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Abstract. The language COGENT allows low-level operating system compo-
nents to be modelled as pure mathematical functions operating on algebraic data
types, which makes it highly suitable for verification in an interactive theorem
prover. Furthermore, the COGENT compiler translates these models into impera-
tive C programs, and provides a proof that this compilation is a refinement of the
functional model. There remains a gap, however, between the C data structures
used in the operating system, and the algebraic data types used by COGENT. This
forces the programmer to write a large amount of boilerplate marshalling code to
connect the two, which can lead to a significant runtime performance overhead
due to excessive copying.

In this paper, we outline our design for a data description language and data re-
finement framework, called DARGENT, which provides the programmer with a
means to specify how COGENT represents its algebraic data types. From this
specification, the compiler can then generate the C code which manipulates the C
data structures directly. Once fully realised, this extension will enable more code
to be automatically verified by COGENT, smoother interoperability with C, and
substantially improved performance of the generated code.

1 Introduction

In the context of end-to-end functional correctness verification of operating system
components, the integration of modelling and programming presents a significant chal-
lenge.

Models are typically designed to enable concise specification and to reduce ver-
ification effort. In verifications using interactive proof assistants, such as that of the
selL4 operating systenﬂ a purely functional model is ideal, as programs are modelled
in terms of mathematical functions: objects for which proof assistants have significant
built-in support and automation. On the other hand, programs are designed to be effi-
ciently executable. Operating systems, and their kernels in particular, are usually written
in relatively low-level languages such as C in order to achieve ideal performance and
predictable run-time behaviour. Existing programming languages that support directly

! The seL4 microkernel: https:/sel4.systems (accessed on August 31, 2018).
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programming in a purely functional style such as HASKELL are not well-suited to sys-
tems programming, because of their reliance on extensive run-time support for memory
management and evaluation.

The COGENT programming language [13[] allows purely functional models to be
compiled into efficient C code suitable for systems programming. It achieves this
through the use of a sophisticated type system, which allows allocations to be replaced
with efficient destructive update, and eliminates the need for a garbage collector. Fur-
thermore, this compilation process is proven correct by translation validation — in ad-
dition to C code, the compiler generates a formal proof that any correctness theorem
proven about the purely functional model also applies to the generated C code.
describes COGENT, its type system, and the associated verification framework in
more detail.

COGENT programs do not exist in isolation, however. Typically, a COGENT program
constitutes a component of a larger operating system, written in C. When integrating a
COGENT component into this larger context, we see that there remains a gap between
COGENT functional programming and typical systems programming used for the rest
of the system.

In COGENT, programs are defined as pure functions operating on algebraic data
types, such as product types (e.g. records, tuples) and sum types (also known as vari-
ants or tagged unions). The exact structure of these data types in memory is determined
by the compiler. Many of the data structures in operating systems such as Linux could
be represented as algebraic types, however their exact memory layout differs from that
used by the COGENT compiler. Therefore, the file systems implemented in COGENT
as a case study [[1]] must maintain a great deal of marshalling code to synchronise be-
tween the two copies of the same conceptual data structure. As COGENT code can only
interact with the COGENT representation of the data, this synchronization code must
be written in C. This code is tedious to write, wasteful of memory, prone to bugs, has
a significant performance cost, and requires cumbersome manual verification at a low
level of abstraction.

In this paper, we propose a new framework for data abstraction in COGENT pro-
grams. Rather than maintain two copies of data, we define a domain specific data de-
scription language, DARGENT, to describe the correspondence between COGENT al-
gebraic data types and the bits and bytes of kernel data structures — what we call the
layout of the data. As with COGENT itself, this framework reduces the gap between
modelling and programming, in the sense that the programmer can write code as nor-
mal, manipulating ordinary COGENT data types, and after compilation the generated
C code will manipulate kernel data structures directly, without constant copying and
synchronisation at run-time. This will improve performance by eliminating redundant
work, dramatically simplify the process of integrating C and COGENT code, and make
it possible to verify more code with COGENT rather than using cumbersome C verifi-
cation frameworks. Our vision for the DARGENT data description language is outlined
in[Section 3

A number of extensions must also be made to COGENT itself to accommodate this
new data refinement framework, outlined in|Section 4

1. The type system needs to be extended to incorporate these data layouts.



2.

3.

The code generator needs to compile each abstract read and write operation on CO-
GENT data types to the equivalent concrete operation in C, according to DARGENT
layouts.

The verification framework must be updated to once again automatically verify that
the compiler output is a correct compilation of the compiler input.

At the time of writing, we have implemented the prototype data description language
in the COGENT compiler, however the extensions to COGENT itself to take DARGENT
layouts into account are still in development.
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type Heap
type Bag = Ptr {count : U32, sum : U32}

newBag : Heap — (Success (Heap, Bag) | Failure Heap)
freeBag : (Heap, Bag) — Heap

addToBag : (U32, Bag) — Bag
addToBag (z, b {count = ¢, sum = s}) =
b {count=c+ 1,sum=s + z}

averageBag : Bag! — (Success U32 | EmptyBag)
averageBag (b {count = ¢, sum = s}) =
if ¢ == 0 then EmptyBag else Success (s / ¢)

type List a
reduce : ((List a) !, (al, b) — b,b) = b

average : (Heap, (List U32)!) — (Heap, U32)
average (h, ls) = newBag h
Success (b, b) —
let b’ = reduce (Is, addToBag, b)
in averageBag v’ !0’
Success n — (freeBag (h', b'), n)
EmptyBag — (freeBag (h', '), 0)
Failure ' — (K, 0)

Fig. 1. An example COGENT program, using heap-allocated data to compute the average of a list.

2

Overview of COGENT

COGENT is a purely functional programming language, in the tradition of languages
such as HASKELL or ML. Programs are typically written in the form of mathematical
functions operating on algebraic data types. Unlike HASKELL or ML, however, CO-
GENT is designed for low-level operating system components, and therefore it does not
require a garbage collector, and memory management is entirely explicit. Despite this,
COGENT is able to guarantee memory safety through the use of a strict uniqueness type
system. This static type discipline ensures that variables that contain references to heap



objects or other singular resources such as files and disks cannot be duplicated or dis-
posed of implicitly. It achieves this with a cheap syntactic criteria — any variable of
such a type must be used exactly once. This means that it is impossible to leak memory,
as this would mean such a variable would be left unused; nor is it possible to access
memory after it has been freed, as this would require accessing the same variable twice.
A similar type discipline is used to ensure memory safety in the programming language
RusT El

[Figure 1| gives a full example of a COGENT program, computing the average of a
list, storing the running total and count in a heap-allocated data structure called a Bag.
Line 2 defines the Bag as a Ptr to a heap-allocated record (a product type) containing
two 32-bit unsigned integers. Lines 3 and 4 introduce allocation and free functions for
Bags. Definitions of types and of functions may be omitted from the COGENT source
and provided externally via the C foreign function interface. Currently, heap memory
management functions and loop iterators must be provided using this mechanism, al-
though relaxing these requirements is part of ongoing work. The newBag function re-
turns a variant (or sum type), indicating that either a bag and a new heap will be returned
in the case of Success, or, in the case of allocation Failure, no new bag will be returned.
The addToBag function (lines 5-7) demonstrates the use of pattern-matching to destruc-
ture the heap-allocated record to gain access to its fields, and update it with new values
for each. The averageBag function (lines 8-10) returns if possible the average of the
numbers added to the Bag. The input type Bag! indicates that the input is a read-only,
freely shareable view of a Bag, called an observer in COGENT or a borrow in RUST.
An observer can be made of any variable using the ! notation, as seen on line 17 where
averageBag is called. Lines 11 and 12 introduce a polymorphic abstract List type, as
well as a reduce function, which aggregates all data from the list using the provided
function and identity element. Lastly, lines 13-20 define the overall average function,
which creates a Bag with newBag, pattern matches on the result, and, if allocation was
successful, adds every number in the given list to it, and then returns their average.

2.1 Uniqueness Types

Uniqueness types allow us to model imperative, stateful computations as pure mathe-
matical functions, as the static type discipline ensures that each mutable heap object
has exactly one usable reference at any point in time. This means that a well-typed
program can be given two interpretations: an imperative update semantics that mutates
heap objects and a “pure” value semantics with no notion of a heap, that treats all ob-
jects as immutable values. As it is impossible to alias mutating objects, the equational
reasoning by which we would reason about the pure interpretation applies just as well
to the imperative interpretation, as the lack of aliasing makes it impossible to observe
the mutation of an object from any reference other than the one used to mutate it.

Such equational reasoning is highly suitable for verification in a proof assistant such
as Isabelle/HOL, as the pure denotation of a COGENT function is simply a mathematical
function — objects for which most proof assistants have significant built-in support.

% The Rust programming language: |https://www.rust-lang.org| (accessed on August 31, 2018).


https://www.rust-lang.org

2.2 The COGENT Verification Framework

In addition to a programming language, COGENT is also a verification framework re-
alised in Isabelle/HOL, based on certifying compilation. This means that apart from
compiling a COGENT program to C, the compiler also generates an Isabelle/HOL shal-
low embedding of the program in terms of simple functions, and a proof that the gener-
ated C code is a refinement of that embedding. This entails that any functional correct-
ness theorem proven about the simple shallow embedding also applies to the generated
C code.

In prior work [[1]], we developed two Linux file systems in COGENT, and proved key
correctness theorems about one of them. The equational semantics drastically reduced
the effort required to verify these systems, and their performance was comparable to
other Linux file systems that were hand-written in C.

generates |  Shallow Embedding
(pure functions)

—
generates

Value Semantics

generates| Cogent Formalisation
| (uniqueness types)

Update Semantics

generates
e

N C Code
generates | (imported into Isabelle)

Fig.2. The COGENT refinement framework. Boxes represent Isabelle/HOL embeddings of the
COGENT program, arrows represent refinement proofs.

gives an overview of the COGENT framework. The overall proof that the C
code refines the purely functional shallow embedding in Isabelle is broken into a num-
ber of sub-proofs and translation validation phases. Three embeddings are generated: a
top-level shallow embedding in terms of pure functions; a deeply-embedded represen-
tation of the abstract syntax of the COGENT program, which can be interpreted using
either the value or update semantics; and an Isabelle/HOL representation of the C code
generated by the compiler, imported into Isabelle/HOL by the same C parser used in
the selL4 project [[L1]. As can be seen in the diagram, the compiler also generates a
proof that the pure interpretation of the deep embedding is a refinement of the top-level



shallow embedding, and that the C code is a refinement of the imperative interpretation
of the deep embedding. These refinement proofs, along with the refinement theorem
between the two semantic interpretations proven by [[13]], can be composed to produce
a refinement proof stretching from the C code all the way up to the pure shallow em-
bedding.

2.3 The C Model

To give a formal meaning to our C code in Isabelle/HOL, we make use of the same
C-Parser framework [18]] used by the seL4 project [L0]. This framework imports a large
subset of C99 code into HOL by translating it into the embedded language SIMPL [16]],
which has a full formal definition of its operational and axiomatic semantics for use in
proofs. This semantics could be viewed denotationally as a relation on states, describing
what final states could result from a given initial state. The exact structure used to
represent a state is a parameter to the definition of SIMPL, and therefore the C-Parser is
free to choose a structure that mirrors the C code closely. Typically, the state structure is
an Isabelle/HOL record with fields for each of the stack-allocated local variables used
in the code, along with a field for the heap, represented using the memory model of
Tuch [17].

A consequence of this representation is that, while the heap memory model used
allows for pointer arithmetic, unions, and type-casting of heap memory, the view of the
stack is significantly abstracted. With this state definition, it is not well-defined to take a
pointer to a stack-allocated variable, or to reinterpret stack memory as a different type.
C code that performs such operations is rejected by the C-Parser.

2.4 Data Refinement

A program C refines a program A if every observation of C is also a possible observa-
tion of A. If [-] maps programs to sets of observations, then the refinement of A by C
is expressed by [C] C [A4].

Seeing as observations in our case take the form of relations on states, such a refine-
ment would entail that any partial correctness property proven for all executions in [A]
will also apply to those executions in [C].

In our refinement proofs between the update semantics and C, however, the state
spaces of the two programs are different, and thus the relations are not immediately
comparable.

The COGENT memory model in the update semantics includes a mutable heap,
however this heap contains values of algebraic data types, such as records (product
types) and variants (sum types). The C memory model, on the other hand, is ultimately
defined in terms of bits and bytes, not rich data types, to allow for pointer arithmetic
and type-casting operations in C.

As our state spaces differ in this way, a simple subset relationship does not quite
capture what we require of refinement; we need a notion of correspondence of states.
We get this from some additional machinery from the world of data refinement [13].
We introduce a refinement relation R that relates abstract and concrete states, and show



that each step our program takes preserves this relation; the relation represents the de-
sired correspondence. We must show that our abstract program behaves analogously to
the concrete program given corresponding initial states. That is, if R relates our initial
abstract and concrete states, then every final state of a concrete program conc will be
related by R to a final state of a corresponding abstract program abs:

O /— o
| |
R;[[conc] C [abs]; R | i
| |
(where ; is composition of relations) ! g R

In our framework, the compiler generates the definition of this refinement relation by
describing how the code generator lays out these rich data types in memory. Rizkallah
et al. [14] describe in more detail the techniques we have developed to automatically
prove these refinement theorems for COGENT programs.

These relation preservation proofs only imply refinement given the assumption that
the relation R holds initially. A similar assumption is made for the verification of sel.4,
and proving this is the subject of ongoing research.

2.5 Memory Layouts in COGENT and Linux

Because of the restrictions on stack memory outlined in[Section 2.3] the COGENT com-
piler chooses very straightforward memory layouts to represent algebraic data types.
For record (product) types, each field is laid out in memory as a C struct. For vari-
ant (sum) types, a special value called the rag, which indicates the constructor used for
the variant, is stored in a struct along with several sub-structures for the constructor
parameters, only one of which will contain meaningful data.

The Linux kernel, on the other hand, typically chooses much more exotic data rep-
resentations, using techniques such as:

Bitfields Several boolean flags are very often represented using the individual bits of a
machine word.

Type tags The value of one part of a data structure can determine how to interpret/type-
cast another part of a data structure, for example with tagged unions or tagged void
pointers.

Container pattern Kernel-defined structures are often nested within component-
specific structures at offset zero. This means that a component-specific object can
be safely cast to the more general kernel-defined type for use within the kernel, and
then cast back to the component-specific type when returned to the component by
the kernel.

Padding and Alignment Often, blank space is left in the object intentionally to ac-
count for architecture-specific alignment considerations.

Dynamically sized objects Kernel data types often contain values that determine the
size of other objects. For example, an array is often paired with its length as an
integer.



Seeing as none of these techniques can currently be used by the COGENT compiler
when laying out types in memory, Linux types such as these are typically modelled as
abstract “black box” types in COGENT. Conversion functions from Linux data struc-
tures and COGENT data types must be manually written in C and painstakingly verified
in Isabelle. These functions are very tedious to write, frustratingly error prone, and have
a negative impact on performance.

The focus of our present work is therefore to extend the compiler and verification
framework of COGENT to better support these kinds of memory layouts, transparently
representing them as algebraic data types.

3 DARGENT, the Data Description Language

We are in the process of designing a data description language, called DARGENT, that
describes how a COGENT algebraic data type may be laid out in memory, down to the bit
level. Data descriptions in this language will influence the definition of the refinement
relation to C code generated by the compiler. Eventually, we hope to make this language
flexible enough to accommodate any conventional representation of an algebraic data
type in memory. [Section 4]describes in more detail the extensions necessary to COGENT
to accommodate DARGENT descriptions.

sizes

[V

==nB|nb|nB+ mb

layout expressions £ n=s (block of memory)
| L (another layout)
| Cats (offset operator)
| record {f;: ¢;} (records)
| variant (£) {A; (ns:): 4} (variants)

declarations d = layout L =/

layout names L

record field names f

variant constructors A

numbers n,m € N

(lists are represented by overlines )

Fig. 3. The grammar of our DARGENT prototype.

gives a grammar for the syntax of DARGENT descriptions, which are made
of one or more layout declarations, which give names to particular layout expressions.
Each such expression describes how to lay out a data type in memory. Primitive types
such as integer types, pointers, and booleans are laid out as a contiguous block of mem-
ory of a particular size. For example, a layout consisting of a single 4 bytes would only
be appropriate to describe COGENT types that occupy four contiguous bytes of memory,
such as U32 or pointer types.

layout FourBytes = 4B



Layouts for record types use the record construct, which contains subexpressions for
the memory layout of each field. Seeing as we can specify memory blocks down to
individual bits, we can naturally represent records of boolean values as a bitfield:

layout Bitfield = record {x : 1b,y : 1b at 1b,z : 1b at 2b}

Here the at operator is used to place each field at a different bit offset, so that they do
not overlap. If two record fields reserve overlapping blocks, the description is rejected
by the compiler.

Layouts for variant types use the variant construct, which firstly requires a layout
expression for the fag data, which encodes the constructor in the variant which is being
used. Then, for each constructor in the variant, a specific tag value is given as well as a
layout expression for any additional data provided in the variant type for that construc-
tor.

layout Ezxample =
record

{ y:2Bat0b {X:US,y:UlG,Z:<A (Ptr X) | B U16>}
, x:8bat2B
, z: Nested at 3B

}

layout Nested =
variant (1b at 2b)

{ A(1):32bat 1B
, B(0) : 16b at 24b
}

Fig. 4. A COGENT type (upper-right) laid out (lower-right) according to a DARGENT spec (left).

gives an illustrative example of a DARGENT description in our current
prototype. We describe a memory layout for a COGENT record type containing two
numbers and a variant, {x : U8, y : U16, z : (A (Ptr X) | B U16)}. As can be seen
from the ordering of the fields y and x, fields may be placed in any order and at any
location. This allows us to accommodate data layouts where certain parts of the data
type must appear at particular offsets, such as with the container pattern mentioned
in It also makes it possible to leave unreserved space in between fields,
accommodating data layouts which do this to respect padding or alignment constraints
in the architecture.

The variant field z is represented according to the Nested description, offset by three
bytes. That Nested description reserves the third bit of the first byte (the fourth byte of
the original object) to determine which of the two constructors A and B is active. If the
bit is 1, the constructor A is active, with the additional Ptr X payload stored at a one-
byte offset (the fifth to eighth bytes of the original object). If the bit is 0, the constructor



B is active, with the U16 payload stored at a three byte offset (the seventh and eighth
byte of the original object).

4 Extensions to COGENT Type system

A COGENT type 7 represented on the heap using a particular DARGENT layout ¢ will
result in different C code than the same type 7 represented using a different layout £'.
While they are identical on the abstract level, on the concrete level they are not inter-
changeable. Therefore, we must extend the COGENT type system such that identical
types represented differently are distinguished, by tagging types with their representa-
tion.

Seeing as our DARGENT descriptions only apply to objects allocated on the heap,
and COGENT pointer types (Ptr 7) only ever point to objects on the heap (both due to
the restrictions described in [Section 2.3), the natural place to add these tags is to the
pointer type itself. We will add an additional representation parameter ¢ to the pointer
type, written Ptr 7 ¢. This type indicates that the heap object of type 7 pointed at by the
pointer is laid out in memory according to the description ¢. The type checker is then
responsible for ensuring two properties:

1. That the layout ¢ is well-formed, i.e. that it does not reserve overlapping blocks of
memory, and that it does not reference any unknown layout declarations.

2. That the type 7 can be represented according to the description ¢. For example, a
32-bit word U32 or a pointer on a 32-bit architecture could both be represented by
the description FourBytes from[Section 3] but a U64 value could not.

These descriptions are then used to generate the correspondence relation for each
pointer type used in the program, which forms the basis of the refinement proof from
COGENT to C.

4.1 Marshalling and Unmarshalling

COGENT programs often copy (parts of) heap allocated objects to the stack. For exam-
ple, when pattern matching on particular fields of a heap allocated record, local vari-
ables are introduced for each field being matched, thus copying each matched field to
the stack.

Without DARGENT, this copying was straightforward, as the memory representa-
tions on the heap and on the stack were the same. With DARGENT, however, the layouts
may differ, and thus the compiler must also generate code to convert between the stack
and heap representations of each heap-allocated type. We expect that this conversion
code will be straightforward to generate as all the necessary information is provided to
us by DARGENT data descriptions.

4.2 Extended Pattern Matching

Currently, to match on a heap-allocated variant type, COGENT programs first copy the
variant to the stack, and then match on the stack-allocated variant. This is not ideal, as



large amounts of copying may be required if the variant contains a lot of data. To remedy
this, we plan to make use of DARGENT descriptions to perform pattern matching on
heap-allocated variant types in-place.

Additionally, we plan to extend the currently limited pattern matching features avail-
able in COGENT to allow for nested patterns, so that a variant can be matched in-place
inside a heap-allocated record, for example.

By reducing the amount of copying to the stack that needs to take place, we expect
well-designed COGENT programs augmented with DARGENT descriptions to require
very little marshalling or unmarshalling at all, instead transparently manipulating the
existing operating system data structures while viewing them as algebraic data types.

5 Future Work

The prototype data description language and framework envisioned here only scratches
the surface of the potential use cases of DARGENT. In addition to several syntactic im-
provements, such as allowing offsets and sizes of objects to be computed relatively to
the offsets and sizes of other objects, we plan to extend our initial prototype of DAR-
GENT to support a number of additional semantic features.

5.1 Tighter C Integration

In our prototype, to access a data structure defined in C, one must define a highly
platform-specific DARGENT layout that matches the alignment, padding, integer size,
and pointer size of the architecture and C compiler being used.

Ideally, we would like to be able to automate this process, replicating the exact
layout decisions made by the C compiler so that C definitions can automatically be
converted into DARGENT for each compiler and architecture being used.

5.2 Constraints and Validation

Currently, data in memory is assumed to be valid, that is, to conform to the schema
laid out by a DARGENT layout. Thus, to verify a COGENT program incorporating some
external C code, it is neccessary to prove that the C code does not violate the invariants
of the data structure. Therefore, our framework is designed to only deal with trusted
data, where deserialisation is a total function. Extending the framework to deal with
potentially-invalid data must be done with great care, as our data refinement theorem
requires that the refinement relation maps every concrete state in the execution of our
program to a corresponding abstract state.

Even with the relatively simple data descriptions in our prototype, however, it is
possible to have invalid data: for example, if the tag field for a variant type contains a
value that does not correspond to any of the constructors in the type.

To address this, we intend to add a new totally abstract pointer type to COGENT,
written APtr, which does not have any associated type or layout information. This type
will be used to represent data on the heap that is potentially invalid. We will add a
language construct to operate on values of type APtr, written validate e ¢ 7, which



performs a dynamic check that the given APtr value e can be represented as the type 7
using the representation ¢, with the following typing rule:

£ matches 7 e : APtr
validate e ¢ 7 : (Valid (Ptr 7 ¢) | Invalid APtr)

This rule indicates that the validate operation returns a fully typed Ptr only if vali-
dation is successful. Because of the uniqueness type system, this conversion makes the
previous APtr value inaccessible, making it impossible to interpret the same data struc-
ture in multiple ways. Thus, once validated, data will remain valid, even if mutated by
COGENT programs.

This validation mechanism could be extended in a number of ways to support
domain-specific error handling and validation constraints. For example, kernel data
structures for file systems often include a “magic number” field that is hard-coded to
be a specific unusual value, to detect buffer overruns early, and to debugging mem-
ory dumps easier. Some data structures, such as those found in file formats, also may
include error detection mechanisms such as checksums.

We intend to allow the user to define these domain-specific constraints and attach
them to a DARGENT descriptions using a subset of COGENT. Other embedded data
description languages, such as PADS [6, [8]], take a similar approach where the host
programing language of the data description language is used to attach domain-specific
constraints about the data descriptions.

5.3 Wire Formats

While COGENT was originally conceived to ease the verification of file systems [9], we
have long considered network stacks as another systems area which could benefit from
the COGENT approach to verification.

To better support network stacks, we intend to extend DARGENT to support wire
formats, which describe the layout of data as it is transmitted over a network link. Typi-
cally, network protocols specify bit and byte-level endianness for all values, which may
differ from the architecture-defined endianness used for in-memory data structures. We
plan to incorporate endianness annotations to DARGENT descriptions to accommodate
this.

Typically, network protocols also incorporate various error checking and correction
mechanisms for data. There is a wealth of existing work on data description languages
for network protocols (see [Section 6)), and we plan to draw on this work to inform our
design for error-checking in DARGENT, potentially integrating it into our constraints
and validation framework.

5.4 Dynamically Sized Data

Right now, our prototype only supports data structures of statically-known size. Dy-
namically sized arrays, for example, must be left as abstract types, manipulated by
externally-provided functions.



Typically, a dynamically-sized data structure contains header information from
which the size of the payload data structure can be computed. This is a natural fit for de-
pendent types, which is why the core calculus of PADS, the Data Description Calculus,
is based on a dependent type theory [7].

In a concurrent project, we are working on bringing simple indexed or dependent
types to COGENT [4]. This would allow dynamically sized arrays to be given a safe
interface where only indices that are provably in-range can be used. By making DAR-
GENT descriptions dependent, just as the types are, we could support dynamic structures
that carry their size as a separate field very naturally, in a manner similar to PADS.

5.5 Layout Polymorphism

By taking a COGENT program and adding DARGENT layout descriptions, we mix the
abstract functional model with concrete implementation details. Thus we cannot simply
run the same program with different heap layouts without changing either the program
or the layout.

A COGENT program that does not make use of kernel APIs or foreign C functions
can be defined independently of the layout used. For this reason, we plan to extend CO-
GENT to support layout polymorphism. Such a feature would allow COGENT functions
to be defined generically for any layout, and instantiated to particular layouts by the
compiler, based on their call-sites.

6 Related Work

The are numerous data description languages which generate access, serialisation and
de-serialisation code, as well as code to transparently access the data without translating
between representations. However, to the best of our knowledge, apart from the sel.4
bitfield generator [5]], there are no systems which also provide a machine-checked cor-
rectness proof for the generated code. This bitfield generator is subsumed by our work,
as bitfields are just one of the capabilities of DARGENT.

The aforementioned PADS family of languages [6]], particularly PADS/Haskell [S]],
serve as inspiration for parts of DARGENT. These languages, unlike DARGENT, are
aimed at non-binary formats such as ASCII encodings, and focus entirely on data mar-
shalling: parsing and pretty printing. By contrast, DARGENT prefers to rely on trans-
parent data refinement, only translating data between representations when absolutely
necessary.

DataScript [2], like DARGENT, is targeted at binary formats. Rather than algebraic
data types, however, it is designed to generate object-oriented class definitions in Java
for a given binary format, along with marshalling routines.

PacketTypes [12] and Protege [[19] are both data description languages for describ-
ing wire formats for network protocols. They are focused on C implementations, and
therefore do not provide the sort of data abstraction we see in DARGENT. Instead, they
generate C code to serialise to and deserialise from wire formats.

Nail [3] is a very powerful tool for parsing and generating data formatted accord-
ing to a grammar. Using Nail’s description language, the tool generates an in-memory



structure for the data, along with serialisation and deserialisation code. Nail supports
a wide range of features, including recursive grammars, dependent fields, checksums,
and dynamically sized data. Nail greatly reduces the effort in handling the conversion
between data formats and their internal representations, backed by a semantic bijection.
However, to the best of our knowledge, Nail lacks any formal semantics or proofs of
correctness.

7 Conclusion

There is a fundamental tension between models, which are artefacts designed for rea-
soning, and programs, which are artefacts designed for execution. High level program-
ming languages promise to ease this tension by allowing programs to resemble models
more closely, and automating the process of refinement from model to executable.

Many traditional techniques for high level programming language implementation,
such as run-time support for data representation and memory management, become
unsuitable in the context of end-to-end formal verification. In order to minimise the
assumptions made to support verification, we must adopt fully static, fully formalised
techniques to describe the compilation process and the proof of its refinement.

At the same time, when developing operating system components, we need efficient
and predictable performance — we must avoid sacrificing performance for verifiability.

COGENT, to a certain extent, already manages this balancing act, as it allows pro-
grams to be written in a purely functional style, while compiling to efficient C code
without relying on any run-time support. The limitations of COGENT only begin to
show once larger systems are implemented in it, where the mismatch of data represen-
tations can lead to severely under-performing systems.

The DARGENT data description language we have envisioned in this paper is the
last piece in this puzzle. By allowing the programmer to control the compilation and
refinement process, specifically in terms of data layouts, we widen the applicability of
the COGENT framework to new domains such as network stacks, improve interoper-
ability with existing systems code, and take another significant step towards achieving
a verified unification of modelling and programming.
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