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Recent work has demonstrated that per-thread compo-
sitional verification of value-dependent noninterference
is feasible for concurrent programs: Murray et al. [9]
presented a type system that, when applied individually
to each of the threads of a concurrent program, can
be used to establish that the entire program does not
at any time leak high-classified data to any presently
low-classified, readable1 memory.

However, the gap remains that the verification of this
(necessarily timing-sensitive) property for the source code
of a program may not guarantee that the property still
holds for that program once it has been compiled and is
running on actual hardware. Anticipating this, Murray
et al. [9] also presented and proved sound a per-thread
compositional notion of refinement that guarantees that
an implementation of some verified system enforces the
same noninterference property at the level of the target
language’s semantics. My present work is now seeking
to apply and extend this result by producing the first
per-thread compiler that provably guarantees to preserve
such a concurrent noninterference property.
To this end, I have adapted and implemented in the

Isabelle/HOL theorem prover [10] an existing compila-
tion scheme (developed by Tedesco et al. [14]) from a
generic imperative While language to a generic RISC-
style assembly language, and proved that my compiler
preserves the compositional value-dependent noninter-
ference property from [9]. This means that you can use
it to compile each of the threads in such a program sep-
arately and obtain a proof that their compiled assembly
implementations compose into a concurrent system that
satisfies value-dependent noninterference at the level of
the RISC-style target language (which for short we will
subsequently refer to as RISCLang).

As a proof of concept, I have exercised this compiler on
a concurrent While model of the Cross Domain Desktop
Compositor (CDDC) [2] verified with Murray et al. [9]’s
type system, and instantiated all of the related proofs of

1I qualify this with “presently” because the classifications are

value-dependent and may change dynamically with the state of
the system, and “readable” because we leverage rely-guarantee

assumptions (directly expanding on the work of Mantel et al. [6])
in order to achieve this per-thread proof compositionality, and
those assumptions can change dynamically too.

security for the compiled RISCLang artifact of the system.
This compiler and all theories about it, including this
model and proof of concept compilation of the CDDC,
build on the prior work’s Isabelle/HOL formalization
[8] (itself a direct extension of a formalization of Mantel
et al. [6]). The compiler is specified as an executable
function in Isabelle/HOL and runs using Isabelle’s code
generation framework.
Immediate plans for future work include integrating

the compiler with support that we have recently added
to the type system for richer cross-component invariants
(because the existing rely-guarantee support is only for
assumptions on access to variables), and applying such
an adaptation of the compiler to an already-verified (un-
published) richer model of the CDDC whose verification
relies on the establishment of such an invariant.
In the medium-to-long term, I intend to expand on

this work in a way that focuses on navigating the ten-
sion between performance and security inherent in the
question of how to achieve compilation that provably
preserves a timing-sensitive security property. Generally
speaking, the long-term objective of my work is to inform
requirements presented to compiler writers and hardware
manufacturers that would help strike a balance between
aggressive performance optimizations and an ability to
prove the absence of information leaks.
With respect to approaching the functionality ex-

pected of a realistic compiler, I intend firstly to tackle
register allocation, because the current register alloca-
tion scheme in my While-to-RISCLang proof of concept
is naive and will simply fail (instead of spilling to mem-
ory) if it runs out of registers. The bigger-picture view
of such a project would be to discover and characterize
requirements that would make it possible to verify that
more efficient register allocation algorithms are making
safe choices of which variables spill to memory.
As for the question of grounding this work by com-

piling to a real target on which code can run, I intend
to verify a compilation step from the generic RISCLang
used here, to a target platform (e.g. Atmel AVR, 8051)
with timing properties that are well-defined enough for
the timing-sensitivity of our noninterference property
to be meaningful. Furthermore, the question remains



of how to verify realistic assembly-level software imple-
mentations of RISCLang’s locking primitives. (Another
idea is to verify compilation to a language whose type
system guarantees the locking discipline.) To this end,
the semantics for Atmel AVR developed by Dewald et al.
[5] suggests itself as a prime candidate for adaptation to
our framework in the interest of verifying a compilation
step that targets AVR assembly. Obtaining a runnable
target language then gives us an opportunity to exer-
cise the statistical leakage measurement techniques of
Chatzikokolakis et al. [3] (much in the way of Mantel and
Starostin [7]) in order to look for any further conceptual
gaps between our semantics and the timing properties
of live systems. Work is also underway on a translation
from RISCLang to RISC-V assembly, which would give
us another runnable platform that provides a point of
comparison for statistical leakage measurement results.
I also plan to explore in more depth the relation-

ship between our work and: the observation functions
of Costanzo et al. [4], work on mitigating against adver-
sarial caller contexts (as is focused on by full abstrac-
tion and the trace-preserving compilation of Patrignani
and Garg [11]), and work on mitigating against adver-
sarial co-habiting threads (the focus of constant-time
cryptography research e.g. Barthe et al. [1]). Although
our value-dependent noninterference property is timing-
sensitive, our attacker model may differ from some of
this other work in that we consider only the threads of
a concurrent system that are verified to co-operate with
the locking discipline. In some sense, it could appear
that we are considering only attackers that conform to
restrictions in the form of rely-guarantee assumptions
necessary in order for the proof to hold, but another way
of looking at this is that our work is seeking to make
explicit the necessary assumptions for security to hold
in a concurrent context, thus requiring there be a very
good reason we should consider an attacker to conform
to such assumptions. In certain environments (such as
separation kernels [12] and capability machines [13]) this
may be justified by the correct functionality of an under-
lying operating system or hardware platform whose job
it is to enforce separation between the domains, giving
us another potential avenue for seeking connections and
collaboration with existing work on finding appropriate
secure compilation targets.
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