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We study the impact on privacy in results reporting in elections. In the interests of transparency election 
commissions report details of aggregated vote counts; in the interests of privacy some of that information 
must be suppressed. We apply recent advances in Quantitative Information Flow (QiF) to describe several 
privacy properties in order to study the trade-off between transparency and privacy in results reporting. 

We show that for some properties the impact on privacy in releasing detailed results data is minimal; 
on the other hand we identify some privacy properties that potentially reveal a great deal of information 
making results reporting in small batches problematic. 
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1. Introduction 

Strong privacy is a core principle of secret ballot elections. Elec- 
tions have many complex processes with the potential to leak 
information unintentionally, and consequently many countermea- 
sures have been developed to help preserve privacy. 

However in all elections, privacy is inevitably weakened to 
some extent during the counting process, where information is re- 
vealed intentionally in announcing the election result. Of course at 
minimum the identities of the winners must be published. But in 
practice a wealth of further information is frequently published for 
transparency, which is another core principle of elections. 

This tension between privacy and transparency raises important 
questions over what trade-offs are appropriate and what are the 
risks to privacy. In this paper we consider privacy in the count- 
ing process and apply Quantitative Information Flow techniques to 
study privacy risks of information revealed as part of the election 
results. 

The amount and type of information released during the count- 
ing varies widely by jurisdiction, according to electoral culture and 
practices. Typically elections publish intermediate results such as 
tallies for the candidates. Elections may also publish other infor- 
mation such as the number of spoiled ballots, and even the iden- 
tities of all the voters who voted. Such information is necessary to 
assure integrity and build trust by enabling public scrutiny, and is 
also highly desirable to facilitate analysis by commentators, politi- 
cal scientists and political parties. 

But what are the privacy risks of releasing such information? 
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A well-known risk is extreme scenarios such as when the tal- 
lies reveal if everyone voted the same way or nobody voted for 
particular candidates. But beyond such extreme scenarios, the risks 
remain not well-understood in general. Instead there is usually an 
assumption that large-scale elections have a sufficient number of 
voters to make such scenarios highly unlikely. 

However this assumption is not always true. Indeed in large- 
scale elections similar extreme scenarios can still occur when small 
batches of votes are reported and the corresponding set of vot- 
ers can be identified. For example a small polling place might re- 
ceive only a small number of votes. All these votes could be for 
the same candidate, or none of the votes could be for minor can- 
didates. Publishing the candidate tallies would then compromise 
privacy if it is also known which voters voted at that polling place. 
Some jurisdictions publish the list of who voted. But even if this 
is not the case, there may still be other means to deduce that a 
particular voter voted at that polling place, for instance through 
family or friends, social media posts or phone location tracking. 
(Note that regardless of what is published, it may be unavoidable 
for privacy to be compromised wrt election officials and scruti- 
neers, who must have access to information on the tallies and who 
voted.) 

Many other factors, including electoral practices, can increase 
the likelihood that small batches of votes can be distinguished. 
In Australia, the large area and small population means that cer- 
tain polling places receive relatively few votes, especially in remote 
areas. Also Australian elections provide highly flexible voting ar- 
rangements. For example in national and state elections, a voter 
can vote at any polling place in their state. Many polling places are 
likely to receive few votes from each outside electorate. In addition 
there are numerous voting methods, including voting on election 
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day, early voting (in-person at a polling place), postal voting and 
mobile polling places (for hospitals and nursing homes). Some of 
these methods may be used by few voters. (I know how Grandma 
and all her nursing home buddies voted!) 

Fine-grained reporting of such small batches of votes can in- 
crease privacy risks. In Australia tallies for first preferences and 
spoiled votes are reported but the granularity varies by jurisdic- 
tion and even by election. In some instances tallies are reported 
per polling place and per voting method. In other instances certain 
tallies are consolidated for reporting to reduce the privacy risk, al- 
beit at the cost of reducing transparency. 

An interesting question then is when is it appropriate to con- 
solidate reports for privacy reasons? 

Another privacy risk is the scenario where the number of pos- 
sible voting options is relatively large compared to the number of 
voters. These elections are vulnerable to signature attacks, which 
compromise privacy by embedding unique signatures in votes. 
Australian elections are particularly vulnerable to signature attacks 
due to the use of preferential electoral systems with large num- 
bers of candidates (often over 100). Hence there is an enormous 
number of possible voting options (exponential in the number of 
candidates), which increases the effectiveness of signature attacks 
in identifying vote signatures. 

Australian elections publish detailed aggregate intermediate 
counting information about the preferential votes. This partial in- 
formation weakens privacy as it can be exploited by sophisticated 
signature attacks. The published information again varies by juris- 
diction and by election. 

Another interesting question then is what impact does publish- 
ing different aggregate information have on privacy? 

It is also worth mentioning that in fact when electronic count- 
ing is used (as is the case for most STV elections 1 ), current prac- 
tice in Australia is to publish all the (anonymised) individual votes 
so that anyone can verify the correctness of the counting. This 
trade-off in favour of transparency can cause a complete loss of 
privacy because it is trivial for signature attacks to identify vote 
signatures. 

Cryptographic counting schemes have been proposed to count 
preferential votes without releasing individual votes. But these 
schemes still release aggregate information as a trade-off to pro- 
vide verifiability and efficiency. Also different schemes release dif- 
ferent partial information, and so it is difficult to objectively com- 
pare the levels of privacy afforded. 

The above examples are some of the known scenarios where 
releasing information during the counting has privacy risks. Of 
course there are likely many other scenarios that are as-yet un- 
known. Also even when it is known that privacy risks exist, the ex- 
tent of the risks is unclear and the effectiveness of possible coun- 
termeasures is difficult to measure. As a result trade-offs are likely 
to evolve ad hoc and may be guided by possibly flawed intuition 
because privacy is less concrete than other properties. For example 
in designing cryptographic counting schemes, verifiability is abso- 
lute (the scheme is either verifiable or not) and performance is 
fixed (the scheme must be able to compute the result for a given 
election size within a given time), whereas the level of privacy 
is currently hard to determine (what is the actual difference if a 
scheme reveals only the identities of the winners versus all the in- 
dividual votes?). 

What is desirable is a way to quantify the privacy risks. The 
purpose of this paper is to apply modern theories of Quantitative 

1 Single Transferable Voting systems require each elector to rank candidates in 
his or her vote. For such systems, the counting algorithm is usually composed of 
multiple rounds. In the first round, each vote is allocated to the most preferred 
candidate and then proportionally transferred to other ranked candidates in each 
subsequent round. 

Information flow to study this issue. Our main contributions are 
listed below. 
1. We show how general techniques from quantitative information 

flow can be applied reasonably in elections. The notion of a gain 
function allows us to formulate exactly the contents of privacy 
questions we are interested in ( Section 3.1 ). 

2. We formalise two general privacy principles postulating the 
expected “amount of privacy” in small and large electorates 
( Section 4 ). 

3. We look at two relevant scenarios and study their privacy guar- 
antees, and draw some general conclusions about privacy and 
the publication of election results ( Section 5 ). In particular, 
we show that for some types of privacy questions, publish- 
ing more doesn’t necessarily mean increasing the privacy risk 
( Theorem 5.2 ). 

4. We also compute the information flow for small numbers of 
voters, giving some indication of how much privacy is com- 
promised when data is published for small numbers of voters. 
These comparisons are summarised in graphical form through- 
out this paper. 
We note that the quantities we compute are not particularly in- 

formative in isolation. What is compelling however is the way that 
our framework allows us to compare scenarios and to analyse qual- 
itatively different ways of reporting results and their possible con- 
sequences to privacy. Most of our conclusions relate to this method 
of comparison. 
2. Related work 

In the literature on cryptographic election schemes, privacy 
of the voting process has been studied extensively, particu- 
larly the strong privacy notions of receipt-freeness and coer- 
cion resistance. For example a common method for defining 
privacy is indistinguishability with an ideal voting functional- 
ity, where the inputs are the votes and the output is the elec- 
tion result. Our work complements such approaches by study- 
ing privacy of the information released by the “ideal” election 
result. 

Closely related to our work is the privacy measure of Bernhard 
et al. [4] . They develop a general, entropy-based privacy defini- 
tion that measures privacy overall in both the cryptographic proto- 
cols and the election result. Their privacy measure is designed to 
be flexible and compatible with different notions of information- 
theoretic entropy. Our work also complements this approach since 
our privacy measure is based on information-theoretic entropy. An 
interesting avenue for future work would be to combine our notion 
of privacy with their definition. 

In the context of statistical databases, Dwork introduced the no- 
tion of differential privacy [7] . A statistical query is differentially 
private if the probability of distinguishing two databases that dif- 
fer at a single entry is negligible. Superficially, this idea seems to 
apply directly to the context of voting but the resulting definition 
of privacy is too discriminating. This situation was also observed 
elsewhere [4] . In particular, if the tallies are published then chang- 
ing the vote of a single voter is always enough to distinguish the 
input ballot boxes. With respect to our definition, such a counting 
procedure do provide enough privacy, even though it is not differ- 
entially private, as long as the number of candidates is reasonably 
small. 

For signature attacks, some ad hoc examples of the privacy im- 
plications have been considered previously [3,6,14] . A quantitative 
approach to measuring information leakage for signature attacks 
has also been suggested, along with early steps towards more for- 
mal analysis of the problem [15] . 
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3. Review of quantitative information flow 

Informally, a secret is some value about which there is some 
uncertainty, and the greater the uncertainty the more difficult it is 
to know exactly what that value is. When some information about 
the secret becomes known to an observer (often referred to as an 
adversary) the uncertainty is reduced, and we say that information 
(about the secret) has leaked. 

Quantitative Information Flow (QiF) makes this intuition mathe- 
matically precise: given a range of possible secret values of (finite) 
type X , we model a secret as a probability distribution D X . Given 
π : D X we write π x for the probability that π assigns to x ∈ X . 
Normally the uniform distribution over X models a secret which 
could equally take any one of the possible values drawn from its 
type, but there could be reasons for using some other distribu- 
tion, for example if the secret was the height of an individual then 
a normal distribution might be more realistic. In any case, once 
we have a secret, we are interested in analysing whether an algo- 
rithm, or protocol, that uses it might leak some information about 
it. 

The original QiF studies used Shannon Entropy to measure un- 
certainty in probability distributions modelling secrets, with the 
idea being that the “more secret” something is, the more uncer- 
tainty there is about its actual value from the perspective of an 
observer. More recent treatments of this idea have shown that 
Shannon entropy is not the best way to measure uncertainty in 
security contexts because it does not model scenarios where an 
observer is trying to guess the value of a secret. Moreover, there 
are some circumstances where a Shannon analysis actually gives a 
more favourable assessment of security than is actually warranted 
[13] . 

Recently Smith [2] proposed more general notions of how to 
measure uncertainty based on “gain functions”. This is the notion 
we will use in this paper. A gain function models a very general 
scenario where a secret’s uncertainty is measured directly accord- 
ing to the ability of an observer to find out information about the 
secret. We write W for a (usually finite) set of decisions avail- 
able to an observer corresponding to an “attack scenario” where 
the adversary tries to guess something (e.g. some property) about 
the secret; for a given secret x ∈ X an adversary’s choice of w ∈ W
results in some gain which can vary depending on his choice 
and the value of the secret. The more effective is the adversary’s 
choice in guessing the secret, the more he is able to gain from the 
attack. 
Definition 3.1. Given a type X of secrets, a gain function g : 
W ×X → R is a real-valued function such that g ( w, x ) determines 
the gain to an attacker if he chooses w and the secret is x . 

A simple example of a gain function is given by g id , where W := 
X , and 
g id (x, x ′ ) := 1 if x = x ′ else 0 . (1) 

For this scenario, the attacker receives a gain of 1 if he correctly 
guesses the value of a secret. Elsewhere the utility and expressiv- 
ity of gain functions for measuring information flow have been de- 
scribed [1,2] . Given a gain function we define the vulnerability of a 
secret in D X relative to the scenario it describes: it is the maxi- 
mum average gain to an attacker. 
Definition 3.2. Let g : W ×X → R be a gain function, and π : D X 
be a secret. The vulnerability V g [ π ] of the secret wrt g is: 

V g [ π ] := max 
w ∈ W ∑ 

x ∈ X g(w, x ) ×πx . 
For a secret π : D X , the vulnerability wrt g id is V g id [ π ] := 

max x : X πx , i.e. the maximum probability assigned by π to possi- 
ble values of x . The attacker’s best strategy for optimising his gain 
would therefore be to choose the value x that achieves V g id [ π ] . 

A mechanism is an abstract model of a protocol or algorithm 
that uses secrets. As the mechanism executes we assume that there 
are a number of observables that can depend on the actual value of 
the secret. We define Y to be the type for observables, and for each 
secret x each observable can be observed with some probability. 
Such observables could be sample timings in a timing analysis in 
cryptography. For our example in elections the observations could 
be the winners of the election, the margins by which they won, or 
distributions of preferences. 
Definition 3.3. A mechanism is a stochastic channel 2 C : X ! Y . 
The value C xy is the probability that if the secret is x then y is 
observed. Given a (prior) secret π : D X we write π◃ C for the joint 
distribution in X ×Y defined 
(π◃ C) xy := πx ×C xy . 
For each y : Y, the probability that y is observed is p y := ∑ 

x ′ : X (π◃ C) x ′ y and we define the posterior probability, i.e. that 
the secret is x given that y was observed, as the conditional 
π | y := ( π◃ C ) xy / p y . 

Intuitively, given a prior secret π , the entry π x × C x, y of the 
joint distribution π◃ C is the probability that the actual secret 
value is x and the observation is y . This joint distribution con- 
tains two pieces of information: the probability p y of observing 
y and the corresponding posterior which represents the attacker’s 
updated view about the uncertainty of the secret’s value. If the 
vulnerability of the posterior increases, then information about 
the secret has leaked and the attacker can use it to increase his 
gain. The attacker’s average overall gain, taking the observations 
into account, is defined to be the average vulnerability wrt the 
posteriors: 
V g [ π◃ C] := ∑ 

y ∈ Y p y ×V g [ π | y ] . (2) 
Leakage can now be defined: it is a measure of the increased 

gain to an attacker using the extra information to refine his strat- 
egy to discover facts about the secret. 
Definition 3.4. Given a mechanism C , a gain function g and a se- 
cret π we can define the multiplicative leakage of C wrt π and g 
as: 
L g [ π , C] := V g [ π◃ C] /V g [ π ] . (3) 

The multiplicative capacity maximises the leakage over all 
non-negative gain functions g : W ×X → R ≥ and prior information 
about secrets π : D X . 
L ∀ [ ∀ , C ] := max 

g,π
V g [ π◃ C ] /V g [ π ] . 

Intuitively, the leakage L g [ π , C] quantifies the amount of infor- 
mation leaked by the mechanism C for a fixed gain function g and 
distribution π , disregarding the prior information contained in π . 
The minimum value for L g [ π , C] is 1, i.e. V g [ π◃ C] = V g [ π ] , and this 
means that the mechanism C leaks nothing. The higher the leakage 
value, the more information is leaked by the mechanism. 

Similarly, the capacity L ∀ [ ∀ , C] measures the maximum amount 
of information leaked by the mechanism C , disregarding prior in- 
formation. If C leaks nothing, then L ∀ [ ∀ , C] = 1 , i.e. V g [ π◃ C] = 

2 Stochastic means that the rows sum to 1. 
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V g [ π ] for all gain functions and priors, so that C has no effect 
on information flow. The uniform distribution has particular sig- 
nificance here because it gives a strong upper bound on capacity 
[2] : 
L ∀ [ ∀ , C] = L g id [ υ, C] , (4) 
where υ is the uniform distribution over X . This means that mod- 
elling a secret using the uniform prior, and taking the vulnerability 
wrt g id gives a very robust bound on the vulnerability of the secret, 
wrt any scenario. 3 

Note that whilst vulnerability gives a measure of “risk” within 
a particular scenario, the leakage gives a measure of how much 
the information flowing from the channel has contributed to that 
risk. A secret could be vulnerable even before the channel has 
released any information because the adversary somehow pos- 
sesses a great deal of prior knowledge, as modelled by a skewed 
probability distribution. In this case, it could be that the extra 
information released by the channel is not significantly adding 
to the risk that was already present. In this sense the leakage 
Definition 3.4 is about the channel’s contribution to that final 
posterior vulnerability, whereas the posterior vulnerability (2) is 
about the actual risk to the secret averaged over the possible 
observations. 

We can compare mechanisms wrt their ability to preserve con- 
fidentiality of secrets: one channel is regarded as being more se- 
cure than another if and only if it never leaks more in any sce- 
nario. 
Definition 3.5. Given mechanisms C : X ! Y and D : X ! Y ′ we 
say that D refines C , or C ⊑ D if, for all secrets π : D X and all non- 
negative gain functions g : W ×X → R ≥, we have: 
L g [ π , C] ≥L g [ π , D ] . 

There is a different way to determine refinement [1,11] : 
C ⊑ D if and only if there is some stochastic R such that 
D = C ·R, (5) 
where C · R means post multiplication of C by R . It takes (possibly 
scaled) sums of columns of C to form columns of D , thereby ob- 
scuring the provenance of observations in C . 

The main idea behind the post-multiplication is that the obser- 
vations that are release by the mechanism C are processed by some 
other mechanism R . Thus, unless R is the identity matrix, that post- 
multiplication adds some extra noise to the information released 
by C to the point that they are less useful to the attacker. 

Definition 3.5 summarises an important aspect of quantitative 
information flow, in that it promotes a comparative notion of in- 
formation leakage. Whilst it can be difficult, or impossible, to com- 
pletely secure a mechanism against leaks, Definition 3.5 provides 
the basis for comparing the information flow properties of ideal 
mechanisms with more realistic implementations of mechanisms. 
In general if D is an ideal mechanism and C ⊑ D , if the adversary’s 
strategy to optimise the gain function g is the same in D as it is for 
C then the corresponding leakages will be the same for that gain 
function g . If this is the case then the extra information released 
in C cannot be used in the scenario modelled by g . 

Most of the reporting channels that we will study below are 
deterministic , which means that for each row of the matrix, exactly 
one entry C xy = 1 ; in this case we say that C : X ! Y divides X 
into equivalence classes: x ∼ C x ′ if and only if C xy = C x ′ y for all y : Y . 

3 Furthermore, it can be shown [2] that log 2 L g id [ υ◃ C] is an upper bound on the 
mutual information between X and Y defined by the joint distribution π◃ C , and so 
the leakage can also be understood in traditional terms of uncertainty measured by 
Shannon Entropy. 

Let #C be the number of equivalence classes in ∼ C , then L ∀ [ ∀ , C] = 
#C [2] . 

For a given gain function g and reporting channel C , we have 
that 
1 ≤ L g [ π , C] ≤ #C , (6) 
so for a particular privacy property modelled by g , depending on 
how close the leakage is to these extremal bounds indicates how 
much the adversary is able to use the information leaked. 
3.1. Election announcements as reporting channels 

In this section we consider a simple example to illustrate how 
some of the concepts described above can be applied to privacy 
in voting. Consider the scenario where there are two candidates, a 
and b , and exactly one of them is to be elected by simple majority. 
We assume that the voters are able to cast their ballots privately, 
so that the secret is how they voted, and we then assume that 
once the tallies have been computed, the results are announced. 
Definition 3.6. We model the announcement process as a channel 
from B ! A , where B is the set of assignments E → C describing 
how each elector (in E) cast their vote for candidates (in C), and A 
is the set of possible announcements concerning the results after 
(or during) tallying. 4 

In Fig. 1 the matrices W and T describe channels for two dif- 
ferent modes for announcing election results. Channel W simply 
releases the name of the winning candidate, whereas T announces 
the tallies for each candidate. The labels for each row represent 
a particular assignment for how the three voters cast their ballots. 
For example ⟨ abb ⟩ means that the first voter selected a , and the re- 
maining two both selected b . We assume that the identities of each 
voter have been removed from the ballots, and when we refer to 
“the first voter” we simply mean the anonymous voter whose bal- 
lot happened to appear first in the ballot box. The columns in the 
matrices correspond to the different announcements. In W there 
are only two possible announcements: “a won” or “b won”. In T 
there are four: “a won (3, 0)”, “a won (2, 1)”, “b won (1, 2)” and 
“b won (0, 3)”. Thus T certainly releases more information than W , 
and for transparency it is desirable to use T , but we would like to 
know the impact on privacy. 

Let υ : D B now be the secret i.e. the probability distribution 
over all possible assignments in B; we will assume for the mo- 
ment that it is uniform. When the winner is announced after 
counting via channel W , we would observe a as the winner with 
probability ∑ 

x : B a υx , where B a is the set of ballot assignments 
in which a has the majority. The posterior probability associ- 
ated with a ’s win is the uniform distribution over B a , so all that 
is known in the election is that a received the majority of the 
votes. 

The information flow in T is a little different: by announcing the 
tallies there are now four possible observations, which in particular 
reveal whether or not one of the candidates did not receive any 
votes. If the secret is revealed to be definitely either ⟨ aaa ⟩ or ⟨ bbb ⟩ 
then the losing candidate knows for certain that no one voted for 
them, and indeed that the winner was chosen unanimously. 

Observe that T ⊑ W because the first (last) two columns of T 
can be combined to give the first (last) column of W , so that T 
leaks strictly more information than does W in some scenarios de- 
fined by gain functions. Indeed since # W = 2 and # T = 4 , (6) im- 
plies that the maximum leakage in T is twice as much as it is for 
C in some scenarios, but not all. In particular we can define a gain 

4 Note that we assume that all identifying information has been removed from 
ballots, and the function in E → C simply means that the set of ballots is in one-to- 
one correspondence with the registered voters. 
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Fig. 1. Two reporting channels with three voters and two candidates. 

function to model a privacy property that is relevant to the context 
of interest. 

For example, let pd be the “plausible deniability” gain function 
defined with two choices { u , ¬u } to model a scenario where an 
adversary tries to determine whether the majority was unanimous 
or not: 
pd(u, ⟨ hkl⟩ ) = 1 iff h = k = l , and pd(¬ u, ⟨ hkl⟩ ) 

= 1 iff ¬ (h = k = l) (7) 
We see that the prior vulnerability of the secret is V pd [ υ] = 3 / 4 

since the best strategy for the adversary is to choose ¬u because 
the chance of a unanimous election is only 1/4. Moreover if only 
the winner is announced, we see that there is no change in gain: 
V pd [ υ, W ] = 3 / 4 . However if the full tallies are released we find 
that V pd [ υ, T ] = 1 because it is always possible for the adversary 
to distinguish between unanimous and split majorities. Therefore 
L pd [ υ, W ] = 1 whereas L pd [ υ, T ] = 4 / 3 , showing that if the tallies 
are not released then there is no way for the adversary to learn 
whether or not the winner achieved a majority with absolute cer- 
tainty. 

Consider now the gain function αE where the adversary tries to 
guess how some voter voted. This time W = C ×E, so that the pair 
(c, e ) ∈ C ×B models and the adversary guessing that voter e voted 
for candidate c : 
αE ((c, e ) , ⟨ hkl ⟩ ) = 1 if c = ⟨ hkl ⟩ e else 0 , (8) 
where we write ⟨ hkl ⟩ e for the e ’th value in the list, so that ⟨ hkl⟩ 1 = 
h, for example. In this case V αE [ υ] = 1 / 2 , because whichever pair 
( c, e ) the adversary picks, only half of the set of ballots has voter 
e selecting candidate c . After the results are announced however, 
both W and T leak the same: L αE [ υ, W ] = L αE [ υ, T ] = 3 / 2 because, 
in both cases , the adversary improves his guess given the informa- 
tion released using the following reasoning. 

If candidate a wins then the adversary always guesses ( a, e ) for 
any voter e , if b wins then the adversary always guesses ( b, e ). That 
is because in the post hoc situation the winner is the candidate 
that is most likely to have been selected by most voters. Surpris- 
ingly, although the maximal possible leakage for T is 4, the calcu- 
lated leakage L αE [ υ, T ] = 3 / 2 means that much of the extra infor- 
mation given by releasing tallies is not useful to an adversary who 
is only interested in trying to guess how some voter voted, and in- 
deed this particular attack cannot be mitigated in any way since 
at the very least the winner must be announced, and as we have 

seen L αE [ υ, W ] is also 3/2. We discuss this phenomenon further in 
Section 5.1 . 

Next we set out three gain functions which capture three dif- 
ferent aspects of privacy which we will use to evaluate privacy in 
our case studies below in Section 5 . 
Definition 3.7. The following gain functions can be used to inves- 
tigate privacy in election announcements. 
1. Identify how voters cast votes: 

αE ((c, e ) , b) := 1 if b e = c else 0 . (9) 
This gain function generalises (8) for arbitrarily many voters. It 
models an adversary who tries to guess how a voter cast their 
ballot. The parameter b is the set of ballots E → C; an adversary’s 
guess ( c, e ) is of type C ×E . The adversary receives a gain of 1 if 
(s)he correctly guesses who voter e selected. 
Given π∈ D B, the gain V αE [ π ] := max (c,e ) ∈ C ×E ∑ 

b ∈ B αE ((c, e ) , b) ×πb . It is the maximum probability that 
the adversary can guess correctly some voter’s vote, assuming 
prior knowledge π . 

2. The number of voters whose cast votes can be identified cor- 
rectly: 
# αE (b ′ , b) := ∑ 

e ∈ E 1 if b e = b ′ e else 0 . (10) 
This gain function estimates the average number of ballots that 
are correctly guessed at (9) above, and uses both b and b ′ 
in E → C, where b ′ summarises the adversary’s guess for each 
voter. Here the gain to the attacker is the sum of correctly 
guessed ballots. 
Given π∈ D B, the gain V # αE [ π ] := max b ′ ∈ B ∑ 

b ∈ B # αE (b ′ , b) ×πb . 
It is the maximum expected number of voters that the adver- 
sary can guess correctly, assuming prior knowledge π . 

3. Identify how voters did not cast votes: 
¬ αE ((c, e ) , b) := 1 if b e ̸ = c else 0 . (11) 
This gain function is the complement of (9) , with the parame- 
ters defined in the same way. This gain function models an ad- 
versary who tries to guess which candidates for whom a voter 
did not choose. The gain is 1 if (s)he correctly guesses the can- 
didate that the voter did not vote for. 
We can use these gain functions to express privacy for election 

channels by analysing the behaviour of the derived leakages. For 
example the leakages corresponding to the gain functions (9) and 
(11) together express a strong form of privacy: if an adversary can 
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neither guess a voter’s selection nor who they did not select, then 
the voter is able to lie plausibly with some confidence. 

A particular focus of our analysis however is to explore how 
privacy is affected by reporting results for small samples of vot- 
ers. When the reporting channel C is a good preserver of pri- 
vacy then L g E [ υE , C] will be close to 1, and the more that pri- 
vacy could be compromised, for some voter, the larger (than 1) 
this leakage will be. If the leakage is comparable to the maxi- 
mum possible leakage (6) then it means that the adversary is able 
to use much of the information leaked to find out how voters 
voted. 

In the next section we formalise some general principles for 
privacy related to sample size. 
4. Formalising privacy principles in elections 

In this section we formalise some privacy principles in elections 
using the framework summarised in Section 3 . 
4.1. The law of large electorates 

Our first principle is that the leakage in a reporting channel wrt 
a given privacy question must tend arbitrarily to zero the more 
voters in the election. This expresses the general principle that 
voter privacy is derived through reporting only the amalgamated 
results: if there are enough voters then each candidate has some 
chance of being picked. 
Definition 4.1. Let g E be a privacy property described in 
Definition 3.7 , and let C be a reporting channel; we say that C and 
g E satisfy the law of large electorates if the leakage L g E [ υB , C] → 1 
as |E| → ∞ and |C| is fixed, where υB is the uniform distribution 
over B, and |E| is the number of voters. 5 

Definition 4.1 sets out a criterion which depends both on the 
method of reporting results. If a reporting channel does not sat- 
isfy the law of large electorates it means that it releases sufficient 
information in its reporting protocol that could compromise some 
voters’ privacy. 

For example if reporting channel A simply releases all informa- 
tion, i.e. the identities of voters as well as how they voted, then 
L # αE [ υE , A ] = |B| and so A , of course, does not satisfy the law of 
large electorates: privacy does not increase with increasing num- 
bers of voters, since all information is leaked in this method of 
reporting. 

We show in 5 that (9) –(11) satisfy Definition 4.1 for the typi- 
cal results reporting of “first past the post” and “instant run off”
elections. 
4.2. The law of small samples 

Our second principle deals with the question of privacy when 
reporting results for small samples of voters. This can happen for 
instance in Australia when voters do not vote at a polling place in 
their own constituency. 

We assume that C and g E satisfy the law of large electorates, so 
that privacy increases with the size of E . We would like to analyse 
the degree to which privacy is lost in reporting results in small 
batches rather than aggregating them all first. Let X ⊂ E, and we 
assume that L g X [ υX , C] ≥ L g E [ υE , C] . The greater the difference be- 
tween L g X [ υX , C] and L g E [ υE , C] , the greater the impact on privacy 
to voters in the sample X . The next definition gives the propor- 
tional loss of privacy relative to the leakage L g X [ υX , C] . 

5 Recall that when there is no information flow, then L g E [ υB , C] = 1 . 

Definition 4.2. Let C be a reporting channel, and g E a gain function 
defined in Definition 3.7 . Let X be a subset of all ballots E . The 
proportional loss of privacy to voters in X relative to the election 
consisting of voters in E is: 
1 −L g E [ υE , C] / L g X [ υX , C] . (12) 

When the size of the electorate is so large that the reporting 
channel provides good privacy i.e. L g E [ υE , C] ≈ 1 , we can approx- 
imate (12) to 1 −1 / L g X [ υX , C] . In any case, this provides an upper 
bound on the proportional loss of privacy to voters in sample X , 
caused by the contribution of the information flow in the channel. 
5. Case studies 

In this section we investigate the privacy properties described 
in Definition 3.7 wrt two types of elections: first-past-the-post and 
instant runoff. We take primarily a comparative approach, recog- 
nising that no reporting channel can be absolutely risk free, but 
that some kinds of reporting leak more information than others, 
and that some of the information released could potentially impact 
privacy. 

We make two kinds of comparison. In the first (for first past 
the post) we compare the scenario where only the winner(s) are 
announced to the scenario where the tallies for each candidate are 
announced, thus generalising our example at Fig. 1 . This is an in- 
teresting comparison, because although it is not realistic to expect 
that only the winners (without the tallies) be announced, that sce- 
nario offers the greatest possible privacy to voters, and therefore 
allows us to identify what sort of privacy risks are related to re- 
leasing more information. 

With respect to instant run-off we again define two types of 
reporting channels. One (called P ) releases the aggregate tallies of 
the full preference list selected by voters, and the other releases 
the aggregate tallies of “first preferences” only (called F ). Whereas 
information flow in F is closer to what is done in real elections, 
it is related to P via refinement. However information flow in P is 
feasible to calculate which then allows us to give bounds on the 
extent of information leakage in F . 

In the second comparison, we consider the loss to privacy of re- 
leasing results in small samples. This sheds light on the increasing 
risks to privacy in making announcements in small batches. 

In all our analyses we assume that the adversary knows noth- 
ing about the likely voting preferences, and throughout we use a 
uniform distribution over B to model the adversary’s prior knowl- 
edge. We note however that the general method of QiF does not 
require this assumption. 
5.1. First-past-the-post 

First-past-the-post elections are used to elect a single candi- 
date. Voters (in E) pick exactly one candidate out of some given 
set C, and the candidate who obtains the most votes is declared 
the winner. The next definition sets out a generalisation of Fig. 1 ’s 
methods of reporting results. 
Definition 5.1. Let B := E → C model sets of ballots. Define W : B ! 
C to be the reporting channel that announces the winner only: 
W bc := 1 if maj (b) = c else 0 , (13) 
where maj (b) is the candidate with the maximum number of votes 
determined by b . If there is a draw then maj (b) := c for the first 
candidate c with the highest tally. 6 

6 For simplicity we set maj (b) to be a fixed candidate with the highest tally. The 
candidates can be ordered lexicographically and the first with a maximum tally is 
reported as the winner. We can also break draws randomly while keeping the re- 
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Fig. 2. (Left) Posterior vulnerabilities V αE [ υ◃ W ] (lower) and V ¬ αE [ υ◃ W ] (upper). (Right) leakages L αE [ υ, W ] (upper) and L ¬ αE [ υ, W ] (upper). Analysis run with 3 candidates. 

Define T : B ! N C to be the reporting channel that announces 
the set of tallies for each candidate: 
T b f := 1 if (∀ c : C · # c (b) = f (c)) else 0 , (14) 
where # c (b) is the number of votes that candidate c received in 
the ballots b . 

As described above, we have that T ⊑ W so that T releases much 
more information than does W . In fact, we can define a channel 
R : N C ! C such that R f c = 1 if and only if candidate c is reported 
as the winner when the tallies are given by f and c wins wrt the 
tie-breaking mechanism of W . It is then clear that W = T ·R satis- 
fies (5) . Our interest in W is that it provides the most privacy to 
voters, and therefore it allows us to compare how much privacy is 
impacted by the additional announcements of T . 

We show first that W and T satisfy the law of large electorates. 
Theorem 5.1. Both T and W satisfy the law of large electorates wrt 
αE , # αE and ¬ αE . 
Proof. In Appendix B . !

Theorem 5.1 shows that, as expected, privacy increases the 
more voters included in the reported results. This predicted trend 
can also be observed by Fig. 2 at right, where the leakages 
L g E [ υE , C] are displayed for increasing sizes of electorate. 

In the proof of Theorem 5.1 , we have shown that 
L # α[ υ, T ] = L # α[ υ, W ] ≃ 1 + √ 

2 m ln m 
n , (15) 

for n reasonably larger than m . This approximation is quite robust 
and can be used as an upper bound for any voting process that 
publishes at most the tally of each candidate. More specifically, we 
have shown that the quantity of votes that an attacker can guess 
using the best strategy is proportional to √ 

n . In this case, the law 
of large electorate is equivalent to a decreasing relative amount of 
leaked votes, i.e., lim n →∞ √ 

n 
n = 0 . 

Next we compare T and W in detail. Our first result shows that 
the extra information in the announcements of tallies cannot be 
used by the adversary neither to guess how a voter voted ( αE ) nor 
to increase the expected number of correct guesses. 
Theorem 5.2. Let T and W be reporting channels defined at Defini- 
tion 5.1 and αE , # αE be gain functions defined at Definition 3.7 . Let 
sults exactly the same. The important property to consider is that the tie breaking 
mechanism should be independent of the set of ballots b , otherwise it may reveal 
more information than expected. 

υE ∈ D B be the uniform prior. The following equalities hold: 
L αE [ υE , W ] = L αE [ υE , T ] and L # αE [ υE , W ] = L # αE [ υE , T ] . 
Proof. (Informal sketch.) The prior gain V αE [ υE ] is the same for 
both leakage calculations, therefore we only need show that 
V αE [ υE ◃ W ] = V αE [ υE ◃ T ] . Note that for any announcement of tal- 
lies for election with ballots given by b , it is still the case that 
most voters in E voted for the candidate with the majority, and so 
the adversary’s optimum guessing strategy is to pick ( maj (b) , e ) , 
which is exactly the same guessing strategy if only the winner 
is announced. Hence since the optimal guessing strategies are the 
same for both W and T , the leakage wrt αE must also be the same. 

For # αE , a similar argument shows that the adversary’s opti- 
mal strategy is to guess that all voters voted for the candidate who 
won. 

We provide a detailed proof formalising this argument in 
Appendix A . !

On the other hand, compared to the most private mechanism 
W , releasing the tallies gives the adversary more scope to improve 
the effect of his guessing strategy for ¬ αE . 
Theorem 5.3. Let T and W be reporting channels defined at Defini- 
tion 5.1 and ¬ αE be the gain function defined at Definition 3.7 . If 
|C| > 2 then L ¬ αE [ υE , W ] < L ¬ αE [ υE , T ] . 
Proof. (Informal sketch.) When tallies are released, the adversary 
can increase his gain by guessing that the candidate who received 
the least number of votes is most likely not someone voters se- 
lected. This information is not available in W . !

5.1.1. Privacy risks in small samples 
We computed the leakages and vulnerabilities to illustrate some 

aspects of privacy for first past the post channels W and T . We 
assumed a uniform distribution over the anonymised (set of) bal- 
lots and varied the number of voters in a “reporting batch” given 
by the size of the parameter E, with three possible candidates to 
choose from. This set up is akin to an electoral commission releas- 
ing e.g. polling place tallies where only few voters cast their votes. 

Computing the vulnerabilities, and thus the leakages, directly 
through (2) is computationally very expensive because that defi- 
nition relies on summing over the set of all possible ballot boxes 
B which has |C| |E| elements. To compute leakages for reasonable 
electorate sizes, we had to transform these expensive sums into 
manageable ones and it turns out that the resulting expressions 
correspond to recent quantitative measures used in seemingly un- 
related areas such as hash code analysis [8,12] and load balanc- 
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Fig. 3. Laws of Small Samples for W (left) (resp. T (right)) wrt αE (upper) and ¬ αE (lower). Analysis run with 3 candidates. 

ing [5] . 7 This unexpected relationship provides rich mathematical 
results that can be used to approximate the leakages for consider- 
ably large numbers of voters and candidates (see Appendix B and 
Appendix C for more details about the approximation). All the 
graphs in this paper were generated via these exact leakage for- 
mulas which can be found in the appendix. 

In Fig. 2 at left we illustrate the average vulnerabilities for 
the privacy questions: “can the adversary guess which candidate 
a voter selected?” and “can the adversary guess which candidate 
a voter did not select?”. The former corresponds to V αE [ υ◃ W ] and 
the latter V ¬ αE [ υ◃ W ] , where in both experiments we are using the 
channel W that releases only the winning candidate. Recall from 
Definition 3.2 and (2) that posterior vulnerabilities give the ex- 
pected posterior vulnerability for a given privacy question — here 
this translates to computing the probabilities that an adversary can 
guess correctly the answer to the respective questions. 

Since T ⊑ W , we know that these are lower bounds on the more 
revealing reporting channel T which releases the tallies as well. 
For V αE [ υ◃ W ] , we see that the vulnerability of guessing who vot- 
ers voted for (i.e. the probability of correctly guessing the selected 
candidate on a given voter’s ballot) rapidly approaches the prior 
vulnerability (of 0.33) (lower curve in Fig. 2 , left graph), show- 
ing that privacy for this question behaves well in large report- 
ing batches. However for the dual question V ¬ αE [ υ◃ W ] the story 
is quite different: when the electorate consists of 50 voters there 
is still a 70% chance that an adversary can correctly guess who a 
voter did not vote for (upper curve in Fig. 2 , left graph). 

The graph on the right at Fig. 2 displays the leakages 
Definition 3.4 for the two privacy questions, illustrating the contri- 
bution of the channel W to the posterior vulnerabilities. Here we 
see that reporting the winner leaks more information about guess- 
ing who the voter voted for than who the voter did not vote for. 

In Fig. 3 we see the law of small samples illustrated wrt W on 
the left and T on the right. In both graphs the upper curves corre- 
spond to the percentage loss in privacy for the question “can the 
adversary guess which candidate a voter selected?” and the lower 
curves for the question “can the adversary guess which candidate 
a voter did not select?” All curves are relative to the large sam- 
ple size of 50 so that for the question “guess which candidate was 

7 The intuition here is that, if voters are randomly choosing candidates then the 
election process is equivalent to throwing each of the n voters into a “bin” labelled 
by the selected candidate. This is analogous to storing n random strings into a table 
where two strings are inserted in the same column iff they have the same hash. We 
show in Appendix B that the posterior vulnerability is equal to the average maximal 
length of the columns of that table. 

selected” for both W and T , there is a greater than 30% loss in 
privacy in reporting batches consisting of fewer than 5 voters. By 
Theorem 5.2 these percentages are the same for this question. 

However for the dual question “guess which candidate was not 
selected”, as Theorem 5.3 suggests, there is a difference in the con- 
tribution to posterior vulnerability between the two channels W 
and T . For W (left-hand graph, lower curve) the contribution of W 
is approximately 10% for a reporting batch of size 5, whereas for T 
it is more than 15%. This increase means that the actual informa- 
tion contained in the tallies can be used effectively by the adver- 
sary to improve his ability to determine who voters did not vote 
for. In some election environments this could be problematic. 
5.2. Instant run off elections 

The second kind of reporting system we consider is instant run 
off. This is a system where voters are asked to rank candidates in 
order of preference. The counting then takes these preferences into 
account so that candidates are elected or eliminated after a num- 
ber of rounds. In the first round the first preferences are tallied and 
any candidate who receives more than half of the votes is elected. 
If no candidate is elected in the first round then the candidate who 
received the least first preferences is eliminated, and their ballots 
are then re-distributed amongst the remaining candidates accord- 
ing to the second preference. This process is repeated until one of 
the candidates receives more than half the votes. 

We define two reporting channels P and F associated with in- 
stant run-off. Whereas P publishes how many of each full prefer- 
ence ranking occurred, F publishes the aggregate first preferences 
only. We describe F because many elections in Australia do publish 
first preferences only and, although P is easier for us to analyse, 
we know that since F releases less information we must have P ⊑ 
F . Therefore our privacy results for P give upper bounds for those 
of F . 
Definition 5.2. Let B ∈ E → R model sets of ballots; each ballot 
in R now gives a voter’s ranked preference of candidates. Define 
P ∈ B ! N R to be the reporting channel that announces tallies for 
each possible ranking. 
P bk := 1 if (∀ r : R · # r (b) = k (r)) else 0 , (16) 
where # r (b) is the total number of ballots that listed r as ranking 
in the instant runoff using ballots b . 

Let F ∈ B ! N C model the reporting channel that publishes tal- 
lies for first preferences only. 
F b f := 1 if (∀ c : C · # c (b) = f (c)) else 0 , (17) 
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Fig. 4. (Left) Graph of L αE [ υ, P] with 2 to 6 possible rankings (2 to 3 candidates). (Right) Graph of L αE [ υ, P] with 1 to 7 voters and number of candidates ranging from 1 to 
4 (i.e. 1 to 24 possible rankings). 

where # c (b) is the total number of first preferences that candidate 
c received in the instant runoff using ballots b . 

A QiF analysis of P (and therefore also F ) shows that it satisfies 
the law of large electorates for the privacy properties adapted to 
the type of secret. Now an adversary tries to guess the full prefer- 
ence list. 
Theorem 5.4. Reporting channels P and F satisfy the law of large 
electorates wrt αE , # αE and ¬ αE . Here the type of secret is now the 
whole preference list. 
Proof. For P this is a corollary of Theorem 5.1 adapted to the new 
types: Theorem 5.1 relies only on the fact that the number of can- 
didates remains constant as the number of voters increased, and 
the same is true here. 

Since P ⊑ F the leakages for P are greater than for F and there- 
fore F also satisfies the law of large electorates. !

Although Theorem 5.4 shows that when the voting popula- 
tion is large compared to the observations in the channel, our ex- 
perimental analysis shows that privacy is acutely sensitive to the 
number of observations. When tallies of full preference lists are 
announced, there are factorial |C| possible observations and, as 
pointed out elsewhere [15] , this leaves open the possibility of us- 
ing the information released to perform a signature attack. 
5.2.1. Privacy risks in small samples 

In Fig. 4 we illustrate some results on privacy for the instant 
run off election using the channel P . As before we assume that the 
votes are anonymised and that the aggregate rankings are reported, 
as defined at Definition 5.2 . However the number of observations 
in the channel is equal to |C| ! and even with only 4 candidates 
there are 24 possible ways to rank them. 

In Fig. 4 (left) we display the leakages associated with pri- 
vacy question Definition 3.7 (1) trying to guess how a voter ranked 
the candidates. Recall that the leakages are a measure of how 
the channel P ’s information leak helps the adversary improve his 
guess. 

The lowest curve corresponds to 2 candidates (therefore only 
two rankings) and the top-most curve corresponds to 3 candi- 
dates (therefore 6 possible rankings), with the curves in between 
illustrating leakages corresponding to numbers of observations be- 
tween 2 and 6. As for first past the post we see that the leakages 

decrease as the number of voters increases: when there are 50 vot- 
ers the leakages for all curves are below 1.5. However for about 5 
voters the leakage is three times as much in the case that there 
are 3 candidates (leakage 2.5) compared to 2 candidates (0.8). 

In Fig. 4 (right) we examine the relationship between num- 
bers of voters versus numbers of candidates. The horizontal axis 
corresponds to the numbers of observations (related to |C| ! ) and 
the vertical axis corresponds to the leakage. The top-most line is 
the leakage when there is 1 voter (thus his vote is revealed en- 
tirely by P ) and the lowest line corresponds to 7 voters. The lines 
in between correspond to numbers of voters in between 1 and 7. 
These lines show that for small samples of voters and relatively 
small numbers of candidates, a great deal of privacy is potentially 
at risk: with 7 voters and 4 candidates the leakage is more than 
three times that for 50 voters and 3 candidates. 

Finally in Fig. 5 (left) we illustrate similarly the leakages as- 
sociated with privacy question Definition 3.7 (3) (dual to those of 
Definition 3.7 (1)) where the adversary tries to guess a ranking that 
a voter did not select. This time the lowest curve corresponds to 
leakage when there are 3 candidates and the upper when there 
are only 2, with the in between curves illustrating leakages cor- 
responding to numbers of observations between 2 and 6. Dual to 
Fig. 4 (left), the leakage (and therefore contribution of P ) decreases 
with increasing numbers of candidates. Moreover in Fig. 5 (right) 
where each curve (as for Fig. 4 (right)) corresponds to a fixed num- 
ber of voters, ranging from 1 to 7, and the horizontal axis corre- 
sponds to numbers of observations. We can see clearly now that 
the contribution of P to this question is much less for this ques- 
tion than for Definition 3.7 (1). 
6. Discussion and conclusions 

In this paper we have studied how voters’ privacy is affected 
through reporting results in elections. Information leakage is an in- 
evitable part of the election process, and whilst there is a common 
awareness that the results reporting can impact privacy, there has 
been limited formal study of the extent to which privacy is im- 
pacted. 

Our goal has been to try to formalise notions of privacy using 
novel techniques in quantitative information flow which supports 
adversary-focussed modelling of scenarios through gain functions 
and their associated uncertainty measures. A significant feature of 
our approach is that it enables us to compare rigorously different 
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Fig. 5. (Left) Graph of L ¬ αE [ υ, P] with 2 to 6 possible rankings (2 to 3 candidates). (Right) Graph of L ¬ αE [ υ, P] with 1 to 7 voters and number of candidates ranging from 1 
to 4 (i.e. 1 to 24 possible rankings). 

rules for releasing information by controlling the observations in 
the definitions of channels. 

As noted by other researchers [2] there are different kinds 
of privacy, all expressing different concerns. We concentrated on 
three questions, showed how they relate to each other and com- 
puted their relative values for differing scenarios of electorate and 
candidate sizes for two standard election styles: first past the post 
and instant run-off. 

Our approach can be used to help inform decisions on privacy 
in reported election results. This principle can furthermore be im- 
proved if we have access to approximate leakage computations 
that generalise (15) . 8 In Australia it is common for small batches 
of votes to be revealed because results are usually reported at a 
fine-grained level for transparency reasons. It is currently unclear 
what are the privacy risks. 

An example is the 2015 results for the New South Wales Leg- 
islative Assembly, 9 which used instant run-off voting and included 
reports for first preferences by polling place and voting method. 

Several voting methods were used by relatively few voters and 
thus were likely to have small batches of votes reported. One such 
method is mobile polling (also known as declared institution vot- 
ing), which had around 14,0 0 0 votes spread across 93 electorates. 
These votes are reported per electorate, and so the expected batch 
size is 150 votes if the votes are spread uniformly. But in reality 
some batches were much smaller. For example the electorate of 
Canterbury had only 6 mobile polling votes: 5 votes for the Labour 
candidate, 1 vote for the Liberal candidate and no votes for the 
three other candidates. 

Consolidated reporting is a countermeasure that is sometimes 
used in an attempt to mitigate the privacy risks of reporting these 
small batches. For example the 2011 results 10 consolidated Internet 
voting (iVote) with postal voting for each electorate; Internet vot- 
ing was used for the first time and had only around 46,0 0 0 votes. 
Then the 2015 results reported Internet voting separately; this time 
around 280,0 0 0 were cast with this voting method. 

8 Such a principle can be developed in the style of risk-limiting tally-audition 
techniques [10] . 

9 http://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm . 
10 http://pastvtr.elections.nsw.gov.au/SGE2011/la _ landing-fc.htm . 

At present such trade-offs between privacy and transparency 
are made based on intuition. This can result in inappropriate trade- 
offs because the impact on privacy can be counterintuitive. For ex- 
ample Theorem 5.2 shows that there are unexpected cases where 
reducing the information released would not reduce certain pri- 
vacy risks. So perhaps the reduction in transparency from consol- 
idated reporting of Internet voting and postal voting in 2011 was 
unnecessary, especially considering that other voting methods with 
fewer votes were reported separately. Or perhaps the separate re- 
porting of Internet voting in 2015 still had substantial privacy risks 
despite the larger number of votes. 

Applying our techniques would help to understand these pri- 
vacy risks and enable evidence-based decisions by quantitatively 
assessing how much the risks would be reduced by particular 
countermeasures such as consolidated reporting. 

Note however that consolidated reporting does not reduce the 
privacy risks wrt election officials and scrutineers, who have ac- 
cess to additional raw, finer-grained information. So analysing the 
reported election results provides a lower bound on the privacy 
risks. 

Also we note that the calculations in this paper assume that the 
ballots are anonymised but distinct, as in there is a 1-1 correspon- 
dence between the voters on an electoral role and the ballots. But 
again election officials and scrutineers could have access to (par- 
tial) information about that correspondence. 

Our framework could be adapted to modelling these “insider”
adversaries by including additional observations in the reporting 
channel, and the contribution to privacy risks of that extra infor- 
mation could then be compared with the reported results. 
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Detailed proofs 

In the following appendices, we simply write υ: D B for the uniform prior over a fixed set of ballot boxes B = E → C where C is the set 
of candidates and E is the set of electors or ballot identifiers. 
Appendix A. Proof of Theorem 5.3 

Theorem 5.3 Let T and W be reporting channels defined at Definition 5.1 and αE , # αE be gain functions defined at Definition 3.7 . Let 
υ: D B be the uniform prior. The following equalities hold: 
L αE [ υ, W ] = L αE [ υ, T ] and L # αE [ υ, W ] = L # αE [ υ, T ] . 

This theorem will follow from a series of intermediate results. In particular, it is a straightforward application Definition 3.4, Corol- 
lary A.6 and Lemma A.7 . 

Firstly, we assume that E = [0 , 1 , . . . , n − 1] and C = [ 0 , 1 , . . . , m − 1 ] so that there are exactly n voters and m candidates. Voters and 
candidates are thus numbered by integers and the ballot box where the votes are unanimously 0 (resp. 1 ) is denoted 0 (resp. 1 ). Secondly, 
notice that 
# αE (b ′ , b) = n − h (b ′ , b) (18) 
where h (b ′ , b) = ∑ 

e ∈ E 1 if b e ̸ = b ′ else 0 is the Hamming distance between the ballot boxes b and b ′ when viewed as lists or strings. If b ′ is 
the guess of the attacker and the actual ballot box is b then h (b, b ′ ) is the number of votes that the attacker got wrong. This observation 
is particularly useful because h (, ) is a proper metric. 

The proof of Theorem 5.2 is achieved by explicitly computing the prior and posterior vulnerabilities and then deducing the ratio 
posterior vulnerability 

prior vulnerability which gives the leakage. 
Computing prior vulnerabilities 
Lemma A.1. Let υ be the uniform prior on B. then V # αE [ υ] = n 

m . 
Proof. We have 

( † ) This invariance wrt the guess follows from the fact that ∑ 
x h (w 1 , x ) = ∑ 

x h (w 2 , x ) when w 1 and w 2 only differ at on place. By 
transitivity, we have that ∑ 

x h (w 1 , x ) = ∑ 
x h (0 , x ) for every guess w . !

Similarly, for the gain function αE , we have 
Lemma A.2. Let υ be the uniform prior on B. then V αE [ υ] = 1 

m . 
Proof. V αE [ υ] = max e,c ∑ 

b ∈ B (1 if b e = c else 0) ×υb = max c ∑ 
b ∈ B (1 if b 0 = c else 0) 

|E| = m n −1 
m n = 1 m !

Computing posterior vulnerabilities 
Computing the posterior vulnerabilities is more involved. We start with the gain function # αE . Firstly, we show that any majority gives 

the optimal guess in the computation of V # αE [ υ◃ T ] . We focus on the reporting channel T that publishes the tallies in the following two 
lemmas. 
Lemma A.3. Let y = (y 0 , . . . , y m −1 ) be an observed tally where y i is the tally for candidate i and assume wlog that max (y ) = y 0 11 . Then 
max 
b ′ ∈ B ∑ 

b ∈ B # αE (b ′ , b) ×T by = ∑ 
b ∈ B # αE (0 , b) ×T by . (19) 

11 This assumption says that candidate 0 has a majority, which can be possibly tied with other candidates. 
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Proof. Recall that # αE (b ′ , b) = n − h (b ′ , b) , thus 
max 
b ′ ∈ B ∑ 

b ∈ B # αE (b ′ , b) ×T by = ∑ 
b ∈ B nT by − min 

b ′ ∈ B ∑ 
b ∈ B h (b ′ , b) ×T by 

which is equivalent to 0 minimizing the negative term. It is thus enough to show that 
∑ 

b ∈ { x | T xy =1 } h (b ′ , b) ≥ ∑ 
b ∈ { x | T xy =1 } h (0 , b) 

for every guess b ′ ∈ B. We reason by induction on the number of voters n . 
n = 1 : there is a single voter which must have voted for candidate 0 . In this case, the best guess is 0 . 
n > 1: let us assume that at least one voter has NOT voted 0 (otherwise, we would see in the published tally that 0 is elected unan- 

imously and the best strategy b ′ is trivially 0 ). wlog , we can assume that the first entry of b ′ is 1 . The sum ∑ 
b ∈ { x | T xy =1 } h (w, x ) is 

split into three disjoint sub-sums according to whether b 0 = b ′ 0 , or b 0 ̸ = b ′ 0 and b 0 = 0 , or b 0 ̸ = b ′ 0 and b 0 ̸ = 0 : 
1. b 0 = b ′ 0 = 1 and thus h (b ′ , b) = h (b ′∗, b ∗) where b ′ = 1 : b ′∗ and b = 1 : b ∗. Let y ∗ = (y 0 , y 1 − 1 , . . . , y m ) so that T b ∗y ∗ = 1 and 

max (y ∗) = y 0 . On the one hand, by the Induction Hypothesis, we have 
∑ 

b ∗∈ { x | T xy ∗ =1 } h (b ′∗, b ∗) ≥ ∑ 
b ∗∈ { x | T xy ∗ =1 } h (0 , b ∗) 

for every b ′ ∗. On the other hand, h (0 , b) = h (0 , 1 : b ∗) = 1 + h (0 , b ∗) . Thus 
∑ 

b ∈ { x | T xy =1 ∧ x = 1 : x ∗} h (b ′ , b) ≥ ∑ 
b ∗∈ { x | T xy ∗ =1 } h (0 , b ∗) = ∑ 

b ∈ { x | T xy =1 ∧ x = 1 : x ∗} ( h (0 , b) − 1 ) 
2. b 0 ̸ = b ′ 0 and b 0 = 0 and thus h (b ′ , b) = 1 + h (b ′∗, b ∗) where b ′ = 1 : b ′∗ and b = 0 : b ∗. This case is furthermore split into two sub- 

cases according to the tally y ∗ = (y 0 − 1 , y 1 , . . . , y m ) corresponding to this case: 
(a) max (y ∗) = y ∗0 = y 0 − 1 : in this case, we can apply the Induction Hypothesis and obtain 

∑ 
b ∗∈ { x | T xy ∗ =1 } h (b ′∗, b ∗) ≥ ∑ 

b ∗∈ { x | T xy ∗ =1 } h (0 , b ∗) , 
for every b ′ ∗. Since b = 0 : b ∗, we have h (0 , b ∗) = h (0 , b) and therefore 

∑ 
b ∈ { x | T xy =1 ∧ x = 0 : x ∗} h (b ′ , b) ≥ ∑ 

b ∗∈ { x | T xy ∗ =1 } (1 + h (0 , b ∗)) = ∑ 
b ∈ { x | T xy =1 ∧ x = 0 : x ∗} (1 + h (0 , b)) 

(b) max (y ∗) = y 1 > y 0 − 1 : in this case, the Induction Hypothesis corresponds to choosing all 1 , i.e., 
∑ 

b ∗∈ { x | T xy ∗ =1 } h (b ′∗, b ∗) ≥ ∑ 
b ∗∈ { x | T xy ∗ =1 } h (1 , b ∗) , 

for all b ′ ∗. Moreover, the maximality of y 0 in y implies that y 0 = y 1 . Therefore, h (0 , b) = h (1 , b) = h (1 , b ∗) for all ballot box b 
satisfying this case number 2. Hence, as in the case 2.(a), we obtain 

∑ 
b ∈ { x | T xy =1 ∧ x = 0 : x ∗} h (b ′ , b) ≥ ∑ 

b ∈ { x | T xy =1 ∧ x = 0 : x ∗} (1 + h (0 , b)) 
3. b 0 ̸ = b ′ 0 and b 0 ̸ = 0 and thus h (b ′ , b) = h (b ′∗, b ∗) where b ′ = 1 : b ′∗ and b = 2 : b ∗ or b = 3 : b ∗ or...or b = m : b ∗. Since y 0 remains the 

maximum of the y ′ s associated to this case, we deduce from multiple application of the Induction Hypothesis and some arith- 
metic that, for every guess b ′ , 

Now, using some counting technique, notice that case 1 contributes −(
n −1 

y 0 ,y 1 −1 , ... ,y m ) to the aggregated sum while case 2 contributes 
+ ( n −1 

y 0 −1 ,y 1 , ... ,y m ) to it. The case 3 does not have any extra contribution. By hypothesis, y 1 ≤ y 0 which ensures that ( n −1 
y 0 −1 ,y 1 , ... ,y m ) −(

n −1 
y 0 ,y 1 −1 , ... ,y m ) ≥ 0 , i.e., the aggregated extra contribution from these two cases is positive. By summing up the above three disjoint 

case, we obtain the desired result: 
∑ 

b ∈ { x | T xy =1 } h (b ′ , b) ≥ ∑ 
b ∈ { x | T xy =1 } h (0 , b) 

for every guess b ′ . 
To prove inequality (19) , we can choose any tally y such that R y 0 = 1 where R is the channel satisfying W = T ·R . In this case, The 

previous reasoning can be applied to channel T and the fixed tally y such that max (y ) = y 0 which again makes 0 an optimal guess !
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Lemma A.4. Let υ be the uniform prior on B. We have 
V # αE [ υ◃ T ] = 1 

m n ∑ 
y ∈ N C max (y ) (n 

y 
)

(20) 
where (n 

y ) = ( n 
y 0 , ... ,y m −1 ) is the multinomial coefficient and we assume that (n 

y ) = 0 if $i y i ̸ = n. 
Proof. We reason as follows 

In the above reasoning, y = (y 0 , . . . , y m −1 ) is the observed tally. !

Now, we state the result for the reporting channel W : (20) gives a lower bound for the vulnerability of W wrt # αE . 
Lemma A.5. Let υ be the uniform prior on B. We have 
V # αE [ υ◃ T ] ≤ V # αE [ υ◃ W ] . 
Proof. It suffices to show that the lower bound is achieved by guessing the published winner. 

!

Corollary A.6. Let υ be the uniform prior on B. We have 
V # αE [ υ◃ T ] = V # αE [ υ◃ W ] . 
Proof. Lemma A.5 gives one inequality while T ⊑ W and Definition 3.5 gives the other. !

Now, let us prove the other part of Theorem 5.2 . We are going to prove a much more interesting result giving an direct correspondence 
between # αE and αE . 
Lemma A.7. Let υ be the uniform prior on B. We have V # αE [ υ◃ T ] = n ×V αE [ υ◃ T ] and V # αE [ υ◃ W ] = n ×V αE [ υ◃ W ] . 
Proof. Let us work with the reporting channel T first. We reason as follows 

The proof of the same result for W is similar. !

Appendix B. Proof of Theorem 5.1 
Theorem 5.1 Both T and W satisfy the law of large electorates wrt αE , # αE and ¬ αE . 
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Proof. Let us start by proving that T satisfies the law of large electorates wrt # αE . Lemma A.4 tells us that 
V # αE [ υ◃ T ] = ∑ 

y 0 + ···+ y m −1 = n max (y ) ( n 
y 0 ... y m −1 )

m n 
which is the expected value of the random variable max : N C → R wrt the multinomial distribution. This expected value appears quite often 
in “balls into bins” combinatoric games and asymptotic behaviours have been given [8,9,12] . In particular, we use Theorem 1 in [12] 12 
which implies that when the number of candidates |C| = m ≥ 3 13 is fixed and the number of voters |E| = n is large enough ( n ≫ m ) 14 , 
we have 
V # αE [ υ◃ T ] = n 

m + √ 
2 n ln m 

m 
(

1 − O ( 1 
ln n 

))
. (21) 

Thus, since L # α[ υ, T ] = V # αE [ υ◃ T ] 
V # αE [ υ] , we have 

lim 
|E|→∞ V # αE [ υ◃ T ] 

V # αE [ υ] = lim 
n →∞ 

n 
m + √ 

2 n ln m 
m (

1 − O ( 1 
ln n ))

n 
m = 1 + lim 

n →∞ 
√ 

2 m ln m 
n = 1 (22) 

It follows from (22) , Lemma A.7 and Theorem 5.2 that T and W satisfy the law of large electorates wrt # αE and αE . In fact, the term √ 
2 m ln m 

n provides an adequate approximation of the residual leakage when n ≫ m . 
Now, let us prove that T satisfy the same law but wrt the privacy question given by ¬ αE . We start by computing the prior vulnerability 

V ¬ αE [ υ] = max 
e ∈ E,c ∈ C ∑ 

b ∈ B (1 if b e ̸ = c else 0) ×υb = ∑ 
b ∈ B (1 if b 0 ̸ = 0 else 0) 

m n = m − 1 
m 

Next, we compute the posterior vulnerability. 

( † ) This step says that the best guess is to choose one candidate with the least tally which is available since T publishes the tallies 15 . 
A rigorous and detailed proof can be achieved as in the proof of Lemma 19 . 

In the last expression, we again have to compute the expected value of the random variable min : N C → R wrt the multinomial distri- 
bution, i.e. 
∑ 
y ∈ N C min (y ) ( n 

y 0 ... y m −1 )
m n 

By symmetry, this expected value must converge to n 
m as well since all candidates should have the same number of votes in average (due 

to uniformity). This implies that 
lim 

n →∞ 1 − ∑ 
y ∈ N C 

min (y ) 
n 

(
n 

y 0 ... y m −1 )
m n = 1 − 1 

m = V ¬ αE [ υ] 
Thus, T satisfies the law of large electorates wrt ¬ αE . Since T ⊑ W , it follows that W also satisfies that law wrt ¬ αE . !

Appendix C. Computing leakages efficiently 
For really large values of m (number of candidates) and n (number of voters), computing the various exact leakages is computationally 

very expensive. For large m and n , approximations such as (22) provide accurate results. For smaller but non-trivial values of n and m , the 
exact leakage can be calculated by finding a way to remove any term involving a sum over B which is of the order of m n . For instance, 
Lemma A.4 involves a sum over { y | N C and ∑ 

i y i = n } which has (n + m −1 
m −1 ) elements instead. 

- To compute L αE [ υ, C] , for C ∈ { T, W }, we use Lemma A.4 and Theorem 5.1 . 
- To compute L ¬ αE [ υ, T ] , we use the derivation in the proof of Theorem 5.1 . 

12 Raab and Steger use m as our n and n as our m . 
13 For m = 2 , an application of Sterling’s approximation gives V # αE [ υ◃ T ] ≈ √ 

n 
2% for n large and where %≈ 3.14. 

14 The exact condition is that n ≫ m (ln m ) 3 but it will be satisfied when n goes to infinity and m remains fixed. 
15 For W , this strategy doesn’t work anymore since all that is published is the winner. Thus the best the adversary can do is to “not choose the winner”. 
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- To compute L ¬ αE [ υ, W ] , we start with the equation 

V ¬ αE [ υ◃ W ] = 1 − 1 
m n ∑ 

w ∈ C min 
c ∈ C ∑ 

b ∈ B αE ((c, 0) , b) ×W bw 
which could be derived in the same way as in Appendix B . Now, using the fact that W = T ·R and a bit of rewriting and counting, 
we have 

This last formula is faster to compute since it does not involve any sum over B anymore. 
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