
Synthesis of Verified Architectural Components for Critical Systems Hosted
on a Verified Microkernel

David Hardin
Collins Aerospace, USA

david.hardin@collins.com

Konrad Slind
Collins Aerospace, USA

konrad.slind@collins.com

Johannes Åman Pohjola
Data61/CSIRO, Australia

Johannes.Amanpohjola@data61.csiro.au

Michael Sproul
Data61/CSIRO, Australia
Michael.Sproul@data61.csiro.au

Abstract

We describe a method and tools for the creation of
formally verified components that run on the verified
seL4 microkernel. This synthesis and verification
environment provides a basis to create safe and
secure critical systems. The mathematically proved
space and time separation properties of seL4 are
particularly well-suited for the miniaturised electronics
of smaller, lower-cost Unmanned Aerial Vehicles (UAVs),
as multiple, independent UAV applications can be
hosted on a single CPU with high assurance. We
illustrate our method and tools with an example
that implements security-improving transformations
on system architectures captured in the Architecture
Analysis and Design Language (AADL). We show how
input validation filter components can be synthesised
from regular expressions, and verified to meet arithmetic
constraints extracted from the AADL model. Such
filters comprise efficient guards on messages to/from
the autonomous system. The correctness proofs
for filters are automatically lifted to proofs of the
corresponding properties on the lazy streams that model
the communications of the generated seL4 threads.
Finally, we guarantee that the intent of the autonomy
application logic is accurately reflected in the application
binary code hosted on seL4 through the use of the verified
CakeML compiler.

1. Introduction

The creation of accreditable, safey- and
security-critical autonomous systems will demand
the highest degree of design assurance.1 We are thus
researching highly automated synthesis techniques for
high-assurance components implementing formally
verified security-enhancing architectural transformations
for critical systems. In particular, we provide evidence,
in the form of formal proofs, that these transformations

1DISTRIBUTION STATEMENT A. Approved for Public Release.

actually do improve key security, as well as safety,
properties. This work is part of the Defense Advanced
Research Projects Agency (DARPA) Cyber-Assured
Systems Engineering (CASE) research program, which
is tasked with providing tools and techniques that allow
system designers to proactively account for resiliency
against cyber-attacks during the design phase, rather than
by discovering and patching these flaws in an already
implemented system in ad hoc fashion.2

By way of a motivating example, consider the
(simplified) model of a mission control system for an
unmanned aerial vehicle (UAV) shown in in Figure 1.
This model is based on the UxAS UAV developed at
the U.S. Air Force Research Laboratory [1], and uses
legacy components from that system. The two main
components of the system are a ground station (GS) and
the UAV, which has as subcomponents a radio (RADIO),
a flight planner (FPLN), a waypoint manager (WPM),
and a flight control computer (FCC). General mission
parameters flow from GS to FPLN, by way of the radio
link. The flight planner generates the full flight plan—a
sequence of waypoints to follow—and sends it to the
waypoint manager. The WPM processes a fixed-size
window of the next few waypoints to be dealt with
by the flight control computer. The FCC is a separate
computer which is in charge of actually flying the vehicle,
interpreting the waypoints and incoming sensor data and
sending directives to control motors, etc. As the FCC
makes progress, it tells the WPM to advance the window,
and also sends back various sensor data to the FPLN,
WPM, and potentially the GS via the RADIO.

A first step towards securing such a system is
spatial isolation: when an untrusted legacy component
is compromised or otherwise malfunctions, we do not
want it to be able to interfere with the correct execution
of other components, or to read privileged data from
other components through unintended side channels.
To achieve this, we want the connections between

2The views expressed are those of the authors and do not reflect the
official policy or position of the Defense Advanced Research Projects
Agency (DARPA) or the U.S. Government.

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6365
URI: https://hdl.handle.net/10125/64521
978-0-9981331-3-3
(CC BY-NC-ND 4.0)



GS RADIO FPLN WPM FCC

UAV

Figure 1. Simplified model of a UAV flight controller.

the components that are explicitly present in design
diagrams such as Figure 1 to be the only communication
channels present in the running system. While such
isolation can be achieved by running each component
on its own physically isolated hardware, we reduce cost,
gain flexibility, and enable miniaturization by using the
same general-purpose hardware to run several distinct
components. In order to recover spatial isolation in
this setting, we run components on seL4 [2], a verified
capability-based microkernel accompanied by formal
proof of spatial isolation properties down to the binary
level.

While isolation defends against attacks through
unintended channels, it does nothing to guard against
attacks through the intended channels. For example, a
compromised ground station or radio driver could be used
to feed malformed messages that the legacy flight planner
is not equipped to handle. This could be exploited to
induce crashes or privilege escalation through buffer
overflow, etc.

Our goal in the present paper is that the system
designer, having noticed the potential for such a
vulnerability, should have at her disposal a toolbox
of security-enhancing architectural transformations for
inserting countermeasures into the architecture. These
countermeasures should be non-intrusive, reusable and
highly trustworthy. They should not change the
(potentially brittle) legacy components — instead, they
place security enhancements around them. They should
be easy to configure and deploy for the needs of
different systems. Trustworthiness, the main focus of
this paper, is very important: when we introduce more
components into a system, they too become part of
the attack surface. Thus, each component inserted by
a transformation is accompanied by a formal proof
connecting the component’s intended behaviour with
the behaviour of its implementation down to the binary
level. The transformations in our toolbox include
isolation (realised, for example, by the introduction
of the verified seL4 separation kernel), filter insertion,
data transformer insertion, safety monitor insertion, and
measurement/attestation.

The concrete transformation we consider in this paper
is filter insertion, which is a pattern to prevent attacks

that rely on malformed messages. This transformation
is illustrated on the UAV mission control example in
Figure 2. The filter controls the flow of messages
on the communication channel, ensuring that only
messages that are well-formed get forwarded from the
radio driver to the flight controller, and conversely,
that every well-formed message gets forwarded. The
precise definition of “well-formed” will of course vary
from situation to situation; hence, it is a parameter that
the system designer can instantiate. In this paper, we
consider filters where well-formedness can be decided
by regular expressions. Our toolchain will then:

1. compile the regular expression to a table-driven
deterministic finite-state automaton (DFA) by
instantiating a general regexp compiler theorem
provided in HOL4;

2. synthesise CakeML code that implements
matching of strings against the DFA from
the preceding step using proof-producing
synthesis [3];

3. generate an I/O wrapper around the synthesised
code that allows it to be inserted on any Remote
Procedure Call (RPC) connection between two
components of the CAmkES [4] component
architecture for seL4;

4. produce a proof, covering both liveness and
safety, that this program implements the expected
behaviour of a filter component: it lets through
exactly the messages described by the regular
expression; and

5. generate a binary filter implementation using the
verified CakeML compiler.

These steps are carried out in the HOL4 theorem
prover, which we integrate into the CAmkES build
system: thus, strong evidence for the trustworthiness
of transformations are built along with the system image
wherein they are used.

Since regular expressions tend to be somewhat
opaque, it is also important to have some independent
assurance that a given regular expression really does
correspond to the intended meaning of “well-formed”. To
address this, we require proofs of the formal relationship
between a given regular expression and a high-level logic
specification extracted from the Architecture Analysis
and Design Language (AADL) model of the UAV system.

Notation This paper uses notation that closely follows
that of the underlying HOL4 formalisation, with some
modifications for readability. We use this font for HOL4

Page 6366



GS RADIO FLT FPLN WPM FCC

UAV

Figure 2. Simplified model of a UAV flight controller with inserted filter.

constant names and type constructors, this font for (free
or bound) HOL4 variables, and this font for HOL4
types and CakeML code. We write deeply embedded
CakeML code in concrete syntax for readability.

We write f x or f(x) for the application of the
function f to the argument x. T and F denote truth and
falsity. SOME and NONE are the type constructors of
the option type, denoting respectively a value or the
absence of a value. The function the extracts the value of
an option that denotes a value, so the(SOME x) = x.

We overload [] to denote both the empty (inductive)
list and the empty (coinductive) lazy list; similarly _,
written in infix, denotes concatenation for both lists
and lazy lists. Finite list “cons” is written infix (::).
length, map, filter, take, zip, flatten and drop denote
the usual library functions on lists; when prefixed by an
l as in llength, they denote the corresponding functions
on lazy lists. llength returns num option rather than
num: llength l = NONE means that l is infinitely long.
replicate n e denotes a list consisting of n copies of
e. We write ln for the n:th element of the list l (if it
exists), and lgenlist f for the list [f(0), f(1), f(2), . . . ].
Equality on lazy lists coincides with list bisimilarity in
HOL4, so l1 = l2 is true iff no difference between l1
and l2 can be observed by repeated application of the
destructors lhd (lazy list head) and ltl (lazy list tail).

2. Architectural modelling and
transformation

AADL [5] is an industrial system architecture
description language. We have been using AADL on
projects aimed at performing analysis and verification
of system-level designs for cyber-physical systems, such
as UAVs [6]. AADL provides the constructs needed to
model embedded systems such as processes, threads,
processors, devices, buses, and memory. An AADL
model captures the whole system and can thus can serve
as a central place for system-level analysis, reasoning,
scheduling, generation of executables, etc. We are
investigating architecture-to-architecture transformations
that provably improve the security of a system. The
Collins team has built AADL-based reasoning tools [7]
[8] in previous work, and we are currently engaged in

enhancing these tools with the technology developed in
the present paper.

2.1. AGREE contract checking and the
Resolute assurance case tool

The AGREE tool [7] supports component-based
hierarchical reasoning based on assume-guarantee
behavioural specifications (contracts) placed on elements
of an AADL architecture. AGREE contracts
are expressed with past-time LTL formulas, and
model-checking is accomplished using the JKind
k-induction model-checker [9]. For our class of
transformations, in which a new filter component is added
to meet a security requirement, we wish to show that
the filter indeed provides the specified well-formedness
check on its inputs. This has twin aspects: first, the
“empty” filter component is added to the architecture, and
well-formedness of messages is expressed as an AGREE
assertion on its output. The assertion becomes a leaf-level
statement in the reasoning performed by the AGREE tool;
thus, it must be proved separately. Second, the empty
component is filled in: a regular expression is given
and the corresponding DFA-based implementation is
generated and compiled. The well-formedness property
becomes a specification on the generated implementation,
and the specification is (automatically) propagated to
the infinitary behaviour of the filter component, by
means of the proofs in Section 4.2. The creation of the
filter component creates multiple pieces of verification
evidence from the AGREE and HOL4 tools. Managing
and combining the results of multiple reasoners justifying
architectural transformations is the subject of current
extensions we are making to Resolute, an assurance case
tool with deep connections to AADL models [8].

2.2. Example: UAV Coordinates

Consider an AADL model corresponding to the
filter-transformed architecture depicted informally in
Figure 2, a portion of which is shown in Figure 3. One of
the data elements to be transferred between the Ground
Station and the UAV are Location coordinates. By way
of example, consider a location coordinate represented

Page 6367



by the following record structure in AADL:
data implementation Coordinate.Impl

subcomponents
latitude : data Base_Types::Integer;
longitude : data Base_Types::Integer;
altitude : data Base_Types::Integer;

end Coordinate.Impl;

We only wish to accept well-formed coordinates from
the ground, as ill-formed coordinates could be used by
a cyber attacker to inject malware, cause computational
errors, direct the UAV into hostile territory, etc. We
thus define a set of coordinate constraints in the AGREE
contract language; one such set of constraints is presented
in conventional mathematical notation as follows:

wf coordinate(c) ⇔ −90 ≤ c.latitude ≤ 90 ∧
−180 ≤ c.longitude ≤ 180 ∧
0 ≤ c.altitude ≤ 15000

Thus the assertion to be added on the output out
of the filter component is wf coordinate out . Note
that such high-level specification of messages ignores
important aspects of the wire format such as field order,
endianess, and packing. Our toolchain provides support
for such “metadata”, which we exploit in order to obtain
declarative specifications of message representations.

3. CakeML on seL4

In this section, we describe our setup for building
CakeML programs that can run as components on
seL4. The impact is a low-cost way of building highly
trustworthy systems: we run components verified to the
binary level on a microkernel verified to the binary level.

seL4 is a capability-based microkernel which aims
to be both performant and secure. It is accompanied
by a formal specification in Isabelle/HOL and an
end-to-end proof that its C implementation and compiled
binary refine this specification [2, 10, 11]. High-level
confidentiality and information flow properties are
proved over the abstract specification, which then apply
to the binary by refinement.

As a general-purpose microkernel, seL4 provides
only basic facilities: threads, virtual memory and
messaging-passing inter-process communication. To
build useful systems atop seL4 therefore requires
significant design and implementation work, which
should ideally be accompanied by further formal
verification to maintain confidence in the correctness
of the whole system. The seL4 ecosystem includes
a component system called CAmkES [4] for building
systems, which until now has primarily supported
components written in C, for which formal verification

is costly. This work describes the first implementation
of a CAmkES component in a high-level language for
which a complete formal semantics is available, namely
CakeML.

CakeML is a a dialect of Standard ML with a verified
compiler, implemented and verified in the HOL4 theorem
prover. CakeML programs written in concrete syntax or
generated via translation from HOL4 [3] can be compiled
in a semantics-preserving way to machine code for a
variety of architectures, including ARMv6, ARMv8 and
x86-64.

Figure 4 is an excerpt of the filter’s CakeML code,
which implements the interaction with seL4 as an
event loop. In this loop, the #(accept call) and
#(emit string) calls are Foreign Function Interface
(FFI) function calls which act to receive and send
data via seL4’s RPC mechanism, implemented in C.
Intuitively, #(foo) s b calls the foreign function
foo with the string argument s and a byte array b
on which data that should be passed back to CakeML
can be written (#(emit string) does not return
anything and is therefore called with a zero-length array).
The filter converts each array of bytes received into a
null-terminated string, passes it to the verified regular
expression matcher, and if it matches, sends it out via
#(emit string). In our example system, there is a
CAmkES component called the producer which sends
strings to the filter, and another component called the
consumer which receives the matching strings.

The filter program is written as deeply embedded
CakeML code inside the HOL4 prover. HOL4 is invoked
by the CAmkES build system to construct the filter
and its accompanying correctness proofs (described in
Section 4.2) alongside the seL4 system image on which
it runs. To extract executable code from the HOL4
deep embedding, a number of options are available.
Our current version of the tool pretty-prints the deeply
embedded program as an S-expression, which we then
compile outside the logic using a bootstrapped version
of the verified CakeML compiler. If stronger assurance
is desired, it is possible to do in-logic evaluation of the
CakeML compiler, then print the resulting bytes to a file.
We currently don’t do this because it leads to much longer
build times (measured in hours rather than seconds).

4. Filters specified by regular expressions

In this section, we describe the formal justification
underlying our filter transformations. In earlier work [12]
we reported on a verified compiler from extended regular
expressions to table-driven DFAs, using Brzozowski’s
“derivative” approach; this compiler is available in the

Page 6368



Figure 3. Partial UAV Software Architecture in AADL, with inserted CakeML filter.

fun forward_loop() =
(#(accept_call) "" buffer;
let
val s1 = Word8Array.substring

inputarr 0 256;
val s2 = cut_at_null ln;
in
if match_string s2 then
#(emit_string) s2 dummy

else ()
end;
forward_loop())

fun forward_matching_lines() =
let
val buffer =
Word8Array.array
256 (Word8.fromInt 0);

val dummy =
Word8Array.array
0 (Word8.fromInt 0);

in
forward_loop()

end

Figure 4. An excerpt of the filter’s CakeML code.

Page 6369



HOL4 distribution.3 We make use of this compiler to
create verified regexp-based filters. We have built a
translation of AGREE arithmetical constraints to regexps
and provide proof tools verifying semantical properties
of the generated regexps. Final steps generate and
verify CakeML code implementing the CAmkES regular
expression filter component.

4.1. Semantic properties of formal languages

In our setting, a filter specification takes the form
of logical constraints on a record type (supplemented
with layout and well-formedness information) modelling
network messages. The filter implementation is then
generated by translating the logical constraints to an
equivalent regular expression. This gives rise to a
class of verification problems: namely, when does a
regular expression r exactly capture well-formedness
constraints on the fields of a record structure. We will
write r |= SPEC for the following relation between
regexp r and logic specification SPEC : recd→ bool.

∀recd . SPEC(recd)⇔ encode(recd) ∈ L(r) (1)

where encode maps elements of the given record type
to strings, and L(r) is the regular language generated
by regexp r. We call this setting SPLAT (Semantic
Properties for Language and Automata Theory), since it
combines formal language theory with specifications on
the interpretation of the flat strings comprising message
formats.

Theorems having the form of (1) bridge between the
requirements needed for AGREE architectural reasoning
and the correctness of regexp compilation. However,
there are related theorems that are also required, e.g.,
invertibility and injectivity of encoding:

∀x. decode(encode x) = x
∀x y. (encode x = encode y)⇒ x = y (2)

These can be required in the proof of (1), and are
further evidence that the filter will work properly. Tan
and Morrisett [13] explore some of the subtleties in
formal proofs of Instruction Set Architecture (ISA)-level
encoders/decoders.
Example 1. Consider the well-formed coordinate
filtering example of Example 2.2. The theorem proved is

R |= wf coordinate,

or

∀r. wf coordinate(r)⇔ encode(r) ∈ L(R)
3In examples/formal-languages/regular.

where

encode(r) = enc 1 r.latitude _ enc 2 r.longitude _
enc 2 r.altitude

This theorem is proved automatically using the
HOL4-based SPLAT infrastructure. SPLAT utilizes a
suite of pre-proved rewrite rules, including invertibility
of the component encoders, as well as specialised provers
for membership in the appropriate character sets.

Expressiveness We think that specifying filters with
regexps is a promising direction, combining a declarative
approach to behaviour with a strong proof basis in formal
language theory. Many common message formats are
naturally expressed with regular expressions extended
with intervals. Messages with fixed repetitions of data
elements, e.g., arrays, can be expressed easily. Also,
messages with indeterminate repetitions of data elements
can be expressed with Kleene star. There are, of course,
limitations: regexps are not able to handle data where
wellformedness is a context-free (or beyond) language.
For example, determining the well-formedness of JSON
or XML-formatted messages would be out of scope, as
would message formats where the wellformedness of one
field depends on a value in another field. We are currently
developing a verified lexing/parsing capability to extend
our reach to more complex message formats.

4.2. CakeML filter verification

Next we extend the correctness theorem about the
regular expression compiler to the I/O behaviour of
the filter component’s CakeML implementation. The
theorem can be composed with the CakeML compiler
correctness theorem to obtain a corresponding theorem
about the binary code that runs in the filter component.
Taken together, these theorems imply a number of
desirable properties:

Safety: The filter’s I/O behaviour is consistent
with its specification, which is to forward to
the consumer precisely those messages from the
producer that match the regular expression.

Liveness: The filter will keep executing
indefinitely; it does not crash or otherwise
terminate, given that seL4 continues to provide
the necessary execution environment. As long as
the producer keeps sending messages to the filter,
the filter will always eventually process the next
message. The filter cannot get stuck in an infinite
silent loop, e.g. while processing any one message.

Page 6370



In order to state the theorems with more precision,
we need to recapitulate the semantics of two pertinent
language features: divergence and foreign function calls.
We will take the liberty of simplifying or eliding technical
details that do not pertain to the matters at hand; those
interested in the details are referred to the HOL4 sources
for CakeML.4

Semantics of divergence and FFI calls The CakeML
semantics is defined in two layers, which we shall call the
evaluator and the top-level semantics. The evaluator is
defined using functional big-step semantics [14] — or in
other words, it is a function eval ∈ state × program ⇒
state × result which defines the (unique) outcome of
executing a program from a given initial state. eval is
recursively defined in the style of an interpreter, as is
common in these sorts of formalisations.

In order to make sure that eval terminates even if
the program does not, the state contains a semantic
clock, which is a natural number that gets decremented
whenever eval visits a program construct that might
induce non-termination, such as recursive function calls.
When the clock runs out, eval immediately returns with
the result Timeout. As we shall see, a divergent program
is one that times out for every clock value.

CakeML programs that communicate with the outside
world via the FFI have semantics that are parameterised
by a foreign function oracle, which is a part of the
program state that models the outside world. The oracle
describes the effects of foreign function calls in terms
of their impact on the outside world, and what data they
pass from the outside world to CakeML.

Henceforth, we will write stk,o,t for a state st with
clock value k, FFI-oracle o and a list t of the foreign
function calls that the program has emitted so far. We
elide the clock value when it is irrelevant. We also write
O(st) to denote this list of foreign function calls, so
O(stk,o,t) = k. We lift O to state × result pairs as
O((s, r)) = O(s).

Finally, the top-level semantics of a program is
defined as follows:

semantics(sto,[], prog) =
Terminate if ∃k, st ′, v.eval(stk,o,[], prog) =
(st′,Value v) and O(st′) = t

Diverge(t) if ∀k. ∃st′.eval(stk,o,t) =
(st′,Timeout) and
t = sup{O(eval(stk,o,t, prog)) : k ∈ N}

Failure otherwise

Note that the observable behaviour of a divergent
program is the supremum (ordered by list length) of the
program’s FFI traces for every possible clock value. This

4http://code.cakeml.org/

supremum might be an infinite, and hence coinductive,
list.

Verification CakeML-level verification was carried out
using the CF (characteristic formulae) program logic [15],
which supports sound reasoning about impure CakeML
programs through an abstraction that models programs
as higher-order logic formulae relating preconditions
to postconditions. Unlike other tools to ease the
verification of CakeML code [3, 16], all of which are
restricted to terminating programs, CF was recently
extended to accommodate liveness proofs for diverging
programs [17]. This greatly eases verification because
we are spared many low-level details considered in
CakeML’s big-step semantics; we need never explicitly
massage low-level details such as namespace lookups
and semantic clocks. Because CF is sound wrt. the
CakeML semantics presented in the previous section,
its use does not increase the trusted computing base.
The resulting HOL4 proof script, covering the toolchain
from invocation of the regexp compiler to generation,
verification and compilation of the resulting CakeML
implementation, is around 1500 lines of definitions and
proofs and is available online. 5 All theorem statements
that follow are formally proven therein.

To characterise the expected I/O behaviour of the
filter in a way that does not refer back to the filter
implementation, we define the function next events,
which describes the I/O events produced by one iteration
of the filter loop.

next events f (i , l) =
let h = take 256 i _ drop (length i) l ;
in

[IO event ”accept call” [] (zip (l , h))]_
if f(cut at null(i)) then

[IO event ”emit string” (cut at null h) []]
else[]

We parameterise next events on an arbitrary filter
predicate f . Later, we will instantiate f to be the
membership predicate for a regular language, but it is
worth stressing that our approach is applicable to filters
that are not regexp-based. We abstract the internal state
as a tuple (i, l), where i is the next input to be consumed,
and l is the current contents of the message buffer.

A specification of the filter’s limit behaviour can then
be obtained by the (possibly infinite) concatenation of
the next events at every loop iteration.

This gives a coinductive list that describes the
sequence of observable events that the filter program will

5At code.cakeml.org, in examples/filterProgScript.
The version available there presents only the filter correctness proofs,
and has been decoupled from the build system presented in this paper.

Page 6371



reach throughout its execution. This is a very low-level
specification: apart from being a HOL4 function rather
than a CakeML program, it is at about the same level of
abstraction as the implementation itself. Its main use is
to construct a bisimulation witness in the proof of the
following theorem:

Theorem 1. If every message in o.input is
null-terminated and at most 256 bytes long (including
the null terminator), then there is a trace t such that

semantics(sto,[], forward matching lines()) =
Diverge(t)

and

lfilter is emit (t) =
lmap cut at null(lfilter (L(r) ◦ cut at null) o.inputs)

where r is the regular expression under consideration for
this particular filter.

Proof. The proof is by Hoare logic-style reasoning using
the CF proof rule for divergence [17].

In the inductive case, we prove by standard weakest
precondition-style reasoning that the n:th iteration
always terminates, producing as I/O the n:th next events.

In the limit case, we prove that the following is a list
bisimulation:

{(l1, l2) : ∃i, l.
l1 = lfilter is emit(lflatten(lgenlist

(λn.next events
(L(r) ◦ cut at null)
(in, ln)

)
))

∧ l2 = lmap cut at null(lfilter (L(r) ◦ cut at null) l)
∧ every
(λl. length l ≤ 256 ∧ null terminated l) i, l}

This shows that the behaviour our filter, which can
be explicitly characterised by filter events, corresponds
to our intuition about filter operation — namely, that the
list of output events is equal to the list of input events
filtered by the regular expression’s language. This final
characterisation makes no reference to the filter’s internal
state.

These “good filter” proof results are recorded as
evidence in the Resolute Assurance case tool for a given
filter instance.

5. Related Work

In [18], Bohrer et al. study the synthesis of
verified control monitors for cyber-physical systems that
ultimately are implemented by synthesised CakeML code.
Control monitors are similar to filters in that they are
architectural components that are not meant to terminate.
While we explicitly consider the limit behaviour of
such non-terminating executions, Bohrer et al. avoid
having to formally treat divergence by introducing a stop
oracle which decides when the control loop should stop
executing. Thus their verification is restricted to safety
properties, whereas ours also addresses liveness.

Férée et al. [19] use CakeML to develop a
verified implementation of the grep command-line tool,
building on an earlier version of the regular expression
compiler presented in this paper. While we perform DFA
compilation at compile-time, grep requires the DFA
to be generated at runtime based on the command-line
arguments. Hence Férée et al.’s correctness theorem
for grep must assume the unproven conjecture that
Brzozowski derivation with smart constructors terminates
— hence, the verification is limited to partial correctness
of a (hopefully) terminating program. Since we perform
this derivation at compile-time, our liveness property is
not predicated on any such termination assumption.

The CompCert verified C compiler proofs have been
extended to cover semantics preservation for divergent
programs [20]; however, the only instance we are aware
of where this capacity has been used is in the context
of a compiler for the dataflow language Lustre by
Bourke et al. [21], which uses CompCert as a backend.
The compiler correctness theorem preserves guarantees
similar to ours: every node in a Lustre program has
semantics that characterise the infinite stream of the
inputs it receives and the outputs it emits, and the
paper establishes that the generated assembly code
exhibits a bisimilar trace of read/write operations to
volatile memory. Our verified filters are similar to the
kinds of signal processing nodes considered in dataflow
programming, but do not neatly fit the setting: while
Lustre nodes produce an output for every input, our filters
produce output only for well-formed inputs, and drop all
other inputs.

The idea of relating arithmetic constraints to regular
expressions and automata goes back at least to Büchi [22]
and has been robustly mechanised in Mona [23]. It will
be interesting to see if implementation techniques from
that work can be used in ours. Recent papers by D’Antoni
[24] and Suriyakarn et al. [25] focus on correctness and
synthesis of decode/encode function pairs, but do not
address the use of such building blocks in verifying
higher-level properties.

Page 6372



6. Conclusion and Future Work

We have detailed a method and toolchain for
the creation of formally verified security-enhancing
autonomy components that run on a verified microkernel.
We demonstrated how this toolchain can be used to
implement security-improving transformations on system
architectures specified in AADL, with implementations
automatically synthesised using the verified CakeML
compiler. Such transformations, e.g. input validation
filters based on regular expressions, can be used to
improve resiliency against cyber attack. We have proved
safety and liveness properties that connect the filter’s
regular expression specification to the I/O behaviour of
the running filter component in the context of the verified
seL4 microkernel. Moreover, we have seen how SPLAT
proofs connect the regular expression to higher-level
designer-specified properties, captured in AADL.

This paper presents several directions for future work,
many of which we are currently pursuing. One research
thrust is to make verification of liveness properties for
non-terminating CakeML programs more scalable. The
CakeML compiler correctness theorem can transport our
theorems about the filter implementation to the binary
level, with one important caveat: it preserves semantics
up to the fact that the binary is allowed to abort at any
time if it runs out of memory. Hence liveness becomes
“liveness unless we run out of memory”. The filter should
not run out of memory — the live memory does not grow
between loop iterations — but it would be good to be
able to state and prove unconditional liveness for the
binary. The missing puzzle piece for this is a space-cost
semantics for CakeML and a proof that the compiler
preserves space-cost.

We will be using the approach described in this paper
to support other verified architectural transformations.
We are currently pursuing the synthesis of more complex
filter components utilizing verified lexing and/or parsing,
data transformation components, as well as verified safety
monitors. Finally this paper does not address the entirety
of the grand challenge of whole-system verification; that
is, we do not as yet formally connect the components’
correctness proofs with the seL4 correctness proofs. One
major verification gap in our toolchain is that between the
AADL architecture and its corresponding expression in
CAmkES. In previous work [26] a tool known as Trusted
Build handled this transformation; however, this was an
informally developed tool with no explicit proof story.
As part of current research, we are working to close this
gap.

Acknowledgments

We thank the anonymous referees for their insightful
comments. This work was sponsored in part by the U.S.
Defense Advanced Research Projects Agency (DARPA).

References

[1] S. Rasmussen, D. Kingston, and L. Humphrey, “A brief
introduction to unmanned systems autonomy services
(UxAS),” in 2018 International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 257–268, June 2018.

[2] G. Klein, J. Andronick, K. Elphinstone, G. Heiser,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood, “seL4: formal verification of an
operating-system kernel,” Communications of the ACM,
vol. 53, no. 6, pp. 107–115, 2010.

[3] M. Myreen and S. Owens, “Proof-producing translation of
higher-order logic into pure and stateful ML,” Journal of
Functional Programming, vol. 24, no. 2–3, pp. 284–315,
2014.

[4] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “CAmkES:
A component model for secure microkernel-based
embedded systems,” Journal of Systems and Software,
vol. 80, no. 5, pp. 687–699, 2007.

[5] P. Feiler and D. Gluch, Model-based engineering with
AADL: An Introduction to the SAE Architecture Analysis
and Design Language. Addison-Wesley, 2012.

[6] G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray,
and G. Heiser, “Formally verified software in the real
world,” Communications of the ACM, vol. 61, pp. 68–77,
October 2018.

[7] D. Cofer, A. Gacek, S. Miller, M. Whalen, B. LaValley,
and L. Sha, “Compositional verification of architectural
models,” in Fourth NASA Formal Methods Symposium
(NFM 2012), pp. 126–140, 2012.

[8] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen,
“Resolute: an assurance case language for architecture
models,” in HILT 2014, pp. 19–28, ACM, 2014.

[9] A. Gacek, J. Backes, M. Whalen, L. Wagner, and
E. Ghassabani, “The JKind model checker,” in CAV 2018,
pp. 20–27, 2018.

[10] T. Sewell, M. Myreen, and G. Klein, “Translation
validation for a verified OS kernel,” in PLDI 2013,
pp. 471–482, ACM, 2013.

[11] T. Murray, D. Matichuk, M. Brassil, P. Gammie,
T. Bourke, S. Seefried, C. Lewis, X. Gao, and G. Klein,
“seL4: From general purpose to a proof of information
flow enforcement,” in 2013 IEEE Symposium on Security
and Privacy, pp. 415–429, IEEE, 2013.

[12] D. Hardin, K. Slind, M. Bortz, J. Potts, and S. Owens,
“A high-assurance, high-performance hardware-based
cross-domain system,” in SAFECOMP 2016, vol. 9922 of
LNCS, pp. 102–113, Springer, 2016.

[13] G. Tan and G. Morrisett, “Bidirectional grammars
for machine-code decoding and encoding,” Journal of
Automated Reasoning, vol. 60, no. 3, pp. 257–277, 2018.

[14] S. Owens, M. Myreen, R. Kumar, and Y. Tan, “Functional
big-step semantics,” in ESOP 2016, vol. 9632 of LNCS,
pp. 589–615, Springer, 2016.

Page 6373



[15] A. Guéneau, M. Myreen, R. Kumar, and M. Norrish,
“Verified characteristic formulae for CakeML,” in ESOP
2017, pp. 584–610, 2017.

[16] S. Ho, O. Abrahamsson, R. Kumar, M. Myreen, Y. Tan,
and M. Norrish, “Proof-producing synthesis of CakeML
with I/O and local state from monadic HOL functions,” in
IJCAR 2018, vol. 10900 of LNCS, pp. 646–662, Springer,
2018.

[17] J. Åman Pohjola, H. Rostedt, and M. O. Myreen,
“Characteristic formulae for liveness properties of
non-terminating CakeML programs,” in Proceedings of
the 10th International Conference on Interactive Theorem
Proving ITP (J. Harrison, J. O’Leary, and A. Tolmach,
eds.), vol. 141, pp. 32:1–32:19, LIPIcs, 2019.

[18] B. Bohrer, Y. K. Tan, S. Mitsch, M. Myreen, and
A. Platzer, “Veriphy: verified controller executables from
verified cyber-physical system models,” in PLDI 2018,
pp. 617–630, ACM, 2018.

[19] H. Férée, J. Åman Pohjola, R. Kumar, S. Owens,
M. Myreen, and S. Ho, “Program verification in the
presence of I/O: Semantics, verified library routines,
and verified applications,” in VSTTE 2018, pp. 88–111,
Springer, 2018.

[20] X. Leroy and H. Grall, “Coinductive big-step operational
semantics,” Information and Computation, vol. 207, no. 2,
pp. 284–304, 2009.

[21] T. Bourke, L. Brun, P. Dagand, X. Leroy, M. Pouzet, and
L. Rieg, “A formally verified compiler for Lustre,” in
PLDI 2017, pp. 586–601, 2017.

[22] J. R. Büchi, “Weak second-order arithmetic and finite
automata,” Zeitschrift Math. Logik und Grundlagen der
Mathematik, no. 6, pp. 66–92, 1960.

[23] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund,
R. Paige, T. Rauhe, and A. Sandholm, “Mona:
Monadic second-order logic in practice,” in TACAS 1995,
pp. 89–110, 1995.

[24] L. D’Antoni and M. Veanes, “Static analysis of string
encoders and decoders,” in VMCAI 2013, pp. 209–228,
2013.

[25] S. Suriyakarn, C. Pit-Claudel, B. Delaware, and
A. Chlipala, “Narcissus: Deriving correct-by-construction
decoders and encoders from binary formats,” Computing
Research Repository (CoRR), vol. abs/1803.04870, 2018.

[26] D. Cofer, J. Backes, A. Gacek, D. DaCosta,
M. Whalen, I. Kuz, G. Klein, G. Heiser, L. Pike,
A. Foltzer, M. Podhradsky, D. Stuart, J. Grahan,
and B. Wilson, “Secure Mathematically-Assured
Composition of Control Models,” tech. rep., Defense
Technical Information Center, September 2017.
http://www.dtic.mil/dtic/tr/fulltext/u2/1039782.pdf.

Page 6374


