
33

A New Proof Rule for Almost-Sure Termination

ANNABELLE MCIVER,Macquarie University, Australia
CARROLL MORGAN,University of New South Wales, Australia and Data61, CSIRO, Australia
BENJAMIN LUCIEN KAMINSKI,RWTH Aachen University, Germany and UCL, UK
JOOST-PIETER KATOEN,RWTH Aachen University, Germany and IST, Austria

We present a new proof rule for proving almost-sure termination of probabilistic programs, including those
that contain demonic non-determinism.

An important question for a probabilistic program is whether the probability mass of all its diverging runs
is zero, that is that it terminates “almost surely”. Proving that can be hard, and this paper presents a new
method for doing so. It applies directly to the program’s source code, even if the program contains demonic
choice.

Like others, we use variant functions (a.k.a. “super-martingales”) that are real-valued and decrease randomly
on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are
parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing
rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains.
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1 INTRODUCTION

This paper concerns termination proofs for sequential, imperative probabilistic programs, i.e. those
that, in addition to the usual constructs, include a binary operator for probabilistic choice. Writing
“standard” to mean “non-probabilistic”, we recall that the standard technique for loop termination
is to �nd an integer-valued function over the program’s state space, a “variant”, that satis�es the
“progress” condition that each iteration is guaranteed to decrease the variant strictly and further that
the loop guard and invariant imply that the variant is bounded below by a constant (typically zero).
Thus it cannot continually decrease without eventually making the guard false; and so existence of
such a variant implies the loop’s termination.

For probabilistic programs, the de�nition of loop termination is often weakened to “almost-sure
termination”, or “termination with probability one”, by which is meant that the probability of the
loop’s iterating forever is zero. For example if you �ip a fair coin repeatedly until you get heads,
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you will eventually stop — the probability of �ipping tails forever is zero. We will write AS for
“almost sure” and AST for “almost-sure termination” or “almost-surely terminating”.

But the standard variant rule we mentioned above is too weak for AST in general. Write Comp!
Com" for choice of Com,Com" with probability p,1#p resp. and consider the AST program

x ! 1; while (x" 0)
!

x ! (x+1) mod 3 1/ 2! x ! (x#1) mod 3
"
. (1)

It has no standard variant, because that variant would have to be decreased strictly by both updates
to x. Also the simple AST program

1dSRW: while (x" 0)
!

x ! x+1 1/ 2! x ! x#1
"
, (2)

the symmetric random walk over integers x, is beyond the reach of the standard rule.
Thus we need AST -rules for properly probabilistic programs, and indeed many exist already.

One such, designed to be as close as possible to the standard rule, is that an integer-valued variant
must be bounded above as well as below, and its strict decrease need only occur with non-zero
probability on each iteration, i.e. not necessarily every time [McIver and Morgan 2005, Lem.2.7.1]. 1
That rule su�ces for Program (1) above, with variant x and upper bound 2; but still it does not
su�ce for Program (2).
The 1dSRW is however an elementary Markov process, and it is frustrating that a simple

termination rule like the above (and some others’ rules too) cannot deal with its AST. This (and
other examples) has led to many variations in the design of AST -rules, a competition in which the
rules’ assumptions are weakened as much as one dares, to increase their applicability beyond what
one’s colleagues can do; and yet of course the assumptions must not be weakened so much that the
rule becomes unsound. This is our �rst principal Theme (A) — the power of AST -rules.
A second Theme (B) in the design of AST -rules is their applicability at the source level (of

program texts), i.e. whether they are expressible and provable in a (probabilistic) program logic
without “descending into the model”. We discuss that practical issue in §2 and App. E.3 — it is
important e.g. for enabling theorem proving.
Finally, a third Theme (C) is the characterisation of the kinds of iteration for which a given

rule is guaranteed to work, i.e. a completeness result stating for which AST programs a variant
is guaranteed to exist, even if it is hard to �nd. Typical characterisations are “over a �nite state
space” [Hart et al. 1983],[McIver and Morgan 2005, Lem. 7.6.1] or “with �nite expected time to
termination” [Ferrer Fioriti and Hermanns 2015].
The contribution of this paper is to cover those three themes. We give a novel rule for AST,

one that: (A) proves almost-sure termination in some cases that lie beyond what some other rules
can do; (B) is applicable directly at the source level to probabilistic programs even if they include
demonic choice, for which we give examples; and (C) is supported by mathematical results from
pre- computer-science days that even give some limited completeness criteria. In particular, one of
those classical works shows that our new rule must work for the two-dimensional random walk: a
variant is guaranteed to exist, and to satisfy all our criteria. That guarantee notwithstanding, we
have yet to �nd a 2dSRW-variant in closed form.

2 OVERVIEW

Expressed very informally, the new rule is this:
Find a non-negative real-valued variant functionV of the state such that: (1) iteration
cannot increaseV ’s expected value; (2) on each iteration the actual value � ofV must

1Over an in�nite state space, the second condition becomes “with some probability bounded away from zero”.
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decrease by at least d(�) with probability at least p(�) for some �xed non-increasing
strictly positive real-valued functions d,p; 2 and (3) iteration must cease if �=0.

The formal statement of the rule, and a more detailed but still informal explanation, is given in §4.2.
Section 3 gives notation, and a brief summary of the programming logic we use. Section 4.3 uses

that logic to prove the new rule rigorously; thus we do not reason about transition systems directly
in our proof. Instead we rely on the logic’s being valid for transition systems (e.g. valid for Markov
decision processes), for the following two reasons:

Recall Theme (A) — The programming logic we use –its theorems to which we appeal– are
valid even for programs that contain demonic choice. And so our result is valid for demonic
choice as well. (In §8.1 we discuss the degree of demonic choice that is permitted.)

Recall Theme (B) — Expressing the termination rule in terms of a programming logic means
that it can be applied to source code directly and that theorems can be (machine-) proved
about it: there is no need to translate the program �rst into a transition system or any other
formalism. The logic we use is a probabilistic generalisation of (standard) Hoare/Dijkstra
logic [Dijkstra 1976], due to Kozen [1985] and later extended by Morgan et al. [1996] and
McIver and Morgan [2005] to (re-)incorporate demonic choice.

Section 5 carefully applies the rule to several small examples, illustrating its power and the logical
manipulations it induces. Section 6 explores the classical literature on AST. Section 7 examines
other contemporary AST rules. Section 8 treats some theoretical aspects and limitations.

3 PRELIMINARIES

3.1 Programming Language and Semantics

pGCL is a simple imperative programming language based on Dijkstra’s GCL 1976 but with an
additional operator of binary probabilistic choice p! introduced by Kozen [1985] and extended
by Morgan et al. [1996] and McIver and Morgan [2005] to co-exist with demonic choice. Its
forward, operational model is functions from states to sets of discrete distributions on states, where
the sets represent demonic nondeterminism if it is present: this is essentially Markov decision
processes, but also probabilistic/demonic transition systems. (§8.1 describes some of the conditions
imposed on the “demonic” sets.) Its backwards, logical model is functions from so-called “post-
expectations” to “pre-expectations”, non-negative real valued functions on the state that generalise
the postconditions and preconditions of Hoare/Dijkstra [Hoare 1969] that are Boolean functions
on the state: that innovation, and the original link between the forwards and backwards semantics,
due to Kozen [1985] but using our terminology here, is that A = wp .Com.B, for pGCL program
Comand post-expectation B, means that pre-expectation A is a function that gives for every initial
state the expected value of B in the �nal distribution reached by executing Com. The demonic
generalisation of that [McIver and Morgan 2005; Morgan et al. 1996] is that A gives the in�mum
over all possible �nal distributions of B’s expected value. Both of these generalise the “standard”
Boolean interpretation exactly if false is interpreted as zero, true as one and implication as ($ ) (and
therefore conjunction as in�mum).
pGCL’s weakest pre-expectation logic, like Dijkstra’s weakest precondition logic, is designed to

be applied at the source-code level of programs, as the case studies in §5 illustrate. Its theorems etc.
are also expressed at the source-code level, but apply of course to whatever semantics into which
the logic is (validly) interpreted.

We now set out more precisely the framework in which we operate. Let � be the set of program
states. We call a subset G of � a predicate, equivalently a function from � to the Booleans. If � is

2As §8.2 explains, functions d, p must have those properties for all positive reals, not only the V ’s that are reachable.
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Table 1. Rules for the expectation-transformerwp.

C wp .C . f

skip f

x ! e f [x/e]

if (G) {C1} else {C2} [G] áwp .C1 . f + [ÂG] áwp .C2 . f

{C1} p! {C2} p áwp .C1 . f + (1# p) áwp .C2 . f

{C1} ! {C2} min
!
wp .C1 . f , wp .C2 . f

"

C1; C2 wp .C1 .
#
wp .C2 . f

$

while (G) {C"} lfp X . [ÂG] áf + [G] áwp .C" .X

In the table aboveC is a pGCL program, and f is an expectation. The notation f [x/e]
is function f overridden at argument x by the value e. A period “.” denotes (Curried)
function application, so that for example wp .C1 . f is semantic-function wp applied to
the syntaxC1; the resulting transformer is then applied to the “post-expectation” f . A
centred dot is multiplication, either of scalars or of an expectation by a scalar.
In p! the probability p can be an expression in the program variables (equivalently a
[0,1]-valued function of �). Often however it is a constant.
The operator ! is demonic choice.

the Cartesian product of named-variable types, we can describe functions on � as expressions in
which those variables appear free, and predicates are then Boolean-valued expressions.

We use Iverson bracket notation [G] to denote the indicator function of a predicate G, that is 1
on those states where G holds and 0 otherwise.
An expectation is a random variable that maps program states to non-negative reals:

De�nition 3.1 (Expectations [McIver and Morgan 2005]). The set of expectations on �, denoted
by E, is de�ned as E =

!
f �� f : � % R&0 ' {( }

"
. We say that f is bounded i� there exists a (non-

negative) real b such that f (� ) $ b for all states � . The natural complete partial order $ on E is
obtained by pointwise lifting, that is

f1 $ f2 i� ) � * � : f1(� ) $ f2(� ) . +

Thus Iverson brackets [#] map predicates to expectations, and (, ) to ($ ) similarly — that is,
we have [A] $ [B] just when A, B.

Following Kozen [1985], here we are are based on Dijkstra’s guarded-command language GCL
[Dijkstra 1976] but extended with a probabilistic-choice operator p! between program (fragments)
that chooses its left operand with probability p (and its right complementarily). Beyond Kozen
however, we use pGCL where demonic choice is retained [McIver and Morgan 2005; Morgan et al.
1996] — i.e. pGCL contains both probabilistic- and demonic choice. The syntax of pGCL is given in
Table 1, and its semantics of expectation transformers, the generalisation of predicate transformers,
is de�ned as follows:

De�nition 3.2 (The wp-Transformer [McIver and Morgan 2005]). The weakest pre-expectation
transformer semantic function wp : pGCL % (E % E) is de�ned in Table 1 by induction on all
pGCL programs. +
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If f is an expectation on the �nal state, then wp .Com. f is an expectation on the initial state:
thus wp .Com. f .� is the in�mum, over all distributions of �nal states that Comcan reach from � ,
of the expected value of f on each �nal distribution: there will be more than one just when Com
contains demonic choice. In the special case where f is [B] for predicate B, that value is thus the
least guaranteed probability with which Comfrom � will reach a �nal state satisfying B.
The natural connection between the standard world of predicate transformers (Dijkstra) and

the probabilistic expectation transformers (Kozen/pGCL) is the indicator function: for example
[false] is 0 and [true] is 1, 3 and the predicate implication A , B is equivalent to the expectation
inequality [A] $ [B] . The standard A , wp .Com.B, using standard wp and program Com(i.e.
without probabilistic choice in Com), becomes [A] $ wp .Com. [B] when using the wp we adopt
here. Finally, the idiom

p á[A] $ wp .Com. [B] , (3)

where “á” is real-valued multiplication (pointwise lifted if necessary), means “with probability at
least p the program Comwill take an initial state satisfying A to a �nal state satisfying B”, where
p is a [0,1]-valued expression on (or equivalently a function of) the program state: in most cases
however p is constant. This is because if the initial state � does not satisfy A, i.e. A(� ) is false, then
the lhs of (3) is zero so that the inequality is trivially true; and if � does satisfy A then the lhs is
p á1 = p (or p(� ) more generally) and the rhs is the least guaranteed probability of reaching B,
because the expected value of [B] over a distribution is the probability that distribution assigns to
B. (The “least” is, again, because of possible demonic nondeterminism.)
There are many properties of pGCL’s probabilistic wp that are analogues of wp for standard

programs; but one that is not an analogue is “scaling” [McIver and Morgan 2005, Def. 1.6.2], an
intrinsically numeric property whose justi�cation rests ultimately on the distribution of multiplica-
tion through expected value from elementary probability theory. For us it is that for all commands
Com, post-expectations Postand non-negative reals c we have

wp .Com. (c áPost) = c á(wp .Com.Post) . (4)

We use it in the proof of Thm. 4.1 below. (See also App. E.2.)

3.2 Probabilistic Invariants, Variants, and Termination with Probability 1

With the above correspondence, the following probabilistic analogues of standard termination and
invariants are natural.

De�nition 3.3 (Probabilistic Invariants [McIver and Morgan 2005, p. 39, De�nition 2.2.1]). Let
Guardbe a predicate, a loop guard, and Combe a pGCL program, a loop body. Then bounded
expectation Inv is a probabilistic invariant of the loop while (Guard) {Com} just when

[Guard] áInv $ wp .Com. Inv . (5)

In this case we say that Inv is preserved by each iteration of while (Guard) {Com}. 4 +

When some predicate Inv" is such that Inv = [Inv"] is a probabilistic invariant, we can equivalently
say that Inv" itself is a standard invariant (predicate). 5

3We will blur the distinction between Booleans and constant predicates, so that false is just as well the predicate that holds
for no state. The same applies to reals and constant expectations.
4If (real valued) expectation Inv were equal to [Inv"] for some predicate Inv", we’d have [Guard- Inv"] $ wp .Com. [Inv"] ,
exactly the standard meaning of “preserves Inv"”.
5For any standard program Com, i.e. without probabilistic choice, Dijkstra’s GCL judgement Inv , wp .Com. Inv is
equivalent to our pGCL judgement [Inv] $ wp .Com. [Inv] for any predicate Inv.
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In §1 we recalled that the standard method of proving (standard) loop termination is to �nd an
integer-valued variant function VInt on the state such that the loop’s guard (and the invariant, if
one is given) imply that VInt&0 and that VInt strictly decreases on each iteration. A probabilistic
analogue of loop termination is “terminates with probability one”, i.e. terminates almost-surely,
and one (of many) probabilistic analogue(s) of the standard loop-termination rule is the following:

T!"#$"% 3.4 (V&$'&() $*+" ,#$ +##-. ("/'.)'(0 : [McIver and Morgan 2005, p. 55, Lemma
2.7.1])). Let Inv,Guard. � be predicates; let VInt: �%Z be an integer-valued function on the state
space; let Low,High be �xed integers; let 0<�$1 be a �xed strictly positive probability that bounds
away from zero the probability that VInt decreases; and let Combe a pGCL program. Then the three
conditions
(i) Inv is a standard invariant (equiv. [Inv] an invariant) of while (Guard) {Com} , and
(ii) Guard- Inv , Low<VInt$High, and 6

(iii) for any constant integer N we have � á[Guard- In� - VInt=N] $ wp .Com. [VInt<N] ,
when taken all together, imply [Inv] $ wp .while (Guard) {Com} .1 , that from any initial state
satisfying Inv the loop terminates AS.

The “for any integer N” in (iii) above is the usual Hoare-logic technique for capturing an expres-
sion’s initial value (in this case VInt’s) for use in the postcondition: we can write “VInt<N” there
for “the current value VInt, here in the �nal state, is strictly less than the value N it had in the
initial state.” 7 Recalling (3), we see that assumption (iii) thus reads

On every iteration Comof the loop the variant VInt is guaranteed to decrease strictly
with probability at least some (�xed) strictly positive � .

The probabilistic variant rule above di�ers from the standard rule in two essential respects:
the probabilistic variant must be bounded above as well as below (which tends to make the rule
weaker); and the decrease need not be certain, rather only bounded away from zero (which tends
to make the rule stronger). Although this rule does have wide applicability [McIver and Morgan
2005, Chp. 3], it nevertheless is not su�cient for example to show AST of the symmetric random
walk, Program (2). 8

The advance incorporated in our new rule, as explained in the next section, is to strengthen
Thm. 3.4 in three ways: (1) we remove the need for an upper bound on the variant; (2) we allow the
probability � to vary; and (3) we allow the variant to be real-valued. (Thm. 3.4 is itself used as a
lemma in the proof of soundness of the new rule.)
We will need the following theorem, a probabilistic analogue of the standard technique that

partial correctness plus termination gives total correctness, and with similar signi�cance: proving
“only” that a standard loop terminates certainly indeed does not necessarily give information about
the loop’s e�ciency; but the termination proof is still an essential prerequisite for other proofs
about the loop’s functional correctness. The same applies in the probabilistic case.

6The original rule [McIver and Morgan 2005, Lem. 2.7.1] had Low$VInt< High. We make this inessential change for later
neatness.
7In greater detail: if the universally quanti�ed N is instantiated to anything other than VInt’s initial value then the left-hand
side of (iii) is zero, satisfying the inequality trivially since the right-hand side is non-negative by de�nition of expectations.
8Any variant that works for [McIver and Morgan 2005, p. 55, Lemma 2.7.1] must be bounded above and -below, and
integer-valued. And it must be able (with some non-zero probability) to decrease strictly on each step. If its bounds were
say L, H , then it must therefore be able to terminate from anywhere in no more than H#L steps, a �xed and �nite number.
But (2) does not have that property.
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T!"#$"% 3.5 (A+%#.)1.*$" )"$%'(&)'#( ,#$ -$#2&2'+'.)'3 +##-. ("/'.)'(0 : [McIver and Mor-
gan 2005, p. 43, Lemma 2.4.1, Case 2.])). Let Termsatisfy [Term] $ wp .while (Guard) {Com} .1 ,
that is that from any initial state satisfying Term the loop terminates AS (termination), and let
bounded expectation Subbe preserved by Comwhenever Guardholds, that is a probabilistic invariant
of while (Guard) {Com} (partial correctness). Then

[Term] áSub $ wp .while (Guard) {Com} . ([ÂGuard] áSub) . (total correctness)

The intuitive import of this theorem is that if bounded Subis a probabilistic invariant preserved
by each iteration of the loop body, then also the whole loop “preserves" Subfrom any state where
the loop’s termination is AS. This holds even if Comcontains demonic choice.
Bounding Subis required by [McIver and Morgan 2005], where Thm. 3.5 is found, and it is

necessary here (§8.4).

4 A NEW PROOF RULE FOR ALMOST-SURE TERMINATION

4.1 Martingales

Important for us in extending the AST rule is reasoning about “sub- and super-martingales”.
A martingale is a sequence of random variables for which the expected value of each random

variable next in the sequence is equal to the current value (irrespective of any earlier values). A
super-martingale is more general: the current value may be larger than the expected subsequent
value; and a sub-martingale is the complementary generalisation. In probabilistic programs, as
we treat them here, such a sequence of random variables is some expectation evaluated over the
succession of program states as a loop executes, and an exact/super/sub -martingale is an expectation
whose value at the beginning of an iteration (a single state) is equal-to/no-less-than/no-more-than
its expected value at the end of that iteration.

A trivial example of a sub-martingale is the invariant predicate of a loop in standard programming,
provided we interpret false$ true, for if the invariant is true at the beginning of the loop body it
must be true at the end — provided the loop guard is true. More generally in Def. 3.3 above we
de�ned a probabilistic invariant, and at (5) there we see that it is a sub-martingale, again provided
the loop guard holds. (If the loop guard does not hold, then [G] is 0 and the inequality is trivial.) To
take the loop guard G into account, we say in that case that Inv is a sub-martingale on G.

4.2 Introduction, Informal Explanation and Example of the New Rule

The new rule is presented here, with an informal explanation; just below it we highlight the way in
which it di�ers from the existing rule referred to in Thm. 3.4; then we give an overview of the new
rule’s proof; and �nally we give an informal example. The detailed proof follows in Section §4.3,
and fully worked-out examples are given in §5. To distinguish material in this section from the
earlier rules above, here we use single-letter identi�ers for predicates and expectations.
We say that a function is antitone just when x$� , f (x)&f (�) for all x,�.

T!"#$"% 4.1 (N"4 V&$'&() R*+" ,#$ L##-. ). Let I ,G . � be predicates; let V : �%R&0 be a
non-negative real-valued function not necessarily bounded; letp (for “probability”) be a �xed function
of type R&0%(0, 1]; let d (for “decrease") be a �xed function of type R&0%R> 0, both of them antitone
on strictly positive arguments; and let Combe a pGCL program.
Suppose the following four conditions hold:
(i) I is a standard invariant of while (G) {Com} , and
(ii) G - I , V>0 , and
(iii) For any R*R> 0 we have p(R) á[G - I - V=R] $ wp .Com. [V $ R#d(R)] , and
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(iv) V satis�es the “super-martingale” condition that

for any constant H in R> 0 we have [G - I ] á(H/ V) $ wp .Com. (H/ V) ,

where H/ V is de�ned as max{H#V , 0}.
Then we have [I ] $ wp .while (G) {Com} .1 .

Note that our theorem is stated (andwill be proved) in terms ofH/ V . Our justi�cation however for
calling (iv) a “super-martingale condition” onV is that decrease (in expectation) of V is equivalent
to increase of H/ V . (App. B gives more detail.) Further, in our coming appeal to Thm. 3.5 the
expectation Submust be bounded — andV is not (necessarily). Thus we use H/ V for arbitrary H
instead, each instance of which is bounded by H; andV decreases when H/ V increases.
The other reason for using the “inverted” formulation is that pGCL interprets demonic choice

by minimising over possible �nal distributions, and so the direction of the inequality in Thm. 3.5
means we must express the “super-martingale property” ofV in this complementary way.

As in Thm. 3.4(iii), we have written in the Hoare styleV=R in the pre-expectation at (iii) above
to makeV ’s initial value available (as the real R) in the post-expectation. The overall e�ect is

If a predicate I is a standard invariant, and there is a non-negative real-valued variant
functionV on the state, a super-martingale on I - G with the progress condition that
every iteration Comof the loop decreases it by at least d() of its initial value with
probability at leastp() of its initial value, then the loop while (G) {Com} terminates
AS from any inital state satisfying I .

The di�erences from the earlier variant rule Thm. 3.4 are these:
(1) The variantV is now real-valued, with no upper bound (but is bounded below by zero). We

callV a quasi-variant to distinguish it from traditional integer-valued variants.
(2) Quasi-variants are not required to decrease by a �xed non-zero amount with a �xed non-zero

probability. Instead there are two functions p,d that give for each variant-value how much
Com must decrease it (at least) and with what probability (at least). The only restriction on
those functions (aside from the obvious ones) is that they be antitone, i.e. that for larger
arguments they must give equal-or-smaller (but never zero) values. The reason for requiring
p and d to be antitone is to exclude Zeno-like behavior where the variant decreases less and
less, and/or with less and less probability. Otherwise, each loop iteration could decrease the
variant by a positive amount with positive probability –bringing it ever closer to zero– but
never actually reaching the zero that implies negation of the guard, and thus termination.

(3) Quasi-variants are required to be super-martingales: that from every state satisfying G- I the
expected value of the quasi-variant after Comcannot increase.
Note that Thm. 3.4 did not have a super-martingale assumption: although the probability that
VInt decreased by at least 1 was required there to be at least � , the change in expected value
of VInt was unconstrained. For example, if with the remaining probability 1#� it increased
by a lot (but still not above High), then its expected value could actually increase as well.

A simple example of the power of Thm. 4.1 (Theme A in §1) is in fact the symmetric random
walk mentioned earlier. Let the state-space be the integers x , and let each loop iteration when x" 0
either decrease x by 1 or increase it by 1 with equal probability. AST is out of reach of the earlier
rule Thm. 3.4 because x is not bounded above, and out of reach of some others’ rules too, because
the expected time to termination is in�nite [Ferrer Fioriti and Hermanns 2015]. Yet termination at
x=0 is shown immediately with Thm. 4.1 by takingV=|x|, trivially an exact martingale when x" 0,
and p=1/2 and d=1.
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4.3 Rigorous Proof of Thm. 4.1

We begin with an informal description of the strategy of the proof that follows.

A. We choose an arbitrary real valueH>0and temporarily strengthen the loop’s guard by conjoining
V$H. From the antitone properties of p,d we know that each execution of Com with that
strengthened guard decreases quasi-variantV by at least d(H) with probability at least p(H).
Using that to “discretise”V , making it an integer bounded above and below, we can appeal to
the earlier Thm. 3.4 to show that this guard-strengthened loop terminates AS for any H.

B. Using the super-martingale property ofV , we argue that the probability of “bad” escape toV>H
decreases to zero as H increases: for escape from the strengthened loop to V>H with some
probability e say implies a contribution of at least e áH toV ’s expected value at that point. But
that expected value cannot exceedV ’s original value, becauseV is a super-martingale. (For this
we appeal to Thm. 3.5 after convertingV into a sub-martingale as required there.) Thus as H
gets larger emust get smaller.

C. Since e approaches 0 as H increases inde�nitely, we argue �nally that, wherever we start, we
can make the probability of escape to V>H as small as we like by increasing H su�ciently;
complementarily we are making the only remaining escape probability, i.e. of “good” escape to
ÂG, as close to 1 as we like. Thus it equals 1, since H was arbitrary. Because this last argument
depends essentially on increasing H without bound, it means that p,d must be de�ned, non-zero
and antitone on all positive reals, not only on those resulting fromV(� ) on some state � the
program happens to reach. This is particularly important whenV is bounded. (See §8.2.)

We now give the rigorous proof of Thm. 4.1, following the strategy explained just above.

P$##, . (of Thm. 4.1)
LetV be a quasi-variant for while (G) {Com} , satisfying p,d progress for some p,d as de�ned in
the statement of the theorem, and recall that I is a standard invariant for that loop.

A. For any H, the loop (6) below terminates AS from any initial state satisfying I .
Fix arbitrary H in R> 0, and strengthen the loop guardG of while (G) {Com} with the conjunct
V$H. We show that

[I ] $ wp .while (G - V$H) {Com} .1 , (6)

i.e. that standard invariant I describes a set of states from which the loop (6) terminates AS.
We apply Thm. 3.4 to (6), after using ceiling 0#1to make an integer-valued variant VInt, and

with other instantiations as follows:

Inv:= I Guard:= G - V$H

VInt:=
j

V
d(H )

k
Low:= 0 High:=

j
H

d(H )

k
�:= p(H)

(7)

The VInt can be thought of as a discretised version ofV — the originalV moves between 0 and H
with down-steps of at least d(H) while integer VInt moves between 0 and Highwith down-steps of
at least 1. In both cases, the down-steps occur with probability at least p(H).
We now verify that our choices (7) satisfy the assumptions of Thm. 3.4:

(1) Inv is a standard invariant of (6) because I is by assumption a standard invariant of the loop
while (G) {Com} , and the only di�erence is that (6) has a stronger guard.
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(2) Now note thatV$H implies 0V/a1 $ 0H/a1 for any strictly positive a. Then
Guard- Inv

2, (G - V$H) - I instantiations Guard, Inv

=, 0<V$H G- I , 0<V assumed at Thm. 4.1 (ii)
=, 0 < 0V/d(H )1 $ 0H/d(H )1 remark above and d(H)>0

=, Low< VInt $ High . instantiations Low,VInt,High

(3) In this �nal section of Step (A) we will write in an explicit style that relies less on Hoare-logic
conventions and more on exposing clearly the types involved and the role of the initial- and
�nal state. In this style, our assumption for appealing to Thm. 3.4 is that for all (initial) states
� we have

p(H) á[G(� ) - V (� )$H - I (� )] (8)
$ wp .Com. (�� ".

%
VInt(� ") < VInt(� )

&
)(� ) . (9)

Here both the lhs and rhs are real-valued expressions in which an arbitrary initial state �
appears free. On the leftG, I are predicates on �, andV is a non-negative real-valued function
on �, and p,H are constants of type R> 0%R> 0 and R> 0 respectively.
On the right wp .Com. (#) is a (weakest pre-) expectation, a real-valued function on �;
applying it to the initial state –the �nal (� ) in (9) at rhs– produces a non-negative real scalar.
The second argument (#) of wp .Com. (#) is a post-expectation, again a function of type
�%R&0, but wp .Com takes that (#)’s expected value over the �nal distribution(s) that
Comreaches from � — for mnemonic advantage, we bind its states with �

". And using � "

also allows us to refer in (#) to the initial state as � , not captured by (�� ". á á á), so that we
can compare the initial VInt(� ) and �nal VInt(� ") values of VInt as required.
What we have now is our assumption of progress for the original loop while (G) {Com} ,
which was

p(V(� )) á[G(� ) - I (� )]
$ wp .Com. (�� ".

f
V(� ") $ V(� )#d

#
V(� )

$g
)(� ) ,

(10)

and we must use (10), together with the antitone properties of p,d to show (8)$ (9). We begin
with (8) and reason

p(H) á[G(� ) - V (� )$H - I (� )] (8) above
= p(H) á[G(� ) - 0<V(� )$H - I (� )] G - I , V>0 by assumption Thm. 4.1(ii)
$ p(V(� )) á[G(� ) - 0<V(� )$H - I (� )] V (� )$H; p antitone and de�ned onV(� ) 9

$ p(V(� )) á[G(� ) - I (� )] drop conjunct: [A - B - C] $ [A - C]

$ wp .Com. (�� ".
f
V(� ") $ V(� )#d

#
V(� )

$g
)(� ) . assumption (10) above

9Here potentially the value of p(0) is used on the left, when V (� ) is zero; but because [ á á á0<V (� ) á á á] = 0 in that case, it
makes no di�erent what p(0)’s value is. The antitone property applies only for positive arguments.
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Now continuing only within the [#] of the post-expectation we have 10

V(� ") $ V(� )#d
#
V(� )

$

=,
j
V(� ")/d(H)

k
$
j
V(� )/d(H) # d

#
V(� )

$
/d(H)

k
d(H)>0, 0#1monotonic

=,
j
V(� ")/d(H)

k
$
j
V(� )/d(H)

k
# 1 V(� ) $ H, d antitone, lhs (8)

=,
j
V(� ")/d(H)

k
<
j
V(� )/d(H)

k
=, VInt(� ") < VInt(� ) . de�nition VInt

Placing the last line back within wp .Com. (�� ". [#] )(� ) gives what was required at (9)
and establishes (6) — that escape from 0<V$H occurs AS from any initial state satisfying I .

B. Loop (6)’s probability of termination at ÂG tends to 1 as H%( .
For the probabilistic invariant, i.e. sub-martingale Subin Theorem 3.5, we choose H/ V . Note that,
as required by Thm. 3.5, expectation Subis bounded (by H ). Let predicate Termbe I which from
(6) we know ensures AST of the modi�ed loop. Thus the assumptions of Thm. 3.5 are satis�ed:
reasoning from its conclusion we have

[I ] áH/ V $ wp .while (G - V$H) {Com} . ([Â(G - V$H)] áH/ V)

2, [I ] áH/ V $ wp .while (G - V$H) {Com} . ([ÂG] áH/ V) V>H , H/ V=0

2, [I ] á1/ V/H $ wp .while (G - V$H) {Com} . ([ÂG] á1/ V/H ) scaling (4) by 1/H

=, 1/ V/H á[I ] $ wp .while (G - V$H) {Com} . [ÂG] , monotonicity

that is, recalling (3), that from any initial state satisfying I the loop (6) terminates in a state satisfying
ÂG with probability at least 1/ V/H . As required, that probability (for �xed initial state) tends to 1
as H tends to in�nity.

C. The original loop terminates AS from any initial state satisfying I .
From App. A, instantiating A:= G and B:= V$H, we have for any H that

wp .while (G - V$H) {Com} . [ÂG] $ wp .while (G) {Com} . [ÂG]

and, referring to the last line in (B) just above, we conclude (1/ V/H )á[I ] $ wp .while (G) {Com} . [ÂG] .
Since that holds for any H no matter how large, we have �nally that

[I ] $ wp .while (G) {Com} . [ÂG] $ wp .while (G) {Com} .1 ,

that is that from any initial state satisfying I the loop while (G) {Com} terminates AS. !

5 CASE STUDIES

In this section, we examine a few (mostly) non-trivial examples to show the e�ectiveness of Thm. 4.1.
For all examples we provide a p,d quasi-variant V that proves AST ; and we will always choose
p,d so that they are strictly positive and antitone. We will not provide proofs of the p,d properties,
because they will be self-evident and are in any case “external” mathematical facts. We do however
carefully set-out any proofs that depend on the program text: thatV=0 indicates termination, that
V satis�es the super-martingale property, and that p, d, andV satisfy the progress condition.

For convenience in these examples, we de�ne a derived expectation transformer awp, over
terminating straight-line programs only (as our loop bodies are, in this section), that “factors out”
10This reduces clutter, and in general A, B implies [A] $ [B] , and wp .Com. (#) is itself monotonic for any Com.
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x # Z&0

V : |x |

x : 0

V : 0

x : 1

V : 1

x : 2

V : 2
á á á

1 1/2

1/2

1/2

1/2 1/2

Fig. 1. Execution of the negative binomial loop. The solid nodes represent program states and moreover the
doubly-circled node represents a state in which the loop has terminated. The le! most dash-do" ed node
represents thecollectionof all states in which the value ofx is not a non-negative integer (from where the
random walk will indeed not terminate). Inside the nodes we give the variable valuations as well as the values
of the variantV = |x| in each state. The values ofp andd are constantly1/2 and1, respectively.

the (H/ ); it has the same de�nition as of wp in Table 1 except that nondeterminism is interpreted
angelically rather than demonically: that is, we de�ne

awp . {C1} ! {C2} . f = max
!
awp .C1 . f , awp .C2 . f

"
,

and otherwise as for wp (except for loops, which we do not need here). A straightforward structural
induction then shows that for straight-line programs Com, constant H and any expectationV that

H / awp .Com.V $ wp .Com. (H/ V) . (11)
And from there we have immediately that

V & awp .Com.V =, H/ V $ wp .Com. (H/ V) , (12)
and �nally therefore that

V & [G - I ] áawp .Com.V =, [G - I ] á(H/ V) $ wp .Com. (H/ V) , (13)

since if G - I holds then (13) reduces to (12) and, if it does not hold, both sides of (13) are trivially
true. Thus when the loop body is a straight-line program, by establishing lhs (13) we establish also
rhs (13) as required by Thm. 4.1(iv). We stress that awp is used here for concision and intuition
only: applied only to �nite, non-looping programs, it can always be replaced by wp.
Thus lhs (13) expresses clearly and directly that V is a super-martingale when G - I holds,

and handles any nondeterminism correctly in that respect: because awp maximises rather than
minimises over nondeterministic outcomes (the opposite of wp), the super-martingale inequality
(&) holds for every individual outcome, as required.
In §8.3 we discuss the reasons for not using awp in Thm. 4.1 directly, i.e. not eliminating “H/ ”

at the very start: in short, it is because our principal reference [McIver and Morgan 2005] does not
support awp.

5.1 The Negative-Binomial Loop

Our �rst example is also proved by other AST rules, so we do not need the extra power of Thm. 4.1
for it; but we begin with this to illustrate Theme B with a familar example how Thm. 4.1 is used in
formal reasoning over program texts.

Description of the loop. Consider the following while loop over the real-valued variable x:
while (x" 0)

!
x ! x#1 1/ 2! skip

"
. (14)

An interpretation of this loop as a transition system is illustrated in Figure 1.
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Intuitively, this loop keeps �ipping a coin until it �ips, say, heads x times (not necessarily in a
row); every time it �ips tails, the loop continues without changing the program state.
We call it the negative binomial loop because its runtime is distributed according to a negative

binomial distribution (with parameters x and 1/2), and thus the expected runtime is linear (on
average 2x loop iterations) even though it allows for in�nite executions, namely those runs of the
program that �ip heads fewer than x times and then keep �ipping tails ad in�nitum.
A subtle intricacy is that this loop will not terminate at all, if x is initially not a non-negative

integer, because then the execution of the loop never reaches a state in which x=0. This is where we
use Theorem 4.1’s ability of incorporating an invariant into the AST proof, as standard arguments
over loop termination do.

Proof of almost-sure termination. The guard is given by G = x" 0 ,
and the loop body by Com = {x ! x # 1} 1/ 2! {skip } .
And with the standard invariant I = x*Z&0 ,
we can now prove AST of the loop with an appropriate p,d and quasi-variantV :

V = |x|, for d = 1 and p = 1/2 .

Notice that d,p are strictly speaking constant functions mapping any positive real � to 1, 1/2
respectively. Intuitively, this choice of I ,V , p, and d tells us that if x is a positive integer di�erent
from 0, then after one iteration of the loop body (a) x is still a non-negative integer (by invariance
of I ) and (b) the distance of x from 0has decreased by at least 1with probability at least 1/2 (implied
by the progress condition).
We �rst check that I = x*Z&0 is indeed an invariant:

[G] á[I ] = [x " 0] á[x * Z&0] = [x * Z> 0]

$
1
2

#
[x * Z> 0] + [x * Z&0]

$

=
1
2

#
[x#1 * Z&0] + [x * Z&0]

$

= wp . {x ! x # 1} 1/ 2! {skip } . [x * Z&0]

= wp .Com. [I ] .

Next, the second precondition of Theorem 4.1 is satis�ed because of

G - I 2, x" 0 - x*Z&0 =, x" 0 =, |x |>0 2, V>0 .

Furthermore,V satis�es the super-martingale property:

[G - I ] áawp .Com.V = [x" 0 - x*Z&0] áawp .
'
{x ! x # 1} 1/ 2! {skip }

(
. |x |

= [x * Z> 0] á
1
2

á
#
|x # 1| + |x |

$

= [x * Z> 0] á
)
|x | #

1
2

*

$ [x * Z> 0] á |x |

$ |x |

= V .
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x : 0 x : 1 x : 2 á á á

! !
1/2 1/2

1/2 1/2 1/2

Fig. 2. Execution of the demonically fair random walk. The2 nodes together with the dashed arrows represent
demonic choices. The value of the variant is equal to the value ofx in each state. The values ofp andd are
constantly1/2 and1, respectively.

Lastly,V , p, and d satisfy the progress condition for all R:

p(R) á[G - I - V=R] $ wp .Com. [V $ R# d(R)]

2,
1
2

á[x" 0 - x*Z&0 - |x |=R] $ wp . {x ! x # 1} 1/ 2! {skip } . [ |x | $ R#1]

2,
1
2

á[x*Z> 0 - |x |=R] $ wp . {x ! x # 1} 1/ 2! {skip } . [ |x | $ R#1]

2,
1
2

á[x*Z> 0 - |x |=R] $
1
2

á
#
[ |x#1| $ R#1] + [ |x | $ R#1]

$

2, [x*Z> 0 - |x |=R] $
#
[ |x#1| $ R#1] + [ |x | $ R#1]

$

2, [x*Z> 0 - |x |=R] $ [x*Z> 0 - |x |=R] á
#
[ |x#1| $ R#1] + [ |x | $ R#1]

$

2, [x*Z> 0 - |x |=R] $ [x*Z> 0 - |x |=R] á(1+ 0)

2, [x*Z> 0 - |x |=R] $ [x*Z> 0 - |x |=R]

2, true .

This shows that all preconditions of Theorem 4.1 are satis�ed: thus we have [x*Z&0] $ wp . (14) .1 ,
i.e. that the negative binomial loop terminates almost-surely from all initial states in which x is a
non-negative integer.

5.2 The Demonically Fair Random Walk

Next, we consider a while loop that contains both probabilistic- and demonic choice.

Description of the loop. Consider the following while loop:

while (x > 0) {(
x ! x # 1

)
1/ 2!

(
{x ! x + 1} ! {skip }

)
}

In order not to clutter the reasoning below, we assume without loss of generality that for this
example x is of type N. The execution of the loop is illustrated in Figure 2.

The motivation for this loop is the recursive procedure P inspired by an example of Olmedo et al.
[2016]; its de�nition is

P "
(
skip

)
1/ 2!

(
call P; {call P} ! {skip }

)
,

and we have rewritten it as a loop by viewing it as a random walk of a particle x whose position
represents the height of the call stack. Intuitively, the loop keeps moving x in a random and demonic
fashion until the particle hits the origin 0 (empty call stack, all procedure calls have terminated). For
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that at each stage it either with probability 1/2 decrements the position of x by one (procedure call
terminates after skip ; call stack decremented by one), or with probability 1/2 it performs a demonic
choice between incrementing the position of x by one (perform two consecutive procedure calls,
then terminate; call stack in e�ect incremented by one ( + 2# 1 = + 1)) or letting x remain at its
position (perform one procedure call, then terminate; call stack in e�ect unchanged ( + 1# 1 = 0)).

Proof of almost-sure termination. The loop guard is given by G = x>0 and the loop body by

Com =
(
x ! x # 1

)
1/ 2!

(
{x ! x + 1} ! {skip }

)
.

We now prove AST of the loop by choosing the standard invariant I = true 11 and an appropriate
p,d and quasi-variantV :

V = x, for d = 1 and p = 1/2 .

Intuitively this choice ofV , p, and d tells us that the value of x decreases with probability at least
1/2 by at least 1 through an iteration of the loop body in the case that initially x>0.
The second precondition of Theorem 4.1 is satis�ed because G - I 2, x>0 2, V>0 .

Furthermore,V satis�es the super-martingale property:

[G - I ] áawp .Com.V = [x>0] áawp . {x ! x # 1} 1/ 2! {{x ! x + 1} ! {skip }} .x

= [x>0] á
1
2

á(x # 1+ max{x + 1, x})

= [x>0] á
1
2

á(x # 1+ x + 1)

= [x>0] áx

$ x

= V .

Lastly,V , p, and d satisfy the progress condition for all R:

p(R) á[G - I - V=R] $ wp .Com. [V $ R# d(R)]

2,
1
2

á[x>0- true - x=R] $ wp .
(
x ! x # 1

)
1/ 2!

(
{x ! x + 1} ! {skip }

)
. [x $ R#1]

2,
1
2

á[x>0- x=R] $
1
2

á
#
[x#1 $ R#1] + max{[x+1 $ R#1], [x $ R#1]}

$

2, [x>0- x=R] $ [x $ R] + [x $ R#1]

2, [x>0- x=R] $ [x $ x] + [x $ x#1]

2, [x>0- x=R] $ 1+ 0

2, true .

This shows that all preconditions of Theorem 4.1 are satis�ed and as a consequence the demonic
random walk loop above terminates almost-surely. Interestingly, the procedure P" given by

P" " {skip } 1/ 2!
!
call P"; call P";

!
call P"" ! {skip }

"
,

i.e. potentially three consecutive procedure calls instead of two [Olmedo et al. 2016], is not AST : it
terminates with probability only (

3
5#1)/2 < 1.

11Predicate true is an invariant for any loop whose body is terminating, e.g. is itself loop-free.
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x : 0

V : 0
d: #

x : 1

V : 1
d: 1

x : 2

V : 3/2
d : 1/2

x : 3

V : 11/6
d : 1/3

á á á
1/3

2/5 3/7 4/9

2/3 3/5 4/7

Fig. 3. Execution of the fair-in-the-limit random walk. Inside the nodes we give the valuations of variablex
as well as the values of the variantV and the decrease functiond. The value ofp is constantly1/3. Note that
in Thm.4.1it does not ma" er whatdÕs value is whenV=0, because thelhs of (iii ) is zero in that case.

5.3 The Fair-in-the-Limit Random Walk

While so far we have considered constant probabilities and constant decreases, we now consider a
while loop requiring use of a non-constant decrease function d.

Description of the loop. Consider the following while loop:

while (x > 0) {

q ! x/2x+1;

{x ! x # 1} q! {x ! x + 1}

}

Assume again that x*N. The execution of the loop is illustrated in Figure 3.
Intuitively, the loop models an asymmetric random walk of a particle x, terminating when the

particle hits the origin 0. In one iteration of the loop body, the program either with probability
x/2x+1 decrements the position of x by one, or with probability x+1/2x+1 increments the position of
x by one. The further the particle x is away from 0, the more fair becomes the random walk since
x/2x+1 approaches 1/2 asymptotically. Yet, it is not so obvious that this random walk indeed also
terminates with probability 1.

Proof of almost-sure termination. The loop guard is given by G = x>0 and the loop body by

Com = q ! x/2x+1; {x ! x # 1} q! {x ! x + 1} .

We now prove almost-sure termination of the loop by choosing standard invariant I = true and an
appropriate p,d quasi-variantV :

V = Hx , for d(�) =
8><>:

1
x , if � > 0 and � * (Hx#1, Hx ]
1, if � = 0

and p(�) =
1
3
,

where Hx is the x-th harmonic number.12 Notice that the variantV is non-a�ne here, i.e. not of
the form a + bx + cq, and we will show below that no a�ne variant can satisfy a super-martingale
property. Intuitively our choice of p and d tells us that the variantV , i.e. the harmonic number of
the value of x, decreases with probability at least 1/3 by at least 1

x through an iteration of the loop
body in case that initially x > 0.
The second precondition of Theorem 4.1 is satis�ed because

G - I 2, x>0 2, Hx>0 2, V>0 .

12Hx =
+ x

n=1
1
n . Notice that H0 = 0.
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Furthermore,V satis�es the super-martingale property:

[G] áawp .Com.V = [x>0] áawp .q ! x/2x+1; {x ! x # 1} q! {x ! x + 1} .Hx

= [x>0] áawp .q ! x/2x+1 . (q áHx#1 + (1#q) áHx+1)

= [x>0] á
) x
2x+1

áHx#1 +
)
1#

x
2x+1

*
áHx+1

*

= [x>0] á
) x
2x+1

á
)
Hx #

1
x

*
+

) x+1
2x+1

*
á

)
Hx +

1
x+1

**

= [x>0] á
)) x

2x+1
+

x+1
2x+1

*
áHx #

1
2x+1

+
1

2x+1

*

= [x>0] áHx

$ Hx

= V .

Lastly,V , p, and d satisfy the progress condition for all R. Notice that d(Hx ) = 1/x and consider the
following:

p(R) á[G - I - V=R] $ wp .Com. [V $ R# d(R)]

2,
1
3

á[x>0- Hx =R] $ wp .q ! x/2x+1; {x ! x # 1} q! {x ! x + 1} . [Hx $ R# d(R)]

2,
1
3

á[x>0- Hx =R] $ wp .q ! x/2x+1 . (q á[Hx#1 $ R# d(R)] + (1#q) á[Hx+1 $ R# d(R)])

2,
1
3

á[x>0- Hx =R] $
x

2x+1
á[Hx#1 $ R# d(R)] +

)
1#

x
2x+1

*
á[Hx+1 $ R# d(R)]

2,
1
3

á[x>0- Hx =R] $
x

2x+1
á[Hx#1 $ R# d(R)] +

) x+1
2x+1

*
á[Hx+1 $ R# d(R)]

2,
1
3

á[x>0- Hx =R] $
x

2x+1
á

Hx#1 $ Hx #

1
x

�
+

) x+1
2x+1

*
á

Hx+1 $ Hx #

1
x

�

2, [x>0] á
1
3

$
) x
2x+1

á1+
x+1
2x+1

á0
*

2, [x>0] á
1
3

$
x

2x+1
2, true .

This shows that all preconditions of Theorem 4.1 are satis�ed and as a consequence the fair-in-the-
limit random walk terminates almost-surely.

Proof of non-existence of an a�ne variant. For this program, there exists no a�ne variant that
satis�es the super-martingale property as used e.g. by Chatterjee et al. [2017]. Any a�ne 13 variant
V would have to be of the form

V = a + bx + cq ,

13Some authors call this a linear variant.
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for some (positive) coe�cients a, b, c. 14 Now we attempt to check the super-martingale property
for a variant of that form:

[G] áawp .Com.V
= [x>0] áawp .q ! x/2x+1; {x ! x # 1} q! {x ! x + 1} . (a + bx + cq)

= [x>0] áawp .q ! x/2x+1 . (q á(a + b(x#1) + cq) + (1#q) á(a + b(x+1) + cq))

= [x>0] áawp .q ! x/2x+1 . (a # 2bq+ bx + b + cq)

= [x>0] á
)
a # 2b á

x
2x + 1

+ bx + b + c á
x

2x + 1

*

!
$ a + bx + cq

= V .

If x $ 0 this is trivially satis�ed. If x>0, then the above is satis�ed i�

a # 2b á
x

2x + 1
+ bx + b + c á

x
2x + 1

$ a + bx + cq

2, # 2b á
x

2x + 1
+ b + c á

x
2x + 1

$ cq ,

which is only satis�able for all possible valuations of q and x>0 i� b = c = 0. Thus ifV is forced to
be a�ne, thenV has to be constantly a, for a & 0. Indeed, a is a super-martingale. However, it is
clear that a constantV cannot possibly indicate termination as

[V = 0] = 1 " [x $ 0] = [ÂG] .

Thus, there cannot exist an a�ne variant that satis�es the super-martingale property.

5.4 The Escaping Spline

We now consider a while loop where we we will make use of both non-constant probability function
p and non-constant decrease function d.

Description of the loop. Consider the following while loop:

while (x > 0) {

q ! 1/x+1;

{x ! 0} q! {x ! x + 1}

}

Assume again that x*N. The execution of the loop is illustrated in Figure 4.
Intuitively, the loop models a random walk of a particle x that terminates when the particle

hits the origin 0. The random walk either with probability 1/x+1 immediately terminates or with
probability x/x+1 increments the position of x by one. This means that for each iteration where the
loop does not terminate, it is even more likely not to terminate in the next iteration. Thus, the longer
the loop runs, the less likely it will terminate since the probability to continue looping approaches
1 asymptotically. Yet this loop terminates almost-surely, as we will now prove.

14Coe�cients need to be positive because otherwise V & 0 cannot be ensured. However, this is not crucial in this proof.
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x : 0

p: #
d: #

x : 1

p: 1/2
d : 1

x : 2

p: 1/3
d : 1

x : 3

p: 1/4
d : 1

á á á
1/2

1/3
1/4

1/5

1/2 2/3 3/4

Fig. 4. Execution of the escaping spline loop. The value of the variant is equal to the value of the variablex
in each state. Inside the nodes we give the valuations of variablex as well as the values of the probability
function p and the decrease functiond in each state. Note that in Thm.4.1it does not ma" er whatd,pÕs
values are whenV=0, because thelhs of (iii ) is zero in that case.

Proof of almost-sure termination. The loop guard is given by G = x>0 and the loop body by

C = q ! 1/x+1; {x ! 0} q! {x ! x + 1} .

We now prove almost-sure termination of the loop by choosing the standard invariant I = true and
an appropriate p,d and quasi-variantV :

V = x, for d(�) = 1 and p(�) =
1

� + 1
.

Intuitively this tells us that the variant V , i.e. the value of x, decreases with probability at least
1/V +1 = 1/x+1 by at least 1 through an iteration of the loop body in case that the guard is satis�ed.
NowV satis�es the super-martingale property:

[G] áawp .C .V = [x>0] áawp .q ! 1/x+1; {x ! 0} q! {x ! x + 1} .x
= [x>0] áawp .q ! 1/x+1 . (q á0+ (1# q) á(x + 1))

= [x>0] á
)
1#

1
x + 1

*
á(x + 1)

= [x>0] á(x + 1# 1)

= [x>0] áx

$ x

= V .

AndV , p, and d satisfy the progress condition for all R:

p(R) á[G - I - x=R] $ wp .C . [V $ R# d(R)]

2,
1

R+ 1
á[x>0- x=R] $ wp .q ! 1/x+1; {x ! 0} q! {x ! x + 1} . [x $ R#1]

2,
1

R+ 1
á[x>0- x=R] $ wp .q ! 1/x+1 . (q á[0 $ R# 1] + (1#q) á[x+1 $ R# 1])
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2,
1

R+ 1
á[x>0- x=R] $ 1/x+1 á[0 $ R# 1] + x/x+1 á[x+1 $ R# 1]

2,
1

R+ 1
á[R>0- x=R] $ 1/R+1 á[0 $ R# 1- x=R] + R/R+1 á[R+1 $ R# 1- x=R]

2,
1

R+ 1
á[R>0- x=R] $ 1/R+1 á[0 $ R# 1- x=R]

2 = x * N . (true by assumption)

This shows that all preconditions of Theorem 4.1 are satis�ed and as a consequence the escaping
spline loop terminates almost-surely.

In fact in retrospect AST for this loop is not so surprising after all: by inspection, the probability
associated with the sole diverging path from say x=1 is 1/2 á2/3á á á= 0. It is interesting however
that this criterion applies in general: if the probability of going up from x is px , then the variant
V(x) = 1/p1p2ááápx#1 is a martingale by construction. And if p1p2 á á á> 0, i.e. the probability of
divergence is non-zero, then this variant is bounded and, for reasons discussed below at Cor. 6.2,
it therefore acts as a certi�cate for non-termination. Moreover, as illustrated in §8.2, indeed our
Thm. 4.1 does not apply when p1p2 á á á> 0 since then there is no everywhere positive but antitone
p(). 15 If however p1p2 á á á= 0, i.e. the probability of divergence is zero, then the construction
V(x) = 1/p1p2ááápx#1 works (because the variant is unbounded) — a (limited) completeness property.

6 REVIEW OF MATHEMATICAL LITERATURE ON SUPER-MARTINGALE METHODS

6.1 Recurrent Markov Chains, and Super-Martingales

Early work on characterising recurrent behaviours of in�nite-state Markov processes using super-
martingale methods is primarily due to Foster [1951, 1952], Kendall [1951] and Blackwell [1955].
In this section we review some of these important results and explain how they relate to AST for
probabilistic programs and Thm. 4.1. Note that their arguments are given directly in an underlying
model of (deterministic) transition systems.
Following the conventions of the authors above, we assume an enumeration of the (countable)

state space i = 0,1,2, . . . , and transition probabilities pi j for the probability of transitioning from
state i to state j . The probability of reaching j from i on the n’th transition is pn

i j , where pn is
computed from single transitions pik using matrix multiplication. Foster [1951] identi�ed three
kinds of long-term average behaviours for in�nite-state Markov processes, which behaviours he
called dissipative, semi-dissipative and non-dissipative. A process is said to be non-dissipative
if its long term average behaviour does not “dissipate”, i.e. if

+
j &0�i j = 1 for all states i , where

�i j = limn%(
1
n

+ n
r =1pr

i j [Kendall 1951]. An illustration of a dissipative process is the biased random
walk, with an extreme example given by transition probabilities pi (i +1) = 1. The non-dissipative
condition is more general than AST, but the methods used to prove that a process is non-dissipative
nevertheless do use super-martingales. In particular Foster’s Theorem 5 1951 gives such a su�cient
condition for a process to be non-dissipative. It is

,

j &0

jápi j $ i , for all states i & 0 . (15)

Kendall [1951] generalised Foster’s (15) by removing the strict relation between the “super-
martingale” values and the enumeration of the state space, whilst articulating an important �nitary

15 If 1/ p1p2ááá= K < ( then necessarily the escape probabilities 1#p(� ) tend to zero as V (x )=� tends to K , and so p(� ) for
any �> K must actually be zero — which is not allowed, even if the process never reaches x with V (x )> K .
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property of a super-martingale that he used in his proof. In Kendall’s work, a Markov process is
guaranteed to be non-dissipative if there is a functionV from states to reals such that

,

j &0

V (j )ápi j $ V(i ) for all states i &0 (16)

and for each value �&0 there are only �nitely many states i such thatV(i ) $ � . Finiteness is crucial
here: for the dissipative process with pi (i +1) = 2/3 and pi (i #1) = 1/3 (which we return to in §8.2) we
haveV(i ) = �i 0 satis�es (16) but, of course, in general

+
j &0�i j = �i 0 < 1, since it can be shown

that �i 0 is the probability of ever reaching 0 from i .
Then Blackwell [1955] further developed the ideas of Foster and Kendall (sketched above) in

order to obtain a complete characterisation of Markov-process behaviour in terms of martingales
(i.e. exact); some of Blackwell’s results can be adapted to work for probabilistic programs generally
to provide a certi�cate to prove non-AST. We summarise Blackwell’s results here and then show
how we can apply them. We continue with the historical notations.

LetC be a subset of the state space, and �x some initial state öi . Say thatC is almost closed (with
respect to that öi ) i� the following conditions hold:
(1) The probability thatC is entered in�nitely often, as the process takes transitions (initially)

starting from öi , is strictly greater than zero and
(2) If C is indeed visited in�nitely often, starting from öi , then eventually the process remains

withinC permanently.
Say further that a setC is atomic i�C does not contain two disjoint almost-closed subsets. Finally,

call a Markov process simple atomic if it has a single almost-closed atomic set such that once started
from öi the process eventually with probability one is trapped in that set. We then have:

T!"#$"% 6.1. (Corollary of Blackwell’s Thm. 2 on p656) [Blackwell 1955]
A Markov process is simple atomic (as above) just when the only bounded solution of the equation+

j &0pi j áV (j ) = V(i ), that is Blackwell’s Equation (his 6) stating thatV is an exact martingale, is
constant for all i in S\C and transitions pi j . !

We now show how to apply Thm. 6.1 to general probabilistic programs to obtain a certi�cate for
non-termination.

C#$#++&$56.2 (N#(1)"$%'(&)'#( 3"$)','3&)" ). We use the conventions of Thm. 4.1, restated
here. Let I ,G . � be predicates; let V : �%R&0 be a non-negative real-valued function on the state;
and let Combe a pGCL program. Then the conditions
(i) I is a standard invariant for the loop while (G) {Com} , and
(ii) G - I , V>0 , and
(iii) V is a non-constant and bounded exact martingale on I - G

together imply that there is a state � in I such that wp .while (G) {Com} .1(� ) < 1. That is
If a predicate I is a standard invariant, and there exists a non-negative real-valued variant
functionV on the state, an exact martingale on I - G, such thatV is bounded and non-
constant, then there is some initial state satisfying I from which loop while (G) {Com}
does not terminate AS.

P$##, . Fix a starting state ös, and collapse the termination set S0 (i.e. all states that do not satisfy
the guard) to a single state s0. Now adjust the underlying transition system corresponding to the
given program so that any transition to a state in S0 becomes a transition into s0, and assume that
there is a single transition from s0 to s0. Suppose now that the probability of ös’s reaching s0 is one.
We now note:
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(1) Our termination set {s0} is almost-closed and atomic (in the sense of Blackwell), because
(a) almost closed: Our process reaches s0 with non-zero probability (in fact we assumed with

probability one, for a contradiction) and, once at s0, it remains there.
(b) atomic: Our set {s0} has no non-empty subsets.

(2) We now recall that in fact s0 is reached with probability one, so that the whole process is
simple atomic.

(3) From Blackwell’s Thm. 6.1 we conclude that the only possible non-trivial martingale is
unbounded.

We deduce therefore, that if there exists a non-constant bounded martingale then there is some
state from which termination is not guaranteed with probability 1. !

Thus –in summary– we have specialised Blackwell’s result to demonstrate a new refutation
certi�cate for programs: if the martingale is �nite and non-constant it actually refutes termination
with probability 1, not just �nite expected time to termination.

In fact Cor. 6.2 provides an interesting embellishment to recent work by Chatterjee et al. [2017]
who introduce the notion of “repulsing super-martingales”. Their Theorem 6 uses an �-repulsing
super-martingale with �>0 to refute almost-sure termination. And their Theorem 7 uses an �

repulsing super-martingale with �&0 to refute �nite expected time to termination. In particular to
refute �nite expected time to termination only a martingale is required.
Our Cor. 6.2 takes this further to use non-constant and bounded martingales as certi�cates to

refute almost-sure termination. For example the one-dimensional random walker
while (x > 0)

!
{x ! x # 1} 1/2! {x ! x + 1}

"

has an exact unbounded martingale, and therefore our rule Thm. 4.1 shows that it terminates with
probability 1. On the other hand the biased walker while (x > 0)

!
{x ! x # 1} 1/3! {x ! x + 1}

"

(from §8.2) has a non-constant and bounded martingale based on the functionV(s) = 1#�s! 0 where
�s! 0 is the probability that, starting from state s, eventually state 0 (i.e. x=0) is reached . By Cor. 6.2
we can conclude that the program does not terminate with probability 1. Note that Chatterjee’s
Theorem 7 2017 does not distinguish between these two cases in terms of their behaviour: it implies
that neither has �nite expected time to terminate. And Cor. 6.2 holds even when demonic choice is
present.

6.2 Towards Completeness: The Case of the Random Walker in Two Dimensions

Foster [1952] further considers the question of conditions on a Markov process that imply the
existence of a super-martingale; this is relevant for our Theme C. His conditions are:
(1) The state space � is countable;
(2) There is a �nite subsetC . � that is reached with probability 1 from any other state;
(3) The states are numbered so that given any pair of states si ,sj there is some probability of

reaching sj from si whenever i<j ;
(4) There is a single probability 0<�<1 for the whole system such that for any N there is an i

such that for all j&i the state sj cannot reachC within N steps and with probability at least � .
Under these conditions, Foster shows that there exists an unbounded super-martingale functionV
on S such thatV(s) tends to in�nity as the numbering of s tends to in�nity.
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The construction is a variation on the expected time to termination but, as he remarks, expected
time cannot be used because inmany situations the expected time to termination is in�nite. However
using Foster’s construction we can prove the existence of a super-martingale that also satis�es
the progress conditions of our rule Thm. 4.1, and thus could be used to prove termination for the
2-dimensional symmetric random walk

while (x" 04 �" 0)
!
x ! x#1 ! x ! x+1 ! � ! �#1 ! � ! �+1

"

where iterated ! is shorthand for uniform choice (in this case 1/4 each).

C#$#++&$56.3 (T4#16'%"(.'#(&+ $&(6#% 4&+7 ). There exists a super-martingale which satis-
�es the conditions of Thm. 4.1 to prove termination of the two-dimensional random walker.

P$##, . (Sketch.) We follow Foster’s argument 1952 to show that there is a numbering of the
states that satisfy his conditions for constructing a super-martingale; then we show that the
constructed super-martingale also satis�es the progress conditions. Foster enumerates the states
by “spiralling out” through increasing Manhattan distance, observing that simple scheme to satisfy
his enumeration conditions. Then he shows that there is a variant functionV which satis�es the
conditions for a super-martingale; 16 and in fact as the numbering of s approaches in�nity so too
does V(s); in particular Foster shows that there are no accumulation points in the image of V .
Foster’s general proof is by construction. (We sketch it in App. F.)

To show that our rule Thm. 4.1 applies, we need however to establish a progress condition. First
de�ne p(�) to be 1/4 for all � . Then for d, �rst consider the subset S$� of S comprising all those
swith V(s)$� . Because there are no accumulation points in the image of V , we must have that
S$� is �nite. Now set d(�) to be the minimum non-zero distance between any two of them, that is
(min (V (s")#V(s)) | s,s" * (S$� ) - V (s")>V(s)). SinceV(s) increases arbitrarily we have that d is
non-zero whenever �=V(s) for some state with Manhattan distance strictly greater than 0.

Thus there is guaranteed to be aV satisfying the progress condition Thm. 4.1(iii) that establishes
termination for the 2dSRW — even if we don’t know what it is in closed form. !

7 REVIEW OF RELATED WORK ON TERMINATION FOR PROBABILISTIC
PROGRAMS

Our earlier variant rule Thm. 3.4 [Morgan 1996, Sec. 6],[McIver andMorgan 2005, Sec. 2.7] e�ectively
made p,d constants, imposed no super-martingale condition but instead boundedV above, making
it not su�cient for the random walk. Later however we did prove the symmetric random walk to
be AST using a rule more like the current one [McIver and Morgan 2005, Sec. 3.3].
Chakarov and Sankaranarayanan [2013] consider the use of martingales for the analysis of

in�nite-state probabilistic programs, and Chakarov [2016] has done further, more extensive work.
Chakarov and Sankaranarayanan also show that a ranking super-martingale implies AST, and a

key property of their de�nition for ranking super-martingale is that there is some constant �>0such
that the average decrease of the super-martingale is everywhere (except for the termination states)
at least � . Their program model is operates over discrete distributions, without nondeterminism.

That work is an important step towards applying results from probability theory to the veri�cation
of in�nite-state probabilistic programs.
Ferrer Fioriti and Hermanns [2015] also use ranking super-martingales, with results that

provide a signi�cant extension to Chakarov and Sankaranarayanan’s work [Chakarov and Sankara-
narayanan 2013]. Their program model includes both non-determinism and continuous probability
16The Manhattan distance itself is not a super-martingale because, on the axes, the distance actually increases in expectation
by (#1+ 1+ 1+ 1)/ 4 = 1/ 2. Indeed if the Manhattan variant worked for two dimensions, it would also work for three; but
the 3dSRW is not AST.
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x : 0

p: #

x : 1

p: 1/2

x : 2

p: 1/4

x : 3

p: 1/6
á á á

1/2

1/4 1/6 1/8

1/2 1/4 1/6

1/2 2/3

Fig. 5. Transition system for the Lazy Loper program (above, and App.D). Inside the nodes we give the
valuations of variablex as well as the value of the probability functionp. The value of the variant is equal to
the value of variablex in each state. The value of the decrease functiond is constantly1.

distributions over transitions. They also show completeness for the class of programs whose
expected time to termination is �nite. That excludes the random walk however; but they do
demonstrate by example that the method can still apply to some systems which do not have �nite
termination time.
We note that it can be shown that a ranking super-martingale that proves AS also satis�es p,d

progress for Thm. 4.1; see App. G.
Chatterjee et al. [2017] study techniques for proving that programs terminate with some

probability (not necessarily one). Their innovation is to introduce the concept of “repulsing super-
martingales” — these are also super-martingales with values that decrease outside of some de�ned
set. Repulsing super-martingales can obtain lower bounds on termination probabilities, and as
certi�cates can refute almost-sure termination and �nite expected times to termination.

More recently stillChatterjee and Fu [2017] have studied termination for probabilistic and non-
deterministic recursive programs. In particular they show that “conditionally di�erence-bounded
ranking super-martingales” can be used to prove almost-sure termination. As we do, Chatterjee and
Fu allow super-martingales (i.e. not necessarily ranking); and their Thm. 5 requires that the average
absolute di�erence betweenV(� ) andV(� ") must be at least some �xed �>0. This constraint seems
to imply some kind of progress and it will be an interesting exercise to understand exactly the
di�erences in applicability between the two rules. For example the existence of a �xed �>0 allows
Chatterjee and Fu to give an estimate for “tail probabilities”. On the other hand the variation of the
random walker given by the “Lazy Loper” program of Fig. 5, that is

while (x > 0)
! !

{x ! x+1} 1/2! {x ! x#1}
"

1/ x !
!
Skip

" "

in which the walker “dawdles” at a location depending on the distance to the origin, nevertheless
can be proved to terminate almost surely using Thm. 4.1 with de�nitions V(x) = x, and p(�) =
1min 1/2� and d(�) = 1 for progress; but Chatterjee’s Thm. 5 2017 does not seem to apply here.
Moreover there appears to be no super-martingale for this program that has average absolute move
bounded away from 0. We give details in App. D.
Finally, Agrawal et al. [2018] have extended the �-strict super-martingale approach to in-

clude lexicographic orderings, and present techniques for their automatic synthesis. (We explore
parametrised-� super-martingales, but not lexicographic, in McIver and Morgan [2016, Sec. 5].)
A di�erent approach to the same issue is the work of Lago and Grellois [2017] in which

expressions themselves are probabilistic artefacts, and their termination properties can be “inherited”
by functional programs containing them: that allows the expressions’ behaviour to be studied
separately, outside of the clutter of the program containing them.
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There are a number of other works that demonstrate tool support based on the above and
similar techniques. All the authors above [Chakarov and Sankaranarayanan 2013; Chatterjee et al.
2017; Ferrer Fioriti and Hermanns 2015] have developed and implemented algorithms to support
veri�cation based on super-martingales. Esparza et al. [2012] develop algorithmic support for
AST of “weakly �nite” programs, where a program is weakly �nite if the set of states reachable from
any initial state is �nite. Kaminski et al. [2016] have studied the analysis of expected termination
times of in�nite state systems using probabilistic invariant-style reasoning, with some applications
to AST. In even earlier work Celiku and McIver [2005] explore the mechanisation of upper
bounds on expected termination times, taking probabilistic weakest pre-expectations [McIver and
Morgan 2005] for their model of probability and non-determinism.

8 THEORETICAL ISSUES, LIMITATIONS AND CAVEATS

8.1 How Much Nondeterminism?

Our arguments above are over “expectation transformers”, i.e. functions from post-expectations to
pre-expectations and thus going in e�ect “backwards”. But equivalently our programs are functions
from initial state to (discrete) distribution over �nal states or, when demonic choice is present, to sets
of such distributions (but only sets satisfying certain “healthiness” conditions). That equivalence
was shown by Kozen [1985] for deterministic (i.e. non-demonic) programs, and extended by McIver
and Morgan [2005]; Morgan et al. [1996] when demonic choice was added. Table 1 interprets
programs (syntax) into that semantic space, and e.g. Thm. 3.4 and Thm. 3.5, crucial to our argument,
have been shown to be true in that space [McIver and Morgan 2005].

Important is that those two theorems were not proved by structural induction over pGCL syntax
directly; rather they follow from a di�erent structurally inductive proof, that all pGCL programs
are mapped into the semantic space (where the theorems hold) — that is, a proof that the space is
closed under program-combining operators. The signi�cance of the di�erence is that our results
therefore hold for any elements of that space, whether they come from pGCL or not, including
operational descriptions of programs as transition systems provided they satisfy the healthiness
conditions the space demands. One such condition is the restriction to discrete distributions. 17

Another healthiness condition concerns the degree of demonic choice our semantic space allows:
is it �nite? countable? unlimited? In fact our space requires that the sets of distributions be closed
in the product topology over the set of discrete (sub-)distributions on �, that is distributions whose
total weight is no more than 1. (Any missing weight indicates non-termination.) All (meanings) of
pGCL programs have that property [McIver and Morgan 2005]; and all �nitely branching transition
systems do. But that property is not the same e.g. as countable vs. uncountable branching. For
example, Program

c,x ! true,0; while (c)
!!

c ! false
"

1/ 2! {x ! x + 2}
"
; {x ! x + 1} ! {skip } (17)

makes uncountably many demonic choices (over geometric-style discrete distributions). 18 Never-
theless, because the program is written in pGCL, that set is closed. On the other hand, the (standard)
program “choose n from the natural numbers” has only countably in�nite branching, and yet

17Thus e.g. part of the structurally inductive proof would be to show that loops with discrete-distribution bodies cannot
somehow “in the limit” require a proper measure to de�ne their overall e�ect: the worst it can get is a countably in�nite but
still discrete distribution.
18First pick any real number b in the unit interval [0, 1] (which action cannot be written using pGCL’s only-binary
demonic choice); consider its binary expansion 0.b1b2 á á ábn á á á. Construct the discrete (countably in�nite) distribution
0+b1 @1/ 2, 2+b2 @1/ 4, á á á 2n+bn @1/ 2n á á á where “@” means “with probability”. (That second step can be
done using pGCL, for already-determined b.) For every b chosen in the �rst step, the above distribution is a possible result,
di�erent for each b and so uncountably numerous. But still the set of them all is closed, since the pGCL (17) produces it.
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cannot be written in the pGCL of Table 1. Embedded in the probabilistic model [McIver and Morgan
2005], its output set of distributions is not closed — and so this program is out-of-scope for us. But
Program (17) is within our scope.

Thus the conceptual boundary of our result is not countable vs. uncountable branching: rather it
is topological closure vs. non-closure of sets of discrete distributions. But this issue is important only
for examples “imported” from outside of pGCL; for any pGCL program, closure of the corresponding
transition system’s results sets is automatic [McIver and Morgan 2005, Sec. 8.2].

8.2 ÒProgressÓ is More Demanding than it Looks

Consider the asymmetric random walker x ! 1; while (x" 0)
!
{x ! x#1} 1/ 3! {x ! x+1}

"
. We

can easily synthesise an exact- (and thus super-) martingale V(x) = 2x #1/2x#1 by solving the
associated recurrence. It is bounded asymptotically above by 2, so that for progress we are tempted
by p(�)=1/3 and d(�) = 2#� , both satisfying our positive-and-antitone requirements when �<2.

But this d() in fact does not satisfy our requirements, because they apply for all � , not just those
generated by states that the program can actually reach. And in this case there is no suitable value
for d(2), since it would have to be 0 for d to be antitone. That is, even though the program can
never reach a state x whereV(x)=2, the requirements on d(2) still apply.

As well as saving us from unsoundness (since the that asymmetric walker is notAST ), this exposes
an important methodological issue: the properties of p,d, their being non-zero and antitone, do
not refer to the program text at all. However the properties of those functions might be proved
–by hand, or with Mathematica or Sage– the semantics of pGCL is not required: one needs only
analytic arguments over the reals. And those arguments can be delegated to other people who have
never heard of pGCL or transition systems, or Markov processes, random variables or program
termination. That is, if we want to use powerful external analytical tools, we should avoid as far as
possible that they must be “taught” our semantics.

8.3 Why Do we Express VÕs Being a Super-Martingale by Writing a Sub-Martingale
Inequality?

In Thm. 4.1 we wrote the super-martingale property ofV as a sub-martingale property of H/ V ; yet
in §5, the case studies, we introduce the “angelic” awp and check the super-martingale property
directly. Why didn’t we use awp in Thm. 4.1 in the �rst place?
The reason is that Thm. 3.5 is proved over the semantic space of McIver and Morgan [2005]

mentioned in §8.1 above, and the brief treatment of angelic choice there [op. cit., Sec. 8.5] gives no
awp-based results for loops. To refer to the literature in its own terms –and to avoid building new
special-purpose semantics here– we therefore must use only wp when importing existing results.

On the other hand, the equivalence introduced for convenience in §5 –and whose property (11)
is established by structural induction over straight-line programs– is used for (12) only and does
not rely on closure, or any other sophisticated property of the semantic space.

8.4 Bounded Expectations

In the symmetric random walk on naturals x, the expectation x is an exact martingale in fact; and
that process terminates AS. If however we had used unbounded x as Subin Thm. 3.5, we could
conclude that the expected �nal value of x is at least the (exact) initial value of x. If the process
started at x=1, therefore, we would conclude that its expected value on termination is at least 1;
but we know that its x’s expected (in fact exact) value on termination is 0 — a contradiction.
That is why one assumption of Thm. 3.5 is that Subis bounded, and is one reason that, instead

of using the potentially unboundedV , we use the bounded H/ V instead. (See also App. C.)
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9 CONCLUSION

We have investigated “parametric” super-martingale methods for proving almost-sure termination
for probabilistic- and demonic programs, and our main result Thm. 4.1 presents a new method,
described earlier by McIver and Morgan [2016] over a transition system, but now expressed and
proved in the probabilistic programming logic of pGCL; the rule can therefore be applied at
the source level. Although our presentation is in terms of wp-style reasoning, our innovation
of parametrised p,d progress is also applicable to transition-style models of programs. (See, for
example Gretz et al.’s interpretation 2014 of wp in terms of explicit transition systems.)

Our rule seems to be able to prove some tricky cases that go beyond other published rules, and
moreover we have shown that p,d progress can also be used as alternatives to rules based on
ranking super-martingales, and rules based on conditional absolute di�erence. Furthermore, we
believe our rule su�ces for the two-dimensional symmetric random walk (§6.2).

Completeness remains an open problem however, although the mathematical literature provides
some insight to its solution in certain cases [Blackwell 1955; Foster 1952].

APPENDICES19
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