
THE UNIVERSITY OF
NEW SOUTH WALES

Per-Thread Compositional

Compilation for

Confidentiality-Preserving

Concurrent Programs

Robert Sison

13 Jan 2018

www.data61.csiro.au

A confidentiality-preserving
program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Data61/DSTG project for de-duplicating user-facing hardware.

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving
program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #1: value-dependent security classifications

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving
program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #1: value-dependent security classifications

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving
program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #1: value-dependent security classifications

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving
concurrent program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #2: shared-variable concurrency

3 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving
concurrent program

CDDC seL4-based software architecture:

3 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving
concurrent program

CDDC seL4-based software architecture (simplified model):

3 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
verification compilation

Challenge #3: per-thread compositionality of proofs

4 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
verification compilation

Challenge #3: per-thread compositionality of proofs

Mechanized in Isabelle/HOL. (More to appear: EuroS&P’18.)

4 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
verification compilation

Challenge #3: per-thread compositionality of proofs

4 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
compilation

Challenge #3: per-thread compositionality of proofs

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
compilation

Challenge #3: per-thread compositionality of proofs

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
compilation

Challenge #3: per-thread compositionality of proofs

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
compilation

Challenge #3: per-thread compositionality of proofs

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
compilation

Challenge #3: per-thread compositionality of proofs

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
compilation

Challenge #3: per-thread compositionality of proofs

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
compilation

Challenge #3: per-thread compositionality of proofs

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk a preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk a preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

7 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talka preview

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

7 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

Reflects the attacker model.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.

• A 2-safety hyperproperty.

• Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread, subject to havoc.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread, subject to havoc that obeys locking discipline.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositional property:

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositional property:

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositionality theorem [Murray+, CSF’16]:

Under the hood: assume-guarantee on variable access.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositionality theorem:

[Murray+, CSF’16] instantiated with locking primitives.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

[Murray+, CSF’16] instantiated with locking primitives.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property
Concurrent value-dependent noninterference.

Simplest policy: High 6→ Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

i.e. Locked state still not considered to be observable.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

11 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

11 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]

Given bisimulation B establishing the property, nominate R, I s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Given bisimulation B establishing the property,

nominate R, I s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Given bisimulation B establishing the property, nominate R, I s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Given bisimulation B establishing the property, nominate R, I s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Given bisimulation B establishing the property, nominate R, I s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Given bisimulation B establishing the property, nominate R, I s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Given bisimulation B establishing the property, nominate R, I s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Per-thread compositional refinement [Murray+, CSF’16]
Then B′ (= BT of B R I) establishes the target-level property:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Simpler proof technique than this!

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps s.t.

Easy to prove if no H-branching in A, and no new H-branching.

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps s.t.

Easy to prove if no H-branching in A

, and no new H-branching.

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps s.t.

(I as pc-security)
Easy to prove if no H-branching in A, and no new H-branching.

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps.
Then it suffices to prove:

i.e. R a simulation of A’ by A.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Simpler proof technique! Nominate R, I, abs steps.
Then it suffices to prove:

i.e. R a simulation of A’ by A, with provisos...

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

+ any new locations permanently locked.
i.e. No new shared state.

• R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

Provisos for R, I:

• R must preserve shared memory contents and locking state.
I Under the hood: preserve assumptions and guarantees.

• R must be closed under lock-permitted shared memory havoc.

Similar for I.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

13 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

13 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

(Note: Constant-time execution steps, no cache effects)

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

Based on Fault-Resilient Non-interference [Tedesco et al, 2016].

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

Based on Fault-Resilient Non-interference [Tedesco et al, 2016].
Implemented in Isabelle/HOL, executable, verified.

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c1 case:

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c1 case:

Relation is inductive for smaller program pairs c1, c2

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c1 case:

Relation is inductive for smaller program pairs c1, c2

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c1 case:

Relation is inductive for smaller program pairs c1, c2

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c1 case:

Relation is inductive for smaller program pairs c1, c2

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

• Theorem: R preserves per-thread compositional
value-dependent noninterference property

I for B produced by our type system (no H-branching).
I for I asserting equal pc and program text.

+

• Theorem: Compiler input is related to its output by R
I Started with same observable initial state.
I No branching on H values. (Same as for type system.)

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

• Theorem: R preserves per-thread compositional
value-dependent noninterference property

I for B produced by our type system (no H-branching).
I for I asserting equal pc and program text.

• Theorem: Compiler input is related to its output by R
I Started with same observable initial state.
I No branching on H values. (Same as for type system.)

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification

Per-thread simpler compositional refinement [Murray+, AFP],
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

Exercised on verified Cross Domain Desktop Compositor model.

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it?

CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?
Possibly too strict.

• Can existing compilers be proven to satisfy it?

CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?
Possibly too strict.

• Can existing compilers be proven to satisfy it?

CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source:

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?
Possibly too strict.

Relax for shared memory out of reach of attacker model?

• Can existing compilers be proven to satisfy it?

CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?
Possibly too strict.

Relax for shared memory out of reach of attacker model?

• Can existing compilers be proven to satisfy it?

CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it?

CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it? CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it? CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it? CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity?

AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it? CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity? AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it? CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity? AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas

• Optimisations to non-observable shared memory?

• Can existing compilers be proven to satisfy it? CompCert?
I small-step semantics, volatile R/W observable
I simulation of target by source

• Target models right for timing sensitivity? AVR, wasm?

• Branching on H values? Exercise with richer B, I:

+

Thank you! Q & A

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker?

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker?

CDDC case study, again.

Untrusted sink: input device event stream out to Low machine.

Hypothetically, a co-habiting “attacker”...

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker?

CDDC case study, again.

Untrusted sink: input device event stream out to Low machine.
What else can we afford to distrust?

Hypothetically, a co-habiting “attacker”...

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker?

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...?

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker?

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...

... if it in fact cannot see/touch High nor locked part of state.

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker?

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...

... if it in fact cannot see/touch High nor locked part of state.
This may be reasonable in, e.g. a separation kernel environment.

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: “Simpler” refinement
No H-branching (“L-shaped”) obligation:

Provisos and simulation relation: g

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

17 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Appendix: CDDC 3-component
architecture verification

Invariant on integrity of Switch’s internal state w.r.t. indicator.
To appear: EuroS&P’18.

18 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

