
Program Verification in the Presence of Cached

Address Translation

Hira Taqdees Syeda and Gerwin Klein

Data61, CSIRO, Australia
School of Computer Science and Engineering, UNSW, Sydney, Australia

{Hira.Syeda,Gerwin.Klein}@data61.csiro.au

Abstract. Operating system (OS) kernels achieve isolation between
user-level processes using multi-level page tables and translation looka-
side bu↵ers (TLBs). Controlling the TLB correctly is a fundamental se-
curity property — yet all large-scale formal OS verification projects leave
correct functionality of the TLB as an assumption. We present a logic
for reasoning about low-level programs in the presence of TLB address
translation. We extract invariants and necessary conditions for correct
TLB operation that mirror the informal reasoning of OS engineers. Our
program logic reduces to a standard logic for user-level reasoning, reduces
to side-condition checks for kernel-level reasoning, and can handle typical
OS kernel tasks such as context switching and page table manipulations.

1 Introduction

We present a program logic in the interactive proof assistant Isabelle/HOL [15]
for verifying programs in the presence of an ARMv7-style memory manage-
ment unit (MMU), consisting of multi-level page tables and a translation looka-
side bu↵er (TLB) for caching page table walks. This logic builds on our earlier
work [17], a machine model with a sound abstraction of the ARMv7-style TLB.
While program logics for reasoning in the presence of address translation ex-
ist [11], reasoning in the presence of a TLB has so far remained hard, and is
left as an assumption in all large-scale operating system (OS) kernel verification
projects such as seL4 [7] and CertiKOS [6].

Page table data structures encode a mapping from virtual to physical memory
addresses. The OS kernel manages these, e.g. by adding, removing, or changing
mappings, by keeping a page table structure per user process, and by maintaining
invariants, such as never giving a user access to kernel-private data structures,
ensuring that certain mappings are always present, or ensuring non-overlapping
mappings between di↵erent page tables if so desired.

Since the TLB caches address translation, each of these operations may leave
the TLB out of date w.r.t. the page table in memory, and the OS kernel must
flush (or invalidate) the TLB before that lack of synchronisation can a↵ect pro-
gram execution. Since flushing the TLB is expensive, OS kernel designers work
hard to delay and minimise flushes and to make them as specific as possible,
using additional TLB features such as process-specific address space identifiers

(ASIDs) to only invalidate specific sets of entries. If this management is done
correctly, the TLB has no e↵ect other than speeding up execution. If it is done
incorrectly, machine execution will diverge from the semantics usual program
logics assume, e.g. wrong memory contents will be read/written, or unexpected
memory access faults might occur.

The main contribution of this paper apart from the logic itself and its sound-
ness is to show that it can be used to reason e↵ectively and e�ciently about
kernel code, that it reduces to simple side-condition checks on kernel code that
does not modify page tables, and that the logic reduces to standard Hoare logic
for user-level code. The development of the logic, and the case study presented
in the paper have led us to significantly extend the TLB model of our previous
work [17], which provided soundness for memory operations, but not for ASID
maintenance and page table root switches. The previous model would have re-
quired TLB invalidation where current kernel code (correctly) does not perform
any. The case study that flushed out this deficiency is inspired by the seL4
kernel [7], and systematically covers all significant interactions with the TLB. In
fact, we chose to model the ARMv7 TLB, because we aim to eventually integrate
this logic with the existing seL4 proofs on ARM.

The logic is generic and can easily be adapted to, for instance, the shallow
embedding the seL4 specifications use, or the more deeply embedded C semantics
of the same project. It should also transfer readily to other settings such as the
lower levels of CertiKOS in Coq.

After related work in Sect. 2, we introduce the Isabelle/HOL notation we use
in Sect. 3. Sect. 4 presents the syntax and semantic operations of a small example
language, as well as the program logic. Sect. 5 shows the main reduction theorems
that simplify reasoning, and Sect. 6 concludes with the case study examples. The
corresponding Isabelle/HOL theories are available online [18].

2 Related Work

The TLB has the nice property that it has no e↵ect on the execution of a program
apart from making it faster, if it is used correctly. For this reason, all large-scale
formal OS kernel verifications so far have left correct TLB management as an
assumption. This includes the OS kernel verification work in seL4 [7, 8] and
CertiKOS [6], which both do reason about page table structures, but omit the
TLB. Similarly, Daum et al. [4] reason about user-level programs on top of seL4,
including page tables, but not about the TLB.

Kolanski et al. [9–11] develop an extension of separation logic to formally
reason about page tables, virtual memory access, and shared memory in Is-
abelle/HOL. We build directly on the abstract interface to page table encodings
Kolanski developed, which makes our work independent of the precise page table
format the architecture uses. Kolanski’s model does not include the TLB and
does not address TLB caching, consistency and invalidation, which we add here.

Nemati et al. [14] show the design, implementation and verification of a
direct paging mechanism in a virtualization platform for ARMv7-A in HOL4 [16].

Similarly to others, they model the state parameters of the MMU, such as page
table walks, but not the TLB or its maintenance operations.

Kovalev [12] and Alkassar et al. [1] do provide a TLB model, in particular
a model of the Intel x64 TLB including selected maintenance operations and
partial walks. Kovalev [12] states a reduction theorem for page table walks in
ASID 0 for a specific hypervisor setup, which is based on ideas similar to the ones
presented here. However, while other parts of this development are mechanised,
this reduction theorem is not. As we will see in Sect. 4, the restriction to one
ASID makes the model too conservative for usual OS code.

Barthe et al. [3] present an abstract TLB model including TLB flushes and
invariants for enforcing isolation between guest operating systems, but stop short
of a program logic and a proof that the abstraction is sound.

We build directly on our earlier work [17] which provides a detailed opera-
tional TLB model based on the ARM architecture manual [2] integrated with the
ARM instruction set architecture (ISA) semantics of Fox and Myreen [5]. Rea-
soning directly about this detailed model is hard, because the TLB introduces
non-determinism, because global state changes even on memory reads, and be-
cause it introduces new failure modes that need to be avoided. Our earlier work
provides a tower of abstractions from this model, including soundness proof. The
final abstraction is similar to the ideas by Kovalev [12] and Kolanski [10], but the
case study in this paper shows that making e�cient use of ASIDs requires addi-
tional complexity. We have therefore extended the existing tower of abstractions
and soundness proofs and arrive at the TLB model we will show in Sect. 4.

3 Notation

This section introduces Isabelle/HOL syntax used in this paper, where di↵erent
from standard mathematical notation. Isabelle denotes the space of total func-
tions by), and type variables are written ’a, ’b, etc. The notation t::⌧ means
that HOL term t has HOL type ⌧ . The option type

datatype ’a option = None | Some ’a

adjoins a new element None to a type ’a. We use ’a option to model partial
functions, writing bac instead of Some a and ’a * ’b instead of ’a) ’b option.
Some has an underspecified inverse called the, satisfying the bxc = x.

Isabelle’s type system does not include dependent types, but can encode
numerals and machine words of fixed length. The type ’n word represents a word
with n bits; concrete types include e.g. 32 word and 64 word. Function update
is written f(x := y) where f::’a) ’b, x::’a and y::’b, f(x 7! y) stands for
f (x:= Some y). We model the program state as a record type state. For every
record field, there is a selector function of the same name. For example, if s has
type state then heap s denotes the value of the heap field of s, and s(|heap := id|)
will update heap of s to be the identity function id.

datatype aexp =
Const val

| UnOp (val) val) aexp
| BinOp (val) val) val) aexp aexp
| HeapLookup aexp

datatype bexp =
BConst bool

| BComp (val) val) bool) aexp aexp
| BBinOp (bool) bool) bool) bexp bexp
| BNot bexp

datatype mode_t = Kernel | User

datatype com =
SKIP

| aexp := aexp
| com ;; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com
| Flush flush_type
| UpdateRoot aexp
| UpdateASID asid
| SetMode mode_t

type synonym asid = 8 word
type synonym val = 32 word

datatype flush_type = flushTLB | flushvarange (val set)
| flushASID asid | flushASIDvarange asid (val set)

Fig. 1. Syntax of the heap based WHILE language.

4 Logic

This section presents a program logic for reasoning in the presence of cached
address translation. We define the syntax of a simple Turing-complete heap
language with TLB management primitives, introduce the abstract TLB and
memory model the language works on, and show the rules of program logic.

4.1 Syntax and Program State

Fig. 1 shows the Isabelle data types for the abstract syntax of the language.
Control structures are the standard SKIP, IF, WHILE and assignment, where
assignment expects the left-hand side to evaluate to a heap address. In addition,
we have specific privileged commands for flushing the TLB, updating the current
page table root, the current ASID, and the processor mode. The Flush operation
has a number of variants: invalidate all entries, invalidate by virtual address or
by virtual address/ASID pair, and invalidate an entire ASID [2, Chapter B3].

For simplicity, there are no local variables in this language, only the global
heap. We identify values and pointers and admit arbitrary HOL functions for
comparison, binary, and unary arithmetic expressions.

Fig. 2 illustrates the program state. It consists of the heap (physical mem-
ory), the set of inconsistent virtual addresses, the active page table root, the
active ASID, the last known page table state for all inactive ASIDs (page tables
snapshot), and the processor mode.

The first of these is for traditional heap manipulation, the rest for keeping
track of the TLB. This state model is similar to the TLB-relevant machine state
in our previous work on the ISA level [17], but it is not the same. The main
idea of this previous work was that it is su�cient to keep track of the addresses
on which the TLB and the in-memory page table may disagree. The logic pre-
sented in the present paper made case studies feasible and showed that this is

Fig. 2. Abstracted TLB Memory Model

not su�cient: to soundly model the e↵ect of the UpdateASID command without
requiring unnecessary flushes, this new model keeps track of a conservative esti-
mate of what the TLB might remember from the time an ASID was last active.
Essentially this is, for each ASID, a snapshot of the current page table state
when that ASID was last active modulo all addresses that were inconsistent at
that time. An ASID becomes active when the UpdateASID command updates the
corresponding machine register. In addition, this model also relaxes which ad-
dresses become inconsistent when page tables are modified. Sect. 4.2 will provide
more details.

Using the types vaddr and paddr for virtual and physical addresses from
Kolanski’s page table interface [11] we can declare the following:

datatype lookup_type = Miss | Incon | Hit tlb_entry

type synonym iset = vaddr set

type synonym ptable_snapshot = asid) vaddr) lookup_type

where it su�ces for this paper to see tlb_entry as the result of a page table walk
(see [17] for details).

With these, the record state has the components heap :: paddr * val,
iset :: iset, pt_snpshot :: ptable_snapshot, root :: paddr, asid :: asid, and
mode :: mode_t. Most of these are straightforward. The iset is the set of TLB-
inconsistent addresses, and the snapshot is a function from ASID a to address
va to lookup_type, where Miss encodes that the snapshot has no information for
va, Incon encodes that va should not be used, and Hit is the result of the page
table walk for va when a was last active.

4.2 Semantic Operations

This section presents the main semantic operations of the language. They de-
scribe the e↵ects of memory accesses and the new TLB operations on the state.

We interpret the values val of the language as virtual addresses, which means
memory read and write first undergo address translation. Both operations are
sensitive to the current mode of the machine, since some mappings might be
accessible in kernel mode only and lead to a page fault otherwise. To decode page
tables, we reuse Kolanski’s existing ARM page table formalisation [11], extended
with this additional access control behaviour. Our interface to this formalisation
is the function pt_lookup, which takes a heap, a page table root, and the current
mode, and yields a partial function from virtual address to physical address.
With this, we can formalise address translation, read, and write under a TLB.

Adding a TLB to address translation only adds a check that the virtual
address is not part of the iset:

phy_ad :: iset) heap) root) mode_t) vaddr * paddr
phy_ad IS hp rt m va ⌘ if va /2 IS then pt_lookup hp rt m va else None

The memory read and write functions are then simply:

read :: iset) heap) root) mode_t) vaddr * val
read IS hp rt m va ⌘ phy_ad IS hp rt m va B load_value hp

write :: iset) heap) root) mode_t) vaddr) val * heap
write IS hp rt m va v ⌘
case phy_ad IS hp rt m va of None) None | byc) bhp(y 7! v)c

where x B g ⌘ case x of None) None | byc) g y. Both functions first per-
form address translation, then access the physical heap. Read returns None when
the translation failed, write returns a new heap if successful and None otherwise.

The e↵ect of a write operation extends further than the heap. If the operation
modified the active page table, we may have to add new addresses to the TLB
iset. For this, we compare the page table before and after:

pt_comp wlk wlk’ =
{va | ¬ is_fault (wlk va) ^ ¬ is_fault (wlk’ va) ^ wlk va 6= wlk’ va _

¬ is_fault (wlk va) ^ is_fault (wlk’ va)}

incon_comp a hp hp’ rt rt’ = pt_comp (pt_walk a hp rt) (pt_walk a hp’ rt’)

where a is the current ASID and pt_walk is a version of pt_lookup that returns
more information, including whether the walk resulted in a page fault (missing
mapping). We compare the results of page table walks in a heap hp from a root
rt with walks in a di↵erent, updated heap hp’ and potentially di↵erent root rt’.
For heap writes, the root will be the same, and for root updates, the heaps will
be the same. Two scenarios might add inconsistent entries: changing an existing
mapping (first disjunct), or removing an existing mapping (second disjunct).
Note that a single heap write can a↵ect multiple mappings at once, for instance
when it changes the pointer to an entire page table level. It is the e↵ect of this
comparison that OS engineers reason about informally when they compute which
addresses need to be flushed from the TLB. We will show examples in Sect. 6.

The e↵ect of a write is then

heap_iset_updates (pp 7! v) ⌘
let hp = heap s; hp’ = hp(pp 7! v); rt = root s; a = asid s
in s(|heap := hp’, iset := iset s [incon_comp a hp hp’ rt rt|)

and the e↵ect of a page table root update is

root_iset_updates rt’ ⌘
let rt = root s; hp = heap s; a = asid s
in s(|root := rt’, iset := iset s [incon_comp a hp hp rt rt’|)

For changing the current ASID, we will make use of the page table snapshots
to determine which addresses become inconsistent, and we need to update the
snapshot for the ASID we are switching away from.

lift_pt walk ⌘ �va. if is_fault (walk va) then Miss else Hit (walk va)

to_incon V walk ⌘ �va. if addr_val va 2 V then Incon else walk va

snap_pt s = to_incon (IC s) (lift_pt (pt_walk (asid s) (heap s) (root s)))

new_snp s = (pt_snpshot s)(asid s := snap_pt s)

where IC s ⌘ {vp | Addr vp 2 iset s} and addr_val (Addr a) = a and Addr is
the constructor for addresses.

Taking a snapshot is taking the pt_walks in the current state, marking all
unmapped entries as Miss, and everything in the iset as Incon, and then storing
that function under the current ASID in new_snp.

snp_comp a snp walk ⌘ {va | snp a va 6= Miss ^ snp a va 6= Hit (walk va)}

snp_incon a s ⌘ snp_comp a (new_snp s) (pt_walk a (heap s) (root s))

Determining the iset for the new ASID a compares the Hit entries in the
snapshot for a with the current pt_walk. We use new_snp s instead of pt_snpshot
s, because a could also be the current ASID. The UpdateASID command then
executes

asid_pt_snpshot_updates a ⌘
s(|asid := a, iset := snp_incon a s, pt_snpshot := new_snp s|)

The final set of semantic e↵ects are flush operations. The functions

flush_iset :: flush_type) iset) asid) iset and
flush_snpshot :: flush_type) pt_snpshot) asid) pt_snpshot

simply remove the relevant entries from the iset, and set them to Miss in the
pt_snpshot respectively. The flush instruction does both simultaneously:

iset_pt_snpshot_updates f ⌘
let is = iset s; snp = pt_snpshot s; a = asid s
in s(|iset := flush_iset f is a, pt_snpshot := flush_snpshot f snp a|)

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

4.3 Hoare Logic

With the syntax and the semantic operations of the previous sections it is
straightforward to define an operational semantics for the language. We omit
the details here and only briefly summarise the salient points before we focus on
the rules of the program logic.

The semantics of arithmetic and Boolean expressions, [[A]] s and [[B]]b s, are
partial functions from program state to val and bool, respectively. While the
rest is standard and omitted here, HeapLookup goes through virtual memory:

[[HeapLookup vp]] s =
(case [[vp]] s of None) None
| bvc) read (iset s) (heap s) (root s) (mode s) (Addr v))

For commands, we write (c, s)) s’ for command c executed in state s termi-

nates in state s’, where s’ is of type state option with None indicating failure.
More details about the semantics can be found at [18].

Our Hoare triples are partial for termination, but demand absence of failure.

{|P|} c {|Q|} ⌘ 8 s s’. (c, s)) s’ ^ P s �! (9 r. s’ = brc ^ Q r)

Figures 3 and 4 show the rules of the program logic. Their soundness de-
rives directly from the operational semantics. Fig. 3 summarises the rules for
traditional commands such as SKIP, WHILE, etc. and Fig. 4 gives the rules for the
commands that interact with the TLB. We note that the traditional rules are
completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. mode s = Kernel ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateRoot rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateRoot, only available in kernel mode, updates
the current page table root to the value of the expression rte. The e↵ect is
modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

The logic could be made slightly more precise by distinguishing between
situations that must always be avoided, such as using inconsistent TLB entries,
and page faults, which can be recoverable by executing a page fault handler. In
kernel-level code, page faults are usually unwanted as modelled here, in user-level
code they will usually be recoverable. We omit the distinction here for simplicity.
Page fault handlers could for instance be modelled as exceptions in the logic.

In summary, we have so far provided a Hoare logic for reasoning about pro-
grams in the presence of cached address translation. The model as shown is
specific to the ARMv7 architecture, but should generalise readily to similar ar-
chitectures, since it uses an abstract interface for page table encoding. So far,
reasoning is possible, and is at the right level of abstraction for code that manip-
ulates page tables, but it is not yet convenient for code that does not interfere
with virtual memory mappings or even runs in user mode.

5 Safe Set

This section introduces a reduction theorem that restricts and simplifies the
assignment rule, which is the most frequent reasoning step in any usual program.
The general assignment rule reasons about a) consistency of the target address
in the current state b) valid address translation, and c) potential update of
the iset. The rule explicitly mentions page table walks, which means the proof
engineer has to discharge page table obligations even if the memory write has
nothing to do with page tables. This is not what systems programmers do. They
instead establish invariants under which most of the code can be reasoned about
without awareness of the TLB or page tables.

Given a TLB-consistent set of virtual addresses, this set can only become
unsafe to write to when we change one of the page table mappings that translate
the addresses in this set. If none of these are contained in the set, any write to
the set is safe, even if it may change other mappings and increase the TLB iset.
To formalise this notion, we re-use another function from Kolanski’s page table
interface [11]: ptable_trace. It takes a heap, a root, and a virtual address va,
and returns the set of physical addresses visited in the page table walk for va.
Memory writes outside the ptable_trace for va will not change the outcome of
the walk for va. Generalising this notion to a set of virtual addresses, we define

ptrace_set V s =
S
ptable_trace (heap s) (root s) ‘ V

where f ‘ V applies f to all elements of the set V, and
S

is the union of a set
of sets. The ptrace_set V gives us the set of physical addresses that encode the
translation for the virtual addresses in V. We can now define what a safe set is:

safe_set V s ⌘ 8 va2V. va 2 C s ^ (9 p. va ,!s p ^ p /2 ptrace_set V s)

where C s ⌘ {va | va /2 iset s}. In words, a set V is a safe set in state s i↵ all
addresses va 2 V are consistent in the current state, if they map to a physical
address p, and if that address is not part of the page table encoding for any of
the addresses in V.

Our first observation is that once a set V is a safe set, assignments in V can
no longer make it unsafe, and the safe set property will remain invariant:

Theorem 1 Any write to the safe set will preserve the safe set. Formally:

{|�s. safe_set V s ^
(9 vp v. [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp 2 V)|}

lval ::= rval {|�s. safe_set V s|}

Proof. See lemma safe_set_preserved in [18].

Our previous work [17] already contains a corresponding theorem for the con-
crete machine model. The following theorem is new. It develops the concept
further into a simpler assignment rule where it is su�cient to check that the
address is part of the safe set. We know with Theorem 1 that the safe set will
remain invariant, so we could now ignore the iset completely, but since the
proof engineer might want to keep track of it for other purposes, we still record
it in the rule. However, in contrast to the general assignment rule, if the post
condition does not mention the TLB, now neither will the precondition.

Theorem 2 In the assignment rule, it is su�cient to check the static safe set

instead of the dynamic inconsistency set IC.

{|�s. (9 vp v. [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp 2 V ^
Q (heap_iset_updates (the_phy_ad vp s 7! v))) ^ safe_set V s|}

lval ::= rval {|Q|}

where

the_phy_ad vp s ⌘ the (pt_lookup (heap s) (root s) (mode s) (Addr vp))

Proof. See lemma weak_pre_write in [18].

For code that is not interested in TLB e↵ects, i.e. outside context switching
and page table manipulations, this rule enables proof engineers to reason as
if no TLB was present. The majority of OS and user-level code satisfies this
condition. The rule still mentions address translation, but the translation is now
static within V, i.e. can be computed once. The reduction to checking a static set
of addresses also give us justification that compilers do not introduce additional
complexity into reasoning under the TLB, they merely add addresses that need
to be part of this safe set, e.g. the area of virtual memory that contains code,
stack, and global variables.

6 Case Studies

In this section, we apply the program logic and its reduction theorems to the
main scenarios where TLB e↵ects are relevant. These are: kernel-level code
without TLB or page table manipulations, standard user-level code, context-
switching, and page table manipulations. Of these, page table manipulations

turn out to be the least interesting, so we only summarise them, while we present
the rest in more detail.

The case study uses the seL4 microkernel as inspiration to distill out code
sequences for a toy kernel that manages page tables and the TLB, and prevents
users from accessing these, as well as other kernel data structures, directly. It
maintains a set of page tables, typically one per user, potentially shared. This
setting applies to all major protected-mode OS kernels, e.g. Linux, Windows,
MacOS, as well microkernels. While simplified, the case study aims to be realistic
in demonstrating popular techniques for avoiding TLB flushes, such as ASIDs,
and uses a so-called kernel window to reduce page tables switches. The kernel
window is a set of virtual addresses, unavailable to the user, backed by kernel
mappings with permissions that make them available only in kernel mode. 1 It
is the combination of ASID use, context switching, and flush avoidance that led
us to adjust our previous model [17] for this case study.

As is customary, the mappings for this kernel window are constant, and each
user-level page table that the kernel maintains has a number of known kernel
mapping entries which reside at the same position in the page table encoding.
This gives us a ready candidate for safe-set reasoning about kernel code: all
addresses in the kernel window minus the addresses that are used to encode the
kernel mappings in page table data structures.

Since the aim is to show reasoning principles, not to prove correctness of a
particular kernel, the examples below use two-level ARMv7 page tables with a
simple concrete encoding, and a specific layout. The encoding and layout should
generalise readily to larger settings. In addition to the page tables (one per user)
that are stored in the kernel window, we assume the existence of one further
kernel data structure: a map root_map from page table roots to the ASID for the
user of this page table. A real OS kernel might maintain these as part of a larger
data structure. We ignore the details here, and use them only to formulate basic
invariants the kernel must maintain.

The main invariants we use in this example are (a) all kernel data structures
reside in physical kernel memory, (b) they do not overlap, (c) the current ASID is
associated correctly with the current page table root, (d) all page tables contain
the kernel mappings, (e) no page table contains mappings that allows user mode
to resolve to physical kernel memory, and (f) the mapping from page table roots
to ASIDs is injective.

The following two properties are true for most of the execution of the system,
but are invalidated temporarily: (g) The kernel window minus the entries that
encode kernel mappings is a safe set. This property only holds in kernel mode.
(h) The ASID snapshots agree with the page table for that ASID/user. This
property is invalidated for a specific ASID between page table manipulations
and flush instructions.

Formally:

1 This is the technique attacked by Meltdown [13]. Since hardware manufacturers are
promising to fix this major flaw, we present the more interesting setting instead of
the less complex and slower scenario with a separate kernel address space.

mmu_layout s ⌘
kernel_data_area s ✓ kernel_phy_mem ^ non_overlapping (kernel_data s) ^
root_map s (root s) = basid sc ^ kernel_mappings s ^
user_mappings s ^ partial_inj (root_map s)

where we define partial injectivity as

partial_inj f ⌘ 8 x y. x 6= y �! f x 6= f y _ f x = None ^ f y = None

The restriction on user mappings is easily phrased with our previous address
translation predicates, where roots s = set (root_log s), root_log is a list of
page table roots with root_map s r 6= None, and set turns a list into a set.

user_mappings s ⌘
8 rt2roots s.

8 va pa. pt_lookup (heap s) rt User va = bpac �! pa /2 kernel_phy_mem

The presence of kernel mappings is more technical. We spare the reader the
details of the formal page table encoding, but note that it represents a constant
o↵set translation, such that for all virtual addresses va in the kernel window, we
get Addr va ,!s Addr (va - offset) for a constant offset, i.e. the outcome of
the translation is easily described statically. This is a simple yet realistic setup,
similar to what e.g. seL4 uses.

The memory area of the kernel data structures is the union of the footprint
of all static data structures plus the footprint of all page tables. The memory
area of a page table starting at root rt is the set of all addresses that can be
produced by a ptable_trace.

pt_area s rt ⌘
S
ptable_trace (heap s) rt ‘ UNIV

kernel_data s ⌘ map (pt_area s) (root_log s) @ [rt_map_area]
kernel_data_area s ⌘

S
set (kernel_data s)

The definition of non-overlapping is:

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the

iset is empty, then these three conditions are preserved, and the heap is updated

as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by
a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we

are performing a write in the kernel safe set that does not touch any MMU-

relevant data structures, then the mmu_layout invariants are preserved and the

e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.
There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table

root r preserves the mmu_layout and ASID snapshot consistency invariants and

establishes the conditions for user-level reasoning, provided that the TLB has no

inconsistent addresses at this point, that the reserved ASID 0 is not used for any

user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateRoot (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

7 Summary

We have presented a program logic for reasoning about low-level OS code in the
presence of cached address translation.

The model and case study use the ARMv7 architecture, but our interface
to page table encodings is generic and should apply to all architectures with
conventional multi-level page tables. The details of TLB maintenance may di↵er
between architectures, i.e. Intel x86 does not require an explicit TLB flush on
context switch, but the ideas of the model should again transfer readily.

The model can also capture the e↵ect of defective hardware, such as the
recent Meltdown attack [13] which exploits the fact that permission bits of TLB
entries are not checked during speculative execution on some platforms, and uses
a cache side channel to thereby make kernel-only TLB mappings readable to user
space. To conservatively formalise the e↵ect of this attack, one could change the
model to ignore read restrictions in TLB entries. A system that can be proved
safe under that conservative model, should then be safe under Meltdown.

We currently do not treat global locked (pinned) TLB entries, and the TLB
in this version of the logic does not cache partial page table walks (as in e.g.

ARMv7-A). Our previous work does cover partial walks — the main influence
on the model is that the update of the iset becomes slightly more conservative.
Pinned TLB entries would have the e↵ect of explicitly allowing inconsistency
between the TLB and the page table, with the TLB taking preference.

Our logic does not address concurrency aspects — they are orthogonal. In a
multi-core setting, each core has its own TLB which reads from global memory.
Modifying a page table that is active on another core is almost never safe, unless
the change merely adds new mappings or the change happens in the same safe
set style presented here, where the execution on all cores must adhere to the
intersection of all safe sets.

Weak memory and caches do have an interaction point with the TLB, be-
cause page table walks are subject to both and caches can be either virtually
or physically indexed. We expect our safe set reasoning to transfer directly, re-
quiring cache flushes and/or barrier instructions in addition to TLB flushes. We
leave a cache formalisation for future work.

The strength of the model and logic is its simplicity, which took multiple
iterations to achieve, finding a balance between abstraction soundness, not too
complex reasoning, and not too much conservatism for allowing optimisations
and idioms used in real OS code, resulting in a program logic that feels familiar
to proof engineers.

The logic allows us to prove reduction theorems that mirror the informal
reasoning OS engineers perform when they write kernel code. It also allows us
to drop into a simpler setting when we reason about code that does not a↵ect
virtual memory mappings. In these cases, we only need to show that memory
accesses are within a set of safe addresses. Our work shows that reasoning in the
presence of a TLB does not need to be significantly more onerous than without.

References

1. Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of TLB virtualization
implemented in C. In: VSTTE 2012. LNCS, vol. 7152, pp. 209–224. Philadelphia,
PA, USA (Jan 2012)

2. ARM Ltd.: ARM Architecture Reference Manual, ARM v7-A and ARM v7-R (Apr
2008), aRM DDI 0406B

3. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Cache-leakage resilient OS isola-
tion in an idealized model of virtualization. In: 25th CSF. pp. 186–197 (2012)

4. Daum, M., Billing, N., Klein, G.: Concerned with the unprivileged: User programs
in kernel refinement. Formal Aspects Comput. 26(6), 1205–1229 (Oct 2014)

5. Fox, A., Myreen, M.: A trustworthy monadic formalization of the ARMv7 instruc-
tion set architecture. In: 1st ITP. LNCS, vol. 6172, pp. 243–258. Edinburgh, UK
(Jul 2010)

6. Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: CertiKOS: A certified
kernel for secure cloud computing. In: 2nd APSys (2011)

7. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. Trans. Comp.
Syst. 32(1), 2:1–2:70 (Feb 2014)

8. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: SOSP. pp. 207–220. Big
Sky, MT, USA (Oct 2009)

9. Kolanski, R.: A logic for virtual memory. In: SSV. pp. 61–77. Sydney, Australia
(Jul 2008)

10. Kolanski, R.: Verification of Programs in Virtual Memory Using Separation Logic.
Ph.D. thesis, UNSW, Sydney, Australia (Jul 2011), available from publications
page at http://ts.data61.csiro.au/

11. Kolanski, R., Klein, G.: Types, maps and separation logic. In: TPHOLs. pp. 276–
292. Munich, Germany (Aug 2009)

12. Kovalev, M.: TLB Virtualization in the Context of Hypervisor Verification. Ph.D.
thesis, Saarland University, Saarbrücken, Germany (2013)

13. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher,
P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown. ArXiv e-prints 1801.01207

(Jan 2018)
14. Nemati, H., Guanciale, R., Dam, M.: Trustworthy virtualization of the ARMv7

memory subsystem. In: 41st SOFSEM. LNCS, vol. 8939, pp. 578–589. Pec pod
Sněžkou, Czech Republic (Jan 2015)

15. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283 (2002)

16. Slind, K., Norrish, M.: A brief overview of HOL4. In: 21st TPHOLs. pp. 28–32
(Feb 2008)

17. Syeda, H.T., Klein, G.: Reasoning about translation lookaside bu↵ers. In: 21st
LPAR. EPiC Series in Computing, vol. 46, pp. 490–508 (2017)

18. Syeda, H.T., Klein, G., Kolanski, R.: Isabelle/HOL program logic for
cached address translation. https://github.com/SEL4PROJ/tlb/tree/ITP18, DOI
10.5281/zenodo.1246933 (Jan 2018)

http://ts.data61.csiro.au/
https://github.com/SEL4PROJ/tlb/tree/ITP18

	Program Verification in the Presence of Cached Address Translation

