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A confidentiality-preserving
program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Data61/DSTG project for de-duplicating user-facing hardware.
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Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #1: value-dependent security classifications
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A confidentiality-preserving
program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #1: value-dependent security classifications
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A confidentiality-preserving
concurrent program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #2: shared-variable concurrency
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A confidentiality-preserving
concurrent program

CDDC seL4-based software architecture:
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A confidentiality-preserving
concurrent program

CDDC seL4-based software architecture (simplified model):
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Per-thread compositional
verification compilation

Challenge #3: per-thread compositionality of proofs
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Per-thread compositional
verification compilation

Challenge #3: per-thread compositionality of proofs

Mechanized in Isabelle/HOL. (More to appear: EuroS&P’18.)
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This talk a preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification
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Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification
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The confidentiality property
Concurrent value-dependent noninterference.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison



The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)
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The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

Reflects the attacker model.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)
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The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.
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The confidentiality property
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Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread, subject to havoc.
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The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread, subject to havoc that obeys locking discipline.
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The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositional property:
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The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositionality theorem [Murray+, CSF’16]:

Under the hood: assume-guarantee on variable access.
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The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

i.e. Locked state still not considered to be observable.
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This talk

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification
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Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
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Per-thread compositional refinement [Murray+, CSF’16]

Given bisimulation B establishing the property, nominate R, I s.t.:
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Given bisimulation B establishing the property, nominate R, I s.t.:
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Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Then B′ (= BT of B R I) establishes the target-level property:
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Proof technique for compilation

Simpler proof technique than this!
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Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps s.t.

Easy to prove if no H-branching in A, and no new H-branching.

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)
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Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps s.t.

(I as pc-security)
Easy to prove if no H-branching in A, and no new H-branching.

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)
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Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps.
Then it suffices to prove:

i.e. R a simulation of A’ by A.
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Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps.
Then it suffices to prove:

i.e. R a simulation of A’ by A, with provisos...
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Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.
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Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

+ any new locations permanently locked.
i.e. No new shared state.

• R must be closed under lock-permitted shared memory havoc.
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Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

Similar for I.
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This talk

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification
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Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.
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Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

(Note: Constant-time execution steps, no cache effects)
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Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
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Proof of concept: a While-to-RISC compiler

Based on Fault-Resilient Non-interference [Tedesco et al, 2016].
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Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

Based on Fault-Resilient Non-interference [Tedesco et al, 2016].
Implemented in Isabelle/HOL, executable, verified.
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Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

• Theorem: R preserves per-thread compositional
value-dependent noninterference property

I for B produced by our type system (no H-branching).
I for I asserting equal pc and program text.

+

• Theorem: Compiler input is related to its output by R
I Started with same observable initial state.
I No branching on H values. (Same as for type system.)
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Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

Exercised on verified Cross Domain Desktop Compositor model.
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Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it?

CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+
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Thank you! Q & A
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Appendix: Co-habiting attacker?

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...
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CDDC case study, again.

Untrusted sink: input device event stream out to Low machine.
What else can we afford to distrust?

Hypothetically, a co-habiting “attacker”...
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... if it in fact cannot see/touch High nor locked part of state.
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Appendix: Co-habiting attacker?

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...

... if it in fact cannot see/touch High nor locked part of state.
This may be reasonable in, e.g. a separation kernel environment.
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Appendix: “Simpler” refinement
No H-branching (“L-shaped”) obligation:

Provisos and simulation relation: g

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)
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Appendix: CDDC 3-component
architecture verification

Invariant on integrity of Switch’s internal state w.r.t. indicator.
To appear: EuroS&P’18.
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