blocking time that can be tolerated by all clients, or that all clients

must budget for the full server WCET in addition to the time the

server needs for serving their own request. Our model provides

more flexibility: a server can use a timeout exception to finish a

request early (e.g. by aborting), meaning that clients can only be

blocked for the largest budget of the other clients, plus the short

cleanup time.

Where desired, helping schemes can be implemented on top of

our model, e.g. by using a gateway server that adjusts priorities as

requests come in.

4 IMPLEMENTATION IN SEL4
4.1 Objects
We add to seL4 a new variably-sized scheduling context object (SC)
type, whose minimum size is 2

8
bytes, sufficient for holding 8 or

10 replenishments on 64 or 32-bit processors, respectively. This is

enough for most uses, but more replenishments can be supported

by larger sizes. Sporadic replenishments specify the time at which

they become usable, encoded in 16 bytes. An SC contains the budget

and period, the ID of the processor core to which it provides access,

and some pointers to ensure it will return to its rightful owner

across a donation chain (see Section 4.4).

Like any seL4 object, an SC is created by re-typing some free

(“Untyped”) memory into the SC type, which will create an array



Scheduling-Context Capabilities EuroSys ’18, April 23–26, 2018, Porto, Portugal

of empty SCs with zero budget. This allows anyone holding a capa-

bility to Untyped to create SCs. Setting the budget to non-zero is

admission control and requires the sched_control capability.
A scheduling context can be associated with a thread control

block (TCB), which makes the corresponding thread schedulable

(provided the SC has budget). An SC can also be associated with

a Notification object, a small array of binary semaphores. When

signalled, such an active Notification will donate its SC to a thread

waiting for the Notification. This is useful for allowing passive

servers to wait for IPC as well as Notifications, e.g. for handling

exceptions or I/O completions, without forcing a multi-threaded

implementation. An SC can only be associated with a single TCB

or Notification at any time, and TCBs and Notifications can be

associated with at most one SC.

Resume objects, modelled after KeyKOS [Bomberger et al. 1992],

are a new object type that generalise the “reply capabilities” of

baseline seL4. These were capabilities to virtual objects created by

the kernel on-the-fly in seL4’s RPC-style call() operation, which

sends a message to an endpoint and blocks on a reply. The receiver

of the message (i.e. the server) receives the reply capability in a

magic “reply slot” in its capability space. The server replies by

invoking that capability. Resume objects remove the magic by ex-

plicitly representing the reply channel (and the SC-donation chain).

They also provide more efficient support for stateful servers that

handle concurrent client sessions, see Section 4.2.

With SC donation we need slightly more bookkeeping to guar-

antee that a donated SC eventually returns to its rightful owner,

even if the server invokes another passive server, or the server

operation is long-running and the server handles multiple requests

concurrently (as a file server would).

The Resume object consists of three pointers: (i) the active thread

who owns the SC, (ii) the immediate caller’s Resume object, (iii) the

next Resume object in the chain.

In TCB objects we replace the legacy timeslice by the scCap. We

add a total of five fields: a timeout-handler capability, a Resume

object pointer, an MCP value, and some bookkeeping data. As seL4

object sizes need to be powers of two, there was sufficient unused

space so the additional data did not grow the TCB size.

The MCP, or maximum controlled priority, resurrects a concept
from early L4 kernels [Liedtke 1996]. It supports lightweight, limited

manipulation of thread priorities, useful e.g. for implementing user-

level thread packages. When setting the priority or MCP of a TCB,

A, the caller must provide the capability to a TCB, B, (which could

be the caller’s TCB). The caller is allowed to set the priority or MCP

of A up to the value of B’s MCP.
3
In a typical system, most threads

will run with an MCP of zero and have no access to TCB capabilities

with a higher MCP, meaning they cannot raise any thread’s priority.

The MCP is taken from an explicitly-provided TCB, rather than the

caller’s, to avoid the confused deputy problem [Hardy 1988].

We add methods operating on TCBs for managing MCP and

configuring SCs. There are five methods on SCs, for binding and

unbinding objects, as well as an explicit yield which allows threads

with access to a SC cap to move that SC to the front of the scheduler

queue for its priority, enabling user-level scheduling. All of these

methods are shown in Figure 3.

3
Obviously, this operation also requires a capability to A’s TCB.

/* Bind a TCB or Notification to this SC. */

SchedContext_Bind(cap_t sc, cap_t obj);

/* Unbind all objects from this SC. */

SchedContext_Unbind(cap_t sc);

/* Unbind a specific object from this SC. */

SchedContext_UnbindObject(cap_t sc, cap_t obj);

/* Return the amount of time since the last

timeout fault , consumed or yieldTo. */

SchedContext_Consumed(cap_t sc);

/* Place the TCB bound to this SC at the front

of its prio queue & return consumed. */

SchedContext_YieldTo(cap_t sc);

/* Configure a scheduling context */

SchedControl_Configure(cap_t sc,

uint64_t budget , uint64_t period ,

word_t extra_refills , word_t badge);

/* Set a TCBs timeout fault handler */

TCB_SetTimeoutEndpoint(cap_t tcb , cap_t ep);

/* Set prio , mcp of tcb deriving authority from

auth_tcb , and bind sc */

TCB_SetSchedParams(cap_t tcb , cap_t auth_tcb ,

word_t mcp , word_t priority , cap_t sc);

Figure 3: Additions to the kernel API.

4.2 System calls
The introduction of Resume objects requires some changes to

the IPC system-call API. The client-style call() operation is

unchanged, but server-side equivalent, ReplyRecv (previously

ReplyWait) replies to a previous request and then blocks on the

next one. It now must provide an explicit Resume capability; on the

send phase, that capability identifies the client and returns the SC if

appropriate, on the receive phase it is populated with new values.

The new API makes stateful server implementation more effi-

cient. In baseline seL4, the server would have to use at least two

extra system calls to save the reply cap and later move it back into

its magic slot, removing the magic also removes the need for the

extra system calls.

There are two new methods for atomically signalling a Notifica-

tion and then blocking on a message; these are needed to initialise

passive servers. New API methods are presented in Figure 4.

4.3 Scheduling algorithm
We convert seL4 from a tick-based to a tickless kernel in order

to reduce preemptions and improve scheduling precision. seL4 is

non-preemptible (save for explicit preemption points in a few long-

running operations) [Klein et al. 2009]. This makes tickless kernel

design non-trivial, as preemption interrupts cannot interrupt the

kernel itself.

seL4 has a ready queue, which satisfies the invariant that it

contains all runnable threads except the one presently executing

[Blackham et al. 2012]. It is implemented as a priority-indexed array

of queues. A two-level bitfield of occupied priorities ensures O(1)

access. We add a release queue, where the kernel queues threads
that are out of budget. This retains the existing invariant for the
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/* Wait for a message , when it is

received store the object badge

and block the caller on reply */

seL4_Recv(cap_t src , word_t *badge ,

cap_t reply);

/* As above , but invoke reply first */

seL4_ReplyRecv(cap_t src , word_t msg_info ,

word_t *badge , cap_t reply);

/* As above , but invoke dest , not reply. */

seL4_NBSendRecv(cap_t dest , word_t msg_info ,

cap_t src , word_t *badge , cap_t reply);

/* As above , with no reply. Donation not

possible. */

seL4_NBSendWait(cap_t cap , word_t msg_info ,

cap_t src , word_t *badge);

/* As per recv , but donation not possible */

seL4_Wait(cap_t src , word_t *badge);

Figure 4: Additions andmodifications to the kernel IPCAPI.

ready queue, while the release queue is characterised as holding all

threads that would be runnable if they had budget. The queue is

ordered by the time when the next replenishment is available.

When the kernel schedules a thread, it sets the timer to fire at the

thread’s SC’s budget expiry, or the next wake-up time for the head

of the release queue (whichever is first). If an SC switch occurs,

because the timer fires or the thread blocks without an SC transfer,

the consumed time is subtracted according to the sporadic server

algorithm and the accumulated time is updated.

On kernel entry (except on the IPC fastpath, which never leads

to an SC change or scheduler invocation) the kernel updates the

current timestamp and stores the time since the last entry. It then

checks whether the thread has sufficient budget to complete the

kernel operation. If not, the kernel pretends the timer has already

fired, resets the budget and adds the thread to the release queue.

This adds a new invariant, that any thread in the scheduling

queues must have enough budget to exit the kernel. It makes the

scheduler precision equal twice the kernel’sWCET (which is known

[Blackham et al. 2011; Sewell et al. 2017]). This invariant is required,

as it simplifies the kernel design and actually reduces the WCET:

when a thread runs out of time, it may need to raise a timeout

exception, resulting in delivering an IPC to a timeout handler. By

requiring that all threads in the ready queue, or any endpoint queue,

must have enough budget to wake up, we avoid the need to raise

timeout exceptions on many wakeup paths in the kernel.

Threads are only charged when the scheduling context changes,

in order to avoid reprogramming the timer, which is expensive on

many platforms. If there is no SC change, the timestamp update

is rolled back by subtracting the stored consumed value from the

timestamp. Figure 5 illustrates the structure of this kernel design.

4.4 Scheduling context donation
Donation occurs where the target thread of an IPC (or Notification

wait) does not have a scheduling context. As an SC represents the

right to access a core, donation can only happen intra-core. If a

/* if possible do fastpath & return */

old_time = kernel_time;

kernel_time = cur_time ();

/* calculate amount consumed */

cons = kernel_time - old_time;

cur_SC=cur_TCB ->SC;

if (cur_SC ->budget - cons > 2*WCET) {

/* budget is sufficient */

need_reschedule = slowpath(syscall);

} else {

/* budget is not sufficient */

charge(cur_SC);

need_reschedule = true;

}

if (need_reschedule)

schedule ();

if (cur_SC ==cur_TCB ->SC) {

/* rollback time */

kernel_time -= cons;

} else {

charge(cur_SC);

reprogram_timer ();

}

Figure 5: Kernel accounting logic.

passive server previously executed on a different core, its execu-

tion context is migrated to the client’s core on invocation. This is

overhead which must be included in any schedulability analysis (or

avoided by design).

As indicated in Section 4.1, we use Resume capabilities to track

scheduling donation chains, Figure 7 shows how this works. A

passive server, S , blocks on Endpoint E and accepts a request from

client A. As S is passive, SCA is donated to S during the IPC ren-

dezvous. Additionally, the kernel blocks A on the Resume object

provided by S on recv. A remains blocked until the server replies

on its Resume object, at which time the SC returns to A. There are
no limits on SC donation; this process can be nested indefinitely.

While S is running on behalf of A, its scheduling context SCA
points to RA, which in turn could point to further resume objects in

the IPC call chain. Timeout handlers are a thread attribute, so while

A has none, S has one, as shown in Figure 7c, where SCA expires

while the server is processing the request.

5 EVALUATION
We evaluate our design and implementation for overheads, achieved

isolation through shared and non-shared resources, and user-level

implementation of scheduling and criticality. Our evaluation plat-

forms are as follows, with further details in Table 1.

• ARM: Cortex A9 system-on-chip on a Freescale i.MX6

SABRE Lite development board,

• x64: Haswell i7-4770 machine.
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Clock L1 L2 L3 TLB
Platform GHz KiB, × KiB, × KiB, × entr., ×

ARM (32-bit) 1.0 32+32, 4 1024, 16 N/A 64, 2

x64 (64-bit) 3.1 32+32, 8 256, 8 8,192, 16 128, 8

Table 1: Hardware platform details, “×” is associativity.

5.1 Overheads
Table 2 shows the cost of the (performance-wise) most important

kernel operations of our present implementation (MCS), compared

to the baseline seL4 kernel (Base). call() is the client-style invo-
cation, which sends a message to an IPC endpoint (port), blocking

until receiving a reply. The server-style operation replyRecv()
replies to a previous message by invoking the Resume object and

then blocks, waiting for the next incoming request. The cost of these

operations increases by a few percent on both platforms, resulting

from extra checks on the fastpath to accommodate scheduling con-

texts, an extra capability lookup for the Resume object, touching

two separate new objects (SC and Resume object) and enforcing

priorities on IPC delivery (baseline does FIFO). ARM shows a higher

Arch Op. Base MCS O/H

ARM

call 288 (1) 350 (57) 62 21%

replyRecv 313 (1) 339 (30) 26 8%

IRQ lat. 1604 (81) 1813 (113) 209 13%

signal 138 (*) 144 (*) 6 4%

schedule 1910 (26*) 2778 (30*) 868 45%

x64

call 448 (0) 455 (1) 7 1%

replyRecv 431 (1) 450 (2) 19 4%

IRQ lat. 1144 (54) 1245 (54) 101 8%

signal 136 (*) 136 (*) 0 0%

schedule 1512 (0*) 2100 (0*) 589 38%

Table 2: Microbenchmarks (cycles) of seL4-base vs. MCS ker-
nels, standard deviations shown in brackets. “*” indicates an
average of 10K runs as single measurements showed high
variance due to pipeline effects on our hardware.

IPC overhead, as the larger number of objects accessed is causing

conflicts in the two-way associative TLB.

We measure IRQ latency using a thread spinning in a loop, up-

dating a volatile cycle counter, while another, higher priority thread

waits for an interrupt. On delivery, the handler thread determines

the IRQ latency by subtracting the looped timestamp from the

current time. The overhead is higher here, as we must switch sched-

uling contexts, which requires reprogramming the timer.

The signal() operation signals a Notification object

(semaphore). This microbenchmark evaluates the cost of signalling

a lower priority thread – no scheduling context switch occurs, but

the kernel reads the cycle counter before determining whether a

budget needs updating.

The schedule benchmark measures the cost of a signal to a

higher priority thread, which forces a reschedule. Scheduling cost

increases noticeably due to the need for first reading and then re-

programming the timer for budget enforcement. Furthermore, the

sporadic replenishment logic is far more complicated than the pre-

vious tick-based logic, and there is some extra code for dealing with

scheduling contexts. Note that seL4 IPC, particularly scheduler-

context donation (and its predecessor, the undisciplined timeslice

donation), is designed to minimise the need for invoking the sched-

uler, therefore this increase is unlikely to have a noticeable effect

in practice. In fact, the O (1) scheduler is a recent addition to seL4,

scheduling used to be far more expensive.

All in all, our overheads are reasonable given the speed of the

baseline kernel and the extent of the provided functionality.

5.2 Temporal Isolation
Process isolation. We demonstrate isolation in a single-core setup

illustrated in Figure 8a. It consists of a Linux VM, running at high

priority with a constrained budget, and a UDP-echo server run-

ning at a lower priority, representing a lower-rate high thread. We

measure the average and maximum UDP latency reported by the

ipbench [Wienand and Macpherson 2004] latency test.

Specifically, the Linux VM interacts with the timer (PIT) and

serial device drivers implemented as passive servers outside the
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Figure 8: Architecture of isolation benchmarks.
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Figure 9: Average and maximum latency of UDP packets
with a high-priority CPU hog running with a 10ms budget.

VM; all three components are at a high priority. In the Linux server

we run a program (yes > /dev/null) which consumes all available

CPU bandwidth. The UDP echo server, completely isolated from the

Linux instance, but sharing the serial driver, runs at a low priority.

Two client machines run ipbench daemons to send packets to

the UDP-echo server on the target machine (Haswell platform).

The control machine, one of the load generators, runs ipbench with

a UDP socket at 10Mbps over a 1Gb/s Ethernet connection with

100-byte packets. The Linux VM has a 10ms period, and we vary

the budget between 1ms and 10ms. Any time not consumed by

Linux is available to UDP echo for processing 10,000 packets per

second, or 100 packets in the time left over from each of Linux’s

10ms period.

Figure 9 shows the average and maximum UDP latencies for ten

runs at each budget setting. We can see that the maximum latencies

follow exactly the budget of the Linux server (black line) up to

9ms. Only when Linux has a full budget (10ms), and thus is able to

monopolise the processor, does the UDP server miss its deadlines,

resulting in a latency blowout. This result shows that our sporadic

server implementation is effective in bounding interference of a

high-priority process.

Network benchmark. We evaluate overheads and again demon-

strate temporal isolation by running the Yahoo! Cloud Serving

Benchmark (YCSB) [Cooper et al. 2010]. We run it against a

server using the Redis key-value store [RedisLabs 2009] with

NetBSD [Foundation 2018] drivers at user-level provided by a single-

core Rump library OS [Kantee and Cormack 2014] on x86.

The system consists of Redis/Rump running on three active seL4

threads: two for servicing interrupts (network, timer) and one for

Rump, as shown in Figure 8b. Interrupt threads run at the highest

priority, followed by Redis, and a low-priority idle thread (not

System IRQ Tput Utilis. Cost Latency
(k ops/s) (%) per op. (ms)

seL4-base APIC 138.7 (0.4) 100 0.72 1.4

seL4-MCS APIC 138.5 (0.3) 100 0.72 1.4

seL4-MCS MSI 127.3 (0.6) 100 0.79 1.6

NetBSD MSI 134.0 (0.2) 99 0.74 1.5

Linux MSI 179.4 (0.4) 95 0.52 1.1

Linux APIC 111.9 (0.4) 100 0.89 1.8

BMK PIC 144.1 (0.2) 100 0.69 1.4

Table 3: Throughput (k ops/s) achieved by Redis using the
YCSB workload A with 2 clients. Latency is average Read
and Update, standard deviations in parentheses and omitted
where less than the least significant digit shown.

shown) for measuring CPU utilisation; this setup forces frequent

invocations of the scheduler and interrupt path. Table 3 shows the

achieved throughput of Redis+Rump running bare-metal (BMK),

and Redis on the seL4 baseline and as well as the MCS branch, plus

Linux and NetBSD for comparison.

The table indicates the interrupt handling method used, as there

is no single method supported across all four scenarios. BMK only

supports the legacy programmable interrupt controller (PIC), while

NetBSD only supports message-signalled interrupts (MSI). Linux

and seL4 both support the advanced PIC (APIC).

The utilisation figures show that the system is fully loaded, ex-

cept in the Linux case, where there is a small amount of idle time.

The cost per operation (utilisation over throughput) is best on

Linux, a result of its highly optimised drivers and network stack.

Our bare-metal and seL4-based setups use Rump’s NetBSD drivers,

and achieve performance within a few percent of native NetBSD.

This indicates that our MCS support comes with low overhead.

We next run Redis beside a high-priority CPU-hog thread com-

peting for CPU time. All threads have a 5ms period. We use the

budget of the hog to control the amount of time left over for the

server configuration. Figure 10 shows the throughput achieved by

the YCSB-A workload as a function of the available CPU bandwidth

(i.e the complement of the bandwidth granted to the hog thread).

All data points are the average of three benchmark runs.

The graph shows that the server is CPU-limited (as indicated by

very low idle time) and consequently throughput scales linearly

with available CPU bandwidth.
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Arch Op. Cache Min Max Mean σ

hot 10.7 13.0 11.8 0.5

RB

cold 19.4 24.7 23.3 1.2

hot 4.2 5.6 4.7 0.3

Emg.

cold 13.0 14.4 13.6 0.3

hot 0.8 3.1 1.9 0.4

Ext.

cold 6.8 7.8 7.1 0.3

hot 9.9 12.2 11.0 0.5

ARM

Kill

cold 21.4 22.7 22.1 0.3

hot 1.47 2.89 1.96 0.39

RB

cold 4.05 4.96 4.57 0.16

hot 0.97 1.77 1.25 0.18

Emg.

cold 2.27 3.04 2.43 0.09

hot 0.16 0.86 0.28 0.13

Ext.

cold 0.96 1.46 1.13 0.08

hot 1.37 1.49 1.40 0.01

x86

Kill

cold 4.03 4.75 4.36 0.16

Table 4: Cost of timeout handler operations in µs, as mea-
sured by timeout exception handler. σ = standard deviation.

Server isolation. As an example of a shared server running out of

budget, we implement the scenario of a passive server (see Figure 7)

with two clients, A and B. The server is providing an encryption

service using AES-256 with a block size of 16 bytes. The server alter-

nates between two buffers, of which one always contains consistent

state, the other is dirty during processing. Both clients request 4MiB

of data to be encrypted, and have budget insufficient to complete

the request (budgets of 1ms and 5ms with a 10ms period).

As illustrated in Figure 7c, when a server runs out of budget, its

timeout exception handler gets invoked. We implement four of the

timeout strategies of Section 3.4.2, measuring the latency from the

time the handler wakes up until it replies to the server.

Rollback (RB) resets the server to the last consistent state

recorded, and replies to the client on behalf of the server with

the amount of data successfully encrypted. The client then restarts

its request once its budget is replenished. We measure rollback time,

from the time the exception handler is invoked, until the server is

ready for the next request. Given the small amount of rollback state,

this measures the baseline overhead. For schedulability analysis,

the actual cost of the rollback would have to be added.

Emergency (Emg.) gives the server a one-off emergency budget

to finish the client request, after which the exception handler resets

the server to being passive. The benchmark measures the pure

handling overhead, the actual request completion time must again

be added.

Extend (Ext.) increases the client’s budget on a timeout.

Kill destroys the client.
We run the benchmarks with hot caches (primed by some

warmup iterations) as well as cold (flushed) caches.

Table 4 shows the results. The maximum cold-cache cost, which

is relevant for schedulability analysis, differs by a factor of 3–4

between the different recovery scenarios, indicating that all are

about equally feasible. Approaches that restart the server (RB, Kill)

are the most expensive, as they must restore the server state from

a checkpoint and follow the passive server initialisation protocol

(recall Section 3.5). This requires 5 system calls in each case for

killing or replying to the client and RPC-ing to the server.

We next demonstrate temporal isolation in the server by using

the RB technique and measuring the time taken to encrypt 10

requests of 4MiB of data. Figure 11 shows the result with both

clients having the same period, which we vary between 10ms (left

graphs) and 1 s (right). In each graph we vary the clients’ budgets

between 0 and the period. The extreme ends are special, as one of

the clients has a full budget and keeps invoking the server without

ever getting rolled back, thus monopolising the processor. In all

other cases, each client processes at most 4MiB of data per period,

and either succeeds (if the budget is sufficient) or is rolled back

after processing less than 4MiB.
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Figure 11: Throughput for clients A and B of a passive AES server processing 10 requests of 4MiB of data with limited budgets
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The results show that in the CPU-limited cases (left graphs) we

have the expected near perfect proportionality between throughput

and budget (with slight wiggles due to the rollbacks), showing

isolation between clients. In the cases where there is headspace

(central regions of the right graphs), both clients achieve their

desired throughput.

5.3 Multicore
We adapt our AES case study to demonstrate how the MCS model

applies to multiprocessors. The AES server is configured without

a timeout fault handler, and we run two variants. The first is a

single, passive server thread which migrates between cores on

invocation. This serialises the server; consequently, there is no gain

in throughput when further cores are added, as Figure 12 shows.

The second scenario has one endpoint and one client per core, and

one server thread per core, showing a parallel server workload. Due

to minimal bottlenecks in the stateless AES server, this results in

near perfect scalability.

5.4 Criticality
We implement a kernel mechanism for changing criticalities of

threads in bulk and compare with a user-level approach which

simply changes the priority of threads one at a time. The kernel

approach tracks a queue of threads for each criticality, in order to

quickly access all threads of a specific criticality, and boost their

priority. However, given threads are kept in per-priority queues,

each thread must be removed and reinserted into a new queue.

We evaluate this approach and compare it to changing priority at

user-level.

Figure 13 shows the results measured with a primed cache (hot)

and flushed cache (cold). As the graph shows, switching is linear in

the number of threads being boosted.

In absolute terms, the results show that a criticality switch is

fairly fast, the in-kernel implementation remaining under 2 µs on
x64 and about 12 µs on ARM for switching 8 threads with a cold

cache. Changing the priority at user-level is also linear in the num-

ber of threads to be boosted, with a higher overhead due to extra

kernel entries for each thread changed. However, most systems will
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Figure 13: Cost of switching the priority of n threads in ker-
nel and user level, with hot and cold caches, onHaswell (left)
and Sabre (right). All data points are the average of 100 runs,
with very small standard deviations.

not have more than a few high-criticality threads, and deadlines for

critical control loops in cyber-physical systems tend to be in the tens

of milliseconds, we conclude that criticality can be implemented at

user-level, in line with standard microkernel philosophy.

The higher cost from user-level operation results from multiple

switches between kernel and user mode, and the repeated thread-

capability look-ups. It could be significantly reduced if seL4 had a

way to batch system calls, but to date we have seen no compelling

use cases for this.

As a second criticality-switch benchmark, we port three

processor-intensive benchmarks from the MiBench [Guthaus et al.

2001] to act as workloads. We use susan, which performs image

recognition, jpeg, which does image encoding/decoding, and mad,

which plays an MP3 file. Each benchmark runs in its own Rump

process with an in-memory file system, and shares a timer and

serial server. We chose these specific benchmarks as they were

the easiest to adapt as described below, rather than for comparing

systems, so there is no issue of bias from sub-setting.

We alter the benchmarks to run periodically in multiple stages.

To obtain execution times long enough, some benchmarks iterate a

fixed number of times per stage. Each benchmark process executes

its workload and then waits for the next period to start. Deadlines

are implicit: if a periodic job finishes before the start of the next

period it is considered successful, otherwise the deadline is missed.

We run the benchmarks on both the user-level and in-kernel

implementations of static mixed criticality, with 10 runs of each.

susan, the most critical, has three stages: edge detection, smooth-

ing, and corners. The next critical task, jpeg, has two stages: encode,

and decode. The least critical task, mad has only one stage. We run

the benchmark for 20 s for each of the stages (repeating the last

phase where threads have no new phase), and increment the system

criticality level at stage transition. The parameters are arranged

such that rate-monotonic priorities are inverse to the criticalities.

Results are shown in Table 5. Only the lowest-priority thread is

affected by the criticality switch, with an additional missed deadline

due to perturbations in run time due to the user-level versus kernel

scheduler. For stage one, the entire workload is schedulable and

there are no deadline misses. For stage two, the workload is not

schedulable, and the criticality switch boosts the priorities of susan

and jpeg, such that they meet their deadlines, but mad does not. In

the final stage, only the most critical task meets all deadlines. This
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App. (L) susan (L = 2) jpeg (L = 1) mad (L = 0) Util.

LS T C U j m T C U j m T C U j m

0 180 25 0.14 111 0 100 15 0.15 200 0 112 28 0.25 179 0 52%

1 51 0.15 111 0 41 0.41 200 0 28 0.25 178 48 86%

2 127 0.54 111 0 41 0.41 155 89 28 0.25 5 (+1) 5 (+1) 100%

Table 5: Results of criticality-switch benchmark, where the system criticality LS is raised each stage. T = period, C = worst
observed execution time (ms), U = allowed utilisation (budget/period),m = deadline misses, j = jobs completed. Standard devi-
ations are less than one significant figure of the result. Observed difference between a user-level and kernel criticality switch
in brackets.
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shows that it is sufficient to implement criticality at user-level, and

our mechanisms operate as intended.

5.5 User-level scheduling
Keeping policy out of the kernel is fundamental to the microkernel

philosophy, which aims to provide general mechanisms that allow

the implementation of arbitrary policies [Heiser and Elphinstone

2016]. On the face of it, our fixed-priority-based model seems to

violate this principle. Here we demonstrate that the model is gen-

eral enough to support the efficient implementation of alternate

policies at user level. Specifically, we show that we can efficiently

implement EDF, the optimal dynamic-priority policy favoured by

much theoretical work (see Section 2.1).

We implement the EDF scheduler as an active server with active

clients which run at an seL4 priority below the scheduler. The

scheduler waits on an endpoint on which it receives messages from

its clients and the timer.

Each client has a period, representing its relative deadline, and

a full reservation (equal to the period). Clients either notify the

scheduler of completion by an IPC message, or else create a timeout

exception on preemption, which is also received by the scheduler.

Either is an indication that the next thread should be scheduled.

We use the randfixedsum [Emberson et al. 2010] algorithm to

generate deadlines between 10 and 1000ms for a particular number

of threads. A set of threads runs until 100 scheduling decisions have

been recorded. We repeat this 10 times, resulting in 1,000 scheduler

runs for each data point.

We measure the scheduler latency by recording the timestamp

when a thread (client or idle) detects a context switch, and process

the difference in timestamp pairs offline.We run two schedulers: pre-
empt where threads never yield and must incur a timeout exception,

and coop, where threads use IPC to yield to the scheduler. The latter

invokes the user level timer driver more often as the release queue

is nearly always full, which involves more kernel invocations to

acknowledge the IRQ, in addition to reprogramming the timer.

We compare our latencies to those of LITMUS
RT

[Calandrino

et al. 2006], a widely-used framework for developing real-time

schedulers and locking protocols. As it is embedded in Linux,

LITMUS
RT

is not aimed at high-assurance systems.

We use Feather-Trace [Brandenburg and Anderson 2007] to

gather data while running the C-EDF scheduler, which is a parti-

tioned (per-core) EDF scheduler, on a single core. We use the same

parameters and thread sets, running each set for 10 s. The measured

overhead considers the in-kernel scheduler, context-switch and

user-level code to return to the user.

Figure 14 shows that our preemptive user-level EDF scheduler

implementation is actually faster than the in-kernel EDF scheduler

from LITMUS
RT

, and that the cost of implementing scheduling

policy at user level is of the same order as the in-kernel default

scheduler. In other words, implementing different policies on top

of the base scheduler is quite feasible.

5.6 Summary
Our evaluation demonstrates that our model has low overheads,

achieves isolation and allows for efficient user-level scheduling. The

implementation adds about 2,000 lines of code (14 %), as measured

by SLOC [Wheeler 2001] on the preprocessed kernel code for the

Sabre (the verified platform).

6 RELATEDWORK
Composite [Parmer and West 2011] removes scheduling decisions

from the kernel, invoking a user-level scheduler instead. It reduces

the overhead-related capacity loss by configuration buffers, which

are shared between user-level and the kernel. Some capacity loss

remains, as timer interrupts must be delivered down the scheduling

hierarchy. This approach does not suit seL4, as the required rea-

soning about concurrent access (by kernel and user-level) to those

buffers would drastically increase verification effort [Klein et al.

2014]. In our model, the kernel enforces isolation, with the policy

tailorable by user-level code, the trusted parts of which can be kept

trivially small in most cases.

Composite implements a migrating thread model [Parmer 2010]

which requires server components to manage thread pools for per-

formance, and also forces servers to bemulti-threaded. Ourmodel of

passive servers has the same benefits as migrating threads without
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the policy; multi-threaded servers are possible but not mandatory.

Recently temporal capabilities were introduced to Composite [Gade-

palli et al. 2017], which control individual time slices and can be

delegated, with a static limit on delegations. A user-level scheduler

is up-called for replenishment once the capability is depleted. Slack

re-use is only possible by explicitly delegating the slack. A notion

of time quality supports delegation across hierarchically-scheduled

subsystems without explicitly mapping all local priorities onto a

single, global priority space. Composite’s time capabilities cannot

be revoked unless empty. Efficient support for revocation tends to

be one of the core challenges in capability systems and our scCaps,

like all seL4 capabilities, can be revoked at any time.

Lackorzyński et al. [2012] first introduced a notion of scheduling

contexts into a member of the L4 microkernel family, the Fiasco.OC

microkernel. While Fiasco.OC uses capability-based access control,

its SCs are not capability-controlled and thus not integrated into

the access-control model. The model forces the use of bandwidth

inheritance, a policy we aim to keep out of the kernel. Fiasco.OC’s

SC implementation lives in a branch of the kernel.

Völp et al. [2013] report on mixed-criticality scheduling experi-

ments in Fiasco.OC, but without showing performance data. Their

approach associates priorities with scheduling contexts and forces

the use of priority inheritance for critical sections. Quest-V [Li

et al. 2014] is a multi-criticality separation kernel where critical-

ities are partitioned across cores. It does not support sharing at

all. PikeOS [Kaiser and Wagner 2007], a commercial separation

kernel from the L4 family, also assigns criticalities to cores. AU-

TOBEST [Zuepke et al. 2015] is another separation kernel where

the authors demonstrate implementations of AUTOSAR and AR-

INC653 in separate partitions. Zero-slack scheduling [de Niz et al.

2009, 2012] takes the opposite approach to reservations for mixed-

criticality: a timeout is set for the last moment a high criticality

task can run and meet its deadline, and earlier in high mode.

Real-time Mach [Mercer et al. 1994, 1993] first introduced sched-

uling contexts (called processor capacity reserves); their donation

over IPC is compulsory, while reserves themselves are optional.

Admission is done in the kernel and PIP is used to avoid priority

inversion. EROS [Shapiro et al. 1999] follows the Mach scheme.

NOVA [Steinberg and Kauer 2010] provides capabilities to sched-

uling contexts, however the scheduling context provides access

to a timeslice with no period, and thus does not provide temporal

isolation. NOVA supports SC donation over IPC but servers can

pick the scheduling context on which to run, and implements band-

width inheritance in this fashion [Steinberg et al. 2010]. Inheritance

schemes lead to complex dependency chains and make clients pay

for the mistakes of others (as explained in Section 3.5).

Minix 3 [Herder et al. 2006] provides kernel mechanisms for

implementing bandwidth servers at user level, however is not tar-

geted at hard real-time systems and has no notion of criticality.

Barrelfish [Peter et al. 2010] is capability-based and provides an

RBED implementation for scheduling, but aligns criticality with

time sensitivity. Nemesis [Leslie et al. 1996] was a single-address-

space microkernel designed for multimedia performance, however

this architecture is not suitable for mixed-criticality systems as all

the code must be at the highest criticality.

Vanga et al. [2017] use EDF in priority bands of the fixed-priority

scheduler of PikeOS, in order to run low-latency, low-criticality

tasks on the same processor as high-criticality tasks in different

partitions with bounded interference. The EDF tasks are bounded

by a pluggable reservation algorithm, and run along side system

services in the main partition, separate from high-criticality tasks.

However, their use case does not involve sharing resources between

tasks of different criticality.

7 CONCLUSIONS AND FUTUREWORK
Spatial isolation has long been a core focus of operating systems,

culminating in its formal verification in seL4 [Klein et al. 2014].

Mixed-criticality systems, as they are emerging from the cyber-

physical systems domain, require equally strong temporal isolation,

including a similar level of assurance. The challenge is the non-

fungible nature of time, and the need to share critical sections

between threads of different criticalities, without making critical

threads dependent on less critical ones.

We present simple, yet powerful mechanisms that provide

capability-based control over time, supporting strong temporal

protection even in the presence of resource sharing. Our implemen-

tation of these mechanisms in seL4 show that they can achieve low

overheads and policy flexibility. With this new model, we also solve

the long-standing issue of a lack of a satisfactory abstraction of

time in L4 kernels [Heiser and Elphinstone 2016].

The new kernel is publicly released as open source, presently as

a branch of the baseline kernel, and is already being deployed in

several critical systems. Its functionality has been formally specified

in a branch of seL4’s formal verification framework, and verifica-

tion of the code base is in progress. It will become the mainline

kernel once verification is completed. All code is open source and

accessible via https://github.com/pingerino/eurosys18.
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