
Extended version: 1st July 2019. To appear in ITP 2019

Verifying that a compiler preserves concurrent
value-dependent information-flow security
Robert Sison
Data61, CSIRO, Australia
UNSW Sydney, Australia
Robert.Sison@data61.csiro.au

Toby Murray
University of Melbourne, Australia
toby.murray@unimelb.edu.au

Abstract
It is common to prove by reasoning over source code that programs do not leak sensitive data.
But doing so leaves a gap between reasoning and reality that can only be filled by accounting for
the behaviour of the compiler. This task is complicated when programs enforce value-dependent
information-flow security properties—in which classification of locations can vary depending on values
in other locations—and complicated further when programs exploit shared-variable concurrency.

Prior work has formally defined a notion of concurrency-aware refinement for preserving value-
dependent security properties. However, that notion is considerably more complex than standard
refinement definitions typically applied in the verification of semantics preservation by compilers.
To date it remains unclear whether it can be applied to a realistic compiler, because there exist no
general decomposition principles for separating it into smaller, more familiar, proof obligations.

In this work, we provide such a decomposition principle, which we show can almost halve
the complexity of proving secure refinement. Further, we demonstrate its applicability to secure
compilation, by proving in Isabelle/HOL the preservation of value-dependent security by a proof-of-
concept compiler from an imperative While language to a generic RISC-style assembly language,
for programs with shared-memory concurrency mediated by locking primitives. Finally, we execute
our compiler in Isabelle on a While language model of the Cross Domain Desktop Compositor,
demonstrating to our knowledge the first use of a compiler verification result to carry an information-
flow security property down to the assembly-level model of a non-trivial concurrent program.

2012 ACM Subject Classification Security and privacy → Logic and verification; Security and
privacy → Information flow control; Software and its engineering → Compilers

Keywords and phrases Secure compilation, Information flow security, Concurrency, Verification

Supplement Material The Isabelle/HOL theories are available at https://covern.org/itp19.html.

Funding Robert Sison: Australian Government RTP Scholarship & Data61 Research Project Award

Acknowledgements We would like to thank our anonymous reviewers, as well as Carroll Morgan,
Kai Engelhardt, Gerwin Klein, Christine Rizkallah, Matthew Brecknell, Johannes Åman Pohjola,
and Qian Ge, for their very helpful feedback on earlier versions of this paper.

1 Introduction

It is well known that program translations of the kind carried out by compilers can in
principle break security properties like confidentiality [12, 2]. Yet source level reasoning
about confidentiality remains common [20, 19, 18]. Existing verified compilers like CompCert
[15] and CakeML [14] preserve semantics, but semantics preservation alone may be insufficient
to preserve confidentiality, especially for shared memory concurrent programs whose threads
must guard against timing leaks in order to prevent them manifesting as storage leaks [22].

1

ar
X

iv
:1

90
7.

00
71

3v
1

 [
cs

.L
O

]
 1

 J
ul

 2
01

9

https://orcid.org/0000-0003-0313-9764
mailto:Robert.Sison@data61.csiro.au
mailto:toby.murray@unimelb.edu.au
https://covern.org/itp19.html

Extended version: 1st July 2019. To appear in ITP 2019

coupling-inv-pres B R I ≡
∀lc1A lc1C . (lc1A, lc1C) ∈ R −→

(∀lc′
1C . lc1C C lc′

1C −→
(∃n lc′

1A. lc1A
n
A lc′

1A ∧ (lc′
1A, lc′

1C) ∈ R ∧
(∀lc2A lc2C lc′

2A. (lc1A, lc2A) ∈ B ∧ lc1A =mds lc2A ∧
(lc2A, lc2C) ∈ R ∧ (lc1C , lc2C) ∈ I ∧
lc1C =mds lc2C ∧ lc2A

n
A lc′

2A ∧ lc′
1A =mds lc′

2A

−→ (∃lc′
2C . lc2C C lc′

2C ∧ lc′
1C =mds lc′

2C ∧
(lc′

2A, lc′
2C) ∈ R ∧ (lc′

1C , lc′
2C) ∈ I))))

1A
n

1A′

2A
n

2A′

B B

I I

abstract
execution

concrete
execution

R

R

R

R

1C 1 1C′

2C 1 2C′

Figure 1 Definition, graphical depiction of refinement preservation for secure-refinement (Def. 6)

Supporting secure compilation of programs that must enforce value-dependent security
policies poses an additional challenge, because in such policies the sensitivity of a memory
location can depend on the values held in other memory locations. Thus, unlike prior work
on secure compilation [4], preserving security under refinement requires a refinement relation
that is strong enough to preserve those memory contents on which the policy depends.

In prior work [22], we presented a definition for a notion of value-dependent security-
preserving refinement that is compositional for concurrent programs: by applying it to each
thread individually, one can derive a secure refinement of the concurrent composition.

The essence of this notion of security-preserving refinement (presented fully in Section 2.2)
is in its refinement preservation obligation (coupling-inv-pres in Figure 1). Here, the usual
square-shaped commuting diagram that is commonly used to depict (semantics-preserving)
refinement (Figure 4a) has been replaced by a cube (Figure 1). The additional dimension of
this cube reflects that it preserves a 2-safety hyperproperty [6] that compares two executions
rather than examining a single one. As such, it is significantly more complicated to prove than
standard notions of semantics-preserving refinement typical in verified compilation [15, 14].

To date there exist no verified compilers for shared-variable concurrent programs proved to
preserve value-dependent information-flow security. We argue that without a decomposition
principle the cube-shaped refinement notion is too cumbersome to prove for realistic compilers.

In this paper, we tackle the central problem of making our notion of secure refinement
applicable to verified secure compilation. Firstly, we present a decomposition principle that
makes the cube-shaped notion more tractable. Secondly, we demonstrate its tractability
with our major contribution: a machine-checked formal proof of concurrent value-dependent
security preservation, for a proof-of-concept compiler.

In Section 3 we present our decomposition principle, which decomposes the cube (Figure 1)
into three separate obligations (Figure 4). The first of these is akin to semantics-preserving
refinement, while the second and third essentially ensure together that the refinement has
not introduced any termination- and timing-leaks.

In Section 4 we show how the decomposition principle can almost halve the effort to
prove secure refinement – in this case, of a program that is especially prone to introduced
timing leaks because it branches on secrets (a feature not yet allowed by our compiler).
There, we present a side-by-side comparison of the proof effort, both with and without the
decomposition principle. We find that using it reduces the proof’s complexity by 44%.

In Section 5, we present our compiler and its formal verification, as an application of
the decomposition principle. This compiler translates concurrent programs written in an
imperative While language, with locking primitives for mediating access to shared memory,

2

Extended version: 1st July 2019. To appear in ITP 2019

into a RISC-style assembly language. It does so by compiling each thread individually, and
in doing so preserves a formal security property that remains compositional between threads.
Furthermore, our compiler demonstrates a way of formalising and proving when it is safe
for a compiler to perform optimisations in the presence of concurrency. To ensure that
the contents of shared memory locations are preserved under compilation despite potential
interference from other threads, our compiler tracks which shared memory locations are
stable (free from any such interference). It then makes use of this tracking to avoid redundant
loads from stable shared variables safely, that would otherwise be considered unsafe to omit.

All results are mechanised in Isabelle/HOL,1 and in Section 6 we explain how, in order
to validate our theory, we instantiated it so that we could execute our compiler in Isabelle.
This enabled us to execute it over a While language model of the Cross Domain Desktop
Compositor [5] (CDDC), a concurrent program that enforces information flow control over
value-dependently classified input. To our knowledge this is the first proof of information
flow security for an assembly-level model of a non-trivial concurrent program, demonstrating
the power of verified secure compilation for deriving security properties of compiled code.

2 Background and example

We begin by introducing with an illustrative example (Figure 2) the challenges of verifying
value-dependent information-flow security in the presence of shared-variable concurrency.

Consider the task of verifying a multithreaded system that manages the user interface (UI)
for a dual-personality smartphone, a phone that provides clearly distinguished user contexts
(personalities), typically for work versus leisure. Specifically, our task is to verify that it does
not leak sensitive information intended only for one of those personalities, which we classify
High (Figure 2b), to locations belonging to the other, which we classify Low (Figure 2c).

Here and generally, our attacker model is an entity that can read from the system’s untrus-
ted sinks: some subset of permanently Low-classified locations not subject to synchronisation.
In our example, this may include WLAN device registers in a hostile environment.

The smartphone’s UI system consists of a number of threads running concurrently with a
shared address space, and we aim to verify that as a whole it satisfies the security requirement.
But to avoid a state space explosion that is exponential in the number of threads, we must
do this compositionally: one thread at a time, then combining the results of these analyses.

We focus on a particular worker thread (Figure 2a), the one responsible for sending
touchscreen input from the source variable to its intended destination.

The first challenge is that the destination depends on which personality the phone is
currently providing, which is indicated by the value of domain. This is reflected by the
classification of source being dependent on the value of domain: source is classified Low
exactly when domain = LOW (where LOW is a designated constant), and is classified High
otherwise. Due to this dependency, domain is known as a control variable of source.

The second challenge is the worker thread runs in a shared address space that might
be accessed or modified by other threads, for various purposes. One of these threads may
be responsible for maintaining that domain = LOW exactly when the phone indicates it is
providing the Low personality (Figure 2c), so the user knows not to type in anything sensitive.
Another thread may be responsible for assigning suspended :=TRUE when the user turns the
phone’s screen off, to make the worker stop processing touchscreen input. We may then wish

1 The wr-compiler totals ∼7k lines, and verification + compilation of the 2-thread CDDC model totals
∼1.6k lines of Isabelle proof script, excluding whitespace and comments. See “Supplement Material”.

3

Extended version: 1st July 2019. To appear in ITP 2019

while TRUE do
lock(workspace_lock);
while !suspended do

lock(source_lock);
workspace := source;
/* . . . operations on workspace . . . */
if domain = LOW then

low_sink := workspace
else

high_sink := workspace;
workspace := 0

fi;
unlock(source_lock)

od;
unlock(workspace_lock);
while suspended do skip od

od
(a) Input processing worker thread program

(b) The phone providing the High personality:
domain 6= LOW, and source is classified High
to reflect that the user might type in secrets.

(c) The phone displaying visual indicators that
it is providing the Low personality: domain =
LOW, and source is classified Low to reflect
that we trust the user not to type in secrets.

Figure 2 Example: Touchscreen input processing for a dual-personality smartphone

for workspace to be usable by some other thread—e.g. processing input from a fingerprint
scanner—in such a way that it can assume workspace no longer contains any sensitive values.

When we analyse one thread like this worker in terms of our compositional security
property (Section 2.1), all of the other threads in the system are trusted to do two things:
1. They follow a synchronisation scheme: here, if read- or write-access to a certain variable

is governed by a lock, they must hold it in order to access the variable in that manner.
2. They themselves do not leak values from High-classified locations (we refer to such values

themselves as High) to Low-classified locations that are read-accessible to other threads.
Note we are proving that the thread we are analysing can be trusted in the same way.

Even under these assumptions, the concurrency gives rise to some tricky considerations.
Firstly, it is important that no thread in the system (including the thread under analysis)

modifies any control variables carelessly. For example, writing domain := LOW immediately
after the worker reads a High value from source, will cause it to leak to low_sink. To prevent
this, the worker uses source_lock, granting it exclusive write-access to source and domain.

Furthermore as noted above, we may want to ensure that a non-attacker-observable
location is nevertheless cleared of any sensitive values before being used by another thread.
In our example, we classify workspace Low for the analysis to enforce this when the worker
is suspended, but as the worker sometimes uses it to process High values, it is important to
know workspace is accessible only to the worker during that time. To ensure this, the worker
uses workspace_lock, granting it exclusive read- and write-access to workspace. It is then
responsible for clearing it of any High values by the time it releases exclusive read-access.

2.1 Concurrent value-dependent noninterference (CVDNI)

Having illustrated the challenges with an example, we now focus on the formalisation of our
information-flow security property CVDNI, which we target with our per-thread analysis,
and which our compiler preserves. It is defined in terms of two main elements:

4

Extended version: 1st July 2019. To appear in ITP 2019

1. a binary strong low-bisimulation (modulo modes) relation B between program configur-
ations, that establishes the required information-flow security property. Like Goguen
& Meseguer-style noninterference [10], any states it relates must agree on their “low”
portions, and it demands that lock-step execution preserve that correspondence. This
section will explain how it is specialised further for shared-variable concurrency.

2. a classification function L that determines the “low” portion of a program configuration,
thus affecting B’s requirements. Unlike [10] however, L here can depend on values in the
program configuration itself, thus expressing dynamic and not just static classifications.

We now present definitions from Section III-2b of our previous work [22] simplified
as noted. The theory is parameterised over the type of values Val, a finite set of shared
variables Var , and a deterministic evaluation step semantics between local configurations
(of a thread in a concurrent program) each denoted by a triple 〈tps, mds, mem〉:

tps is the thread-private state, which is permanently inaccessible to the attacker and the
other threads. Note that due to this inaccessibility, we allow the user of the theory to
parameterise the type of tps, and do not impose any particular structure.
mds :: Mode ⇒ Var set is the (access) mode state, which is ghost state associating each
Mode = {AsmNoW, AsmNoRW, GuarNoW, GuarNoRW} with a set of shared vari-
ables. Intuitively, it identifies the set of variables for which the thread currently possesses
(or respects) a kind of exclusivity of access granted (or obligated) by a synchronisation
scheme. This facilitates compositional, assume-guarantee [11] style reasoning. For ex-
ample, when our worker thread holds source_lock, it assumes no other threads write to
source or its control variable ({source, domain} ⊆ mds AsmNoW), otherwise it guar-
antees it does not write to them (GuarNoW). Similarly, holding workspace_lock it
assumes no other threads read or write to workspace (workspace ∈ mds AsmNoRW),
and at all other times it makes the corresponding guarantee (GuarNoRW).
mem :: Mem is shared memory considered potentially accessible to the attacker and
other threads. In order to make what is accessible amenable to analysis, we impose the
structure Mem = Var ⇒ Val, a total map from shared variable names to their values.

The theory is then further parameterised by the value-dependent classification function
L :: Mem ⇒ Var ⇒ {High, Low}, and a function Cvars :: Var ⇒ Var set that returns all the
control variables of a given variable. In our worker thread example, L mem x gives:

High when x is high_sink, meaning high_sink is classified High at all times.
when x is source: Low if mem domain = LOW, and High otherwise.
Low for all other variables x, meaning they are classified Low at all times.

The set C = {y | ∃x. y ∈ Cvars x} is then defined to contain all control variables in the
system. Thus in our worker thread example, Cvars source = {domain} and C = {domain}.

To support compositionality for concurrent programs, the “low” portion demanded
to be equal by the analysis is tightened up to be modulo modes – it includes non-control
variables only if they are assumed to be readable by other threads according to the mode state:
readable mds x ≡ x /∈ mds AsmNoRW. Thus intuitively, the user of the theory should model
permanent untrusted output sinks of the whole concurrent program, as variables for which
L always returns Low, ungoverned by any synchronisation scheme that the attacker cannot
be trusted to follow. (In our example, low_sink is untrusted permanently in this way, but
workspace is untrusted only when unlocked.) The notion of observational indistinguishability
used for the noninterference property is then defined over memories as follows.

5

Extended version: 1st July 2019. To appear in ITP 2019

I Definition 1 (Low-equivalent memories modulo modes).

mem1 =Low
mds mem2 ≡

∀x. x ∈ C ∨ L mem1 x = Low ∧ readable mds x −→ mem1 x = mem2 x

For this paper, we will use notation lc1 =Low
mds lc2 to lift =Low

mds to local program configurations,
asserting also that lc1 and lc2 are modes-equal (have the same mode state). Additionally, we
will use notation lc1 =mds lc2 to denote (alone) that lc1 and lc2 are modes-equal.

The per-thread compositional security property com-secure asserts the existence of a
witness relation B for every possible observationally equivalent pair of starting configurations:

I Definition 2 (Per-thread compositional CVDNI property).

com-secure (tps, mds) ≡ ∀mem1 mem2. mem1 =Low
mds mem2 −→

(∃B. strong-low-bisim-mm B ∧ (〈tps, mds, mem1〉, 〈tps, mds, mem2〉) ∈ B)

where all such witness relations B must be a strong low-bisimulation (modulo modes):

strong-low-bisim-mm B ≡ cg-consistent B ∧ sym B ∧
(∀lc1 lc2. (lc1, lc2) ∈ B ∧ lc1 =mds lc2 −→ lc1 =Low

mds lc2 ∧
(∀lc′

1. lc1 lc′
1 −→ (∃lc′

2. lc2 lc′
2 ∧ lc′

1 =mds lc′
2 ∧ (lc′

1, lc′
2) ∈ B)))

That is, B must maintain observational indistinguishability by requiring that all configur-
ation pairs it relates that have the same mode state, are low-equivalent modulo modes.

Furthermore, it must be a bisimulation by being symmetric and progressing to itself : any
step taken by one of the configurations must be able to be matched by a step taken by the
configuration related to it, such that the destinations remain related by B (and modes-equal).

Finally—and the most crucial element ensuring the property’s compositionality for con-
current programs—is the condition that B must be cg-consistent: closed under globally
consistent changes made to memory by other threads, which is to say, changes that preserve
low-equivalence and are permitted by the current mode state mds. Specifically, the environ-
ment (of other threads) is permitted to change either of variable x’s value or its classification
only when x is writable: writable mds x ≡ x /∈ mds AsmNoW ∧ x /∈ mds AsmNoRW.

I Definition 3 (Closedness under globally consistent changes).

cg-consistent B ≡ ∀tps1 mem1 tps2 mem2 mds.

(〈tps1, mds, mem1〉, 〈tps2, mds, mem2〉) ∈ B −→
(∀mem′

1 mem′
2. (∀x. (mem1 x 6= mem′

1 x ∨ mem2 x 6= mem′
2 x ∨

L mem1 x 6= L mem′
1 x) −→ writable mds x) ∧ mem′

1 =Low
mds mem′

2 −→
(〈tps1, mds, mem′

1〉, 〈tps2, mds, mem′
2〉) ∈ B)

Theorem 3.1 of our prior work [22] then gives us that the parallel composition of com-secure
programs is itself a program that enforces a system-wide value-dependent noninterference
property (sys-secure, for whose details we refer the reader to Section III-2(a) of [22]).

2.2 CVDNI-preserving refinement
Having described the formal security property that we wish to be preserved under refinement
(and compilation), we now define formally a suitable notion of secure refinement that preserves
it. The proof of CVDNI-preserving refinement for a thread of a concurrent program relies on
two binary relations (illustrated by Figure 3) to be nominated by the user of the theory:

6

Extended version: 1st July 2019. To appear in ITP 2019

if h 6= 0 then
x := y

else
x := y + z

fi
(a) Abstract if-conditional.
RelationR pairs configurations of
this program with configurations
of the program in Figure 3b that
are of the same-shaded region.

reg3 := h;
if reg3 6= 0 then

skip;
skip;
reg0 := y;
x := reg0

. . .

. . .

else
reg1 := y;
reg2 := z;
reg0 := reg1 + reg2 ;
x := reg0

fi
(b) Concrete if-conditional. Relation I pairs configurations
of this program as shown by the dashed lines.

Figure 3 Excerpts from refinement example [22] that was used to compare proof effort (Section 4).

1. a refinement relation R relating local configurations of the abstract program to local
configurations of the concrete program: abstract must simulate concrete, in a sense typical
of much other work on program refinement, including compiler verification efforts.

2. a concrete coupling invariant I that allows us to use B and R to build a new strong
low-bisimulation (modulo modes) for the concrete program, by discarding unreachable
pairs of local configurations after the refinement. It thereby witnesses that any changes a
refinement (or compiler) makes to execution time, do not introduce any timing channels.

The essence of the proof technique is to require that a number of conditions—analogous to
those for strong-low-bisim-mm—be imposed on the nominated R and I in relation to a given
witness relation B establishing CVDNI for the abstract program. The definitions to follow
are adapted from Murray et al. [22] Section V. For better readability, we present a simplified
version in which no new shared variables are added by the refinement. Consequently we
introduce the notation =mem

mds to denote that two local configurations have equal mode state
and memory, regardless of whether relating configurations of the same or differing languages.

Regarding the maintenance of modes- and observational-equivalence across the relation,
the restrictions on refinement are tighter than those that applied to strong-low-bisim-mm.
The refinement relation R is required to preserve the shared memory in its entirety:

I Definition 4 (Preservation of modes and memory).

preserves-modes-mem R ≡ ∀lcA lcC . (lcA, lcC) ∈ R −→ lcA =mem
mds lcC

Regarding the closedness under changes by other threads that ensures compositionality
for concurrency, on I we again impose cg-consistent (Definition 3) from Section 2.1. However
in the case of R, we instead impose closed-others, a simplification of cg-consistent considering
only environmental actions that affect the memories on both sides of the relation identically.
Furthermore it ensures equality of all shared variables, not just those judged observable:

I Definition 5 (Closedness of refinements under changes by others).

closed-others R ≡ ∀tpsA tpsC mds mem mem′.

(〈tpsA, mds, mem〉A, 〈tpsC , mds, mem〉C) ∈ R) ∧
(∀x. (mem x 6= mem′ x ∨ L mem x 6= L mem′ x) −→ writable mds x) −→
(〈tpsA, mds, mem′〉A, 〈tpsC , mds, mem′〉C) ∈ R)

The final major requirement for CVDNI-preservation is then to prove R and I closed
simultaneously under the pairwise executions of the concrete and abstract programs, using

7

Extended version: 1st July 2019. To appear in ITP 2019

the aforementioned cube-shaped diagram (coupling-inv-pres, Figure 1) whose edges are pairs
in B, R, and I. All that then remains is for the nominated concrete coupling invariant I to
be symmetric, and the predicate secure-refinement puts together all the requirements:

I Definition 6 (Requirements for secure refinement of the per-thread CVDNI property).

secure-refinement B R I ≡ preserves-modes-mem R ∧ closed-others R ∧
cg-consistent I ∧ sym I ∧ coupling-inv-pres B R I

Theorem 5.1 of our prior work [22] gives us that under the aforementioned conditions,

BCof B R I ≡ {(lc1C , lc2C) | ∃lc1A lc2A. (lc1A, lc1C) ∈ R ∧ (lc2A, lc2C) ∈ R ∧
(lc1A, lc2A) ∈ B ∧ lc1C =Low

mds lc2C ∧ (lc1C , lc2C) ∈ I}

is a witness strong-low-bisim-mm for the concrete program:

strong-low-bisim-mm B ∧ secure-refinement B R I =⇒ strong-low-bisim-mm (BCof B R I)

3 Decomposition principle for CVDNI-preserving refinement

Having presented our previous work [22]’s formalisation of our security property CVDNI and
its preservation by refinement, we now present our first contribution: an alternative way of
proving secure-refinement (Definition 6) that does away with the use of the cube-shaped, two-
sided refinement obligation coupling-inv-pres B R I (depicted by Figure 1), by decomposing
its concerns into (1) proving R closed under the pairwise executions of the concrete and
abstract programs alone using a square-shaped diagram (depicted by Figure 4a, which is akin
to ordinary semantics-preserving refinement), and (2) a number of smaller and more separable
obligations gathered together under the side-condition predicate decomp-refinement-safe.

I Definition 7 (Decomposed requirements for CVDNI-preserving secure refinement).

secure-refinement-decomp B R I abs-steps ≡
preserves-modes-mem R ∧ closed-others R ∧ cg-consistent I ∧ sym I ∧
decomp-refinement-safe B R I abs-steps ∧ (∀lcA lcC . (lcA, lcC) ∈ R −→

(∀lc′
C . lcC C lc′

C −→ (∃lc′
A. lcA

(abs-steps lcA lcC)
A lc′

A ∧ (lc′
A, lc′

C) ∈ R)))

The decomposition requires the provision of a new refinement parameter that we will call
abs-steps or the pacing function, whose role is to dictate the pace of the refinement by
returning the number of abstract steps that ought to be taken for a single concrete step, for
a given abstract-concrete local configuration pair related by R. The side-conditions on all of
the refinement parameters (depicted by Figures 4b, 4c) are then defined as follows:

I Definition 8 (Side-conditions for CVDNI-preserving refinement decomposition).

decomp-refinement-safe B R I abs-steps ≡ ∀lc1A lc2A lc1C lc2C . (lc1A, lc2A) ∈ B ∧
lc1A =mds lc2A ∧ (lc1A, lc1C) ∈ R ∧ (lc2A, lc2C) ∈ R ∧ (lc1C , lc2C) ∈ I ∧ lc1C =mds lc2C

−→ stops lc1C = stops lc2C ∧ abs-steps lc1A lc1C = abs-steps lc2A lc2C ∧
(∀lc′

1C lc′
2C . lc1C C lc′

1C ∧ lc2C C lc′
2C −→ (lc′

1C , lc′
2C) ∈ I ∧ lc′

1C =mds lc′
2C)

On the intuitive meaning of the side-conditions in Definition 8:

8

Extended version: 1st July 2019. To appear in ITP 2019

A abs-steps A C
A′

R R

C
1

C′

(a) Refinement preservation
for relation R under program
execution paced by abs-steps

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

(b) Consistency of pacing and
stopping behaviour, to prevent
timing and termination leaks

1A

2A
B

I I

R

R

1C 1 1C′

2C 1 2C′

(c) Closedness of the coupling
invariant relation I under lock-
step program execution

Figure 4 Graphical depictions of refinement decomposition obligations

stops lc1C = stops lc2C ensures that the refinement has not introduced any termina-
tion leaks, by asserting consistent stopping behaviour for I-related concrete program
configurations, which we know to be observationally indistinguishable.
abs-steps lc1A lc1C = abs-steps lc2A lc2C ensures that the refinement has not introduced
any timing leaks, by asserting consistency of the pace of the refinement for R-related
program configurations, which we again know to be observationally indistinguishable.
The final ∀-quantified clause asserts I’s suitability as a coupling invariant, in that it must
remain closed under lockstep evaluation of the concrete program configurations it relates.
Furthermore it must maintain mode state equality with each lockstep evaluation, which
ensures that the refinement has not introduced any inconsistencies in the memory access
assumptions and guarantees needed for the concurrent compositionality of the property.

Note the B- and R-edges in Figure 4c may capture useful facts about a particular program
verification technique and compiler, so their availability as assumptions is intended to reduce
greatly the effort needed to specify a coupling invariant I and prove it satisfies the condition.

Assuming the fulfilment of all of the decomposed requirements, we obtain that they are a
sound method for establishing secure refinement of the per-thread CVDNI property:

I Theorem 9 (Soundness of secure-refinement-decomp).

secure-refinement-decomp B R I abs-steps =⇒ secure-refinement B R I

In the interests of brevity we relegate proof sketches for all results to Appendices C and D,
and for fuller details we refer the reader to our Isabelle/HOL formalisation.

We now devote our attention to two instantiations of this new decomposition principle:
(Section 4) for a proof of CVDNI-preservation for the refinement of a program that branches
on a secret, and (Section 5.5) for the proof of CVDNI-preservation by a compiler.

4 Proof effort comparison

To demonstrate how the decomposition principle reduces proof complexity and effort, we
returned to the example refinement discussed in Section V-E of our previous work [22], an
excerpt of which is shown in Figure 3. The abstract program (9 imperative commands)
branches on a sensitive value, and executes a single atomic expression assignment in each
branch. Its refinement (to 16 commands) models expansion of the expressions into multiple
steps, resolving a timing disparity between the two branches by padding with skip.

9

Extended version: 1st July 2019. To appear in ITP 2019

We use proof size as a proxy for proof effort, since the former is known to be strongly lin-
early correlated with the latter [28]. Formalised in Isabelle/HOL as EgHighBranchRevC.thy
[21], the proof line count for that theory stood at about 4.6K lines of definitions and proof,
of which approx. 3.6K line were proofs. Adapting the proof instead to use the decomposition
principle secure-refinement-decomp (Definition 7), the proof line count drops from 3.6K to
approx. 2K, a 44% reduction. Regarding definition changes, the new proof makes <10 lines
of adaptations to a coupling invariant and pacing function used by the old proof, and adds
about 30 lines worth of new helper definitions, for use with the decomposition principle. The
rest of the theory and its external dependencies remain in common between the two versions.

As would be expected, the bulk of the deletions are from the full cube-shaped refinement
diagram proof (Figure 1) of secure-refinement (Definition 6) for the refinement relation. The
surviving parts of that proof just become the square-shaped refinement diagram proof (Fig-
ure 4a) of secure-refinement-decomp without much modification. The deletions are replaced
by newly added proofs of the three sub-obligations of decomp-refinement-safe (Definition 8).

5 The Covern wr-compiler

Having presented our new decomposition principle for CVDNI-preserving refinement, we now
turn to our compiler, whose most notable features for formal proof of secure refinement are:
1. Its implementation tracks variable stability (Section 5.4) responsive to use of locking

primitives, to know when accesses to shared variables are safe to optimise, and when
register contents can be still be considered consistent with shared variable contents.

2. Its verification uses a pacing function (Section 5.5.2) and coupling invariant (Section 5.5.3)
as the decomposition demands, to ensure it does not introduce timing leaks.

First, we describe its source and target languages, and parameters to the compilation.

5.1 Source language
The Covern wr-compiler—short for While-to-RISC compiler—takes the simple imperative
language with while-looping and lock-based synchronisation targeted by the Covern program
logic [20], which we will refer to as While, consisting of the commands cmd:

exp ::= n | v | exp ⊕ exp
cmd ::= skip | cmd ; cmd | if exp then cmd else cmd fi |

while exp do cmd od | v := exp |
lock(k) | unlock(k)

The language is parameterised over a type of values Val, and binary operators ⊕ :: Val ⇒
Val ⇒ Val. Constants n :: Val; v :: Var and k :: Lock are (resp.) shared program- and
lock-variables. The semantics of the locking primitives lock(k) and unlock(k) is informed
by a locking discipline provided by the user of the theory as a parameter (see Section 5.3).
We leave for future work adding support for pointers and arrays, which we believe will be
straightforward because our assume-guarantee framework already provides the means to
encode the memory footprint of a command in a way that depends on values in memory.

We assume that the underlying concurrent execution model (e.g. operating system,
scheduler) for the While language prevents threads from seeing each others’ current program
location, and thus (as in previous work [22, 19]) the While program command c :: cmd
being executed we model as thread-private state: 〈c, mds, mem〉w. In contrast, all program
variables v :: Var and lock variables k :: Lock reside in the shared memory mem.

10

Extended version: 1st July 2019. To appear in ITP 2019

5.2 Target language
The wr-compiler’s target is a generic RISC-style assembly language like that of Tedesco et
al. [29] but with lock-based synchronisation primitives added, which we will refer to as RISC:

I ::= [l :]B
B ::= Load r v | Store v r | Jmp l | Jz l r | Nop

MoveK r n | MoveR r r | Op ⊕ r r

LockAcq k | LockRel k

The language is parameterised over the same value type V al and binary operators ⊕,
shared program variables v :: Var and shared lock variables k :: Lock as the While language.
Presently, direct-addressing Load and Store instructions (referring to registers r :: Reg) are
adequate for RISC to implement all existing While features, and we expect adding indirect
addressing to RISC to be as straightforward as adding pointer and array support to While.

RISC program texts P are just lists of binary instructions I, each optionally associated
with a label l :: Lab. We assume that the underlying concurrency model for the RISC language
(e.g. OS, scheduler etc.) prevents one thread from reading the program code (instructions)
of another,2 as well as another’s registers (including the program counter). Thus, we model
the distinguished program counter register’s value pc :: nat, program text P , and register
bank regs :: Reg ⇒ Val as thread-private state: 〈((pc, P), regs), mds, mem〉r. Apart from this
adaptation to our triple format, evaluation semantics follows that of the RISC target of [29].

Finally, like Tedesco et al. [29] we generalise over the (user-supplied) register allocation
scheme, and assume there are enough registers to service the maximum depth of expressions
in the source program. (More details are available in Appendix D.1.) We leave for future
work the modelling and analysis of a compiler phase that spills register contents to memory,
in order to make this assumption unnecessary.

5.3 Locking discipline
Like the Covern logic [20], we assume that the While language program being compiled
follows a certain locking discipline, about which the compiler has knowledge, so as to ensure
that the RISC program it produces follows the same discipline.

The user of the theory provides the details of the locking discipline in the form of a lock
interpretation parameter: lock-interp :: Lock ⇒ (Var set × Var set), which for each lock
gives the two non-overlapping sets of program variables over which acquiring the lock grants
exclusive permission to write, (resp.) read and write. These permissions are then reflected in
the way the semantics of the While and RISC locking primitives act on the mode state.

Regarding lock interpretations and the way they interact with the user-provided value-
dependent classification function L (see Section 2.1), we inherit a few cleanliness conditions
from that earlier work [20], chief of which are that lock variables k cannot be control variables,

2 As is usual for program analyses, we omit any explicit modelling of the microarchitectural state
used by superscalar processors (like CPU caches, and state relied on by speculative and out-of-order
execution, on whose behaviour attacks like Spectre [13] and Meltdown [16] relied). We argue however
that our present assumptions are reasonable under two circumstances: when there is no such state
(e.g. on microcontrollers like AVR [7]), or when such state is correctly partitioned by the underlying
hardware [30] or the OS [8] – if the hardware allows it [9]! In the latter case, our analysis assumes
that microarchitectural state footprints are partitioned according to thread (for memory containing
program text) and according to classification by L (for shared memory), and furthermore that each
value-dependently classified region is given a distinct partition that is flushed on reclassification.

11

Extended version: 1st July 2019. To appear in ITP 2019

a lock variable k governing access to a program variable v must govern the same kind of
access to all of v’s control variables, and L must classify all lock variables as Low.

5.4 Compiler implementation and tracking of shared variable stability
We chose as a starting point the compilation scheme of [29], on the basis of their preserving a
noninterference property that like ours exhibits resilience to changes made by an environment—
in their case, intended for fault-resilience. Aiming to repurpose that for shared-variable
concurrency, we adapted it to Isabelle, implementing it as a primitive recursive function:

compile-cmd :: CompRec⇒ Lab option⇒ Lab ⇒ cmd⇒
(I × CompRec) list× Lab option× Lab × CompRec× bool

where we choose Lab = nat for RISC instruction labels, and the compilation record type
CompRec is bookkeeping maintained by the compiler that we will describe further below.

A typical invocation to compile a While program c :: cmd takes the form:

(PCs, l′, nl ′, C ′, failed) = compile-cmd C l nl c (1)

Here, compile-cmd takes an initial compilation record C, an optional entry label l, and the
next available label nl, and for the benefit of the next invocation returns an optional exit
label l′ if one is used by the program just compiled, the new next available label nl ′, and a
final compilation record C ′. We leave details of label allocation and its impact on achieving
sequential composability for compiled RISC programs to Appendix D.2.

In addition to the output RISC program P :: I list itself, a call to compile-cmd also
outputs every CompRec associated with the state of the program just before executing every
instruction in P . These are returned zipped up together with P as the CompRec-annotated
RISC program PCs :: (I × CompRec) list. (P can trivially be recovered as map fst PCs.)
Finally, compile-cmd may return True for failed to reject the input program, such as when it
detects a data race (see below), or if expression depth exceeds the assumed limit (Section 5.2).

In the style of the compilation scheme on which it was based [29], the wr-compiler maintains
a register record Φ :: reg ⇀ exp, i.e. a partial map of registers to expressions on shared
variables. In addition to using it to compile away any unnecessary loads from variables in
shared memory, we also use it to ensure that an expression calculated by RISC in registers
is equal to the value of the expression as if it had all been calculated by While in one step.
This is especially important when writing the result of an expression back to shared memory,
because the refinement is required to maintain all shared memory values.

New to the wr-compiler is the responsibility of maintaining an assumption record, which it
uses primarily to detect and reject programs with data races on shared memory, and to rule
out the introduction of any new ones. Each assumption record S :: (Var set ×Var set) is a
pair tracking the set of variables on which (resp.) AsmNoW, AsmNoRW assumptions
are currently active at a given point in the program being compiled. As a secondary concern
we also use it to assert that the two sides of any if-conditional branches act consistently on
the mode state, and that while-loops restore the original mode state on termination.

A compilation record C = (Φ,S) :: CompRec is then just a register/assumption record
pair. For readability, we use regrec, asmrec to denote (resp.) a CompRec’s fst, snd projections.

To explain how the compilation record is used to rule out data races, and to ensure
consistency of expression evaluation between source and target program, firstly we must
introduce the concept of stability of a variable v according to an assumption record S:

var-stable S v ≡ v ∈ (fst S ∪ snd S) ∧ (∀v′ ∈ Cvars v. v′ ∈ (fst S ∪ snd S))

12

Extended version: 1st July 2019. To appear in ITP 2019

In short, this means that the variable and all its control variables (Cvars v) are recorded as
having either of AsmNoW or AsmNoRW active on them.

For register record entries to be of any help in ensuring consistency of While and RISC
expression evaluation, we exclude expression evaluation on data race-prone variables by
lifting the concept of stability to register records. The following predicate asserts internal
consistency of the compilation record C created by compile-cmd, in the sense that the register
record may only map to expressions that mention variables that are recorded as stable by
the assumption record accompanying it. (Here, ran denotes the range of a map.)

regrec-stable C ≡ ∀e ∈ ran (regrec C). (∀v ∈ exp-vars e. var-stable (asmrec C) v)

To ensure that an input While program maintains register record stability, we define the
predicate no-unstable-exprs c C to capture the requirement that a program c, if started with a
configuration consistent with compilation record C, will never access a lock-protected variable
without holding the relevant lock. (It also checks the secondary, mode-state consistency
concerns of the assumption record mentioned earlier.) We implement it as a simple static
check carried out by a primitive recursive function on the structure of While programs.

Together, regrec-stable and no-unstable-exprs make up the main two requirements of a
predicate compile-cmd-input-reqs C l nl c imposed on the input arguments to compile-cmd,
which gives us enough information to prove a lemma that compile-cmd only ever outputs
stable register records. Full details of these we leave to Appendix D.3.

5.5 Proof of CVDNI-preserving compilation
Having covered the most significant aspects of the Covern wr-compiler’s parameters and
machinery, we can now present the refinement relation Rwr (Section 5.5.1), pacing function
abs-stepswr (Section 5.5.2), and coupling invariant Iwr (Section 5.5.3) that we use with our
new decomposition principle (of Section 3) to prove that it preserves CVDNI (Section 5.5.4).

5.5.1 Refinement relation Rwr and its invariants
Just like our example R of Figure 3, Rwr pairs abstract with concrete configurations.

Here, we will focus on Rwr’s most notable characteristics for understanding why it is
suitable to describe a CVDNI-preserving compilation.3 We focus on the case if_expr of Rwr,
which relates the expression evaluation part of the While program if e then c1 else c2 fi,
with the corresponding part (including the conditional jump Jz after expression evaluation)
of the RISC program obtained by running compile-cmd on it. (Variables ignored are in gray.)

I Example 10 (Introduction rule for case if_expr of Rwr).
c = if e then c1 else c2 fi compile-cmd-input-reqs C l nl c

(PCs, l′, nl2, C′, False) = compile-cmd C l nl c (Pe, r, C1, False) = compile-expr C ∅ l e

(P1, l1, nl1, C2, False) = compile-cmd C1 None (Suc (Suc nl)) c1 pc ≤ length Pe

(P2, l2, nl2, C3, False) = compile-cmd C1 (Some nl) nl1 c2 Cpc = (map snd PCs ! pc)
compiled-cmd-config-consistent Cpc regs mds mem regrec-stable Cpc

∀mds′ mem′ regs′. compiled-cmd-config-consistent C1 regs′ mds′ mem′ ∧ regrec-stable C1

−→ ((〈c1, mds′, mem′〉w, 〈((0, map fst P1), regs′), mds′, mem′〉r) ∈ Rwr ∧
(〈c2, mds′, mem′〉w, 〈((0, map fst P2), regs′), mds′, mem′〉r) ∈ Rwr)

(〈c, mds, mem〉w, 〈((pc, map fst PCs), regs), mds, mem〉r) ∈ Rwr

3 We provide an informal description of all of the cases, their purpose, and the invariants they maintain,
along with a code listing from compile-cmd relevant to the part that will be presented, in Appendices A
and B (respectively). For full details, we refer the reader to the Isabelle formalisation.

13

Extended version: 1st July 2019. To appear in ITP 2019

This is a fairly typical case of Rwr in a number of respects:
Firstly, there is a direct reference to the call to compile-cmd for the given While program.

Secondly, various guards (compiled-cmd-config-consistent introduced below, and regrec-stable
defined in Section 5.4) are asserted in order to restrict the scope of Rwr only to consider
wellformed local program configurations that line up with the conditions captured by the
compilation record. Thirdly, the inductive references to Rwr for P1 and P2, the branches of
the conditional that have not been reached yet, are quantified over all configurations that
obey the guards compiled-cmd-config-consistent and regrec-stable relative to C1, the initial
compilation record for each of the sub-calls to compile-cmd for those sub-programs.

The guard compiled-cmd-config-consistent mentioned above asserts that the compilation
record C is consistent with the registers regs, memory mem and mode state mds.

compiled-cmd-config-consistent C regs mds mem ≡
(∀r e. (regrec C) r = Some e −→ regs r = evexp mem e) ∧
asmrec C = (mds AsmNoW, mds AsmNoRW)

Firstly, for all entries in register record mapping some register r to some expression e, the
value held in r of the register bank regs must match the value of e if evaluated under memory
mem. Secondly, the assumption record must consist exactly of the program variables the
mode state mds says have AsmNoW, AsmNoRW on them respectively.

As we will see in Theorem 17, compiled-cmd-config-consistent also serves as initial config-
uration requirements for compiled programs: only configurations obeying them may be used
to initialise a RISC program compiled by the wr-compiler with initial compilation record C.

With Rwr specified, we then prove the two requirements for secure-refinement-decomp that
pertain to Rwr alone: preserves-modes-mem (Definition 4) and closed-others (Definition 5).

I Lemma 11 (Rwr preserves modes and memory). preserves-modes-mem Rwr

I Lemma 12 (Rwr is closed under changes by others). closed-others Rwr

5.5.2 Refinement pacing function abs-stepswr

We now nominate an abs-steps function, determining the pace at which While programs
progress in comparison to the RISC programs that they are compiled to by the wr-compiler.

To assist here and elsewhere, we define a primitive recursive helper leftmost-cmd that
given a sequence of ;-separated While commands, strips all but the first: given c1 ; c2 it
returns leftmost-cmd c1, and given any other While program c it returns c.

Our pacing function abs-stepswr primarily looks at the form of the RISC program instruc-
tion about to be executed. The RISC instructions are divided into three categories:

Instructions output by compile-expr: Load, Op, and MoveK. For these, abs-stepswr
returns 1 if the leftmost-cmd of the While program is while e do c od, to allow it to
step to if e then (c ;while e do c od) else stop fi concurrently with the first RISC step
of the compiled expression itself. Otherwise, abs-stepswr returns 0 to indicate the While
program standing still while the RISC program takes new steps to evaluate the expression.
“Epilogue” steps: Jmp and Nop when used for control flow at the end of a smaller
compiled program in the context of a larger one. For these, abs-stepswr returns 0.
All other RISC instructions are assumed to proceed at a lockstep pace with the While
command they were compiled from, and for these abs-stepswr returns 1.

Having nominated abs-stepswr and Rwr, we now have the parameters over which we are
obliged to prove refinement preservation (Figure 4a) as demanded by secure-refinement-decomp

14

Extended version: 1st July 2019. To appear in ITP 2019

(Definition 7). To this end, we prove firstly (elided to Appendix D.3) that every step of
execution of a RISC program produced by the wr-compiler from a While program, maintains
the consistency demanded by compiled-cmd-config-consistent between configurations and
compilation records. Also, we must prove a correctness lemma for the expression compiler:

I Lemma 13. (PCs, r, C ′, False) = compile-expr C A l e =⇒ (regrec C ′) r = Some e

Armed with these facts, we can now prove the main refinement preservation result:

I Lemma 14 (Rwr is a refinement paced by abs-stepswr).

∀lcw lcr. (lcw, lcr) ∈ Rwr −→ (∀lc′
r. lcr r lc′

r −→

(∃lc′
w. lcw

(abs-stepswr lcw lcr)
w lc′

w ∧ (lc′
w, lc′

r) ∈ Rwr))

5.5.3 Concrete coupling invariant Iwr

The next element needed is the concrete coupling invariant Iwr, which we define as follows:
Iwr ≡ {(〈((pc, P), regs), mds, mem〉r, 〈((pc′, P ′), regs′), mds′, mem′〉r) | (pc, P) = (pc′, P ′)}
In other words, Iwr asserts that we only need compare local configurations that are at

the same location pc = pc′ of the same RISC program P = P ′. When used in concert with a
no-high-branching B (see Section 5.5.4), the effect of Iwr is to ensure that the wr-compiler has
not introduced any new branching on sensitive values.

5.5.4 Successful compilations are CVDNI-preserving refinements
We are ready to prove preservation. First we qualify that we allow only strong-low-bisim-mm B
that describe only While-programs with no branching on High-classified values, as follows:

no-high-branching B ≡
∀c c′ mds mem mem′. (〈c, mds, mem〉w, 〈c′, mds, mem′〉w) ∈ B −→ c = c′ ∧

(∀e c1 c2. leftmost-cmd c = if e then c1 else c2 fi −→ evexp mem e = evexp mem′ e)

That is, it refuses to relate configurations at different program locations. Furthermore if
it is at a conditional branching point, the expression e determining which branch will be
taken evaluates to the same boolean value for both configurations’ memories. When imposed
on a relation that already ensures Low-equivalent memory modulo modes, this effectively
disallows any present or past branching on sensitive values. Then, for such programs:

I Lemma 15.
strong-low-bisim-mm B no-high-branching B
secure-refinement-decomp B Rwr Iwr abs-stepswr

From this it follows immediately via Theorem 9 that Rwr with the help of Iwr describes a
CVDNI-preserving refinement for non-High-branching While programs:

I Corollary 16 (Rwr is a CVDNI-preserving refinement for non-High-branching programs).

strong-low-bisim-mm B ∧ no-high-branching B =⇒ secure-refinement B Rwr Iwr

Finally, we prove that successful compilation produces a RISC program related byRwr to its
input While program, when started with corresponding and reasonable initial configurations:

I Theorem 17 (Successful compilations are refinements in Rwr).

(PCs, l′, nl ′, C ′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False compiled-cmd-config-consistent C regs mds mem P = map fst PCs

(〈c, mds, mem〉w, 〈((0, P), regs), mds, mem〉r) ∈ Rwr

15

Extended version: 1st July 2019. To appear in ITP 2019

6 Case study: the wr-compiler in action

To test the theory, we instantiated it and applied the wr-compiler to a While-language model
of the Cross Domain Desktop Compositor [5] (CDDC), a non-trivial concurrent program that
facilitates a trusted user’s interaction with multiple desktop machines of differing clearance.

The CDDC model to which we applied the compiler is a 2-thread program that was a
precursor to the 3-thread model that was verified using the Covern program logic [20].4
Each of the threads of the CDDC program (together about 150 lines of While) we proved
satisfy the compositional security property com-secure (Definition 2), using a precursor to
the Covern logic that yields CVDNI-witness bisimulations that are non-High-branching.

The resulting compiler is executable in Isabelle, meaning that compile-cmd can be ex-
ecuted on the While program text for each of the two threads to obtain their compilations
(together totalling about 250 RISC instructions) using the Isabelle tactic eval. The secure
compilation theorems (Section 5.5.4), together with strong-low-bisim-mm preservation and
compositionality for com-secure (Theorems 5.1, 3.1 of [22], mentioned in Section 2) then
allow us to derive that the compiled program is secure when its threads are run concurrently.

To our knowledge this is the first proof of source-level information-flow security being
carried by a verified compiler to an assembly-level model of a non-trivial concurrent program.

7 Related work

The following three works, like ours, focus on compilation preserving a form of noninterference.
Tedesco et al. [29] present a type-directed compilation scheme that preserves a fault-

resilient noninterference property. The compilation scheme of our wr-compiler was inspired by
theirs. Like our com-secure CVDNI security property that wr-compiler preserves, Tedesco et
al.’s security property is also strong bisimulation-based [27]. But where our property accounts
(via mode states) for controlled interference by other threads, theirs instead quantifies over
all possible interference by the environment with the memory contents. While this simplifies
their task of proving that their security property is preserved under compilation—as it need
not require the compiler to preserve the contents of memory—it means their security property
cannot capture value-dependent noninterference. In contrast, our wr-compiler must obey our
secure-refinement notion’s requirement that memory contents are preserved.5

Barthe et al. [2] consider the problem of preserving cryptographic constant-time policies, a
class of noninterference properties similar to CVDNI in its explicit consideration for capturing
timing-sensitivity. Barthe et al. consider a wider scope of common categories of compile-time
optimisations (than those performed by our wr-compiler), and mechanise proofs in Coq that
such optimisations preserve various constant-time security properties. The sharing of variables
in our setting severely limits the scope of our optimisations, to those that the compiler can
perform knowing that a shared variable is stable because it has been locked. At present, our
wr-compiler avoids redundant loads during expression compilation, but other optimisations
like loop hoisting and constant folding we are yet to implement. Their preservation proof
technique, constant-time simulation was developed independently to our original cube-shaped
secure refinement definition [22]. Like ours, theirs is also a cube-shaped obligation and makes

4 We leave for future work an adaptation of the refinement theory and wr-compiler in order to support
the shared data invariants added by the Covern logic, required to verify the 3-thread CDDC model.

5 Consequently, we found and fixed a bug in their expression compiler (acknowledged privately) whereby
registers in use were incorrectly reallocated. Expressions like v + (v + 1) were thus compiled incorrectly
to programs yielding (v + 1) + (v + 1) instead, causing a violation of memory contents preservation.

16

Extended version: 1st July 2019. To appear in ITP 2019

use of a pacing function analogous to our abs-steps. Unlike our work here, Barthe et al. do
not give a general method for decomposing their cube-shaped simulation diagrams.

Neither of the above consider per-thread compositional compilation of concurrent, shared
memory programs, nor value-dependent noninterference policies – the focus of our theory and
compiler. Barthe et al. [4] however did aim to preserve noninterference of multithreaded pro-
grams by compilation, extending a prior (security) type-preserving compilation approach [3].
Their noninterference property however was termination- and timing-insensitive, so preventing
internal timing leaks relied on the scheduler disallowing certain interleavings between threads.
Also, their type-preservation argument was derived from a big-step semantics preservation
property for their compiler. Here we instead rely on preservation of a small-step semantics
(specifically memory contents), which is necessary for us to preserve value-dependent security
under compilation, as well as to avoid imposing non-standard requirements on the scheduler.

Other recent works have improved on fully abstract compilation (surveyed [23]) by mapping
out the spectrum [1] or developing specific forms [25] of robust property preservation, concerned
with robustness of source program (hyper)properties to concrete adversarial contexts. Like
Tedesco et al. [29], these works differ from ours in quantifying over a wider range of hostile
interference. They also focus prominently on changes to data types, which we do not support.
Thus, as a 2-safety hyperproperty quantifying over a lesser range of interference, we expect
CVDNI-preservation to be implied by R2HSP (robust 2-hypersafety preservation), but do
not expect it to imply any other secure compilation criterion on Abate et al.’s [1] spectrum.

While recently Patrignani and Garg [25] instantiated their robustly safe compilation
for shared-memory fork-join concurrent programs, it only preserves (1-)safety properties.
Previously however, Patrignani et al. [24] proved their trace-preserving compilation preserves
k-safety hyperproperties [6], including noninterference properties. However, it disallows the
removal or addition of trace entries, which would be necessary to change the passage of time
as seen in the observable trace events. Thus it excludes optimisations carried out by our
compiler (when it permits changes to pacing regulated by abs-steps) and studied by the two
other works [29, 2] on timing-sensitive security-preserving compilation mentioned above.

Finally, there has been much work on large-scale verified compilation [15, 14] some of
which has also treated compilation of shared-memory concurrent programs [17] including
taking weak-memory consistency into account [26]. Our work here does not consider the
effects of weak-memory models. However, it differs to prior work on verified concurrent
compilation, in that it formalises and proves a compiler’s ability to use information about the
application’s locking protocol, to exclude unsafe access to shared variables, and conversely to
know when it is safe to allow optimisations that would typically be excluded (see Section 5.4).

8 Conclusion

To our knowledge, we have presented the first mechanised verification that a compiler
preserves concurrent, value-dependent noninterference. To this end, we provided a general
decomposition principle for compositional, secure refinement. Although our compiler is a
proof-of-concept targeting simple source and target languages, we nevertheless applied it to
produce a verified assembly-level model of the CDDC [5], a non-trivial concurrent program.

This work serves to demonstrate that verified security-preserving compilation for concur-
rent programs is now within reach, by augmenting traditional proof obligations for verified
compilation (e.g. square-shaped semantics preservation) with those specific to security (e.g.
absence of termination- and timing-leaks) as depicted in Figure 4. We hope that this work
paves the way for future large-scale verified security-preserving compilation efforts.

17

Extended version: 1st July 2019. To appear in ITP 2019

References
1 Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and

Jérémy Thibault. Exploring robust property preservation for secure compilation. CoRR,
abs/1807.04603, 2018. URL: http://arxiv.org/abs/1807.04603.

2 G. Barthe, B. Grégoire, and V. Laporte. Secure compilation of side-channel countermeasures:
The case of cryptographic “constant-time”. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 328–343, July 2018.

3 Gilles Barthe, Tamara Rezk, and Amitabh Basu. Security types preserving compilation.
Comput. Lang. Syst. Struct., 33(2):35–59, July 2007. URL: http://dx.doi.org/10.1016/j.
cl.2005.05.002.

4 Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security of multithreaded
programs by compilation. ACM Trans. Inf. Syst. Secur., 13(3):21:1–21:32, July 2010. URL:
http://doi.acm.org/10.1145/1805974.1805977.

5 Mark Beaumont, Jim McCarthy, and Toby Murray. The cross domain desktop compositor:
Using hardware-based video compositing for a multi-level secure user interface. In Annual
Computer Security Applications Conference (ACSAC), pages 533–545, 2016.

6 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, September 2010. URL: http://dl.acm.org/citation.cfm?id=1891823.1891830.

7 Florian Dewald, Heiko Mantel, and Alexandra Weber. AVR processors as a platform for
language-based security. In Computer Security - ESORICS 2017 - 22nd European Symposium
on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I,
pages 427–445, 2017. URL: https://doi.org/10.1007/978-3-319-66402-6_25.

8 Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: the missing OS
abstraction. In Eurosys19, Dresden, Germany, March 2019. ACM.

9 Qian Ge, Yuval Yarom, and Gernot Heiser. No security without time protection: We need
a new hardware-software contract. In Asia-Pacific Workshop on Systems (APSys), Korea,
August 2018. ACM SIGOPS.

10 Joseph Goguen and José Meseguer. Security policies and security models. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 11–20, Oakland, California, USA, April
1982. IEEE Computer Society.

11 Cliff B. Jones. Development Methods for Computer Programs including a Notion of Interference.
D.Phil. thesis, University of Oxford, June 1981.

12 Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Villegas. When constant-
time source yields variable-time binary: Exploiting curve25519-donna built with msvc 2015.
In Cryptology and Network Security, pages 573–582, Cham, 2016. Springer International
Publishing.

13 Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium on Security and
Privacy (S&P’19), 2019.

14 Ramana Kumar, Magnus Myreen, Michael Norrish, and Scott Owens. CakeML: A verified
implementation of ML. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 179–191, San Diego, January 2014. ACM Press.

15 Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):363–446,
December 2009. URL: http://dx.doi.org/10.1007/s10817-009-9155-4.

16 Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

17 Andreas Lochbihler. Mechanising a type-safe model of multithreaded java with a verified
compiler. Journal of Automated Reasoning, 61(1):243–332, Jun 2018. URL: https://doi.
org/10.1007/s10817-018-9452-x.

18

http://arxiv.org/abs/1807.04603
http://dx.doi.org/10.1016/j.cl.2005.05.002
http://dx.doi.org/10.1016/j.cl.2005.05.002
http://doi.acm.org/10.1145/1805974.1805977
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://doi.org/10.1007/978-3-319-66402-6_25
http://dx.doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-018-9452-x
https://doi.org/10.1007/s10817-018-9452-x

Extended version: 1st July 2019. To appear in ITP 2019

18 Luísa Lourenço and Luís Caires. Dependent information flow types. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 317–328, Mumbai, India,
January 2015. ACM.

19 Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions and guarantees for composi-
tional noninterference. In IEEE Computer Security Foundations Symposium, pages 218–232,
Cernay-la-Ville, France, June 2011. IEEE.

20 Toby Murray, Robert Sison, and Kai Engelhardt. COVERN: A logic for compositional
verification of information flow control. In European Symposium on Security and Privacy,
London, United Kingdom, April 2018. IEEE.

21 Toby Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah. Compositional
security-preserving refinement for concurrent imperative programs. Archive of Formal Proofs,
June 2016. http://isa-afp.org/entries/Dependent_SIFUM_Refinement.shtml, Formal
proof development.

22 Toby Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah. Compositional
verification and refinement of concurrent value-dependent noninterference. In IEEE Computer
Security Foundations Symposium, pages 417–431, Lisbon, Portugal, June 2016.

23 Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to secure compilation: A
survey of fully abstract compilation and related work. ACM Comput. Surv., 51(6):125:1–125:36,
February 2019. URL: http://doi.acm.org/10.1145/3280984.

24 Marco Patrignani and Deepak Garg. Secure Compilation and Hyperproperty Preservation.
In IEEE 30th Computer Security Foundations Symposium, CSF 2017, Santa Barbara, USA,
August 21 - 25, 2017, CSF’17, 2017.

25 Marco Patrignani and Deepak Garg. Robustly safe compilation. In Programming Languages
and Systems, pages 469–498, Cham, 2019. Springer International Publishing.

26 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap between programming
languages and hardware weak memory models. Proc. ACM Program. Lang., 3(POPL):69:1–
69:31, January 2019. URL: http://doi.acm.org/10.1145/3290382.

27 Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs.
In Proceedings of the 13th IEEE Workshop on Computer Security Foundations, CSFW ’00,
pages 200–, Washington, DC, USA, 2000. IEEE Computer Society. URL: http://dl.acm.
org/citation.cfm?id=794200.795151.

28 Mark Staples, Ross Jeffery, June Andronick, Toby Murray, Gerwin Klein, and Rafal Kolanski.
Productivity for proof engineering. In Empirical Software Engineering and Measurement,
page 15, Turin, Italy, September 2014.

29 F. Del Tedesco, D. Sands, and A. Russo. Fault-resilient non-interference. In 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), pages 401–416, June 2016.

30 Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware design
language for timing-sensitive information-flow security. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 503–516, New York, NY, USA, 2015. ACM. URL: http:
//doi.acm.org/10.1145/2694344.2694372.

A Informal descriptions of the cases of refinement relation Rwr

A.1 Base cases

stop: This case relates a terminated While program with a terminated RISC program
(i.e. one where the program counter is at the length of the program text).
skip_nop: This case relates the While program skip with the configuration where the
program counter is at the start of the RISC program [Nop].

19

http://isa-afp.org/entries/Dependent_SIFUM_Refinement.shtml
http://doi.acm.org/10.1145/3280984
http://doi.acm.org/10.1145/3290382
http://dl.acm.org/citation.cfm?id=794200.795151
http://dl.acm.org/citation.cfm?id=794200.795151
http://doi.acm.org/10.1145/2694344.2694372
http://doi.acm.org/10.1145/2694344.2694372

Extended version: 1st July 2019. To appear in ITP 2019

assign_expr: This case relates the expression evaluation part (for the expression e) of
the While program v := e with the corresponding part of the RISC program obtained by
compiling it with the wr-compiler.
assign_store: As for assign_expr, but for the very last Store instruction that commits
the result of the expression evaluation back to shared memory variable v.
It asserts additionally that v must be stable if lock-governed, and non-lock-governed
otherwise. This prevents threads from violating the locking discipline (see Section 5.3).
lock_acq: This case relates lock(k) with LockAcq k.
lock_rel: This case relates unlock(k) with LockRel k.

A.2 Inductive cases
seq: This case relates the While program c1 ; c2 with the concatenation P1@P2 of the
RISC programs P1 and P2 that are respectively the outputs of successful consecutive
compilation of c1 and c2 by the wr-compiler. It is intended for cases where the While
(resp. RISC) program is currently in c1 (resp. P1).
It is an inductive case of Rwr, in that:

c1 is required to be related by Rwr to the present location in P1.
For all local configurations that obey the compiled-cmd-config-consistent requirements,
c2 is required to be related by Rwr to the first instruction of P2. This quantification
ensures that Rwr remains closed when execution progresses from the first program to
the second program.

It asserts that P1 and P2 are joinable (Section D.2), particularly relevant here to ensure
that P1 can only jump to locations within or at the end of itself (i.e. the start of P2).
join: This case relates a While program c with an offset pc > length P1 into a RISC
program P1@P2, assuming the inductive hypothesis that c is related by Rwr with the
offset pc − length P1 into the RISC program P2 alone.
It is intended primarily for cases where the While (resp. RISC) program is currently in
the c2 (resp. P2) of some consecutively compiled c1 ; c2 (resp. P1 concatenated with P2)
but applies more broadly to allow any prepend of dead, unreachable instructions onto
the front of a RISC program without breaking Rwr.
It also asserts that P1 and P2 are joinable, which is important here to ensure that P2
cannot jump back into P1.
if_expr: This case relates the expression evaluation part (for the expression e) of
the While program if e then c1 else c2 fi with the corresponding part (including the
conditional jump Jz at the end of expression evaluation) of the RISC program obtained
by compiling it with the wr-compiler.
It relies on both c1 and c2 being related by Rwr to its compiled RISC counterparts when
started with initialisation states judged valid by compiled-cmd-config-consistent.
if_c1: This case relates some While program c′

1 reachable from c1 with the corresponding
part within the c1 part of the RISC program obtained by compiling if e then c1 else c2 fi
with the wr-compiler.
It relies on c1 being related by Rwr to its compiled RISC counterpart at the appropriate
program counter offset.
if_c2: As for if_c1, but for c2.
epilogue_step: This case relates a terminated While program to the silent control flow
steps navigating to the end of a RISC program from the end of the “then” and “else”
branches of a compiled if-conditional.
It works only for epilogue step forms (see Section 5.5.2).

20

Extended version: 1st July 2019. To appear in ITP 2019

It is inductive in that it asserts closedness of Rwr over pairwise reachability from the pair
currently under consideration – the only case to do so directly.
while_expr: This case relates the While program (while e do c od)’s initial intermediate
step to if e then (c; while e do c od) else stop fi, and its expression evaluation part, with
the expression evaluation and conditional jump of the RISC program that while e do c od
was compiled to by compile-cmd.
It relies on c being related by Rwr to its compiled RISC counterpart when started with
initialisation states judged valid by compiled-cmd-config-consistent.
while_inner: This case relates some program cI ; while e do c od reachable from c ;
while e do c od to the loop body part of the RISC program compiled fromwhile e do c od.
It relies on cI being related by Rwr to its compiled RISC counterpart at the appropriate
program counter offset.
It also carries around the same reliance on c being related by Rwr to its compiled RISC
counterpart for all initialisation states judged valid by compiled-cmd-config-consistent.
while_loop: This case handles epilogue steps for the inner loop body program, and the
final jump back to the beginning of the While-loop.
It requires Rwr to relate the terminated While program to the end of the compiled
loop body, and furthermore also carries around the same reliance on c being related
by Rwr to its compiled RISC counterpart for all initialisation states judged valid by
compiled-cmd-config-consistent.

B Code listing for the case of compile-cmd for if-conditionals

This code listing has been adapted slightly to improve the clarity of the presentation. ΦuR Φ′

denotes the subset of mappings on which Φ and Φ′ agree.

Listing 1 Implementation of compile-cmd case for if e then c1 else c2 fi
compile_cmd C l nl (If e c1 c2) =

(let (Pe , r, C1 , faile) = (compile_expr C {} l e);
(br , nl ’) = (nl , Suc nl); (ex , nl ’’) = (nl ’, Suc nl ’);
(P1 , l1 , nl1 , C2 , fail1) = (compile_cmd C1 None nl ’’ c1);
(P2 , l2 , nl2 , C3 , fail2) = (compile_cmd C1 (Some br) nl1 c2);
(* Pre - compilation check ensures asmrec C2 = asmrec C3 *)
C’ = (regrec C2 uR regrec C3 , asmrec C2)

in (Pe @ [((if Pe = [] then l else None , Jz br r), C1)] @
P1 @ [((l1 , Jmp ex), C2)] @ P2 @ [((l2 , Nop ’), C3)],
Some ex , nl2 , C’, faile ∨ fail1 ∨ fail2))

C Proof sketch for decomposition principle soundness result

I Theorem 18 (Soundness of secure-refinement-decomp).

secure-refinement-decomp B R I abs-steps =⇒ secure-refinement B R I

Proof. The only obligation for secure-refinement (Definition 6) not obtained immediately
from secure-refinement-decomp (Definition 7) is the cube-shaped coupling-inv-pres (Figure 1).

The front face of the cube is just ordinary square-shaped refinement preservation (depicted
in Figure 4a), given to us by secure-refinement-decomp. This gives us that a single concrete
step from lc1C is simulated by n abstract steps lc1A, where n is given by abs-steps.

21

Extended version: 1st July 2019. To appear in ITP 2019

We are then obliged to prove a simulation in the other direction (the back face of the
cube), that n abstract steps from all configurations lc2A related by B to lc1A are simulated
by some concrete step from lc2C related by R to lc2A and by I to lc1C .

Here, we lean on the determinism of the abstract program’s evaluation semantics (required
by the theory) to flip the direction of simulation, knowing that n abstract steps from lc2A,
simulating a single concrete step from lc2C , could only be the very same n abstract steps from
lc2A that we were required to consider. This allows us to use once again the square-shaped
refinement preservation (Figure 4a) given to us by secure-refinement-decomp.

Consistency of refinement pacing and stopping behaviour (depicted in Figure 4b) given
by decomp-refinement-safe (Definition 8) then respectively ensure that n (via abs-steps) is
the correct number of abstract steps to consider, and that there will indeed be a concrete
step from lc2C to drive the matching simulation step.

Finally, the remainder of decomp-refinement-safe (depicted in Figure 4c) discharges the
requirement of closedness and modes-equality maintenance of I under lockstep execution,
demanded by the bottom face of the cube. J

D More details on the Covern wr-compiler

D.1 Register allocation scheme model
We model the (user-supplied) register allocation scheme by two functions reg_alloc and
reg_alloc_cached on the register record Φ (see Section 5.4) and the set A of registers whose
contents are needed to evaluate the current expression. In order to avoid loading from
memory unnecessarily, the compiler may first call reg_alloc_cached Φ A v to identify a
register that Φ records as already containing the variable v. When the compiler needs a
fresh register, it will call reg_alloc Φ A. Neither function is allowed to allocate a register in
A, so the allocator is permitted to fail if it cannot find any suitable register. As mentioned
in Section 5.2 we assume there are enough registers to service the expressions in the source
program. Also, registers typically become available again as expression evaluation is resolved.

D.2 Label allocation and sequential composability
For allocating natural numbers to use as labels for RISC instructions the wr-compiler ensures
freshness merely by using the highest number reached so far on a “next label” counter (nl in
the invocation example (1)), incrementing the counter before passing it along to subsequent
calls, and outputting the next available unused label on return (as nl ′ in the example).

We define two RISC programs P1, P2 to be joinable if they are both:
joinable-forward: P1 only ever jumps to labels that are either

labelling an instruction in P1 itself, or
the label of the very first instruction in P2.

joinable-backward: P2 does not jump to any of the labels of instructions in P1.

We prove a lemma that says that two RISC programs that were compiled by the wr-compiler
consecutively—in the sense that the relevant outputs from the first call are fed directly into
the second call—are joinable.

D.3 More detail on compile-cmd-input-reqs and the wr-compiler proofs
The first two requirements to the predicate compile-cmd-input-reqs C l nl c were given in
Section 5.4. Its other two requirements reflect that the terminated While program stop has

22

Extended version: 1st July 2019. To appear in ITP 2019

no valid compilation, and that the initial label (if provided) must be valid (see Section D.2
for more information on label allocation).

I Definition 19 (Requirements on inputs to compile-cmd).

compile-cmd-input-reqs C l nl c ≡ c 6= stop ∧ (∀x. l = Some x −→ x < nl) ∧
no-unstable-exprs c C ∧ regrec-stable C

These input conditions give us enough information to prove that every instruction of a
CompRec-annotated RISC program output by a successful run of compile-cmd is annotated
by a stable register record, and that the output CompRec’s register record is also stable:

I Lemma 20 (Successful compilations output only stable register records).

(PCs, l′, nl ′, C ′, False) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

(∀pc < length PCs. regrec-stable (map snd PCs ! pc)) ∧ regrec-stable C ′

Proof. By induction on the structure of the While language program c, making reference to
the implementation of compile-cmd. For cases that must compile expressions, we furthermore
prove and make use of a lemma by induction on the structure of expressions, making reference
to the implementation of the expression compiler function compile-expr called by compile-cmd.
In essence, we prove that (sub)expressions that appear in register records must be stable,
for two reasons. Firstly, they are always only ever subexpressions over variables that must
have been stable in the input program when their contents were first loaded into registers.
Furthermore, when compiling an unlock(), the wr-compiler will always flush all register
records that make reference to any variables that the unlock() makes unstable. J

Before proceeding, we name the parts of compiled-cmd-config-consistent more explicitly:

I Definition 21 (Configuration consistency requirements for compiled commands).

compiled-cmd-config-consistent C regs mds mem ≡
regrec-mem-consistent (regrec C) regs mem ∧ asmrec-mds-consistent (asmrec C) mds

I Definition 22 (Consistency between a register record, register bank, and shared memory).

regrec-mem-consistent Φ regs mem ≡ ∀r e. Φ r = Some e −→ regs r = evexp mem e

I Definition 23 (Consistency between an assumption record and a mode state).

asmrec-mds-consistent S mds ≡ S = (mds AsmNoW, mds AsmNoRW)

I Lemma 24 (Rwr preserves modes and memory). preserves-modes-mem Rwr

Proof. By induction on the structure of Rwr. For all cases of (lcw, lcr) ∈ Rwr, lcw =mem
mds lcr

is either asserted directly by the guards or obtainable from the inductive hypothesis. J

I Lemma 25 (Rwr is closed under changes by others). closed-others Rwr

Proof. By induction on the structure of Rwr. Changes by others (Definition 5) only modify
writable variables the same way for both configurations, so preservation of =mem

mds is immedi-
ate. Also, regrec-mem-consistent is unaffected because compile-cmd only creates regrec-stable
records (referring to no writable variables). No other Rwr guards mention shared memory. J

23

Extended version: 1st July 2019. To appear in ITP 2019

I Lemma 26 (Successfully compiled programs maintain config consistency requirements).

(PCs, l′, nl ′, C ′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False pc < length PCs P = map fst PCs Cs = map snd PCs
compiled-cmd-config-consistent (Cs ! pc) regs mds mem
〈((pc, P), regs), mds, mem〉r r 〈((pc′, P), regs′), mds′, mem′〉r)

compiled-cmd-config-consistent (if pc′ < length P then (Cs ! pc′) else C ′) regs′ mds′ mem′

Proof. We in fact prove it separately for regrec-mem-consistent and asmrec-mds-consistent,
in both cases by induction on the structure of the While program c. In each case, we use
the simplifiers for the compile-cmd implementation to yield the corresponding RISC program
fragment in question, and then prove the lemma for each of the possible locations of pc in
the compiled program. For both proofs, there is some trickiness in accounting for (and ruling
out) which destination pc′ must be considered for each of these cases of pc, particularly for
those While programs that compile to RISC programs that may have jumps in them.

Control flow trickiness aside, the intuition for regrec-mem-consistent is that it tests the
correctness of the compilation of expressions, and so for this we must prove a sub-lemma for
maintenance of compiled-cmd-config-consistent by induction on the structure of expressions e

that are encountered in the While programs if e then c1 else c2 fi, while e do c′ od, v := e.
Additionally, unlock() flushes register record entries mentioning variables that are to become
unstable, and while e do c′ od conservatively flushes entries to force evaluation of the
loop condition expression. This is safe trivially because flushing entries can never make a
consistent register record inconsistent. The rest of the cases for c are straightforward because
they do not touch the register record.

Then for asmrec-mds-consistent, the substantial part of the proof is as a test of the
correctness of the compiler’s bookkeeping of assumptions being consistent with the semantics
of lock() and unlock(). The other cases for c do not touch the mode state. J

I Lemma 27 (Correctness of the expression compiler).

(PCs, r, C ′, False) = compile-expr C A l e =⇒ (regrec C ′) r = Some e

Proof. By induction on the structure of expressions e, using the simplification rules for the
implementation of compile-expr, and also relying on assumptions of correctness of the register
allocation scheme supplied by the instantiator of the theory. J

I Lemma 28 (Rwr is a refinement paced by abs-stepswr).

∀lcw lcr. (lcw, lcr) ∈ Rwr −→ (∀lc′
r. lcr r lc′

r −→

(∃lc′
w. lcw

(abs-stepswr lcw lcr)
w lc′

w ∧ (lc′
w, lc′

r) ∈ Rwr))

Proof. By induction on the structure of Rwr.
The base case stop is immediate, because it pertains to a terminated While and RISC

program. The base cases that proceed in one step to a terminating program configuration
(skip_nop, assign_store, lock_acq, lock_rel) are fairly straightforward because after
dealing with the single step, the resulting obligation can then be handled by the stop case.
This leaves the last remaining base case assign_expr, which proceeds in one step either to
itself, or to assign_store. In all of these cases, we use Lemma 26 to obtain the preservation
of the guards demanded by the Rwr introduction rule for the destination configuration of the
step. Particularly, the assign_store case must make use of regrec-mem-consistent and the

24

Extended version: 1st July 2019. To appear in ITP 2019

correctness of compile-expr (Lemma 27) in order to ensure that once the expression evaluation
result is written back to shared memory, lc′

w =mem
mds lc′

r holds as demanded by the stop case.
The inductive cases that concern expression evaluation (if_expr, while_expr) are much

like assign_expr in that they have the possibility of progressing in one step to themselves.
Unlike assign_expr however, their other possibility is a conditional jump based on the result
of that expression. Again we use Lemma 27 to obtain that the result is an accurate calculation
of the expression, and this time we prove by the two different cases whether if_expr ends
up in if_c1 or if_c2, or if while_expr ends up in while_inner or at stop (having jumped
to the exit label). In these cases, the guards over which the inductive references to Rwr have
been quantified are versatile enough to discharge themselves (when *_expr steps to itself),
or to discharge any reachable initial starting state for the nested compiled RISC program,
given that Lemma 26 ensures the invariance of these guards.

This just leaves the inductive cases that pertain to configurations inside a nested com-
piled RISC program (if_c1, if_c2, while_inner), or at the end of one (epilogue_step,
while_loop). In these cases, the inductive hypotheses obtained from the inductive reference
to Rwr are always enough to satisfy the guards demanded by the possible destination cases.
Like in the proof of Lemma 26, the trickiness mostly comes from accounting for all the possible
cases of control flow (ruling out spurious destinations) that need to be considered. J

I Lemma 29.
strong-low-bisim-mm B no-high-branching B
decomp-refinement-safe B Rwr Iwr abs-stepswr

Proof. Definition 8 gives us the following obligations.
For consistent stopping behaviour, we prove a lemma that RISC programs stop if and

only if their pc is outside the program text P , i.e. pc > length P . Because Iwr equates pc
and P for the two configurations, then clearly both have identical stopping behaviour.

For consistency of change in timing behaviour, abs-stepswr depends only on While and
RISC program locations, and no-high-branching and Iwr forces them (resp.) to be equal for
the local configurations under consideration.

For closedness of Iwr under lockstep execution, the only non-straightforward cases to
consider are conditional branching, and the locking primitives. For conditional branching, we
use no-high-branching for B with memory preservation via Rwr (Lemma 11) to ensure that
the conditional branching outcome is the same on both sides.

Finally, as the only operations that touch mode state, the locking primitives are the only
non-straightforward cases for mode state equality maintenance under lockstep execution. As
all lock memory is classified Low (see Section 5.3), we use strong-low-bisim-mm for B with
memory preservation via Rwr to ensure the RISC configurations behave consistently. J

I Lemma 30.
strong-low-bisim-mm B no-high-branching B
secure-refinement-decomp B Rwr Iwr abs-stepswr

Proof. Referring to Definition 7, the obligations pertaining only to Rwr and abs-stepswr are
discharged by Lemma 14, Lemma 12, and Lemma 11. Pertaining to Iwr: clearly Iwr is
symmetric, and furthermore it is cg-consistent (Definition 3) because the actions over which
Iwr must be closed modify only the shared memory, and Iwr places only restrictions on the
program text and current location. The final obligation is discharged by Lemma 29. J

25

Extended version: 1st July 2019. To appear in ITP 2019

I Theorem 31 (Successful compilations are refinements in Rwr).

(PCs, l′, nl ′, C ′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False compiled-cmd-config-consistent C regs mds mem P = map fst PCs

(〈c, mds, mem〉w, 〈((0, P), regs), mds, mem〉r) ∈ Rwr

Proof. By induction on the structure of While. The compiler input and initial configuration
conditions we impose allow us to have each of skip, cmd ; cmd, if exp then cmd else cmd fi,
while exp do cmd od, v :=exp, lock(k), and unlock(k) and their compiled output meet the
guards of the introduction rules for the cases skip, seq, if_expr, while_expr, assign_expr,
lock_acq, and lock_rel of Rwr that were designed for them respectively. J

26

	1 Introduction
	2 Background and example
	2.1 Concurrent value-dependent noninterference (CVDNI)
	2.2 CVDNI-preserving refinement

	3 Decomposition principle for CVDNI-preserving refinement
	4 Proof effort comparison
	5 The Covern wr-compiler
	5.1 Source language
	5.2 Target language
	5.3 Locking discipline
	5.4 Compiler implementation and tracking of shared variable stability
	5.5 Proof of CVDNI-preserving compilation
	5.5.1 Refinement relation Rwr and its invariants
	5.5.2 Refinement pacing function abs-stepswr
	5.5.3 Concrete coupling invariant Iwr
	5.5.4 Successful compilations are CVDNI-preserving refinements

	6 Case study: the wr-compiler in action
	7 Related work
	8 Conclusion
	A Informal descriptions of the cases of refinement relation Rwr
	A.1 Base cases
	A.2 Inductive cases

	B Code listing for the case of compile-cmd for if-conditionals
	C Proof sketch for decomposition principle soundness result
	D More details on the Covern wr-compiler
	D.1 Register allocation scheme model
	D.2 Label allocation and sequential composability
	D.3 More detail on compile-cmd-input-reqs and the wr-compiler proofs

