l ! ! |
N NS S ISANSNSN

AN NSNS NSN N
N
\ 'd ~ NS SN NN
iti S I
Per—Trlre?d Compositional PR
Compilation for | | |
Confidentiality-Preserving s~ 7
Concurrent Programs | |

Robert Sison | |
13 Jan 2018 7\

THE UNIVERSITY OF

NEW SOUTH WALES

A confidentiality-preserving DATA
program I ®

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Low
Network

Ll |
TII 1 High
Network

Data61/DSTG project for de-duplicating user-facing hardware.

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving

program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

DATA | %

—

Challenge #1: value-dependent security classifications

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving DATA
program I %

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #1: value-dependent security classifications

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving DATA
program I %

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #1: value-dependent security classifications

2 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving

DATA | %
concurrent program

Cross Domain Desktop Compositor (CDDC)
[Beaumont et al, 2016]

Challenge #2: shared-variable concurrency

3 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving DATA I %
concurrent program

CDDC selL4-based software architecture:

BEpue Output
pEsss Driver
T
-1
EuEsp
1 : .
THHAC Switch
e Input r
A T Driver <
[T ﬁ *
ag 8
o]
T
as
= Output
Driver

Overlay
Driver

3 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

A confidentiality-preserving DATA I %
concurrent program

CDDC sel4-based software architecture (simplified model):

HH
]

Switch

r

Shared-memory concurrency |
-—

Overlay
Driver

3 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
e . DATA | %
verification

Challenge #3: per-thread compositionality of proofs

L]0
L

| Value-dependent classification |

===
1

s
H
-

B DI

] ~—
Shared-memory concurrency |

-

Overlay
Driver

4 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional

verification
Challenge #3: per-thread compositionality of proofs

| Value-dependent classification |
==

res
]

1T

[
Shared-memory concurrency | New: L°C_k'be_'sed
synchronisation
T

Overlay
Driver

B DI

Mechanized in Isabelle/HOL. (More to appear: EuroS&P'18.)

DATA | %

4 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
e . IIIATA | %
verification

Challenge #3: per-thread compositionality of proofs

A, B, C etc.

obey I.

4 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
. IIIATA | %
compilation

Challenge #3: per-thread compositionality of proofs

A, B, C etc.
obey 3] Source

shared mem

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
. IIIATA | %
compilation

Challenge #3: per-thread compositionality of proofs

A, B, C etc.
obey [F] Source

shared mem

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
. IIIATA | %
compilation

Challenge #3: per-thread compositionality of proofs

A, B, C etc.
obey [F] Source

Target

shared mem |

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
. IIIATA | %
compilation

Challenge #3: per-thread compositionality of proofs

A, B, C etc.
obey [F] Source

Target

shared mem |

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
. IIIATA | %
compilation

Challenge #3: per-thread compositionality of proofs

A, B, C etc.
obey [F] Source

Target

shared mem |

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
. IIIATA | %
compilation

Challenge #3: per-thread compositionality of proofs

A, B, C etc.
obey [F] Source

A', B', C' etc

obey . Ta rg Et

shared mem |

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Per-thread compositional
. IIIATA | %
compilation

Challenge #3: per-thread compositionality of proofs

i | \g:’ obey ﬁtc' Source

A', B', C' etc

obey . Ta rg Et

5 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk EIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

A, B, C etc.
obey 3] Source

A', B', C' etc

ot;ey ! . Ta rg et

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview DATA
e

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

A, B, C etc.
obey 3] Source

A', B', C' etc

ot;ey u . Ta rg et

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview

IIIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

v | ¥l Source

| v | lv¥] | Target

shared mem

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview DATA | @
Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement

Part 3: While-to-RISC compiler verification

Source

Target

shared mem

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk: a preview DATA
e

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

Source

Target

6 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk EIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

A, B, C etc.
obey 3] Source

A', B', C' etc

ot;ey ! . Ta rg et

7 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk EIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

A, B, C etc.
obey 3] Source

A', B', C' etc

ot;ey ! . Ta rg et

7 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

Concurrent value-dependent noninterference.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property I{ATA D
noninterference. E S

Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property AT
| gl
noninterference. N~

Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

&

Reflects the attacker model.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

v

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

Yn .

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

e.g.
3 E
— T~
— T~ [/

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

e.g.
4 -
/_—‘\k—_/p
/’—__/ I/

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | ®

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

e.g.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

e.g.
4 -
/_—‘\k—_/p
/’—__/ I/

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property AT
| gl
noninterference. N~

Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

e.g.
5 E
— T~
/’—__/ [{/

o A 2-safety hyperproperty.

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.

e.g.

o A 2-safety hyperproperty.

e Timing-sensitive. (Want this for concurrency reasons.)

8 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

value-dependent noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

value-dependent noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

value-dependent noninterference.
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property I{ATA D
value-dependent noninterference. ﬂ S
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

User
selects
L

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property I{ATA D
value-dependent noninterference. ﬂ S
Simplest policy: High 4 Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

User
selects
H

9 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

Concurrent value-dependent noninterference.
Simplest policy: High 4 Low

Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | ®

Concurrent value-dependent noninterference.
Simplest policy: High 4 Low

Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

A B C

shared mem

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

L L] - /
The confidentiality property | @
Concurrent value-dependent noninterference. E S

Simplest policy: High 4 Low
Low part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

A
...

shared mem

Per-thread, subject to havoc.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

L L] - /
The confidentiality property | @
Concurrent value-dependent noninterference. E S

Simplest policy: High 4 Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

A
"

shar em

Per-thread, subject to havoc that obeys locking discipline.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

Concurrent value-dependent noninterference.

Simplest policy: High 4 Low

Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositional property:

Vn steps with havoc
’ obeying locks E

steps with same B ,
havoc as above v /

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

Concurrent value-dependent noninterference.

Simplest policy: High 4 Low

Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositional property:

Vn steps with havoc
’ obeying locks E

ﬂu’ n 1"
S JEEERLE

shaq-ﬂem F 4 A "T/' shaﬂ_ |;em

steps with same ,

havoc as above K
7
n U i 4
.
— ;
— iy - K
4 T sha em
4 ry r 7

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

Concurrent value-dependent noninterference.

Simplest policy: High 4 Low

Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositionality theorem [Murray+, CSF'16]:

L\ 4 ! v @
Guar X Asm X Guar X Guar X

?‘" 'm' "m W
sm;mame%‘ I ma'm% | s m%

AlB|C
ik
| shared mem ;

Under the hood: assume-guarantee on variable access.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

Concurrent value-dependent noninterference.

Simplest policy: High 4 Low

Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Per-thread compositionality theorem:

“low ... | |w/tlw... | low/S]... A, B, C etc.
"*““""“e% e m% | sr.m?m% T obey E
A|B

2%5---|

shared mem ;

[Murray+, CSF'16] instantiated with locking primitives.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

L L] - /
The confidentiality property | @
Concurrent value-dependent noninterference. E S

Simplest policy: High 4 Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

“low ... | letlw... | lww[]... A, B, C etc.
;,share‘,m% e m% | snm?m% T obey E
A|lB|C

HkE

shared mem

[Murray+, CSF'16] instantiated with locking primitives.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property I{ATA @

. b1
Concurrent value-dependent noninterference. \/

Simplest policy: High 4 Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

Vsched .

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property I{ATA @

. b1
Concurrent value-dependent noninterference. \/

Simplest policy: High 4 Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:

Vsched .

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

The confidentiality property DATA | %

Concurrent value-dependent noninterference.

Simplest policy: High 4 Low
Low, unlocked part of state must remain indistinguishable.
Classification of state as H or L can vary over time.

Whole-system property:
Vsched .

~IBIS . sched 818151 ---

shar{ @ jem |

Vv,

>
Ao
ale)
NS
NWla)

S[s|s |/ sched
o T T~

sharg g hem |’

i.e. Locked state still not considered to be observable.

10 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk EIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

A, B, C etc.
obey . Source

A', B', C' etc

obey . Ta rg et

11 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk

IIIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

LS Source

Lo jwel |- Target

shared mem

11 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Per-thread compositional refinement [Murray+, CSF'16] \ e

I L Source

v jeel - Target

shared mem |

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Per-thread compositional refinement [Murray+, CSF'16] \ e

Source

Target

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation AT
|

Per-thread compositional refinement [Murray+, CSF'16] ™
Given bisimulation B establishing the property,

Source

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation AT
|

Per-thread compositional refinement [Murray+, CSF'16] ™~~~
Given bisimulation B establishing the property, nominate R, Z s.t.:

Source

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Per-thread compositional refinement [Murray+, CSF'16] \ -~
Given bisimulation B establishing the property, nominate R, Z s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Per-thread compositional refinement [Murray+, CSF'16] \ -~
Given bisimulation B establishing the property, nominate R, Z s.t.:

dn .

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation AT
|

Per-thread compositional refinement [Murray+, CSF'16] ™~~~
Given bisimulation B establishing the property, nominate R, Z s.t.:

dn .

H
-/\/\)2 [T
[
&«

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation AT
|

Per-thread compositional refinement [Murray+, CSF'16] ™~~~
Given bisimulation B establishing the property, nominate R, Z s.t.:

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Per-thread compositional re
Then B’ (= Br_-of BRI)

finement [Murray+, CSF'16] \ e
establishes the target-level property:

' B ‘ Source

A A
" 1 e .| -
shi;r'ﬂ'lem | shé@em | /,

wofalen] el

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Simpler proof technique than this!

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Simpler proof technique! Nominate R, Z, abs_steps s.t.

n = abs_steps A, A,

n = abs_steps A, A"}

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Proof technique for compilation DATA | %

Simpler proof technique! Nominate R, Z, abs_steps s.t.
dn .

n = abs_steps A, A,

n = abs_steps A, A"}

Easy to prove if no H-branching in A

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Proof technique for compilation DATA | %

Simpler proof technique! Nominate R, Z, abs_steps s.t.

dn N
; N = abs_steps A, A',
A,
' 1} " n = abs_steps A, A"}
shar'ﬂ'lem

shér'ﬂlem | A'1 shér(ﬂem | ,‘/ .
(Z as pc-security)

Easy to prove if no H-branching in A, and no new H-branching.

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Proof technique for compilation AT
e

Simpler proof technique! Nominate R, Z, abs_steps.
Then it suffices to prove:

dn . n= abs_steps A A'

'7 P -'...
2
s :

i.e. R a simulation of A" by A.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Simpler proof technique! Nominate R, Z, abs_steps.
Then it suffices to prove:

dn . n= abs_steps A A'

!-7 Ao [lewe
R R

- g
&)

i.e. R a simulation of A’ by A, with provisos...

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Provisos for R, Z:

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

A
!"

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Provisos for R, Z:

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation I{ATA D

b1
Provisos for R, Z: N

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

+ any new locations permanently locked.
i.e. No new shared state.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Provisos for R, Z:

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

e R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Provisos for R, Z:

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

e R must be closed under lock-permitted shared memory havoc.

A
!u’

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Provisos for R, Z:

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

e R must be closed under lock-permitted shared memory havoc.

A A
;"... <"

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation DATA | %

Provisos for R, Z:

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

e R must be closed under lock-permitted shared memory havoc.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Proof technique for compilation

DATA | %

e R must preserve shared memory contents and locking state.
» Under the hood: preserve assumptions and guarantees.

Provisos for R, Z:

e R must be closed under lock-permitted shared memory havoc.

A
)
shir*ﬁlem |

.
ey

sharf@Jem]| equal only if locked!

Similar for 7.

12 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk

IIIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

LS Source

Lo jwel |- Target

shared mem

13 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

This talk EIATA | %

Part 1: Concurrent value-dependent noninterference
Part 2: Per-thread compositional refinement
Part 3: While-to-RISC compiler verification

Source

Target

shared mem

13 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray+, AFP]\ e
instantiated with R characterising a compiler.

dn . n = abs_steps A A’

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ e
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

'Whlle (Imperatlve): i RISC (Assembly)
' Seq (i.e.cp;;) ' ' loadrv
i Assign (i.e.vee) ! E Storevr
i Ifecc Jmp | E
i Whileec v ! JzlIr :
: Ski ' ' Nop '
ro P |

(Note: Constant-time execution steps, no cache effects)

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.
Proof of concept: a While-to-RISC compiler

* Seq (i.e. ¢y ;; Cy)

e Assign (i.e.v < e)

e [storevr]

elfec;c,

| I
[e Tzr] o Jimp] o |
| I

* While e c * Skip

¥ |
(e 1=l « T e Dmp]

Based on Fault-Resilient Non-interference [Tedesco et al, 2016].

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

* Seq (i.e. ¢; ;i) « LockAcq | New!
LockAcq |
""""""""""" ixed!
+ Assignie. v e)) " Fixed! « LockRel |
m LockRel |
cifec, ¢

| I
[e Tzr] o Jimp] o |
| I

« While e c Simplified! * Skip
¥]
= Tl < Tl [Nop |
I

Based on Fault-Resilient Non-interference [Tedesco et al, 2016].
Implemented in Isabelle/HOL, executable, verified.

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct

Ifec;c

e Jzr| < |Jmp Cy
|

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct
Ifec,c
VABNN | y
e

Jzr| < |Jmp Cy
|

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

- e e L] /
Compiler verification ey %
b1

Per-thread simpler compositional refinement [Murray+, AFP];>
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c; case:
Ifec;c

/BN
e

[
er| Cq |Jmp Cy
|

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c; case:

Ifec,c, ~ G

VBN | y
e

Jzr| < |Jmp Cy
|

Relation is inductive for smaller program pairs c1, ¢

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c; case:
Ifecic, ~ G ~ ..

VIENNSERANY//2\ N y

e Jzr| < |Jmp| o

|

Relation is inductive for smaller program pairs c1, ¢

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c; case:
Ifecic; ~ ¢ ~ ... ~ Stop
/I \\ \ TN T, !

Jzr| < |Jmp Cy
|

Relation is inductive for smaller program pairs c1, ¢

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e.g. R cases for If construct, c; case:

Ifec,c; ~ € ~ ... ~ Stop
/]T \\\ N2\ !
lerl a [Jmp]

Relation is inductive for smaller program pairs c1, ¢

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e Theorem: R preserves per-thread compositional
value-dependent noninterference property

» for B produced by our type system (no H-branching).
» for Z asserting equal pc and program text.

_ n = abs steps A, A", dn . n = abs_steps A A’

B 1=

o ... n= abs_steps A, A';

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP],\ e
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

e Theorem: R preserves per-thread compositional
value-dependent noninterference property
» for B produced by our type system (no H-branching).
» for Z asserting equal pc and program text.

e Theorem: Compiler input is related to its output by R

» Started with same observable initial state.
» No branching on H values. (Same as for type system.)

' While (Imperative) :

...................

» RISC (Assembly)

: Seq (i.e. ¢; ;; Co) E E Loadrv
i Assign (le.vee) b : Store v r E
v Ifecic, Jmp | :
v Whileec Jzlr '

Skip Nop

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray-+, AFP]\ 7~
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler

Source

Target

shared mem

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification DATA D

Per-thread simpler compositional refinement [Murray+, AFP]\ e
instantiated with R characterising a compiler.
Proof of concept: a While-to-RISC compiler

A, B, C etc.
obey Source

A', B', C' etc

ol:;ey' . Ta rg et

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Compiler verification 1ATA | %

Per-thread simpler compositional refinement [Murray+, AFP];>
instantiated with R characterising a compiler.

Proof of concept: a While-to-RISC compiler
A, B, C etc.

ﬂf:m%) | "’U"“'”'JJ l-:DJ obey [] Source
g

Yew ... | o] ww[<l... A', B!, C' etc.
1_”%' EJ | MDJ obey [] Target

A'|B'|C'

212]¢

shared mem ;
s

Exercised on verified Cross Domain Desktop Compositor model.

14 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

¢ Optimisations to non-observable shared memory?

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?
Possibly too strict.

A
v’

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?
Possibly too strict.

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?
Possibly too strict.

Relax for shared memory out of reach of attacker model?

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?
Possibly too strict.

Relax for shared memory out of reach of attacker model?

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?
o Can existing compilers be proven to satisfy it?

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?

e Can existing compilers be proven to satisfy it? CompCert?
» small-step semantics, volatile R/W observable
» simulation of target by source

dn.n= abs_steps A A'

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?

e Can existing compilers be proven to satisfy it? CompCert?
» small-step semantics, volatile R/W observable
» simulation of target by source

dn.n= abs_steps A A'

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?
e Can existing compilers be proven to satisfy it? CompCert?

» small-step semantics, volatile R/W observable
» simulation of target by source

o Target models right for timing sensitivity?

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas DATA | %

e Optimisations to non-observable shared memory?
e Can existing compilers be proven to satisfy it? CompCert?

» small-step semantics, volatile R/W observable
» simulation of target by source

o Target models right for timing sensitivity? AVR, wasm?

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas IDATA | %

Optimisations to non-observable shared memory?
Can existing compilers be proven to satisfy it? CompCert?

» small-step semantics, volatile R/W observable
» simulation of target by source

Target models right for timing sensitivity? AVR, wasm?

Branching on H values? Exercise with richer B, Z:

= abs_steps A, A,
e An . n = abs_steps A A’

/| m = abs steps A, A, k3 .’ n W"

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Limitations and future work ideas IDATA | %

Optimisations to non-observable shared memory?

Can existing compilers be proven to satisfy it? CompCert?

» small-step semantics, volatile R/W observable
» simulation of target by source

Target models right for timing sensitivity? AVR, wasm?

Branching on H values? Exercise with richer B, Z:

= abs_steps A, A,
e An . n = abs_steps A A’

/| m = abs steps A, A, k3 .’ n W"

Thank you! Q & A

15 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker? DATA | @

CDDC case study, again.

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker? IDATAI®

CDDC case study, again.

Untrusted sink: input device event stream out to Low machine.

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker? DATA | @

CDDC case study, again.

Untrusted sink: input device event stream out to Low machine.
What else can we afford to distrust?

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker? DATA | @

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...?

$3 5w

shared m;hﬁ/_|

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker? DATA | @

CDDC case study, again.

Hypothetically, a co-habiting “attacker”...

A B C M?

3 3 9T

shared

. if it in fact cannot see/touch High nor locked part of state.

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: Co-habiting attacker? 7.,
1@

CDDC case study, again.

. if it in fact cannot see/touch High nor locked part of state.
This may be reasonable in, e.g. a separation kernel environment.

16 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

Appendix: “Simpler” refinement IDATAI®

No H-branching (“L-shaped”) obligation:

891 definition

892 simpler_refinement_safe

893 where

894 "simpler_refinement_safe Ry R P abs_steps =

895 Wcyip mdsy memip Cap Memas €ic mdsc memic cac memac. ({c1a, mdss, memyg)s, {Con, mdsy, memana) € Ra A

896 ({c 1z, mds s, memya)n, (c1c, mdse, memicic) € R A ({con, mdsy, memog)s, {c2c, mdsc, memacic) € R A

897 ({cic, mdsc, memicle, {cac, mdsc, memacie) € P —

898 (stopsc {cic, mdsc, memicic = stopsc {cac, mdsc, memachc) A

899 (abs_steps {cis,mdss,memigis {c1c, mdse, memicic = abs_steps {cox,mdsa,memzs)s {(Cac, mdsc, memacig) A
200 (¥mds ' mdsac' memjc' memac' cic' cac' . (c1c, mdsc, memicic ~oc {cic', mdsic', memic'lc A

901 (cac, mdsc, memaclc ~xc {cac', mdSac', memac'lc —s

902 ({cic', mdsic', memic'lc, {cac', mdsac', memac')c) € P A

903 mdsic' = mdsac')"

Provisos and simulation relation:

905 definition

908 secure_refinement_simpler

907 where

908 "secure_refinement_simpler Ry R P abs_steps =
909 closed_others R »

610 preserves modes_mem R A

91l new_vars_private R A

o12 simpler_refinement_safeflR. R P abs_steps A
813 conc.closed glob_consistent P A

914 (V¥ cyp mdsy memyy cic mdsc memic.

815 ((cia, mdsa, memia ja, (Cac, mdsc, memic jo) € R —

a6 (¥ cic' mdsc' memic'. { cic, mdsc, memic ¢ ~oc { cic', mdsc', memyc' ¢ —
a7 (3 cya' mdsy' memy' . abs.neval { ca, mdss, memys s (abs_steps (cia,mdss,memysy (cic,mdsc,memichc) (|cia’, mdsy', memu' Ja A
918 ({ cia', mdsy', memia' Ja, { €ic', mdsc', memic' jo) € R)))I*

(See: https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html)

17 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.html

Appendix: CDDC 3-component DATA
architecture verification I®

HHH Inter-component invariant
- , |
H-H
-..-: =
+H Switch
11
Eugs Input [
H HT Driver o
ﬁ New: Lock-associated o
invariants
- Overlay

Driver

Invariant on integrity of Switch's internal state w.r.t. indicator.
To appear: EuroS&P'18.

18 | Per-Thread Compositional Compilation for Confidentiality-Preserving Concurrent Programs | Robert Sison

