
www.data61.csiro.au

Verifying that a compiler preserves
concurrent value-dependent
information-flow security
Robert Sison (UNSW Sydney, Data61) and Toby Murray (University of Melbourne)
September 2019

THE UNIVERSITY OF
NEW SOUTH WALES

 2 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

So you’ve proved your program doesn’t leak secrets…

No leaks!

 2 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

So you’ve proved your program doesn’t leak secrets…

No leaks!

How do you know your compiler won’t introduce leaks?

 2 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

So you’ve proved your program doesn’t leak secrets…

No leaks!

How do you know your compiler won’t introduce leaks?

What if your compiler could be proved to preserve it?

 3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

So you’ve proved your program doesn’t leak secrets…

What if your compiler could be proved to preserve it?

 3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Here's how!

So you’ve proved your program doesn’t leak secrets…

What if your compiler could be proved to preserve it?

 3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Using confidentiality-preserving refinement

Here's how!

So you’ve proved your program doesn’t leak secrets…

What if your compiler could be proved to preserve it?

 3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Using confidentiality-preserving refinement

1. With a decomposition
principle

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Here's how!

So you’ve proved your program doesn’t leak secrets…

What if your compiler could be proved to preserve it?

 3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

(in Isabelle/HOL)
2. Applied to a compiler 

Using confidentiality-preserving refinement

1. With a decomposition
principle

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Here's how!

So you’ve proved your program doesn’t leak secrets…

What if your compiler could be proved to preserve it?

 3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

(in Isabelle/HOL)
2. Applied to a compiler 

Using confidentiality-preserving refinement

1. With a decomposition
principle

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Here's how!

So you’ve proved your program doesn’t leak secrets…

What if your compiler could be proved to preserve it?

Our contributions

 4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

(Proof-of-concept  
for technique)

(Technique)

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

Prove a compiler preserves proofs of 
confidentiality — in an interactive theorem prover!

 4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

(Proof-of-concept  
for technique)

(Technique)

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

(Specifically…)

 4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

1st such proofs carried to assembly-level model by compiler
Impact

(Proof-of-concept  
for technique)

(Technique)

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

(Specifically…)

 4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

1st such proofs carried to assembly-level model by compiler
Impact

(Proof-of-concept  
for technique)

(Technique)

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

Motivation
+

Background: Murray et al. (CSF’16)(Why all this?)

 4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

1st such proofs carried to assembly-level model by compiler
Impact

(Proof-of-concept  
for technique)

(Technique)

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

Motivation
+

Background: Murray et al. (CSF’16)(Why all this?)(Why it’s hard!)

 4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

1st such proofs carried to assembly-level model by compiler
Impact

(Proof-of-concept  
for technique)

(Technique)

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

Motivation
+

Background: Murray et al. (CSF’16)
(Why still hard?)

Motivation
Confidentiality for modern software (CSF’16)

 5

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

Doesn't leak secrets
(storage channels)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

Doesn't leak secrets
(storage channels)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

3. Compositionally!  
 (per-thread effort)

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

3. Compositionally!  
 (per-thread effort)

Beaumont et al. 
(ACSAC’16)

Example
(DSTG + Data61 collaboration)

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Unclassified
PROTECTED

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Unclassified
PROTECTED

… 😑 , 💸

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

SECRET,
PROTECTED,

or Unclassified?

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

SECRET,
PROTECTED,

or Unclassified?

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Cross Domain  
Desktop Compositor  

(CDDC)

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

seL4-based software architecture

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

seL4-based software architecture
(Case study: simplified model)

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

seL4-based software architecture
(Case study: simplified model)

3. Compositionally!  
 (per-thread effort)

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

seL4-based software architecture
(Case study: simplified model)

3. Compositionally!  
 (per-thread effort)

Motivation
Confidentiality for modern software (CSF’16)

Confidentiality

 5

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

(storage channels)

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Confidentiality

1. Multiple moving parts 
(well-synchronised) Doesn't leak secrets

2. Mixed-sensitivity reuse  
(of devices, space, etc.)

Concurrent value-dependent information-flow security
(storage channels)

3. Compositionally!  
 (per-thread effort)

Can a compiler preserve it?

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

This particularly 
makes it harder!

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

This particularly 
makes it harder!

Interference-resilience (tricky)

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

This particularly 
makes it harder!

Interference-resilience (tricky)

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

This particularly 
makes it harder!

Interference-resilience (tricky)
+

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

This particularly 
makes it harder!

No storage leaks

Interference-resilience (tricky)
+

 6

Concurrent value-dependent information-flow security

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

Volpano & Smith, CSFW’98

No storage leaks

Interference-resilience (tricky)
+

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

Volpano & Smith, CSFW’98

No storage leaks

Program A Program B

Minimal example:

Interference-resilience (tricky)
+

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

h isn’t assigned to anything h isn’t even here!_ _

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Program A Program B

Minimal example:

Interference-resilience (tricky)
+

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread B

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread B

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0

v = 0

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0

v = 0

/

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0

v = 0

/ /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0

v = 0

/ / /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0

l = 0

v = 0

/ / / /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0

l = 0

v = 1

/ / / /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0
h = 1

l = 0

v = 0

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0
h = 1

l = 0

v = 0

/

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0
h = 1

l = 0

v = 0

/ /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0
h = 1

l = 0

v = 1

/ / /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0
h = 1

l = 0
l = 1

v = 1

/ / / /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

Storage leak  
of h!

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

h = 0
h = 1

l = 0
l = 1

v = 1

/ / / /

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

Storage leak  
of h!

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

Timing leak

Storage leak

; skip Timing 
fix

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

Storage leak  
of h!

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

; skip Timing 
fix

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

Timing 

fix skip

But: Compiler may eliminate it!

Minimal example:

Interference-resilience (tricky)
+

Timing leak  
of h

Storage leak  
of h!

 6

Concurrent value-dependent information-flow security

if (h) then
 skip
else
 skip; skip
fi
v := 1

l := v

// Initially, v = 0

||

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation
Why wouldn’t a compiler preserve it? (CSF’16)

Some extra stuff to preserve  
(not that hard)

control variable contents  
(sensitivity-switching)

Murray et al. CSF’16

relies/guarantees 
(synchronisation)

Mantel et al. CSF’11

 
Each thread must prevent

(scheduler-relative)
timing leaks!

; skip Timing 
fix

(or, introduce new “if (h)”!)

This particularly 
makes it harder!

_

Volpano & Smith, CSFW’98

No storage leaks

Thread A Thread BSchedule  
A, A, A, B, …

Timing 

fix skip

But: Compiler may eliminate it!

Minimal example:

Interference-resilience (tricky)
+

-preserving refinement
Concurrent value-dependent information-flow security

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Direction  
of 

compilation

Abstract

Concrete

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

Program
configurations

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

Relations 

(between)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

Program
configurations

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

Relations 

(between)

Execution  
steps 1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

Program
configurations

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

“Usual” refinement:

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

“Usual” refinement:
 A simulates C ⇒ C refines A

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

“Usual” refinement:
 A simulates C ⇒ C refines A

For-all

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

“Usual” refinement:
 A simulates C ⇒ C refines A

Exists

For-all

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

From compiler 
front-end

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

?

 Confidentiality-preserving refinement

“BC” “BC”
“BC”

AFP entry:
Dependent_SIFUM_Refinement

From compiler 
front-end

For free ?

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

From compiler 
front-end

“For free”*

*

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

 (Two-sided!)
From compiler 
front-end

“For free”*

*

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

For-all

1
Exists

 (Two-sided!)
From compiler 
front-end

“For free”*

*

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

For-all

1
Exists

 (Two-sided!)

For-all

From compiler 
front-end

“For free”*

*

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

2

Exists

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

For-all

1
Exists

 (Two-sided!)

For-all

From compiler 
front-end

“For free”*

*

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

2

Exists

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

For-all

1
Exists

 (Two-sided!)

For-all

From compiler 
front-end

“For free”*

*

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

2

Exists

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

 7

Security proof 
(Bisimulation B)

+

⇒

Security proof 
(Bisimulation
BCof B R I)

Compiler
correctness proof
(Refinement R)

Direction  
of 

compilation

Abstract

Concrete

 Confidentiality-preserving refinement

AFP entry:
Dependent_SIFUM_Refinement

For-all

1
Exists

 (Two-sided!)

For-all

From compiler 
front-end

“For free”*

*

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

(Compare: Barthe et al. CSF’18)

 8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

Goal

Our contributions

Plan: Use confidentiality-preserving refinement

 8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

= (Technique)

Goal

Results

Our contributions

 8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

2. Verified compiler
 While-language to RISC-style

assembly

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

= (Technique)

Goal

Results

Our contributions

1st such proofs carried to assembly-level model by compiler
Impact

(Proof-of-concept  
for technique)

 8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

2. Verified compiler
 While-language to RISC-style

assembly

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

= (Technique)

Goal

Results

Our contributions

1st such proofs carried to assembly-level model by compiler
Impact

(Proof-of-concept  
for technique)

 8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1. Decomposition principle
for confidentiality-preserving

refinement

2. Verified compiler
 While-language to RISC-style

assembly

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

= (Technique)

Goal

Results

Our contributions

1st such proofs carried to assembly-level model by compiler
Impact

Proof effort
almost halved!

(Proof-of-concept  
for technique)

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

A
abs-steps A C

A0

R R

C C0

1A 1A0

2A 2A0

B B

I I

R

R

R

R

1C 1C0

2C 2C0

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

implies(⟹)

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

A
abs-steps A C

A0

R R

C C0

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

“Pacing function” abs-steps  
for (refinement) relation R

_____A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

A

abs-steps A C
A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing 

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing  4. Closedness of 
“Concrete coupling 
invariant” relation I  

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing  4. Closedness of 
“Concrete coupling 
invariant” relation I  

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing  4. Closedness of 
“Concrete coupling 
invariant” relation I  

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

No new timing  
and termination leaks!(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

1A

2A

B

I I

R

R

1C
1

1C0

2C 2C0

The “cube”, decomposed
Simpler confidentiality-preserving refinement

 9

1. “Usual” proof
of refinement

2. Consistent pacing  4. Closedness of 
“Concrete coupling 
invariant” relation I  

“Pacing function” abs-steps  
for (refinement) relation R

Security witness 
(bisimulation) relation B

A
abs-steps A C

A0

R R

C C0

No new timing  
and termination leaks!(+ “extra stuff” for conc, val-dep)

Standard compiler 
correctness!

and  
3. Consistent stopping

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Proof effort comparison
Refinement example (excerpt) from CSF’16

 10

if h 6= 0 then

x := y

else

x := y + z

fi

reg3 := h;

if reg3 6= 0 then

skip;

skip;

reg0 := y;

x := reg0
else

reg1 := y;

reg2 := z ;

reg0 := reg1 + reg2 ;

x := reg0
fi

Abstract program Concrete program

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 formalisation artifact:
https://covern.org/itp19.html

Proof effort comparison
Refinement example (excerpt) from CSF’16

 10

if h 6= 0 then

x := y

else

x := y + z

fi

reg3 := h;

if reg3 6= 0 then

skip;

skip;

reg0 := y;

x := reg0
else

reg1 := y;

reg2 := z ;

reg0 := reg1 + reg2 ;

x := reg0
fi

Abstract program Concrete program

_

_branch  
on secret

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 formalisation artifact:
https://covern.org/itp19.html

Proof effort comparison
Refinement example (excerpt) from CSF’16

 10

if h 6= 0 then

x := y

else

x := y + z

fi

reg3 := h;

if reg3 6= 0 then

skip;

skip;

reg0 := y;

x := reg0
else

reg1 := y;

reg2 := z ;

reg0 := reg1 + reg2 ;

x := reg0
fi

Abstract program Concrete program

padding  
to prevent  
timing leak_

_branch  
on secret

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 formalisation artifact:
https://covern.org/itp19.html

• 44% shorter proof of secure refinement  
(~3.6K to ~2K lines of Isabelle/HOL proofs)

Proof effort comparison
Refinement example (excerpt) from CSF’16

 10

if h 6= 0 then

x := y

else

x := y + z

fi

reg3 := h;

if reg3 6= 0 then

skip;

skip;

reg0 := y;

x := reg0
else

reg1 := y;

reg2 := z ;

reg0 := reg1 + reg2 ;

x := reg0
fi

Abstract program Concrete program

padding  
to prevent  
timing leak_

_branch  
on secret

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 formalisation artifact:
https://covern.org/itp19.html

(Proof-of-concept  
for technique)

 11 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

Impact

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1st such proofs carried to assembly-level model by compiler
Impact

2. Verified compiler
 While-language to RISC-style

assembly
Proof effort

almost halved!

(Technique)

(Proof-of-concept  
for technique)

 11 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

Impact

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1st such proofs carried to assembly-level model by compiler
Impact

2. Verified compiler
 While-language to RISC-style

assembly
Proof effort

almost halved!

(Technique)

Verified compiler
Overview

 12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

An Isabelle/HOL primrec function

 (Formalisation: https://covern.org/itp19.html)

Verified compiler
Overview

 12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

An Isabelle/HOL primrec function

(Based on:  
Tedesco et al. CSF’16)

 (Formalisation: https://covern.org/itp19.html)

Verified compiler
Overview

 12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

An Isabelle/HOL primrec function

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

(Based on:  
Tedesco et al. CSF’16)

 (Formalisation: https://covern.org/itp19.html)

Verified compiler
Overview

 12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

• Application: 2-thread input-handling model 
of Cross Domain Desktop Compositor

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

An Isabelle/HOL primrec function

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

(Based on:  
Tedesco et al. CSF’16)

 (Formalisation: https://covern.org/itp19.html)

Verified compiler
Overview

 12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

• Application: 2-thread input-handling model 
of Cross Domain Desktop Compositor

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

An Isabelle/HOL primrec function

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

(Based on:  
Tedesco et al. CSF’16)

 (Formalisation: https://covern.org/itp19.html)

Verified compiler
Overview

 12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

• Application: 2-thread input-handling model 
of Cross Domain Desktop Compositor

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

An Isabelle/HOL primrec function

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

(Based on:  
Tedesco et al. CSF’16)

 (Formalisation: https://covern.org/itp19.html)

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

 (Formalisation: https://covern.org/itp19.html)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

 (Formalisation: https://covern.org/itp19.html)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2
True

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2
True

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2
False

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2
False

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

• Theorem: R (for B, with I)  
is a secure refinement

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

While

RISC

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2… …

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

• Theorem: R (for B, with I)  
is a secure refinement
(via decomposition principle)

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

While

RISC

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2… …

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

• Theorem: R (for B, with I)  
is a secure refinement
(via decomposition principle)

• Theorem: Compiler input related to output by R

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

While

RISC

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2… …

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

• Theorem: R (for B, with I)  
is a secure refinement
(via decomposition principle)

• Theorem: Compiler input related to output by R

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

While

RISC

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2… …

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

• Theorem: R (for B, with I)  
is a secure refinement
(via decomposition principle)

• Theorem: Compiler input related to output by R

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

While

RISC

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2… …

(Inductive)

• Nominate R (and I) to characterise compilation  
(for proofs B produced by our type system)
• e.g. R cases for if-conditional

• Theorem: R (for B, with I)  
is a secure refinement
(via decomposition principle)

• Theorem: Compiler input related to output by R

 13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

While

RISC

While

RISC

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

 (Formalisation: https://covern.org/itp19.html)

If e c1 c2… …

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

Verified compiler
Overview

 14 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

• Application: 2-thread input-handling model 
of Cross Domain Desktop Compositor

An Isabelle/HOL primrec function

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

 (Formalisation: https://covern.org/itp19.html)

(Based on:  
Tedesco et al. CSF’16)

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

Verified compiler
Overview

 14 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

• Application: 2-thread input-handling model 
of Cross Domain Desktop Compositor

An Isabelle/HOL primrec function

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

 (Formalisation: https://covern.org/itp19.html)

(Based on:  
Tedesco et al. CSF’16)

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 (Formalisation: https://covern.org/itp19.html)

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 (Formalisation: https://covern.org/itp19.html)

Concurrent input-handling architecture
(extremely simplified)

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 (Formalisation: https://covern.org/itp19.html)

~150 lines While

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 (Formalisation: https://covern.org/itp19.html)

~150 lines While

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

~250 RISC instructions

 (Formalisation: https://covern.org/itp19.html)

~150 lines While

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

~250 RISC instructions

 (Formalisation: https://covern.org/itp19.html)

~150 lines While
Proof effort
preserved!

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

~250 RISC instructions

 (Formalisation: https://covern.org/itp19.html)

~150 lines While
Proof effort
preserved!

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

~250 RISC instructions

 (Formalisation: https://covern.org/itp19.html)

~150 lines While
Proof effort
preserved!

Verified compiler
Application: CDDC input-handling model

 15

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

~250 RISC instructions

 (Formalisation: https://covern.org/itp19.html)

~150 lines While
Proof effort
preserved!

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

Verified compiler
Overview

 16 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

• Application: 2-thread input-handling model 
of Cross Domain Desktop Compositor

An Isabelle/HOL primrec function

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

 (Formalisation: https://covern.org/itp19.html)

(Based on:  
Tedesco et al. CSF’16)

• Proof approach: ~7K lines of Isabelle/HOL script
• Prevents data races on shared memory
• Knows when safe to optimise reads

Verified compiler
Overview

 16 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

• Application: 2-thread input-handling model 
of Cross Domain Desktop Compositor

An Isabelle/HOL primrec function

While RISC

Skip

Seq (i.e. c1 ;; c2)
Assign (i.e. v ← e)
If e c1 c2
While e c

(Imperative) (Assembly)
Load r v
Store v r
Jmp l
Jz l r
Nop
......

 (Formalisation: https://covern.org/itp19.html)

(Based on:  
Tedesco et al. CSF’16)

(Technique)

 17 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

Proof effort
almost halved!

Impact

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1st such proofs carried to assembly-level model by compiler

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

(Proof-of-concept  
for technique)

(Conclusion)

(Technique)

 17 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

Proof effort
almost halved!

Impact

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1st such proofs carried to assembly-level model by compiler

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

(Proof-of-concept  
for technique)

(Conclusion)

(Technique)

 17 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

1. Decomposition principle
for confidentiality-preserving

refinement

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Goal

Results

Our contributions

Proof effort
almost halved!

Impact

Prove a compiler preserves proofs of concurrent  
value-dependent information-flow security

1st such proofs carried to assembly-level model by compiler

2. Verified compiler
 While-language to RISC-style

assembly

 (Formalisation: https://covern.org/itp19.html)

(Proof-of-concept  
for technique)

Thank you! Please see

(Conclusion) + Q & A

 18

Tedesco et al. CSF’16

Appendix
Differences from Tedesco et al. CSF'16 compilation scheme

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

 18

Our While-to-RISC compiler

Appendix
Differences from Tedesco et al. CSF'16 compilation scheme

Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

