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Abstract Worst-case execution time (WCET) analysis of real-time code needs to
be performed on the executable binary code for soundness. Obtaining tight WCET
bounds requires determination of loop bounds and elimination of infeasible paths.
The binary code, however, lacks information necessary to determine these bounds.
This information is usually provided through manual intervention, or preserved in
the binary by a specially modified compiler.

We propose an alternative approach, using an existing translation-validation
framework, to enable high-assurance, automatic determination of loop bounds and
infeasible paths. We show that this approach automatically determines all loop
bounds and many (possibly all) infeasible paths in the sel.4 microkernel, as well as
in standard WCET benchmarks which are in the language subset of our C parser.

We also design and validate an improvement to the sel.4 implementation, which
permits a key part of the kernel’s API to be available to users in a real-time setting.

1 Introduction

Real-time systems are required to meet timing constraints in addition to their
functional requirements. Critically important real-time systems must be assured
to meet these timing and functional correctness requirements. Functional correct-
ness is usually assured by traditional means such as testing, code inspection and
controlled development processes |[NIS99LRTC92,ISO11], or more recently by for-
mal methods [RTC11|. The highest assurance is obtained by formal correctness
proofs based on theorem proving, as was done with the sel.4 microkernel [KEHT09)
and several other systems |[Bev89|/Ler09,/APST10,[YH10]. Functional verification
is generally performed on the source-code level (i.e. the C or other implementation
language), which is then translated into a binary using a trustworthy compilation
tool chain.

Timeliness requires, among other things, sound estimation of worst-case exe-
cution time (WCET). This is generally performed by static analysis of the binary
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code, in order to account for code changes by the compiler. The process typi-
cally first extracts a control-flow graph (CFG) from the binary, which is used to
generate candidate execution paths. The execution time of a path is estimated
(conservatively) with the use of a micro-architectural model of the hardware.

However, this requires first determining safe upper bounds for all loop itera-
tions. Furthermore, many candidate execution paths turn out infeasible (depend-
ing on branch conditions which are mutually exclusive) and must be eliminated
to avoid an excessively pessimistic WCET. Frequently, loop bound determination
and infeasible path elimination is done by manual inspection, but this is tedious,
error-prone and difficult to validate, and thus unsuitable for safety-critical code.

For high assurance, we require an entirely automatic and trustworthy means
of discovering loop bounds and path information in the binary. While there is a
wealth of literature on using static analysis to derive loop bounds on binaries,
getting complete coverage of all loops is impossible in theory (equivalent to the
halting problem) and difficult to approximate in practice. An alternative approach
is to instrument the compiler, and pass information across from the source side.

We propose a different approach, based on our existing work on translation
validation. Translation validation (TV) is an approach to ensuring the compilation
tool chain is trustworthy. Other approaches include extensive testing and even for-
mal verification |[Ler09| of the compiler itself. In the TV approach, an unmodified
optimising compiler is used, and a separate validation tool discovers evidence that
the compiler has translated the source correctly [SMK13]. The TV tool relates con-
trol flow at the binary and source level, which allows our WCET analysis to make
use of source-level information missing in the binary. This source-level information
includes pointer aliasing information by default. We can also manually intervene
in the process by annotating the source code with certain special comments. These
comments are ignored by the compiler, but are part of the formal model of the C
program and may be used by the TV and WCET tools as additional assumptions.

Our target of interest is the seL4 microkernel |[KEHT09], whose functional
correctness has been formally verified. In the case of selL.4, many useful properties
have already been proved and are immediately available to the WCET analysis;
any additional annotations create new proof obligations which must be discharged
in the existing framework (and with the help of previously proved invariants). The
result has the same high assurance as the formal correctness proof.

The approach is not limited to functionally-verified code such as seL.4. Any code
that is in the subset understood by our C parser can be analysed. The parser’s syn-
tactical restrictions are that all struct declarations occur at the top level of source
files, and the prohibition of side effects in almost all expressions. Assignments thus
become statement-forms, and functions that return values may be called only as
the right hand side of an assignment. Semantically, the C program cannot contain
unspecified nor undefined behaviours, and the parser is parameterised by the archi-
tecturally dictated details of implementation defined behaviours. This means that the
source code needs to be re-verified for each architecture. These semantic assump-
tions, especially the absence of unspecified or undefined behaviour, can be verified
using model checking. Obviously, manual annotations are of lesser assurance if not
formally checked.

We apply our WCET analysis tool to the seL4 microkernel. Using our anno-
tation mechanism, we can discover all loop bounds necessary to compute sel.4’s
WCET. We identify a number of operations in the kernel which make large con-



tributions to WCET. Fortunately there exist system configurations which prevent
application code for exercising these operations, leading to much improved time
bounds. For one of these operations we provide an alternative implementation,
verify it functionally correct, and demonstrate that incorporating this change can
allow more of the kernel API to be used with acceptable WCET.

We make the following contributions:

— high-assurance construction of the binary control-flow graph, with a proof of
correctness of all but the final simplification (Section 4.1)).

— WCET analysis supported by a translation-validation framework, allowing C-
level information to be used in computing provable loop bounds and infeasible
paths (Sections ;

— computation of all loop bounds needed for WCET of the sel.4 kernel, with the
support of source-level assertions, but no manual inspection of the binary pro-
gram 7 and similarly elimination of infeasible paths (Section 6.6|);

— improvement of the WCET of the sel.4 kernel by reimplementing one of its key
operations (Sections and [5.3));

— demonstration that the approach is applicable to code that is not formally

verified, by analysing a subset of the Mélardalen benchmarks (Section 6.5|).

2 Background

This section summarises material on which we build directly. [Section 3|summarises
other related work from the literature.

2.1 Chronos

For WCET analysis we use the Chronos tool |[LLMRO7], which is based on the
implicit path enumeration technique (IPET), to perform micro-architectural analysis
and path analysis. The attraction of Chronos is its support for instruction and
data caches, a flexible approach to modeling processor pipelines, and an open-
source license. It transforms a simplified CFG, with loop-bound annotations, into
an integer linear program (ILP). We solve this using an off-the-shelf ILP solver
— IBM’s ILOG CPLEX Optimizer — to produce the estimated WCET. Infeasible
path annotations can generally be expressed as ILP constraints.

In earlier work [BSH12| we adapted Chronos to support certain ARM microar-
chitectures for the WCET analysis of sel.4. While sel.4 can run on a variety of
ARM- and x86-based CPUs, presently only the ARM variant is formally verified
(but verification of the x86 version is in progress). Continuing on from [BSH12|,
we target our analysis at the Freescale i.MX 31 for its cache pinning feature, which
is unavailable in later ARM processors. The i.MX31 features an ARM1136 CPU
core clocked at 532 MHz, has split L1 instruction and data caches, each 16 KiB in
size and 4-way set-associative. Since the processor uses pseudo random cache-line
replacement, we model the caches as direct-mapped caches of the size of one way
(4KiB). This is a pessimistic but sound approximation of the cache’s behaviours,
as the most recently accessed cache line in any cache set is guaranteed to reside
in the cache when next accessed. We also disable the L2 cache, which improves
our WCET estimates. We have seen in earlier work [BSH12| that enabling the L2



cache adds a substantial cycle penalty to the access time of main memory, and
that in our pessimistic calculations this cost usually outweighs the time gained on
cache hits.

2.2 The seL4 Operating System Kernel

sel4 is a general-purpose OS microkernel implemented mostly in C with a min-
imum of assembly code. In line with the tradition of high-performance L4 mi-
crokernels [HE16], seL4 provides only a minimal set of mechanisms, including
threads, a simple scheduler, interrupts, virtual memory, and inter-process commu-
nication, while almost all policy is implemented by user-mode processes. sel.4 uses
capability-based protection [DH66,[BFFT92] and a resource-management model
which gives (sufficiently privileged) user-mode managers control over the kernel’s
memory allocation — this is key to its strong spatial isolation.

The general-purpose design of sel.4 means that the verified kernel can be
adapted to support a broad class of use cases, including use as a pure separation
kernel, a minimal real-time OS, a hypervisor supporting multiple Linux instances,
a full-blown multi-server OS, or combinations of these.

Mixed-criticality workloads are a target of particular interest. Such systems
consolidate mission-critical with less critical functionality on a single processor,
to save space, weight and power (SWaP), and improve software and certification
re-use [BBBT09]. Examples include the integrated modular avionics architecture
[ARI12], and the integration of automotive control and convenience functionality
with Infotainment [HHO8]. These systems require strong spatial and temporal
isolation between partitions, for which selL4 is designed.

The main attraction of sel.4 is that it has been extensively formally verified,
with formal, machine-checked proofs that the kernel application binary interface
(ABI) enforces integrity [SWG™11] and confidentiality [MMB™13], that the ABI
is correctly implemented at the C level [KEHT09], and that the executable bi-
nary produced by the compiler and linker are a correct translation of the C
code [SMK13|. This make it arguably the world’s highest-assured OS. Its WCET
analysis [BSC™ 11] is a step towards supporting mixed criticality systems, although
more work remains to be done on its scheduling model [LH14|[LH16].

The kernel executes with interrupts disabled, for (average-case) performance
reasons as well as to simplify its formal verification by limiting concurrency. To
achieve reasonable WCET, preemption points are introduced at strategic points
[BSH12|. These need to be used sparingly, as they may substantially increase the
code complexity and the proof burden. A configurable preemption limit (presently
set to 5) controls how many preemption points a kernel execution must pass to
trigger preemption. Adjusting this limit adjusts the tradeoff between the worst-
case time to switch to a higher-priority task on interrupt and the worst-case time
to complete a complex task in the presence of interruptions. The preemption model
is discussed in detail in

This preemption mechanism is straightforward to encode as a global ILP con-
straint. We can assume preemption by restricting the total number of visits to
all calls to the preemption point function during a kernel execution. We assume
this is no greater than the preemptible limit, that is, we assume that an interrupt
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Fig. 1 The sel4 functional correctness stack.

is ready to be delivered. We can then specify nonsense local bounds (10?) for all
loops we have thus limited.

Our previous work focussed on aggressively optimising the kernel for latency
|BSC+11,BSH12|. Among other measures, we placed additional preemption points
in long running operations. In contrast, our intention here is to develop a high-
assurance analysis process. Thus we apply our approach to the most recent verified
version of selL4, which lacks these unverified modifications. We note that the num-
ber of loops to analyse is significantly larger than in our previous work (which
used a non-verified kernel fork), where we had set the preemption limit to one.

2.3 The selL4 Verification Framework

The verification of the functional correctness of seL.4 comprises over 200,000 lines
of proof script, manually written and automatically checked by the theorem prover
Isabelle/HOL [NPWO02|. The proof contains four models of the behaviour of the
kernel, as sketched in The most abstract one (access control) is manually
written in Isabelle, and the most detailed one (semantic C) is derived from the
C source code of the implementation. There are three main proof components:
a proof that a number of crucial invariants are maintained, and two proofs of
refinement which establish that behaviours observed of the lower models must be
subsets of those permitted by the higher models.

The C-level model is created by a C-to-Isabelle parser [TKNO7]. This produces
a structured program in the Isabelle logic which roughly mirrors the syntax of the
input C program. The parser adds a number of assertions which make explicit the
correctness requirements of the C program, for instance involving pointer align-
ment and the absence of signed overflow. These constraints are roughly those that
are prescribed by the C standard, with some additions for formal reasons, and
some requirements of the standard relaxed to allow the kernel to implement its
own memory allocator. Note that all these assumptions are proved correct for the
sel.4 source.

The translation validation process extends this verification stack, but uses
automatic proofs in an SMT-based logic rather than manual proofs inside Is-
abelle/HOL.
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2.4 Decompilation of Binary Code

The decompiler of is part of a collection of formal tools based on the
Cambridge ARM ISA specification [FM10]. The specification models the expected
behaviour of various ARM processors in the theorem prover HOL4 [SNO8]. The key
feature of these models is that they have been extensively validated by comparing
their predictions to the behaviour of various real silicon implementations.

The decompiler builds on a tool which specifies what the effect of various
instructions will be. This transformation also performs a HOL4 proof that the
specification is implied by the CPU model. The decompiler stitches these instruc-
tion specifications together to produce a structured program which specifies the
behaviour of a function in the binary. Crucially, the stitching process preserves
the proofs. It results in a program specification, as well as a proof that the CPU
would behave according to that specification, if it were to start executing the given
binary at the given address.

In this project we use a variant of the decompiler which produces an out-
put program in the graph-based language we describe below in Each
function in this program is structurally identical to the control-flow-graph of the
relevant function in the binary, including sharing the same instruction addresses.

2.5 Translation Validation

The proof of the correctness of the translation step from C to binary |[SMK13|
— the lowest level model of the sel.4 functional verification — uses a translation
validation toolset that builds on the decompiler introduced above. The proof pro-
cess is sketched in The starting point is the C program, parsed into
Isabelle/HOL using the semantics of Tuch et al. [TKNO7].

The overall TV approach is to transform both the C and the binary code
into representations at the same abstraction level, i.e. a common intermediate
language, and then prove correspondence function-by-function. The C program is
transformed into a graph language with simpler types and control flow. The de-
compiler also transforms the binary into the same language. Both transformations



construct proofs (in Isabelle/HOL and HOL4) that the semantics are preserved in
the conversion.

Like machine code, statements in the graph language have explicit addresses
and control flow may form an arbitrary graph. A program may manipulate an
arbitrary collection of variables, with most programs having a “memory” variable
in addition to variables representing registers or local variables. The graph lan-
guage provides a mechanism for asserting a boolean property, which allows the
correctness assertions (alignment etc.) made by the C-to-Isabelle parser and the
decompiler to be expressed at this level. The C assertions, which have been proved
in the previous verification work, become assumptions of the proof process, so the
TV toolset may assume non-overflow conditions much like the compiler does. The
assertions in the binary become proof obligations.

The core of the TV process is a comparison of graph-language programs. For
acyclic (loop-free) programs, this checks that the programs produce identical out-
puts (memory and return values/registers) given the same inputs (memory and
argument values/registers). The calling convention specified by the ARM archi-
tecture defines the expected relationship between arguments and registers, etc.
When loops are present, the tool must first search for an inductive argument
which synchronises the loop executions, then check that the argument implies
the same input/output relation. Both the check process and the search process
use SMT solvers to do the heavy lifting. This process is described in detail else-
where [SMK13|.

2.6 The seL4 Timing and Preemption Model

The majority of this paper is about determining the WCET of the selL.4 kernel un-
der various assumptions. These time bounds can then be used to answer questions
about the execution time of real-time systems built on top of the kernel. There
are various established approaches to timing analysis for such systems, some of
which call for slightly different worst-case timing measures, including worst-case
response time and worst-case interrupt latency. Because of some details of sel4’s
timing model, the WCET of the kernel (given various assumptions) is a sufficient
quantity.

Firstly let us clarify that the WCET of the sel.4 kernel is known to be finite.
selL4 is an event reactive kernel with a single kernel stack. The kernel has no thread
of execution of its own (except during initialisation) and executes in response to
specific external events. These events include system calls, hardware interrupts,
and user level faults. Each kernel entry uses the same kernel stack to call a kernel
toplevel function, e.g. handleSyscall for system calls. This C function executes
atomically to normal completion, rather than stopping abruptly (e.g. via longjmp
or exit) or being suspended (e.g. via yield). Interrupts are also disabled while
these toplevel functions are executing. Thus the WCET of selL4 exists; it is just
the maximum WCET of the various entry points.

We can compute the WCET of each of the kernel entry points, of which the
system-call handler will always be by far the greatest contributor. This is because
sel4 follows the microkernel philosophy, and does not fully handle faults or in-
terrupts itself (apart from some timer interrupts). Instead it despatches messages
to user-level handlers, and the messaging facility of the microkernel is designed



to be fast. Some system calls take much longer to complete, partly because sel.4
avoids managing its internal memory allocation itself, and instead allows user level
managers to request major configuration changes. To prevent indefinite delays to
other tasks, these long-running operations include preemption points.

When a preemption point is reached, seL.4 can check for pending interrupts, and
if there are any the current operation is discontinued. A configurable preemption
limit adjusts how often the actual interrupt check is performed compared to the
number of preemption point function calls. Note that the exit process still results
in a normal completion of the toplevel handleSyscall function, even though the
logical operation is still incomplete. This was done for verification reasons: the
model of C semantics used to verify sel.4 does not allow abrupt stops (e.g. exit)
or any form of continuation yielding. The interrupt is handled as the last step in
the execution of handleSyscall, usually resulting in a context switch to its user
level handler. The preempted operation resumes as a fresh system call the next
time the preempted task is scheduled.

In this model of kernel entry and preemption, the execution time of sel.4 con-
tributes to the completion time of some real-time task in three ways:

— Time spent in the kernel during the task’s timeslices, performing system calls
on behalf of this task. This includes as many attempts as are necessary to
complete any preemptible system calls.

— Time spent in the kernel during the task’s timeslices , when the task is being
interrupted. This includes the time overhead of switching to and from any
higher priority tasks which resume as the result of an interrupt. This also
includes the time taken to handle a hardware interrupt and queue a lower
priority task to be scheduled, but not to switch to it.

— Delays to the start of the thread’s timeslice or to delivery of its interrupts
caused by the kernel executing atomically on behalf of another task (of any
priority).

While all of these execution times are important for real-time performance, the
first two contributions can be managed by system design. We expect that well-
designed real-time systems will avoid the use of expensive or preemptible system
calls by real-time tasks. The long-running system calls all exist to perform some
kind of reconfiguration, and we expect that real-time tasks will remain in a mostly
static environment. We also expect that real-time systems will be designed with
reasonable limits to the number of hardware interrupts that may delay a real-time
task. The kernel is designed to deliver messages and perform context switches
quickly.

The final kind of contribution is the most concerning. The kernel is designed
for a mixed-criticality environment, in which non-real-time and untrusted tasks
can make system calls. If the kernel takes too long to complete or preempt some
of these system calls, it may substantially degrade real-time performance. The
only countermeasure for this is to restrict which objects and system calls may be
used by untrusted tasks, which imposes substantial design restrictions. For this
reason the main WCET figure we will report is the maximum execution time
of any kind of operation, under the assumption that only a limited number of
preemption points may occur. This is the case when an interrupt which would
resume a higher-priority real-time task is waiting to be delivered.



2.7 Verifying Preemptible sel.4 Operations

The abort style of preemption used in selL4 (see[Section 2.6)) was chosen to simplify
verification. No matter what style of preemption is chosen, the verification of a
preemptible operation must consider three concerns:

1. Correctness: the usual requirement that the preemptible operation is function-
ally correct.

2. Interference: other operations that are running must not interfere with the
safety and correctness of the operation.

3. Progress: the preemptible operation must eventually run to completion.

In most approaches to concurrency verification, it is the interference concern
that is most complex. The key advantage of the abort style is that it avoids all
concerns about interference. There is no need to calculate the atomic components
of preemptible operations, instead, all kernel entries are fully atomic. There is no
need to calculate what variables and references an operation has in scope while
preempted, or consider the impact on these references when objects are updated
or deleted elsewhere. Instead, a preempted operation will forget all references, and
will rediscover its target objects and recheck its preconditions when it resumes.

These advantages make the verification of an abort-style preemptible operation
straightforward. Compared to the verification of a non-preemptible operation, the
only additional requirement is that the system is consistent (all system invariants
hold) at each possible preemption point.

The downside of the abort style is that it complicates the design of preemptible
operations. These operations must completely reestablish their working state when
resumed after preemption, which might have substantial performance costs for
long-running operations that are frequently preempted. The operations must also
be designed to make it possible at all to discover how much work has already been
completed. For instance, in this work, we add a preemption point to an operation
which zeroes a range of memory. There is no efficient way to examine a partly-
zeroed range of memory and decide where to resume the operation; information
about progress must somehow be tracked in another object. Our solution to this

problem is discussed in [Section 5.

3 Related Work
3.1 WCET Analysis

WCET analysis is a broad field of research with a vast wealth of literature. The
field has been broadly surveyed by Wilhelm et al. [WEET08|, and we refer the
reader to their summary for a more comprehensive overview.

Standard strategies for WCET analysis include hierarchical timing decomposi-
tion |[PK89,[PS91], explicit path enumeration [LS98HAWH99|, and implicit path
enumeration [LM95| BR06]. We reuse the Chronos tool [LLMRO7| in this work,
which follows the implicit approach.

Whichever core WCET approach is chosen, the analysis requires additional
loop bound and path information, usually discovered by static analysis, frequently
supported by user annotations. There is a vast diversity of possible static analysis



approaches to this problem, and again we refer the reader to Wilhelm et al’s survey
[WEE™08]. In recent years, Rieder at al. have shown that it is straight-forward to
determine some loop counts at the C level though model checking [RPWO08]. Other
authors use abstract interpretation, polytope modeling and symbolic summation to
compute loop bounds on high-level source code [LCFM09,BHHK10]. These source
level loop bounds must then be mapped to the compiled binary, for instance via a
trusted compiler with predictable loop optimisation behaviour. We would like to
avoid trusting the compiler as far as possible.

The aiT WCET analyser uses dataflow analysis to identify loop variables and
loop bounds for simple affine loops in binary programs [CMO07]. The SWEET
toolchain |[GESLO6| uses abstract execution to compute loop bounds on binaries,
and is aided by tight integration with the compiler toolchain, which improves the
knowledge of memory aliasing, but this again implies relying on the compiler. The
r-TuBound tool |[KKZ11| uses pattern-based recurrence solving and program flow
refinement to compute loop bounds, and also requires tight compiler integration.

Some of the same techniques are used for eliminating infeasible paths, e.g.
abstract execution |GESLO06,[FHLT01], with the same limitations as for loop-
count determination. We earlier used binary level model checking [BH13| to auto-
matically compute loop bounds and validate manually specified infeasible paths.
We then used the CAMUS algorithm for automating infeasible path detection
[BLH14|. However, this work was inherently limited to information that could be
inferred from an analysis of the binary, and failed to determine or prove loop
bounds that required pointer aliasing analysis.

3.2 Using Formal Approaches for Timing

In this work we reuse our formal verification apparatus to support our WCET
analysis. While most WCET approaches are based on static analysis tools such as
abstract interpretation |[EaJGBLO7,[KZV09|, we are aware of few other projects
which address the questions of timing and functional correctness using the same
apparatus.

The ambition of combining verification and WCET analysis was suggested by
Prantl et al [PKK™09], who propose interpreting source-level timing annotations
as hypotheses to be proven rather than knowledge to be assumed. The associated
static analysis must verify the user’s beliefs about the system’s timing behaviour.
This replaces the most error-prone aspect of the WCET analysis with a formally
verified foundation. The challenge which remains is to discover some sound static
analysis which is sufficient for verifying whatever annotations the user supplies.

Our analysis also interprets annotations/assertions as hypotheses to be proven
(see . In our case the assertions are simple logical expressions, as used
in Floyd or Hoare style program verification [Flo67,[Hoa69]. It is the task of our
WCET analysis to derive temporal properties from these simple stateful assertions.
A more feature rich version of this approach was suggested by Lisper |Lis05|. In
their survey of WCET annotation styles, Kirner et al. [KKP™ 11| place this style in
their “other approaches” category. It is interesting that this approach is considered
unusual, while for us, approaching WCET analysis coming from formal verification
makes the approach seem entirely natural. Perhaps this is because user-supplied



assertions may require user-supported interactive verification. We are accustomed
to doing such verification, but others may consider it prohibitively expensive.

The CerCo “Certified Complexity” project [AABT13,|/AARG12] set out to
produce a compiler that would produce provably correct binaries together with
provably correct specifications of their execution time. The project followed in the
footsteps of the CompCert certifying compiler [Ler09|, building a compiler directly
within a formal apparatus complete with proofs of correct translation and timing
equivalence. The resulting execution time contracts can be extremely precise, es-
pecially since the project mostly targets simple microprocessors with predictable
timing behaviour. Unfortunately this design makes compiler optimisations partic-
ularly complex to implement.

3.3 Verification

This paper discusses the design and verification of a simple preemptible algorithm
(see , with substantial design effort put into simplifying verification.
Preemptible and concurrent algorithms have been of great interest to the field
of formal verification for some while. This is partly because the verification of
preemptible algorithms is challenging [Sch10,/ALM15| and the verification of fully
concurrent algorithms is extremely challenging [IRABH " 01,FFS07,CS10,TVD14,
GHEL5|.

Operating system kernels are also an attractive target for formal verification,
given their small size and critical importance. Starting with UCLA Secure UNIX
[WKP80| and the KIT OS [Bev89|, a substantial history of OS verification projects
have been attempted, of which Klein [Kle09] has written a detailed overview. In
addition to seL.4 [KEH™09)], recent projects include the Verisoft project |APST10],
the Verve kernel [YH10] and the CertiKOS project [GSCT16]. The Verve and
CertiKOS projects simplify their verification problems by using reusable language-
level features rather than building the system from bare metal. This is a worthwhile
tradeoff in arriving at a verified OS, but it means these kernels are unlikely to have
the kind of predictable timing behaviour we are interested in studying in this work.

4 WCET Analysis

The design of the WCET analysis process is shown in[Figure 3} We extend the TV
framework to extract the control-flow graph (CFQG) of the binary, and to provably
discover loop bounds. Chronos then reduces the WCET problem to an integer
linear program. We solve the ILP and pass the worst-case path of execution to the
infeasible-path module to be refuted. Given any refutations, we find a new worst-
case path, continuing until the candidate path cannot be refuted. This repeated
refutation approach is previously presented by Knoop et al [KKZ13|, who discuss
it in detail.

The rest of this section explains the various components in detail.
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4.1 CFG Conversion

In general, reconstructing a safe and precise binary CFG is difficult and error prone
due to indirect branches [BHV11,[KZV09|. In previous work, we reconstructed the
CFG from seL4’s binary using symbolic execution [BSCT11|. The soundness of
the CFG so obtained, and thus the resulting WCET estimation, depended on the
correctness of the symbolic execution analysis.

We now present a high-assurance approach to construction of the CFG. The
decompiler generates the graph-language representation of the binary program,
together with a proof (in HOL4) that the representation is accurate. The represen-
tation consists of a collection of graphs, one per function, with both the semantics
and the binary control flow embedded in the graph, and with function calls treated
specially.

Chronos, in contrast, expects a single CFG in which function-call and -return
edges are treated specially. The two representations are logically equivalent, and
we perform the conversion automatically. The conversion also gathers instructions
into basic blocks and removes some formal features, such as assertions that are
not relevant to the binary control flow.

In principle, the conversion could be done inside the decompiler, and we could
formalise the meaning of the CFG and prove it captured the control paths of
the binary. However, this makes the relationship between the decompiler and TV
framework more complicated, and we leave this to future work. Instead we perform
the simplification inside the TV framework for now. While this means that the
CFG is not proved correct, it is still highly trustworthy, since the most difficult
phases have been performed with proof.

4.2 Discovering and Proving Loop Bounds

We employ two primary strategies for discovering loop bounds on the binary, both
utilise features of the existing TV toolset. The first constructs an explicit model of
all possible iterations of the loop, while the second abstracts over the effect of loop
iteration.

Consider this simple looping program:



for (i = 0; i < BOUND; i ++) {
x += vall[il;
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}

The explicit strategy for discovering a loop bound is to have the TV toolset build
an SMT modeﬂ of the program including values of i, x, etc, for each iteration
of the loop up to some bound. The model includes state variables for each step
in the program, and also a path condition. Loop bounds can be tested by testing
the satisfiability of various path conditions, e.g. a bound of 5 will hold if the
path condition of the first step of the 6th iteration of the body of the loop is
unsatisfiable.

This approach is simple and fairly general. We can analyse complex loops by
considering, in SMT, all possible paths through them. However the size of the SMT
model expands linearly with the size of the hypothetical bound. As SMT solving
is, in general, exponential in the size of the problem, this approach is limited to
loops with small bounds. In practice we have been able to find bounds up to 128
this way.

If we suppose BOUND in the loop above is 1024, the explicit approach would be
impractical. However, it is intuitively clear that this simple loop stops after 1024
steps, because variable i equals the number of iterations (minus 1) and must be
less than 1024. The abstract strategy replicates this intuition.

For this strategy we have the TV toolset generate an SMT model for loop
induction. This includes all the program up to and including the first iteration
of the loop, and then fast-forwards to some symbolic n-th iteration, and includes
the next iteration or two after that. The variable state at the n-th iteration is
unknown. In the above example we can prove that i is one less than the iteration
count. We prove that it is true in the initial iteration, and then, assuming that it
is true at the symbolic iteration n, we prove it is true at iteration n + 1. This is a
valid form of proof by induction, and is closely related to the induction done by

the TV toolset for matching related loops in the source and binary.
This strategy applies equally well at the binary level. Consider this disassem-
bled binary code fragment:

e1a00004 mov r0, r4d

ebfffffe bl 0 <f>

2844004 add rd, r4, #4
e3540c01 cmp r4, #256 ; 0x100
lafffffa bne 4568 <test+0x8>

This code is a loop which increments register r4 by 4 at every iteration. We can
prove by induction in the above manner that the expression r4—4n is a constant,
where n is the iteration count as aboveE| We reuse a preexisting TV feature which
discovers these linear series and sets up the inductive proofs.

The above example is complicated by the looping condition, which isr4 != 256
rather than r4 < 256. We show the additional invariant r4 < 256 by induction.
The abstract strategy contains a feature for guessing inequalities of this form that

1 Here and later we use “SMT model” to mean a set of definitions in the SMT language,
used to phrase a satisfiability query, rather than a satisfying model of such a query.

2 This expression is constant at each address in the loop. If the initial value of r4 were 4,
the expression would be evaluate to the constant 0 whenever execution was at the first two
instructions, but 4 after the add instruction.



may be invariants. It assembles these inequalities by inspecting the linear series
and the loop exit conditions, and then discovers which of its guesses can be proved
by induction. In this example, the proof requires the knowledge that the initial
value of r4 was less than 256 and divisible by 4.

Once we have the inequality r4 < 256, the loop bound of 64 can be proved
easily. Any larger bound will also succeed, which is convenient, because it allows
us to refine any bound we guess down to the best possible bound by means of a
binary search. The SMT model does not change from query to query during this
search, only the hypothesis that fixes n to some constant. SMT solvers supporting
incremental mode can answer these questions very rapidly.

These two strategies do all the work of finding loop bounds, but as presented
are not powerful enough for all loops. We extend them in three ways to cover the
remaining cases: (i) using C information, (ii) using call-stack information, and (iii)
moving the problem onto the C side.

The first extension, using C information, exploits correctness conditions in the
C program while reasoning about the binary. This works because the TV proof
establishes that each call to a binary symbol in the trace of execution of a binary
program has a matching C function call in a matching trace of C execution.

Consider, for instance, these C and binary snippets:

int

f (int x, int y) {

x += 12;
V4B V4

return 2;

}

0000£428 <f>:

£428: €92d4038 push {r3, r4, r5, 1lr}
f42c: e1a05001 mov rb5, rl

£430: €280400c add r4, r0, #12

f464: e3a00002 mov r0, #2
£468: e8bd4038 pop {r3, r4, r5, 1r}
f46c: el2fffle bx 1r

The calling convention relates visits to the two functions £. A binary trace in
which address 0x£428 is visited three times will be matched by a C trace in which
f is called at least three times, with the register values r0, r1 matching the C
values x, y at the respective callﬂ The TV proof has already established this, so
the WCET analysis can consider this C execution trace simultaneously with the
binary execution trace. Concretely this means that SMT problems will contain
models of both binary f and the matching C f. The correctness conditions of the
C £ will be taken as assumptions. The x += 12 line in £ above, for instance, tells
us that adding 12 to either x or rO must not cause a signed overflow.

The second extension, use of call-stack information, is useful in the case where
the bound on a loop in a function is conditional on that function’s arguments.
Common examples include memset and memcpy, which take a size parameter, n,
which determines how many bytes to loop over. To bound the loop in memset, we

3 The story is a little more complex. Some calls to f in the source code may not be present
in the binary thanks to inlining, and functions which are known not to inspect memory may
be moved across memory updates. The TV tool picks a particular concrete input relation for
each binary function, and proves that this holds at all its call sites.



must look at the values given to n at each of its call sites. We might in fact have
to consider all possible call stacks that can lead to memset. Concretely this means
that the SMT model will also include a model of the calling function up to the call
site, and the input values to memset will be asserted equal to the argument values
at the call site. This additional information then feeds into the two core strategies
above.

The final extension, mowving the problem to the C side, maximises the use of
the TV framework, by asking it to relate the binary loop to some loop in the C
program. If the TV toolset can prove a synchronizing loop relation, that implies
a relation between the C bound and the binary bound. The explicit and abstract
strategy can then be applied to the C loop to discover its bound. It is convenient
that both programs are expressed in the same language inside the TV framework,
so we can use exactly the same apparatus. Finding the C bound will sometimes
be easier because dataflow is more obvious in C. It also ensures that assertions
placed in the body of the C loop will be directly available in computing the loop
bound.

By default the apparatus will set up an SMT model which includes the target
function and the matching C function. If the function is called at a unique site, we
also include its parent and its parent’s matching C function. If no bound is found
directly, we try to infer a bound from C. If this also fails, we add further call stack
information as necessary, by considering all possible call stacks that can lead to
our loop of interest.

4.3 Refuting Infeasible Paths

Refuting an impossible execution path amounts to expressing the conditions that
must be satisfied for the execution to follow that path, and testing whether all
those conditions are simultaneously satisfiable. The TV toolset reasons about path
conditions by converting them into boolean propositions in the underlying SMT
logic. It is then straightforward to have the SMT solver test whether a collection
of path conditions is possible.

To narrow the search space, we only attempt to refute path combinations
that appear in a candidate execution trace. The final ILP solution produced by
running Chronos and CPLEX specifies the number of visits to each basic block,
and the number of transitions from each basic block to its possible successors. Since
some basic blocks will be visited many times, with multiple visits to their various
successors, we may not be able to reconstruct a unique ordering of all blocks in the
execution. Instead, we collect a number of smaller arcs of basic blocks that must
have been visited together in a single call to a function. We can also link some of
these arcs with arcs that must have occurred in their calling context.

The refutation process then considers each of these arc sections, and checks
whether they are simultaneously satisfiable as described above. If the combination
is unsatisfiable, we reduce it to a single minimal unsatisfiable combination, and
export an ILP constraint equivalent to this refutation.

This approach is simpler than our previous work, where we consider much
larger sets of path conditions and use the CAMUS algorithm to find all minimal
conflicts [BLH14]. The trade-off is that, after eliminating refuted paths, we have to
re-iterate the process on the next candidate ILP solution. We believe this approach



will usually be more efficient, since the candidate solutions will probably converge
on the actual critical path quickly and we will consider only a small fraction of
the path combinations of the binary. There is however the possibility, which we
have not yet encountered, that the cost of repeated ILP solving will outweigh the
benefits of this approach.

4.4 Manual intervention: Using the C model

The techniques described in the two preceding subsections discover loop bounds
and refute infeasible paths automatically. In cases where these fail, we can man-
ually add (and prove) relevant properties at the C level. Besides the assurance
gained by the formal, machine-checked proofs, our ability to leverage properties
that can be established at the C level is a powerful tool that most distinguishes
our approach from previous work, including our own [BLH14].

In we discussed how C correctness conditions, such as integer non-
overflow, can be assumed in the WCET process, by constructing simultaneous
SMT models of the C and binary programs. Manual assertions added to the C
program appear in exactly the same manner as these standard assertions arising
from the C standard. However, the manual assertions we supply can be directly
related to the WCET problem.

For ordinary (application) programs, such as the Mélardalen benchmarks, we
assume that the source conforms to the C standard, specifically that it is free of
unspecified or undefined behaviour. This allows the TV toolset to assume some
pointer-validity and non-aliasing conditions which derive from the C standard, but
would be hard to discover from the binary alone. While this implies a potentially
incorrect WCET for non-standard conformant programs, standard conformance
is essential for safety-critical code, and can (and should!) be verified with model-
checking tools.

Additionally, the C-to-Isabelle parser provides syntax for annotations in the
form of specially-formatted comments, which add assertions to the C model. This
feature is used occasionally in seL4 for technical reasons to do with the existing
verification. We can reuse this mechanism to explicitly assert facts which we know
will be of use to the loop-bound and infeasible-path modules. The assertions create
proof obligations in the existing proofs, which must be discharged, typically by
extending the hand-written Isabelle proofs about the kernel. We will describe our
changes to the kernel, and its verification, in the following section.

This same mechanism can be used for application code, if an assertion can be
known with certainty (eg. by proving it through model checking).

5 Improving seL4 WCET

The selL4 kernel is designed for a number of use cases, including a minimal real-time
OS. While the kernel’s design broadly supports this use case, a number of non-
preemptible operations are known to have long running times, which is a problem
for timeliness. We have previously shown that by adding further preemption points
to the kernel we can reduce its WCET to a level competitive with a comparable
real-time OS [BSH12|. Unfortunately some of these modifications increase the code



complexity of some operations dramatically, impacting average-case performance
and complicating verification.

This section describes two modifications we have made to verified sel.4 to
improve its WCET bound. Firstly, we add a number of assertions to the source
code, supporting our WCET analysis as described above. These changes have
all been incorporated into the official verified sel.4 as of its release at version
2.1. Secondly, we pick one of the preemption points added in our previous work
[BSH12|, adapt it to the current kernel design, and adjust the formal verification
accordingly. This is a significant step toward competitive WCET for the verified
sel.4 kernel.

5.1 Assertions

We add 23 source assertions to the kernel source to support the WCET analysis.
With these manual interventions, we can calculate and prove all loop boundsE|
in the selL4 kernel binary, and effectively eliminate the WCET-limiting infeasible
paths. We add assertions of five kinds.

1. We add an assertion that the “length” field of a temporary object is at max-
imum 16. This information actually exists in the binary, but to find it the
WCET process would have to track this information across several function
calls. Instead, we propagate this information through the preconditions of sev-
eral proofs about the C program. While manual, this process is not particularly
difficult.

— There are 4 annotations of this kind.

2. We assert that each iteration of a lookup process resolves at least one bit of the
requested lookup key. The kernel uses a guarded page table [Lie94] for storing
user capabilities, in which each level of the table resolves a user-configured
number of bits. It is an existing proved kernel invariant that all tables are
configured to resolve a positive number of bits, thus, the loop terminates. The
assertion is trivial to prove from this invariant. Thus, the assertion transports
the invariant into the language of the WCET apparatus.

— There is 1 annotation of this kind.

3. We assert that a capability cleanup operation performed during the exchange
of so-called reply capabilities cannot trigger an expensive recursive object
cleanup. Capability removal is the trigger for all object cleanup in sel.4, how-
ever, this cleanup operation targets a dedicated reply slot which can only con-
tain reply capabilities. This is the same information that we have in previous
work provided to the compiler to improve optimisation |[SBH13].

— This requires 7 annotations, six at the call sites of the capability cleanup
operation, and one within the operation.

4. We assert that the number of bytes to be zeroed in a call to memzero is divisible
by 4 (the word length on our 32-bit platform). This implementation of memzero
writes words at a time and decrements the work remaining by the word length.
The stopping condition is that the work remaining is zero, which requires
divisibility to be reached.

— This is the only annotation of this kind.

4 Some loops in the binary are preemptible and do not have bounds.



5. We assert that various objects are smaller than a configurable maximum size
parameter. We do not specify in the selL.4 source code what this parameter is. In
particular we establish that a number of zeroing and cache-cleaning operations
cover fewer bytes than this maximum size.

— There are 10 annotations of this kind.

The final assertion above is needed to address a WCET issue with the present
verified kernel version. The sel.4 kernel allows a user level memory manager to use
the largest available super-page objects (16 MiB) if it has access to sufficiently large
blocks of contiguous memory. Zeroing or cache-cleaning these pages are very long
running operations. The (trusted) initial user-level resource manager can avoid
this issue, by intentionally fragmenting all large memory regions down to chunks
of some given size.

This fragmentation may add modest overheads. Subsequent resource managers
will have to perform more operations, and cannot employ super-pages. However
this will not create any further complications for application code.

We argue that the initial manager can ensure a size limit. To formalise this
argument, we prove as an invariant across all kernel operations that all objects are
smaller than the configurable size limit, which establishes the assertions. This in-
variant holds for any given size limit, onwards from the first point in time that it is
true. Thus, once the initial resource manager configures the system appropriately,
the invariant remains true for the system lifetime. The resource manager may
choose what size limit to set. For the WCET analysis, we will assume a particular
value for the limit, in this case 64 KiB.

This configurable value, and our assertion that it equals 64 KiB, are “ghost
data” added to the C program. The actual C program and binary do not ma-
nipulate this variable anywhere, but the Isabelle model contains all the assertions
about it.

Should the initial configuration violate the constraint, the system’s operation
will still be functionally correct, but the WCET bounds are no longer guaranteed.

Note that since all four types of manual assertions are specified at the source
level, they will still be available if the kernel is re-compiled. We do not expect
to have to add further annotations until major code changes require them. The
compiler might, however, move information out of scope by changing the inlined
structure of the binary, which might require further manual intervention. Clearly,
in any case, the WCET analysis must be rerun on each actually-deployed binary.

5.2 Design of Preemptible Zeroing

We want to achieve the best possible WCET for a fully verified kernel. Ideally we
would accomplish this by incorporating all the prototype changes we previously
made to seL4 [BSHI12| into the verified version. As a first step towards this,
we incorporate and verify one major change: making object creation preemptible.
This allows the kernel to create large objects (e.g. 16 MiB super pages) without
compromising its WCET.

Objects are created as part of the seL4 invokeUntyped_Retype operation. This
is an operation on a so-called untyped memory region. a range of kernel memory
available to user-level resource allocators to create various kinds of kernel objects.



The Retype operation may both remove old objects from an untyped region and
create new ones. Creating new objects mainly involves zeroing the relevant mem-
ory. The removal of old objects only impacts the verification picture of the kernel
memory, as the objects must be unreachable to the implementation already.

To make the Retype operation preemptible, we split the creation phase into two
phases, the first zeroing all the relevant memory, the second doing the necessary
object setup. The preemption point is inserted in the zeroing phase. Object setup
given zeroed memory is fast enough even for large objects. Zeroing a large range
of memory in blocks and adding a preemption point is straightforward except for
the problem of ensuring progress.

Ensuring progress is the challenging aspect of sel.4’s abort-style preemption
model (see . Some long-running operations, such as emptying a linked
list, can be preempted and resumed easily. The resumed operation continues un-
linking elements from the list in exactly the same manner as the initially aborted
operation. In fact, there is no need to detect that the operation was previously
begun and aborted. Zeroing a large region, however, cannot be efficiently resumed
without some knowledge of how much memory has already been zeroed. Adding
preemption points to operations of this kind requires storing more information
about the progress of the operations within the objects being manipulated. This
additional information, and its consistency requirements, then complicates the rest
of the implementation and verification.

The Retype operation can scan a capability related structure to determine
whether all the objects in the untyped region have become unreachable. The first
ever Retype implementation would check the region was reusable, then fill the
region with newly initialised objects in a single step. In previous work [BSH12]
we adjusted this process to be preemptible by using a spare word to store a count
of how much of the untyped region had been zeroed out. The Retype operation
would preemptibly expand this zero region and then fill it with new objects. This
implementation is sketched on the left side of

Unfortunately this spare word is no longer spare. The sel.4 API has been
updated to allow untyped regions to be used incrementally, and the additional
word now measures the amount of space still available. The incremental Retype
implementation allocates new objects from the start of this available space, except
in the case where it can detect that all objects previously in the untyped range
have expired, in which case it resets the untyped range and begins from the start.

We want to support both incremental allocation and incremental initialisation,
but we have only one spare word available. The key insight to solving this problem
is to make the available space and the zeroed space the same. Untyped objects
continue to track the amount of space available for new objects, but now the space
available (for use) is also the part that is known to be zeroed — a new system
invariant. The special case of the Retype operation where the untyped range can
be reset must now zero the contents of the untyped range as well as marking it
available. The zero bytes are also flushed from the cache to main memory.

A peculiarity of this design is that the zeroing happens backwards. The existing
API specifies that objects are created forward from the beginning of the untyped
range, so the available range is always at the end. Thus the zeroing process, which
expands the available range, must begin at the end of the range and proceed
towards the start. In fact we subdivide the region to be zeroed into chunks (with a



{77777777777777777777777777777777777777772 <~

[ WZZZZ777777777777777777777777777774\

(W W77Z777777777777777777774\

H 77 7777777777777

i o {77777

Zero Bytes Objects Junk data
— [ S—

Fig. 4 Preemptible Retype designs from previous and current work. Previous steps (left):
Starting state is junk data. 1-3: Preemptibly zero the region. 4: Complete zeroing and create
new objects. 5-6: Objects become unreachable over time. New steps (right): Starting state is
zeroed region. 1-4: Objects are created in separate system calls, and may also expire. 5: All
remaining objects expire. 6-9: Preemptible zeroing of the region, one chunk at a time.

default size of 256 bytes) and zero the chunks in reverse order but each individual
chunk in forwards order, for better expected cache performance.

5.3 Verification of Preemptible Zeroing

The implementation of the preemptible zero operation is straightforward, requiring
the addition of 62 lines to seL4’s C code and the removal of 56. Roughly half (32
lines of C) of the addition is the new preemptible zero function, and roughly half
(24 lines) of the lines removed were memory zero and cache clean function calls
within the creation routines for various specific object types. We make similar
modifications to the two higher-level specifications of sel.4.

The verification of these changes, however, is far more involved. The final
changeset committed to the proofs requires roughly 20,000 lines of changes (diff
reports 147 files changed, 11,805 insertions, and 9,390 deletions.) This required 9
weeks of work for a verification engineer with extensive experience with the sel.4
proofs.

The main reason the verification is so complex is that the Retype process has
some of the most involved proofs in the kernel. Most operations manipulate one
or two objects at a time, preserving the types of all objects, whereas Retype not
only changes types, but it requires several component operations to accomplish
this (clearing the region of old objects, updating the untyped range, creating new
objects, issuing caps to them, etc). The new proof of invariant preservation for
Retype, for instance, is assembled from 31 different sub-lemmas about the com-
ponent operations. One of these sub-lemmas concerns the new preemptible zero
operation. In addition to adding this lemma, the proof structure had to be sub-
stantially modified.

We must also verify a new invariant, that the available section of each untyped
range of memory is zeroed. Similar invariants in selL4 are proven at the specification
levels, and apply to the implementation thanks to the functional correctness proof.



Unfortunately this is impossible for this invariant, since the specifications do not
accurately track the contents of the relevant memory. Different regions of memory
are treated differently in the kernel’s specifications. Memory shared with user tasks
is represented as-is. Memory used by kernel objects is represented by abstractions
of those objects, so the specifications do not need to specify the in-memory layout
of these objects.

Unfortunately the memory in the available untyped ranges is neither covered
by kernel objects nor shared with users. Thus we cannot prove anything about it
using the existing specifications. To address this, we add a field to the specification
state which tracks the locations of the untyped ranges expected to be zeroed, and
require memory there be zeroed as an additional component of the state relation
between the specification state and C memory model. This complex approach then
requires numerous changes to the proofs.

At the time of writing the verification is complete and the preemptible zeroing
change and is available in the official sel.4 development version (see https://github.
com/selL4/seL4/commits/03c71b6). The change will be included in the next release,
which is expected to be given the version number 4.0.0.

6 Evaluation and Discussion
6.1 Loop Bounds in sel.4

We successfully compute the bounds of all 69 bounded loops in sel.4 version 3.1.0,
which is in contrast to our earlier work, which only succeeded on 18 of 32 loopeﬂ
(56%) [BH13|. A further 5 loops in the binary contain preemption points and have
no relevant bound, these are bounded by the preemption limit, as discussed in

Computing all the bounds in the kernel demonstrates that our approach is
sufficient for a real-world real-time system.

To more thoroughly investigate our WCET apparatus and our kernel modifica-
tions, we go on to analyse three different versions of sel.4, and six different WCET
problems:

— 8.1.0-64K: The standard verified kernel, as of version 3.1.0, with all system
calls enabled and a 64 KiB object size limit (see [Section 5.1)).

— 8.1.0-static: The standard verified kernel, version 3.1.0, in a “static” system
configuration with most complex system calls forbidden.

— preempt-64K: Our branch of the kernel, with preemptible zeroing for object
creation, as discussed in with a 64 Kib object size limit.

— preempt-nodelete: Our branch of the kernel, with no object size limit. This
is not exactly a “static” variant, since creation of new objects of arbitrary
size is allowed. However deletion of objects, and various cache management
operations, are forbidden.

— rt-branch-64K: The “RT” branch of seL.4 as of version 1.0.0. This is an officially
maintained but experimental version of sel.4 which introduces a more powerful

5 Note that the total number of loops here is higher than in our earlier work. This results
from this work targeting the verified kernel, and thus using preemption points less aggressively,

see |[Section 2.
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