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Abstract
Operating system (OS) kernels achieve isolation between user-level processes using hardware
features such as multi-level page tables and translation lookaside buffers (TLBs). The TLB
caches address translation, and therefore correctly controlling the TLB is a fundamental
security property of OS kernels—yet all large-scale formal OS verification projects we are
aware of leave the correct functionality of TLB as an assumption. In this paper, we present
a verified sound abstraction of a detailed concrete model of the memory management unit
(MMU) of the ARMv7-A architecture. This MMU abstraction revamps our previous address
space specificMMUabstraction to include newsoftware-visibleTLB features such as caching
of globally-mapped and partial translation entries in a two-stage TLB.We use this abstraction
as the underlying model to develop a logic for reasoning about low-level programs in the
presence of cached address translation. We extract invariants and necessary conditions for
correct TLBoperation thatmirrors the informal reasoning ofOS engineers.We systematically
show how these invariants adapt to global and partial translation entries. We show that our
program logic reduces to a standard logic for user-level reasoning, reduces to side-condition
checks for kernel-level reasoning, and can handle typical OS kernel tasks such as context
switching.

Keywords TLB · Cached address translation · Program verification · Isabelle/HOL · ARM

1 Introduction

We present a program logic in the interactive proof assistant Isabelle/HOL [23] for verifying
programs in the presence of an ARM-style memory management unit (MMU). The MMU
model is a sound abstraction of two-level page tables and a two-stage translation lookaside
buffer (TLB) for caching complete and partial page table walks with address space identifiers
(ASIDs) and global entries. While program logics for reasoning in the presence of address
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translation exist [15], reasoning in the presence of cached address translation, i.e. a TLB, has
so far remained an assumption in all large-scale operating system (OS) kernel verification
projects.

Page table data structures encode a mapping from virtual to physical memory addresses.
The OS kernel manages these, e.g. by adding, removing, or changing mappings, by keeping
a page table structure per user process, and by maintaining invariants, such as never giving
a user access to kernel-private data structures, ensuring that certain mappings are always
present, or ensuring non-overlapping mappings between different page tables if so desired.

Since the TLB caches address translation, each of these operations may leave the TLB
out of date w.r.t. the page table in memory, and the OS kernel must flush (or invalidate)
the TLB before that lack of synchronisation can affect program execution. Since flushing
the TLB is expensive, OS kernel designers work hard to delay and minimise flushes and to
make them as specific as possible, using additional TLB features such as process-specific
ASIDs to only invalidate specific sets of entries, or global entries for kernel mappings that
are present in all processes. If this management is done correctly, the TLB has no effect other
than speeding up execution. If it is done incorrectly, machine execution will diverge from the
semantics usual program logics assume, e.g. wrong memory contents will be read/written,
or unexpected memory access faults might occur.

Reasoning directly about programs under TLB-cached memory translation is hard,
because the TLB introduces non-determinism even for otherwise deterministic programs,
because global state changes even on memory reads, and because it introduces new failure
modes that need to be avoided. We show in this paper how we can reduce this complex-
ity using data refinement and arrive at a program logic that is well behaved for standard use
cases such as user-level programs and OS code under fixed address translation, yet expressive
enough to allow for the kind of optimisations OS developers need to achieve.

This paper builds on a re-design of our earlier work [25,26], to support global and partial
translation entries. In the former [25], we developed an abstract machine model for memory
operations in the presence of an ARMv7-A single-stage TLB, integrated this model with
the extensive, well-validated Cambridge instruction set architecture model [8], and provided
an abstraction roadmap for more recent implementations of the ARMv7-A architecture that
feature a two-stage TLB. In later work [26] we extended the machine model with moreMMU
operations and presented a logic for reasoning about programs in the presence of cached
address translation for the simpler MMU. The present paper combines both developments
and shows the strength of the abstraction framework of [25] to scale up systematically from
a single-stage TLB to a two-stage TLB to store complete and partial page table entries with
ASIDs and global entries. More specifically, our contributions in the present paper are:

– an abstract MMUmodel with memory and TLB management operations in the presence
of a two-stage TLB,

– improved fidelity of the machine model with respect to hardware; such as the formalisa-
tion of global TLB entries, and

– a program logic for such a two-stage TLB with ASIDs and global entries.

It is worth noting that both formalisation and abstraction of global entries in the refinement
chain are non-trivial additions to the previous ASIDs-only MMU models [25,26]. Global
entries fundamentally compromise the intrinsicmutual exclusion ofASIDs-only TLBentries,
since they provide translation for all ASIDs. In this paper, we show how to cater for this
compromise, and still reach a sound yet easy to reason about abstract MMU model. One of
the highlights of this MMU model is that it automatically reduces to the ASIDs-only MMU
model if an implementation does not make use of global translation entries.
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Formal Reasoning Under Cached Address Translation 913

Apart from the logic itself and its soundness, we demonstrate in a small case study that
the logic can be used to reason effectively and efficiently about kernel code, that it reduces
to simple side-condition checks on kernel code that does not modify page tables, and that
the logic reduces to standard Hoare logic for user-level code. The logic is generic and can
easily be adapted to, for instance, the shallow embedding specifications of the verified seL4
microkernel [12] use, or themore deeply embeddedC semantics of the same project. It should
also transfer readily to other settings such as the lower levels of CertiKOS [10] in Coq.

This paper is organised as: after presenting related work in Sect. 2, Sect. 3 introduces the
Isabelle/HOL notation we use in this paper. Sect. 4 describes our formal MMU model, the
TLB, and itsmaintenance operations for theARMv7-A architecture, aswell as the integration
with the Cambridge ARM model. Sect. 5 presents the series of step-wise data refinements
that each simplify reasoning. Sect. 6 presents the syntax and semantics of a small example
language, as well as the program logic, Sect. 7 shows the main reduction theorems that
simplify reasoning, and Sect. 8 concludes with examples, including context switching. The
corresponding Isabelle/HOL theories are available online [27].

2 RelatedWork

The TLB has the nice property that it has no effect on the execution of a program apart
from making it faster, if it is used correctly. For this reason, all large-scale formal OS kernel
verifications so far have left correct TLBmanagement as an assumption. This includes the OS
kernel verification work in seL4 [11,12] and CertiKOS [10], which both do reason about page
table structures, but omit the TLB. Similarly, Daum et al. [6] reason about user-level programs
on top of seL4, including page tables, but not about the TLB. The certified abstraction layers
over deep specifications in the CertiKOS project [9] are similar in spirit with our refinement
chain for TLB abstraction, and the deep specification framework as such should apply to
the abstractions presented here. The general idea of refinement stacks in operating system
verification goes back to at least PSOS [7,22].

Kolanski et al. [13–15] develop an extension of separation logic to formally reason about
page tables, virtual memory access, and shared memory in Isabelle/HOL. However, the
memory model does not include the TLB and does not address TLB caching, consistency
and invalidation, which we add here.

Alkassar et al. [2] verify x64-like TLB virtualisation; they model the TLB as a set of
complete and partial page table walks and provide semantics for address translation and
TLB-invalidation operations. In the continuation of this work, Kovalev [16] states a reduction
theorem for page table walks in ASID 0 for a specific hypervisor setup. However, while other
parts of this development are mechanised, this reduction theorem is not. As we will see in
Sect. 6, the restriction to one ASID makes the model too conservative for more general OS
code. These efforts focus on verifying TLB virtualization, and as such they provide a TLB
abstraction function on the host configuration to formulate the virtualised TLB for every
guest. We also model the TLB as a set of page table walks, but our aim is a generic reasoning
framework for verifying programs (both kernel-level and user-level) in the presence of a
TLB.

Barthe et al. [5] formalise a virtualisation model for the ARM architecture featuring the
TLB and cache, and provide abstract reasoning about cache-based side-channels. Theymodel
the TLB as a partial map from virtual addresses to machine addresses, and provide axiomatic
semantics of hypervisor actions. They reason about cache-based attacks and countermeasures,
prove flush-enforced isolation between guest operating systems upon context switch, and

123



914 H. T. Syeda, G. Klein

reason about the transparency provided by the virtualization model to the guest operating
system. In contrast, the work presented here provides a program logic and a proof that the
abstraction of the TLB is sound with respect to a detailed concrete base-level model of the
hardware. Our model shows that a pure map from virtual to machine addresses as the TLB
model is too simple for the full behaviour of real operating systems.

Nemati et al. [21] verify the isolation properties of a hypervisor that uses direct paging on
the ARMv7 architecture to virtualize the CPU memory subsystem. They develop a formal
CPU model in the HOL4 theorem prover [24] by extending the formal ARM ISA model [8]
with an MMU. The MMUmodel provides address translation through two-level page tables,
and the CPU state includes system MMU registers. Nemati et al. [20] extend this work
further to design, implement and verify an MMU virtualization platform for the ARMv7-A
architecture, with Linux as an untrusted guest. The focus of their work is to virtualize the
ARMv7 memory subsystem, but they do not model the TLB for reasoning about programs
in general.

Lutsyk [18] provides a paper-and-pencil correctness proof for a pipelined multi-core
implementation of the MIPS-86 ISA, extended with hardware virtualisation. This work also
models the TLB as a set of walks, but is interested in wether the hardware circuits correctly
implement the TLB semantics, whereas we are concerned with reasoning about programs on
top.

Achermann et al. [1] are also more concerned with hardware correctness than program
correctness. They present a methodology for formalising the physical address space of
Systems-on-Chip (SoCs), and demonstrate it by modeling the MIPS R4600 TLB. They
develop a refinement stack for reasoning about the physical address interconnects of the
TLB, and conclude “the impossibility of correctly configuring a MIPS R4600 TLB as spec-
ified in its documentation” [1].

3 Notation

This section introduces Isabelle/HOL syntax used in this paper, where different from standard
mathematical notation.

Isabelle denotes the space of total functions by ⇒, and type variables are written ’a, ’b,
etc. The notation t::τ means that HOL term t has HOL type τ . The option type

datatype ’a option = None | Some ’a

adjoins a new element None to a type ’a. We use ’a option to model partial func-
tions, writing �a� instead of "Some a" and "’a ⇀ ’b" instead of ’a ⇒ ’b option.
The Some constructor has an underspecified inverse called the, satisfying the equation
the �x� = x, and the function these converts an ’a option set to an ’a set with
these S = {y | ∃x∈S. x = �y�}. The set of values returned by a total function f is
denoted by range f, i.e. range f = {y | ∃x. f x = y}, whereas the range of a partial
function is defined as ran f = {y | ∃x. f x = �y�}.

Function update is written f(x := y) where f::’a ⇒ ’b, x::’a and y::’b, and f(x

�→ y) stands for "f (x:= Some y)".
Isabelle’s type system does not include dependent types, but can encode numerals and

machine words of fixed length. The type ’n word represents a word with n bits; concrete
types include e.g. 32 word and 64 word.

The Cambridge ARM formalisation [8] models the CPU state as a record type state. For
every record field, there is a selector function of the same name. For example, if s has type
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Formal Reasoning Under Cached Address Translation 915

state then MEM s denotes the value of the MEM field of s, and s(|MEM := id|) will update MEM

of s to be the identity function id.
The ARM formalisation uses the state monad to model state transformers. The state

monad encodes computations with side effects in a purely functional model. For result type
’a and state type ’s, the associated monad type, abbreviated (’s, ’a) state_monad, is
’s ⇒ ’a × ’s. That is, a function from current state to next state together with a com-
putation result. A pure state transformer is typically denoted by the one-valued return type
unit, that is, ’s ⇒ unit × ’s. The two monad constructors return and bind are defined
as follows:

return a ≡ λs. (a, s)

bind f g ≡ λs. let (v, s’) = f s in g v s’

The constructor return simply injects the value a into the monad type, passing the state
unchanged, while bind sequentially composes a computation f, and a computation g (a
function from the return type of f). We use do syntax for longer computations:

bind f g ≡ do { x ← f; g x }

For fetching and updating a particular parameter from the state, the Cambridge ARMmodel
uses the functions read_state and update_state:

read_state f ≡ λs. (f s, s) update_state f ≡ λs. ((), f s)

We abbreviate multiple read_state calls into tuple notation, written as read:

(a,b) ← read (f,g)

and write update_state as update.

4 A Formal MMUModel for the ARMv7-A Architecture

In this section we present a formal MMU model including address translation, memory
operations, and MMU maintenance operations for the ARMv7-A architecture with a two-
stage TLB with ASIDs and global entries. The ARM architecture provides multiple address
translation modes that differ in the number of levels and number of bits being translated.
Without loss of generality for the treatment of the two-stage TLB we focus on one of these
modes here—the others are analogous. This mode provides four sizes of pages (small, large,
section, and super section; cf. [3,ChapterB3]) and a two-level page table structure.Depending
on the virtual address being translated, the first-level of a page table structure provides either
the base address of a section, a super section, or the pointer to a second-level page table
containing the base addresses for small and large pages. The location of the root of a page
table structure in the main memory is determined by a hardware register, the translation table
root register TTBR0.

As opposed to simpler single-stage implementations of ARMv7-A, more recent imple-
mentations of ARMv7-A, such as Cortex-A15, include a two-stage TLB that caches both, full
address translations, and partial walks, cf. [4, Chapter 5]. The first stage caches entries that
provide end-to-end address translations, i.e. results of complete page table lookups. In the
formalisation we call this stage simply the TLB. The second stage, called the page directory
cache (PDC), caches the results of partial page table lookups—up to the first level of the
page table only. For a two-level page table this means that the PDC stores translation entries
for sections and super sections, and pointers to the second-level page table containing small
and large page translation entries.
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Fig. 1 An Abstraction of TLB
Entries

For both stages, the architecture associates a process-specific tag called address space
identifier (ASID) with TLB entries to enable translation caching for different processes. It
also supports global page table entries, which match all ASIDs.

The ARM architecture manual [3] describes the two-stage TLB as a black box, i.e. by its
external interface only. It does not specify the replacement strategy or its exact internal state.
We use the same approach and base our abstraction for the TLB and the PDC directly on
the architecture manual: we specify their operational model and lookup operation, but leave
much of the implementation open. For page table operations we reuse Kolanski’s existing
ARM page table model [15], and integrate it with the two-stage TLB formalisation that we
build up in this section to form the MMU model. Kolanski’s model differentiates between
virtual and physical address by type, and we continue in that tradition. He defines addresses
addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32word) and ’p is a tagwhich can be physical or virtual.
For modeling addresses, we specialise addr_t as:

vaddr = "(32 word,virtual) addr_t" paddr = "(32 word,physical) addr_t"

We use addr_val (Addr a) = a to extract the address.
We formalise the TLB and the PDC as a set of TLB and PDC entries respectively. A

TLB entry consists of an ASID or global tag, a virtual base address, a physical base address,
and flags for access control and other page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture, there are four different sizes of TLB
entries. In this paper, we formalise page table entries for small pages and sections only, as
the remaining are analogous. This means, for this setting we have two types of TLB entries,
one with 20-bit base addresses for small pages and one with 12-bits for sections. Formally:

type_synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall "(asid option)" "(20 word)" "(20 word)" flags

| EntrySection "(asid option)" "(12 word)" "(12 word)" flags

A global TLB entry has ASID field None, while Some ASID represents a process-specific
translation entry. The record type flags represents the permissions of TLB entries, which
include the non-global nG bit from the respective page table entry, as well access control such
as read/write/execute rights. Similar to the TLB entry, a PDC entry specifies either a 32-bit
base addresses for sections or 32-bit pointers to the second-level page tables. Formally:

type_synonym pdc = pdc_entry set

datatype pdc_entry = PDE_Table "(asid)" "(12 word)" "(32 word)"

| PDE_Section "(asid option)" "(12 word)" "(32 word)" flags

We always associate an ASID with a PDE_Table entry since the corresponding page direc-
tory entries provide no means for encoding global page table pointers. The constructor
PDE_Section can have either an ASID or a global tag depending on the nG bit of its flags.
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Formal Reasoning Under Cached Address Translation 917

With the TLB and the PDC state formalised, we now describe their lookup. For any given
32-bit virtual address, a lookup finds the corresponding TLB or PDC entry. A lookup can
have three kinds of results:

datatype ’e lookup_type = Miss | Incon | Hit ’e

These results are: either there is no corresponding entry (Miss), or there is more than one
matching entry, representing an inconsistency (Incon), or there is exactly one correct result
(Hit). The lookup_type is polymorphic w.r.t. the entry type, so the function can be used for
both TLB and PDC.

We say an entry matches a pair of ASID a and virtual address va when the top bits of va
equal the virtual base address of the entry and it is either a global entry or has the same ASID
a. Let range_of e be the set of addresses matched by entry e, and asid_of e the ASID of
e, then we can define the lookup operation as follows.

entry_set :: ’e set ⇒ asid ⇒ vaddr ⇒ ’e set
entry_set tp a va ≡
{e ∈ tp | va ∈ range_of e ∧ (asid_of e = None ∨ asid_of e = �a�)}
lookup :: "’e set ⇒ asid ⇒ vaddr ⇒ ’e lookup_type"
lookup tp a va ≡
let S = entry_set tp a va
in if S = ∅ then Miss else if |S| = 1 then Hit (the_elem S) else Incon

where the_elem {x} = x. The parameter tp is either a TLB entry set or a PDC entry set,
and the functions range_of and asid_of are instantiated for both.

A given TLB or a PDC can be split into its global and non-global entries as:

glb_entries tp = {e ∈ tp | asid_of e = None}

nglb_entries tp = {e ∈ tp | ∃a. asid_of e = �a�}
This covers the base model of the two-stage TLB itself. We now present a formal MMU

model based on the ARM architecture manual [3] integrated with the instruction set architec-
ture (ISA) semantics by Fox andMyreen [8]. This ISAmodel is very detailed and extensively
validated, but it assumes a flat, total function MEM :: 32 word ⇒ 8 word without address
translation as its model for memory. We keep MEM as the basic model for physical memory,
but generalise it to the partial function MEM :: "paddr ⇀ 8 word" to express that it works
on physical addresses and that not all physical address might be backed by memory in the
machine. If a computation accesses non-existing memory, an exception will be raised. We
then change all read and write instructions that access main memory to not go to physical
memory directly, but to go through the two-stage TLB and address translation first. The
existing ISA model conveniently provides a narrow interface to memory with the functions
mem_write and mem_read that all other memory accesses go through, so we concentrate our
work there.

Since our plan for Sect. 5 is to provide a series of MMU models that differ in the TLB
abstraction, making them simpler and easier to reason about as we progress, we design the
interface between the rest of the ARM model and the MMU as a type class mmu in Isabelle
that we can instantiate. Separate instances will give us separate models between which we
then can prove refinement theorems. To get there, we first need to model the rest of theMMU.
Figure 2 gives an overview. To formalise this picture, we extend the original state record
of the ISA model with two additional hardware registers: the page table root register TTBR0,
and the current ASID register ASID. We then use Isabelle’s extensible records [19] to extend
state with the pair tlb × pdc which will contain the two-stage TLB hardware state we
modeled earlier in this section.
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Fig. 2 ARMv7-style Memory Management Unit

The main interface for the rest of the ARM model to the MMU is wrapped up in the type
class mmu:
class mmu =

mmu_translate :: vaddr ⇒ ’a state_scheme ⇒ paddr × ’a state_scheme

mmu_read :: "vaddr × nat ⇒ ’a state_scheme ⇒ bl × ’a state_scheme"

mmu_write :: "bl × vaddr × nat ⇒ ’a state_scheme ⇒ unit × ’a state_scheme"

update_TTBR0 :: paddr ⇒ ’a state_scheme ⇒ unit × ’a state_scheme

update_ASID :: "asid ⇒ ’a state_scheme ⇒ unit × ’a state_scheme"

flush :: flush_type ⇒ ’a state_scheme ⇒ unit × ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
The interface for the values being read and written in the ARM model is via bl = bool

list instead of machine words directly, which we keep here. The nat parameter indicates
how many bytes to read/write, e.g. one byte, a word, a double word, etc. The OS kernel
updates the page table root and ASID registers during context switches which in turn requires
TLB maintenance; therefore we introduce update_TTBR0 and update_ASID instructions.
The flush instruction, as the name describes, invalidates the two-stage TLB entries for
maintaining coherency.

We now explain the instantiation of each of the parameters of type class mmu for our MMU
model, these functions also constitute the base model of our refinement chain in Sect. 5. We
begin by presenting the interface between TLB and page table present in main memory.

4.1 Page TableWalk

For loading the two-stage TLB from the two-level page table, we classify page table walks
into:

datatype pt_walk_typ = Fault

| Partial_Walk "pdc_entry"

| Full_Walk "tlb_entry" "pdc_entry"

For a virtual address va, a page table walk resulting in Fault represents an unmapped virtual
address, Partial_Walk with a PDC entry means that either the virtual address va belongs
to a mapped section, or its translation can be further achieved using a page table present at a
specific location in the memory. A Full_Walk with a TLB and a PDC entry represents that
the virtual address va is fully mapped: it either belongs to a section, or to a mapped small
page of the memory. We then define page table-directory walk ptd_walk as:
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ptd_walk :: asid ⇒ heap ⇒ paddr ⇒ vaddr ⇒ pt_walk_typ

ptd_walk a m rt va ≡
case pdc_walk a m rt va of

None ⇒ Fault

| �pde� ⇒ case pdc_to_tlb pde m va of None ⇒ Partial_Walk pde

| �entry� ⇒ Full_Walk entry pde

where heap = "paddr ⇀ byte". For a given virtual address va, the function pdc_walk

walks the first-level page table present at the root rt in memory mem under the ASID a, and
returns the first-level page table entry encoded as a pdc_entry. For an invalid pdc_walk we
return Fault, while for a valid pdc_walk we complete the remaining page table walk using
the function pdc_to_tlb and return either Partial_Walk or Full_Walk. The ASID of the
resultant entries is determined by the access permissions of the respective page table entries
to decide whether it is global or not, and the current ASID when it is not.

Note that a Partial_Walk with a PDE_Table entry does not mean that a Full_Walk for
the virtual addresses va has to exist. When we are interested in full walks only, we use the
function pt_walk that returns a tlb_entry option, with None for partial walks and faults.

In summary, we have three variants of page table walks, namely pdc_walk for partial
walks only, pt_walk for full walks only, and ptd_walk for the combination.

4.2 Memory Operations

We now explain memory operations including address translation, memory read and write
for our base MMU model. Address translation for memory operations is defined as:

mmu_translate va = do {
update (λs. s(|TLBs := TLBs s - tlb_evict s|));
(m, rt, a, tlb, pdc) ← read (MEM, TTBR0, ASID, TLBs);
case lookup tlb a va of
Miss ⇒

case lookup pdc a va of
Miss ⇒

case ptd_walk a m rt va of Fault ⇒ raise PAGE_FAULT
| Partial_Walk pde ⇒ do {

update (λs. s(|TLBs := TLBs s ∪ (∅, {pde})|));
raise PAGE_FAULT }

| Full_Walk entry pde ⇒ do {
update (λs. s(|TLBs := TLBs s ∪ ({entry}, {pde})|));
return (va_to_pa va entry) }

| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit pde ⇒

let entry = pdc_to_tlb pde m va
in if fault entry then raise PAGE_FAULT

else do {
update (λs. s(|TLBs := TLBs s ∪ ({the entry}, ∅)|));
return (va_to_pa va (the entry)) }

| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB and
the PDC. This models the fact that the architecture does not define the replacement strategy
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and the programmer must assume that any entry could be evicted at any time.1 Since the rest
of the Cambridge ARM model is deterministic, we use an oracle function tlb_evict here
instead of true non-determinism.

The next step in mmu_translate after reading out the hardware state is to do a full TLB
lookup for the virtual address va to be translated under the current ASID. If the result of that
lookup is Incon, the machine raises an unrecoverable exception and halts, expressing the fact
that in normal operation, this state should never be encountered. If the result is Hit entry,
we translate this TLB entry to the corresponding physical address pa using the function
va_to_pa and return that address. A full formalisation would at this point additionally check
flags and access rights and generate the appropriate exception information where needed.

If the result of the TLB lookup is Miss, we perform a PDC lookup, a potential TLB
and PDC reload and the address translation. If the result of the PDC lookup is Incon the
machine raises an unrecoverable exception and halts. If the PDC lookup results in Hit pde,
we complete the translation for address va from the page directory entry pde and store the
result in the TLB. If the result of the PDC lookup is Miss, we perform a full page table
walk in memory using the function ptd_walk, and potentially reload both PDC and TLB.
If the result of the ptd_walk is a Fault, we raise this fault, which will cause the machine
to jump to the appropriate exception handler. If we get Partial_Walk we reload the PDC
and again raise a page fault. If the result of the page table walk is Full_Walk with TLB and
PDC entries, we simply add them to the TLB and PDC respectively, and execute address
translation as in the Hit case.

Reusing the original functions mem_write and mem_read from the ARMmodel for phys-
ical memory, the definition of memory operations are straightforward:

mmu_write (val, va, sz) =

do { pa ← mmu_translate va; when_no_exc mem_write (val, pa, sz) }

when_no_exc f = do {
exception ← read exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa ← mmu_translate va; mem_read (pa, sz) }

Both mmu_write and mmu_read first perform address translation, and then their original
purpose, but using translated addresses instead. In case of an exception in mmu_translate,
the write function does nothing to give the translation exception precedence, while the pure
read function can continue, because it does not change the state.

4.3 MMUOperations

We now explain the MMU operations for updating the page table root and ASID register, as
well as the TLB flush operations.

In this base model the instructions update_TTBR0 and update_ASIDmerely do what their
names describe. They do not evict anything from the TLB:

update_TTBR0 r = update (λs. s(|TTBR0 := r|))
update_ASID a = update (λs. s(|ASID := a|))

We formalise the flush operations provided by the ARM manual as:

1 ARM also provides locked down entries that will not be evicted automatically. These could be modelled
easily here by excluding them from the eviction set.
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datatype flush_type = FlushTLB | FlushVR "(vaddr set)"

| FlushASID asid | FlushAVR asid "(vaddr set)"

The flush instructions operate on both TLB and PDC. The instantiation for this base model
is:

flush f ≡
case f of FlushTLB ⇒ update (λs. s(|TLBs := (∅, ∅)|))
| FlushVR vset ⇒ update (λs. s(|TLBs := flush_vset (TLBs s) vset|))
| FlushASID a ⇒ update (λs. s(|TLBs := flush_asid (TLBs s) a|))
| FlushAVR a vset ⇒ update (λs. s(|TLBs := flush_asid_vset (TLBs s) a vset|))

FlushTLB simply returns an empty TLB and PDC, whereas FlushVR takes a pair tlb × pdc

and flushes the entries matching the given set of virtual addresses:

flush_vset (tlb, pdc) vset =
(tlb - (

⋃
x∈vset {e ∈ tlb | x ∈ range_of e}),

pdc - (
⋃

x∈vset {e ∈ pdc | x ∈ range_of e}))

FlushASID flushes all entries under the given ASID:

flush_asid (tlb, pdc) a =
(tlb - {e ∈ tlb | asid_of e = �a�}, pdc - {e ∈ pdc | asid_of e = �a�})

And FlushAVR flushes the entries for the given set of virtual addresses under the given ASID:

flush_asid_vset (tlb, pdc) a vset =
(tlb - (

⋃
x∈vset {e ∈ tlb | x ∈ range_of e ∧ asid_of e = �a�}),

pdc - (
⋃

x∈vset {e ∈ pdc | x ∈ range_of e ∧ asid_of e = �a�}))
By redirecting all other memory-related functions in the ARM model to go through the

interface of the type class mmu, we arrive at a full operational model that supports address
translation and MMU operations. The purpose of this paper is not to provide a fully detailed
formalisation of existing hardware, but to present themain ideas on how to simplify reasoning
in the presence of a two-stage TLB of the ARMv7-A architecture. Despite this focus, we
have validated the model using the following methods:

– Close manual review of the formal specification against the behaviour described in the
ARM reference manual [3].

– Specification review against expectations of experience kernel engineers.
– Formal symbolic testing through executing a number of memory instruction cycles in

the theorem prover. By symbolic execution in the simplifier, we manually checked con-
sistency against expected behaviour.

A full formalisation would need a more extensive test suite in the spirit of Fox and
Myreen [8], and at leastmaking the formal symbolic testingmentioned abovemore systematic
and complete. Validating a fully detailed TLB model has additional subtleties compared to
validating the behaviour of an ISA specification, because the precise internal TLB state of
the hardware is neither specified in the architecture, nor easily inspectable in hardware. If
one were to validate directly against hardware, it would therefore be necessary to use indirect
observations. These could include cases where page faults are expected/not expected due to
TLB state, for instance pages being accessible even though the current state of the page table
disagrees. After developing a set of such test cases, hardware and specification could be run
against each other, comparing outcome.
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Fig. 3 Refinement Stack of
MMU Models

In summary, we have so far extended the Cambridge ARMmodel by: a change of memory
model to admit the notion of unmapped memory, the introduction of anMMU including two-
stage TLB and page table lookup mechanisms, the extension with maintenance operations,
and an adjustment of the subsequent memory operations to include the address translation
layer.

5 MMUAbstraction

The MMUmodel of Sect. 4 gives us the ground truth of how hardware operates, and thereby
the foundation for a logic for programs under the two-stage TLB, but the model is hard to
reason about directly. From Sect. 4, we see that a two-stage TLB introduces:

1. non-determinism through unspecified entry replacement strategy,
2. potential state change caused by any mapped memory access, including reads,
3. potential (internally) inconsistent TLB and PDC state from multiple conflicting entries,

and
4. potential (external) inconsistency between page table, TLB, and PDC.

The latter two are states the program must avoid. The first two introduce unnecessary
complexity: a program that is otherwise deterministic should not require reasoning about
nondeterminism, and a correctly operated TLB framework should not complicate reasoning
about memory reads nor memory writes that are unrelated to page tables.

In this section, we show how we can construct a model that avoids the additional com-
plexity and produces sufficient conditions for safe execution. In particular, we build a series
of formal abstractions of the concrete MMU model of Sect. 4 that are increasingly easier to
reason about, but preserve functionality and the optimisation opportunities OS developers
must be able to exploit. We verify these step-wise abstractions by refinement theorems.

We observe as the first step in our abstraction chain that a TLBwith fewer entries is always
more consistent, and in this sense safer, than one with more entries. Formally, lookup results
naturally form an order with Miss being the bottom element, and Incon the top:

l ≤ l’ ≡ l = Miss ∨ l’ = l ∨ l’ = Incon

We can then prove monotonicity.

Lemma 1 tp ⊆ tp’ �⇒ lookup tp a va ≤ lookup tp’ a va

Proof By case distinction and unfolding the definitions. ��
We use this observation in the abstraction chain by making the abstraction less safe, i.e. more
inconsistent, with the standard refinement idea that if we manage to prove safe behaviour of
the abstraction, we will also have proved safe behaviour of all possible actual executions.

Our refinement stack consists of two steps, shown in Fig. 3. In the first refinement, we
remove eviction and at the same time saturate the PDC and the TLB with the mapped state
of page table. This eliminates nondeterminism, state change for the memory reads and the
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PDC lookup from the concrete MMU model. Next, we abstract the TLB and the PDC to an
extent that no actual cache lookup is required: two-stage TLB inconsistencies are tracked
using a record of virtual addresses, while memory andMMU operations are performed using
the page tables present in main memory. For each level in the refinement stack we prove
that its abstraction preserves a refinement relation and is sound with respect to its immediate
concrete MMU model. We then join refinement levels in order to show the soundness of the
most abstract model w.r.t. base model of Sect. 4.

The main burden on the proof engineer that we cannot hope to eliminate completely in
general will be to show that the TLB and the PDC are currently in a consistent state for the
address to be accessed. We formalise consistency of TLB and PDC for a virtual address as:

consistent m rt tlb pdc a va ≡
consistent_lookup tlb (pt_walk a m rt va) a va ∧
consistent_lookup pdc (pdc_walk a m rt va) a va

consistent_lookup :: ’e set ⇒ ’e option ⇒ asid ⇒ vaddr ⇒ bool
consistent_lookup tp e a va ≡
lookup tp a va = Miss ∨ lookup tp a va = Hit (the e) ∧ no_fault e

The consistency condition combines internal consistency of the TLB and the PDC (no Incon

results permitted), with external consistency, i.e. synchronicity with the current state of the
mapped page table for this particular address. The side-condition for Hitmodels that the TLB
and PDC do not provide negative results (no_fault), i.e. a Hit only models the presence,
not the absence of a mapping.

We now provide our first abstraction of the MMU and its refinement theorem.

5.1 The SaturatedMMUModel

In this abstraction, we remove nondeterminism and state change on memory reads by remov-
ing the TLB and PDC eviction and also by saturating them hierarchically with the mapped
page table entries after every memory and MMU operation. This saturation eliminates the
potential PDC lookupwhile resolving the virtual addresses: we first saturate the PDCwith the
mapped page table entries of the current state, and then from this saturated PDCwe complete
page table walks and saturate the TLB. This way the TLB contains all mapped entries for
the current page table through the saturated PDC, and any TLB Miss implies a page table
fault. One critical aspect of this saturation is that we propagate all inconsistencies of the PDC
for the current state to the TLB, so that the TLB already captures the complete information
provided by the PDC. This will allow us to mostly eliminate the PDC in this model already.

5.1.1 Memory Operations

We instantiate mmu_translate of type class mmu for a deterministic saturated MMU and
name it mmu_translate_sat:

mmu_translate_sat va = do {
pdc_tlb_refill;
(a, tlb, pdc) ← read (ASID, TLBs);
case lookup tlb a va of Miss ⇒ raise PAGE_FAULT
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}
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pdc_tlb_refill = do {
(m, rt, a) ← read (MEM, TTBR0, ASID);
let pdes = ran (pdc_walk a m rt); entries = these (

⋃
v to_tlb pdes a m rt v)

in update (λs. s(|TLBs := TLBs s ∪ (entries, pdes)|))
}

The call to pdc_tlb_refill at the beginning of mmu_translate_sat achieves the saturation
mentioned above by adding all the mapped page directory entries and then all the mapped
TLB entries for the current state and ASID. The function to_tlb (definition omitted) in
pdc_tlb_refill takes a PDC and completes the page table walk for the given virtual address
under the current ASID. It returns either a full walk or a fault, i.e. its results are the same
as the TLB. The big-union term performs this walk-completion for all virtual addresses. In
mmu_translate_sat, after the refill, we now only need a simple TLB lookup: Incon still
leads to the same exception as before, Miss implies a page fault, since the TLB is saturated
with the mapped entries, and Hit gives us the respective physical address.

We also adjust the definition of memory operations to preserve saturation for this model.
The saturated instantiations are mmu_write_sat and mmu_read_sat:

mmu_write_sat (val, va, sz) = do {
pa ← mmu_translate_sat va;
when_no_exc do { mem_write (val, pa, sz); pdc_tlb_refill }

}

mmu_read_sat (va, sz) = do { pa ← mmu_translate_sat va; mem_read (pa,

sz) }

In mmu_write_sat the two-stage TLB is refilled after the write operation to maintain satu-
ration as this write could have changed a page table in memory. mmu_read_sat achieves the
saturation implicitly through mmu_translate_sat, as reading from memory does not affect
the state of page table.

5.1.2 MMUOperations

Similar to memory operations, we saturate the two-stage TLB after updating the page table
root and ASID register with the mapped state of the page table under the active ASID. We
saturate both stages of the TLB after the flush operations to make sure that, while inconsis-
tencies are removed, saturation is maintained. The instantiations of MMU operations for this
model are:

update_TTBR0_sat r = do { update (λs. s(|TTBR0 := r|)); pdc_tlb_refill }
update_ASID_sat a = do { update (λs. s(|ASID := a|)); pdc_tlb_refill }

flush_sat f = do {
(case f of FlushTLB ⇒ update (λs. s(|TLBs := (∅, ∅)|))
| FlushVR vset ⇒ update (λs. s(|TLBs := flush_vset (TLBs s) vset|))
| FlushASID a ⇒ update (λs. s(|TLBs := flush_asid (TLBs s) a|))
| FlushAVR a vset ⇒ update (λs. s(|TLBs := flush_asid_vset (TLBs s) a vset|)));

pdc_tlb_refill
}
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5.1.3 Refinement Theorems

We now present refinement theorems between the nondeterministic and saturated MMU
models. We define the refinement relation tlb_rel_sat as:

tlb_rel_sat s t ≡
let tlb_nondet = fst (TLBs s); pdc_nondet = snd (TLBs s);

tlb_sat = fst (TLBs t); pdc_sat = snd (TLBs t)
in truncate s = truncate t ∧

tlb_nondet ⊆ tlb_sat ∧ pdc_nondet ⊆ pdc_sat ∧ saturated t

where the notation truncate s means all fields of the extensible state record without the
tlb × pdc extension. This relation demands that the states s and t differ only in their
TLB and PDC content, that the nondeterministic TLB of state s has fewer entries than the
saturated TLB of state t, and that the nondeterministic PDC of state s has fewer entries than
the saturated PDC of state t. These subset relations provide a lookup order between the states
s and t. The assertion saturated t demands that both stages remain saturated, i.e.

saturated t ≡ tlb_saturated t ∧ pdc_saturated t

tlb_saturated t ≡ ran (pt_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ fst (TLBs t)

pdc_saturated t ≡ ran (pdc_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ snd (TLBs t)

For presenting our refinement theorems below, we combine the evaluation of address
translation, memory read and write functions for nondeterministic and saturated states into
functions mem_op and mem_op_sat respectively. For example, mem_op s represents the eval-
uation of mmu_translate, mmu_write and mmu_read of Sect. 4.2 in the state s with a
nondeterministic two-stage TLB. Similarly, MMU operations for flushing the TLB and for
updating TTBR0 and ASID registers are combined into mmu_op and mmu_op_sat respec-
tively.

Theorem 1 The nondeterministic and saturated memory operations preserve the refinement
relation and agree on the results, for consistent virtual addresses.

mem_op f s = (res, s’)
mem_op_sat f t = (res’, t’) consistent_sat f t tlb_rel_sat s t

res’ = res ∧ tlb_rel_sat s’ t’

where consistent_sat ensures that the memory operation is for a consistent virtual address
of the saturated two-stage TLB, using the consistent predicate from the beginning of Sect. 5.

Proof For address translation, we observe that the nondeterministic two-stage TLB of state
s is va-consistent given its subset relationship with the va-consistent two-stage TLB of state
t. The lookup for virtual address va in both states t and s either produces a Miss or a
Hit. When the saturated TLB of state t produces a Miss (implies a page table fault), the
nondeterministic TLB of state s also must have a Miss and we are in the PDC lookup case.
The nondeterministic PDC of state s then has to conform with the saturated PDC of state t,
producing either a Miss or a Hit with a consistent page directory entry and completing the
translation for the address va through a page table walk to eventually encounter a page table
fault. In case of Hit with an entry in the saturated TLB of state t, the TLB of state s either
agrees on the same entry with a Hit, or performs a consistent PDC lookup and page table
walk. The refinement for memory read and write follows directly from the refinement of the
address translation. ��
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Fig. 4 ARMv7-style Memory Management Unit with Abstract TLB

Theorem 2 The nondeterministic and saturated MMU operations preserve the refinement
relation.

mmu_op f s = ((), s’) mmu_op_sat f t = ((), t’) tlb_rel_sat s t

tlb_rel_sat s’ t’

Proof By unfolding definitions and set reasoning. ��
With this we conclude our saturated MMU model and its refinement with the nondeter-

ministic MMU.

5.2 The Abstract MMU

Wenow present the abstractMMUmodel of our refinement chain Fig. 3.We abstract the TLB
lookup completely, and soundly model TLB functionality using a set of TLB-inconsistent
virtual addresses. Address translation is performed directly using the page tables. For this
MMU model, we do not extend the state with tlb × pdc, instead the two-stage TLB is
modeled using these three components:

incon_set :: vaddr set

glb_set :: vaddr set

snapshot :: asid ⇒ vaddr set × (vaddr ⇒ pt_walk_typ)

Before presenting details, we briefly revisit the relationship between TLB and page tables:
the TLB caches entries from multiple page tables present in main memory under different
ASIDs. Now that we aim to completely abstract the TLB and aim to capture its caching
functionality using only a set of addresses, we require a conservative estimate of what the
TLB might remember from the time an ASID was last active. Essentially this is, for each
ASID, a snapshot of the current page table state when that ASID was last active, modulo all
addresses that were inconsistent at that time. This estimate then enables us to keep track of the
inconsistencies for different ASIDs and also to detect new inconsistencies while switching
between ASIDs.

Figure 4 gives an overview of the state space of our abstract MMUmodel. The incon_set
stores inconsistent virtual addresses (both, global and non-global), and the glb_set keeps
track ofwhich addresses are globallymapped, irrespective of their consistency. Thesnapshot
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holds the state of the two-stage page table for all inactive ASIDs, using pt_walk_typ. The
TLB-snapshot of the page table state modulo the inconsistent virtual addresses for every
ASID is modeled as a pair "vaddr set × (vaddr ⇒ pt_walk_typ)". The snapshot is
used only in one situation: to detect inconsistent addresses while switching the ASID register.
The ASID register is updated on a context switch between processes, and we use snapshot

for a page table comparison: as for the rest of the model, no actual TLB lookup is involved.
We now explain the operations of the abstract MMU model.

5.2.1 Memory Operations

For translating a virtual address in the abstract two-stage TLB, we merely check its consis-
tency using the incon_set, and subsequently translate it directly form the page table. The
function mmu_translate_abs formalises this behaviour:

mmu_translate_abs va ≡ do {
(m, rt, a, iset) ← read (MEM, TTBR0, ASID, incon_set);
if va ∈ iset then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk a m rt va

in if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va (the entry))

}

Note that the function pt_walk gives us end-to-end address translation, eliminating the PDC
and simplifying the model.We can do so because we translate through the page table directly.

For the abstract memory write mmu_write_abs, we must figure out which new addresses
might have become inconsistent for the two-stage TLB. For keeping track of such inconsis-
tencies stemming from two different page table walks, we introduce a less or equal relation
for the type pt_walk_typ as:

_ � _ :: "pt_walk_typ ⇒ pt_walk_typ ⇒ bool"
walk � walk’ ≡
walk = Fault ∨ walk = walk’ ∨
(∃pde. walk = Partial_Walk pde ∧ (∃te. walk’ = Full_Walk te pde))

In the above relation, the first two disjuncts imply that a Fault walk is smaller then a
Partial_Walk and a Full_Walk. The third disjunct states that a walk is less than another
walk’ if walk is a Partial_Walkwith a page directory entry pde, and walk’ is a Full_Walk
with the same pde and a TLB entry te. Using this less or equal relation, we can define a
page table comparison pt_comp function as:

pt_comp :: "(vaddr ⇒ pt_walk_typ) ⇒ (vaddr ⇒ pt_walk_typ) ⇒ vaddr set"
pt_comp pt pt’ ≡ {va | ¬ pt va � pt’ va}

For any given two page table walk functions pt and pt’ of type "vaddr ⇒ pt_walk_typ",
this comparison gives us the set of unmapped and remapped virtual addresses, as well as
the virtual addresses that result in the same end-to-end translation but have different page
directory entries. The latter is important to catch inconsistencies that are only observable in
the PDC in the concrete MMU model of Sect. 4.

Using the pt_comp function, the abstract memory write mmu_write_abs then is:

mmu_write_abs (val, va, sz) = do {
(m, rt, a, iset, gset) ← read (MEM, TTBR0, ASID, incon_set, glb_set);
pa ← mmu_translate_abs va;
when_no_exc do {
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mem_write (val, pa, sz);
m’ ← read MEM;
update_iset (iset ∪ pt_comp (ptd_walk a m rt) (ptd_walk a m’ rt));
update_gset (gset ∪ glb_vaddrs a m’ rt)

}
}

glb_vaddrs a m rt ≡ ⋃
e∈glb_entries (ran (pt_walk a m rt)) range_of e

The first step in the memory write is to resolve the virtual address va. On a successful
translation, we (a) write to the physical memory, (b) compare the two-stage page table walks
(ptd_walk) to figure out the potential TLB-inconsistencies, and (c) saturate the glb_set

with the potentially new global addresses as a result of the memory write, using a function
glb_vaddrs.

The global set reload is necessary to soundly model the inconsistencies while switching
the ASID register as we will see later in this section. For the function glb_vaddrs presented
above, we use the end-to-end page table walk function (pt_walk) instead of the two-stage
ptd_walk, because global entries are inherently determined by the final address translation.
The functions update_iset and update_gset in mmu_write_abs update the incon_set

and glb_set of the state with the given arguments.
The abstract memory read mmu_read_abs is similar to the base-level model, we only use

the new mmu_translate_abs instance.

mmu_read_abs (va, sz) = do { pa ← mmu_translate_abs va; mem_read (pa,

sz) }

5.2.2 MMUOperations

Updating the page table root register in the abstract MMU is similar to a memory write,
comparing page tables before and after. We define update_TTBR0_abs as:

update_TTBR0_abs r = do {
(m, rt, a, iset, gset) ← read (MEM, TTBR0, ASID, incon_set, glb_set);
update (λs. s(|TTBR0 := r|));
update_iset (iset ∪ pt_comp (ptd_walk a m rt) (ptd_walk a m r));
update_gset (gset ∪ glb_vaddrs a m r)

}

We use the comparison pt_comp function for two page tables with different roots, and also
reload the glb_set with the updated global virtual addresses.

We now explain the instruction for updating the ASID register, it manipulates all three
components of the abstract TLB model. The function update_ASID_abs is defined as:

update_ASID_abs a’ = do {
(m, rt, a, iset, gset, snp) ←

read (MEM, TTBR0, ASID, incon_set, glb_set, snapshot);
let snp’ = snp(a := (iset, ptd_walk a m rt));
update_snp snp’ ; update (λs. s(|ASID := a’|));
let glb_iset = iset ∩ gset; snp_iset = fst (snp’ a’);

pt_iset = pt_comp (snd (snp’ a’)) (ptd_walk a’ m rt)
in update_iset (glb_iset ∪ snp_iset ∪ pt_iset)

}

The above function includes three main steps. We first store the incon_set and page table
state (ptd_walk) of the active ASID to the snapshot. Next we update the ASID register
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to the given ASID a’. Finally for calculating the incon_set for the new ASID a’, we (a)
find the globally inconsistent addresses by intersecting incon_set and glb_set, (b) retrieve
the stored inconsistent addresses under ASID a’ from the snapshot, and (c) compare the
stored page table state of ASID a’ with the active page table using pt_comp. The sequence
of these steps is important: we update the snapshot for the previous ASID before updating
the ASID register and calculating the incon_set, since the new ASID a’ could be equal to
the active ASID.

We now explain the flush operations for our abstract model.

flush_abs f = do {
(m, rt, a, iset, gset, snp) ←

read (MEM, TTBR0, ASID, incon_set, glb_set, snapshot);
case f of FlushTLB ⇒ upd_abs ∅ (glb_vaddrs a m rt) (λa. (∅, λv. Fault))
| FlushVR vs ⇒

upd_abs (iset - vs) (gset - vs ∪ glb_vaddrs a m rt) (fl_snp snp vs)
| FlushASID a’ ⇒

if a’ = a then update_iset (iset ∩ gset)
else update_snp (snp(a’ := (∅, λv. Fault)))

| FlushAVR a’ vs ⇒
if a’ = a then update_iset (iset - (vs - gset))
else let iset = fst (snp a’); pt = snd (snp a’)

in update_snp (fl_asid_snp snp pt iset a’ vs)
}

fl_snp snp vs ≡
λa. (fst (snp a) - vs, λv. if v ∈ vs then Fault else snd (snp a) v)

fl_asid_snp snp pt is a’ vs ≡
λa. if a = a’ then (is - vs, λv. if v ∈ vs then Fault else pt v) else snp a

The flush_abs instruction simply removes the relevant virtual addresses from the
incon_set and glb_set, and unmaps them from the relevant snapshot. Unmapping an
address from the snapshot means to make its respective result a Fault, since flush instruc-
tions operate on both PDC and TLB. After flushing virtual addresses, we trivially saturate the
glb_set to make sure it stays synchronised with memory. The function upd_abs updates the
incon_set, glb_set and snapshot with the given arguments, the function fl_snp flushes
the given snapshot for the given set of virtual addresses (i.e. reducing the stored incon_set

and unmapping the stored page table state), and the function fl_asid_snp flushes the snap-
shot of the given ASID for the given set of virtual addresses.

5.2.3 Refinement Theorems

We now present the refinement between the saturated and abstract MMU models. The
refinement relation provides the connection between the abstract (incon_set, glb_set and
snapshot) and the saturated TLB and PDC. Again, the states s and t differ only in the
TLB/PDC part:

tlb_rel_abs s t ≡
let tlb = fst (TLBs s); pdc = snd (TLBs s); a = ASID s; snp = snapshot t
in truncate s = truncate t ∧ saturated s ∧ incons s ⊆ incon_set t ∧

globals s ⊆ global_set t ∧
(∀a’ v. a’ �= a −→
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lookup (nglb_entries tlb) a’ v ≤ tlb_lookup_from snp a’ v ∧
lookup (nglb_entries pdc) a’ v ≤ pdc_lookup_from snp a’ v)

The function inconsmodels the inconsistent addresses under the activeASID in the saturated
state s; the function globals models the global addresses:

incons s ≡
let tlb = fst (TLBs s); pdc = snd (TLBs s); a = ASID s; m = MEM s; rt = TTBR0 s
in {va | lookup tlb a va = Incon ∨ lookup pdc a va = Incon} ∪

{va | (∃te. lookup tlb a va = Hit te ∧ is_fault (pt_walk a m rt va)) ∨
(∃pe. lookup pdc a va = Hit pe) ∧ is_fault (pdc_walk a m rt va)}

globals s ≡
let tlb = fst (TLBs s); pdc = snd (TLBs s)
in (

⋃
e∈glb_entries tlb range_of e) ∪ (

⋃
e∈glb_entries pdc range_of e)

The subset relation between the incons addresses of s and the incon_set of t says that t
covers all inconsistencies for the activeASID, hence guarantees safe executions. Similarly the
glb_set of t conservatively approximates the globals addresses of state s. The last conjunct
in tlb_rel_abs covers the inactive ASIDs: we assert that the snapshot covers everything
the saturated TLB and PDC may remember from that ASID. We decode the snapshot into
a two-stage TLB lookup as:

tlb_lookup_from snp a va ≡
let iset = fst (snp a); pt = snd (snp a)
in if va ∈ iset then Incon

else case pt va of Full_Walk te pe ⇒ if asid_of te = None then Miss else Hit te
| _ ⇒ Miss

pdc_lookup_from snp a va ≡
let iset = fst (snp a); pt = snd (snp a)
in if va ∈ iset then Incon

else case pt va of Fault ⇒ Miss
| Partial_Walk pe ⇒ if asid_of pe = None then Miss else Hit pe
| Full_Walk te pe ⇒

if asid_of te = None ∧ asid_of pe = None then Miss else Hit pe

The function tlb_lookup_from produces a TLB lookup from a snapshot snp. It results in
Incon if the address va is in the inconsistent set of snp for the ASID a, otherwise Fault and
global addresses are encoded to Miss, and an the ASID-specific entries to Hit. The function
pdc_lookup_from does the same for a PDC lookup, with non-global Partial_Walks and
non-global Full_Walks resulting in Hit.

For the theorem below, we again combine the operations mmu_translate_abs,
mmu_write_abs and mmu_read_abs into the abstract TLB memory interface mem_op_abs,
and the evaluationofupdate_TTBR0_abs,update_ASID_abs andflush_abs intommu_op_abs.

Theorem 3 The saturated and abstract MMU models preserve the refinement relation
tlb_rel_abs

mem_op_sat f s = (res, s’)
mem_op_abs f t = (res’, t’) consistent_abs f t tlb_rel_abs s t

res’ = res ∧ tlb_rel_abs s’ t’

mmu_op_sat f s = ((), s’) mmu_op_abs f t = ((), t’) tlb_rel_abs s t

tlb_rel_abs s’ t’

123



Formal Reasoning Under Cached Address Translation 931

whereconsistent_abs ensures that thememoryoperation is for a consistent virtual address,
i.e. the virtual address is not an element of the incon_set of state t.

Proof We first explain how the refinement holds for address translation. According to the
refinement relation tlb_rel_abs, the incon_set tracks the inconsistent virtual addresses
for the active ASID in the saturated TLB. We are therefore in the else branch of
mmu_translate_abs, and in either Hit or Miss branch of mmu_translate_sat. In both
these cases, the results must agree because saturated and tlb_rel_abs imply that the Hit

and Miss results represent precisely the walks we perform in mmu_translate_abs.
Memory reads preserve the refinement relation straightforwardly after address translation.

Memory writes are interesting: we validate that the pt_comp function correctly tracks the
resultant inconsistencies in the saturated TLB, and verify that the glb_set reload of the
abstract model is sound. The last conjunct tlb_rel_abs is trivially true for memory writes,
since all operations are under the active ASID. Refinement for updating the page table root
register is similar to that of memory writes, as the pt_comp comparison is inherently the
same. The flush refinement is mostly set reasoning to conclude that the relation is preserved
after the respective incon_set, glb_set and snapshot updates.

The refinement proof for update_ASID is interesting: overall we establish that after updat-
ing the ASID register (a)the incon_set correctly models the inconsistencies of the saturated
model, (b) the glb_set preserves the subset relation, and (c) the snapshot provides the
lookup order for all inactive ASIDs.

We then look separately at global andnon-global entries.Global entries are already covered
by theglb_set andincon_set, and explicitly excluded fromsnapshots. Thismeanspt_comp
can deal with ASID-specific entries only. The correctness argument for pt_comp in the
snapshot is then analogous to memory write. ��

With this we conclude our abstract MMU model and its refinement with the saturated
MMU.

5.3 Joining the Refinement Levels

We now join the refinement levels of Fig. 3 to show the soundness of our abstract model with
respect to the base model. The refinement relation tlb_rel is:

tlb_rel r t ≡ ∃s. tlb_rel_sat r s ∧ tlb_rel_abs s t

where the states r, s and t are for the nondeterministic, saturated, and abstract TLB respec-
tively. The functions tlb_rel_sat and tlb_rel_abs are the ones from Sects. 5.1 and 5.2.

Theorem 4 Refinement between nondeterministic and abstract MMU model

mem_op f r = (res, r’)
mem_op_abs f t = (res’, t’) consistent_abs f t tlb_rel r t

res = res’ ∧ tlb_rel r’ t’

mmu_op f r = ((), r’) mmu_op_abs f t = ((), t’) tlb_rel r t

tlb_rel r’ t’

Proof By case analysis on the function f and using the respective refinement theorems, and
observing that consistent_abs implies consistency for the lower TLB levels. ��
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Fig. 5 Syntax of the Heap based WHILE Language

Taken together, the refinement chain presented in this section means that a program logic
on top of this model only has to keep track of inconsistent two-stage TLB addresses, and
that TLB-consistent addresses can only be made inconsistent with changes to the page table,
ASID, or TTBR0. TLB invalidation can be selective and can be deferred until we can no
longer prove from other sources that we only access consistent mappings. In essence, the
refinement hides low-level hardware TLB reasoning and provides a much simpler interface
to the proof engineer.

6 Program Logic

This section presents a program logic for reasoning in the presence of cached address transla-
tion.We define the syntax of a simple Turing-complete heap languagewith TLBmanagement
primitives, and show the rules of program logic.

6.1 Syntax and Program State

Figure 5 shows the Isabelle data types for the abstract syntax of the language. Control struc-
tures are the standard SKIP, IF, WHILE and assignment, where assignment expects the
left-hand side to evaluate to a heap address. In addition, we have specific privileged com-
mands for flushing the TLB, updating the current page table root, the current ASID, and the
processor mode. For simplicity, there are no local variables in this language, only the global
heap. We identify values and pointers and admit arbitrary HOL functions for comparison,
binary, and unary arithmetic expressions.

We now describe the program state for our example language and therefore also for our
program logic. In the previous section we have developed an abstract and soundMMUmodel
that keeps track of the set of TLB-inconsistent addresses and uses direct page table access
for address translation. The program logic uses (morally) the same model, but there is still
a break in logic: the TLB abstraction is on a machine-level ISA model; the program logic
is for a higher-level language with explicit memory access, intended for languages such as
C. The bridge between the two worlds would be a compiler correctness statement that takes
the TLB into account. This may initially not sound straightforward: the high-level language
makes fewer memory accesses visible than the low-level machine performs. In particular,
a compiler will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address translation
and might be relevant for TLB reasoning.

123



Formal Reasoning Under Cached Address Translation 933

Sections 7 and 8 will show that we can ignore the TLB for kernel-level code, if we can
assume that these memory areas (code, stack, globals) are statically known and that the
compiler will not generate additional memory accesses outside these static areas. This is a
reasonable assumption—otherwise kernel code could never be sure that privileged memory
areas such as memory-mapped devices are not randomly overwritten by compiler-generated
accesses. We will then have to prove that we never remove or change active mappings for
these areas (adding new mappings for e.g. the stack would be fine). For user-level code, we
will see that the issue becomes irrelevant.

The program state p_state of our language model is:

record p_state =

heap :: "paddr ⇀ val"

iset :: vaddr set

gset :: vaddr set

pt_snpshot :: asid ⇒ vaddr set × (vaddr ⇒ pt_walk_typ)

root :: paddr

asid :: asid

mode :: mode_t

It has the following components: (a)the heap (physical memory), (b)the set of inconsistent
virtual addresses (global, and under the active ASID), (c)the set of globally mapped virtual
addresses, (d)the active page table root, (e)the active ASID, (f)the page tables snapshots for
inactive ASIDs, with the last known ASID-specific page tables state modulo inconsistencies,
and (g)the processor mode. The first of these is for traditional heap manipulation, the rest for
keeping track of the abstract TLB interface. To simplify the language, we make it operate
exclusively on type val::32 word, with physical memory as a partial function heap::

"paddr ⇀ val".

6.2 Semantic Operations

This section presents the main semantic operations of the language. They describe the effects
of memory accesses and the TLB operations on the state.

We interpret the values val of the language as virtual addresses, which means, memory
read and write first undergo address translation. Both operations are sensitive to the current
mode of the machine, since some mappings might be accessible in kernel mode only and
lead to a page fault otherwise. On the ISA level of Sect. 4 this check would be performed
on the permissions of the TLB entry in mmu_translate. Since our case study examples
reason about the machine mode, we include this check here, and build it directly into the
page table lookup, which means, in the program logic our interface to this formalisation is
the end-to-end function pt_lookup, which takes a heap, a page table root, and the current
mode, and yields a partial function from virtual address to physical address.

Adding a TLB to address translation only adds a check that the virtual address is not part
of the iset:

phy_ad :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇀ paddr
phy_ad IS hp rt m vp ≡ if vp /∈ IS then pt_lookup hp rt m vp else None

The memory read and write functions are then simply:

read :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇀ val
read IS hp rt m vp ≡
case phy_ad IS hp rt m vp of None ⇒ None | �pp� ⇒ load_value hp pp
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write :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇒ val ⇀ heap
write IS hp rt m vp v ≡
case phy_ad IS hp rt m vp of None ⇒ None | �pp� ⇒ �hp(pp �→ v)�

Both functions first perform address translation, then access the physical heap. Read returns
None when the translation failed, write returns a new heap if successful and None otherwise.

The effect of a write operation extends further than the heap. If the operation has modified
the active page table, we may have to add new inconsistent addresses to the TLB iset, and
new globally mapped addresses to the gset. As on the ISA level, for the iset reload, we
compare the page table before and after:

incon_comp a hp hp’ rt rt’ = pt_comp (ptd_walk a hp rt) (ptd_walk a hp’ rt’)

where a is the current ASID. Again, as on the ISA-level, we need to update the global set
after writes. The definition is identical to glb_vaddrs of Sect. 5.2, but takes a different heap
type.

global_vaddrs a hp rt ≡ ⋃
e∈glb_entries (ran (pt_walk a hp rt)) range_of e

The effect of a write is then

heap_iset_gset_upds (pp �→ v) ≡
let hp = heap s; hp’ = hp(pp �→ v); rt = root s; a = asid s
in s(|heap := hp’, iset := iset s ∪ incon_comp a hp hp’ rt rt,

gset := gset s ∪ global_vaddrs a hp’ rt|)
and the effect of a page table root update is

root_iset_gset_upds rt’ ≡
let rt = root s; hp = heap s; a = asid s
in s(|root := rt’, iset := iset s ∪ incon_comp a hp hp rt rt’,

gset := gset s ∪ global_vaddrs a hp rt’|)
Changing the current ASID is again analogous to the abstract model on the ISA level, we

merely access the program state instead of the ISA state.

new_snp s ≡
let a = asid s; hp = heap s; rt = root s
in (pt_snpshot s)(a := (iset s, λv. ptd_walk a hp rt v))

snp_incon a s ≡
let snp = new_snp s; iset = iset s; gset = gset s; hp = heap s; rt = root s;

snp_incon = fst (snp a); glb_incon = iset ∩ gset;
pt_incon = pt_comp (snd (snp a)) (ptd_walk a hp rt)

in snp_incon ∪ glb_incon ∪ pt_incon

asid_iset_snp_upds a ≡
s(|asid := a, iset := snp_incon a s, pt_snpshot := new_snp s|)

The final set of semantic effects are flush operations. The functions

flush_iset :: flush_type ⇒ iset ⇒ asid ⇒ iset and
flush_gset :: flush_type ⇒ gset ⇒ asid ⇒ iset and
flush_snpshot :: flush_type ⇒ pt_snpshot ⇒ asid ⇒ pt_snpshot
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Fig. 6 Hoare Logic Rules for Standard Commands

simply remove the relevant entries from the iset, gset and set them to Fault in the
pt_snpshot depending on the specific flush instruction. The effect of the flush instruction
on the state is:

iset_gset_snp_upds f ≡
let is = iset s; gs = gset s; snp = pt_snpshot s; a = asid s;

hp = heap s;
rt = root s

in s(|iset := flush_iset f is gs a, gset := flush_gset f gs a hp rt,
pt_snpshot := flush_snpshot f snp a|)

6.3 Logic Rules

With the syntax and the semantic operations of the previous sections it is straightforward to
define an operational semantics for the language. We briefly summarise the salient points
before we focus on the rules of the program logic.

The semantics of arithmetic and Boolean expressions, [[A]] s and [[B]]b s, are partial
functions from program state to val and bool, respectively. While the rest is standard,
HeapLookup goes through virtual memory:

[[HeapLookup vp]] s =
(case [[vp]] s of None ⇒ None
| �v� ⇒ read (iset s) (heap s) (root s) (mode s) (Addr v))

For commands, we write (c, s) ⇒ s’ for command c executed in state s terminates in
state s’, where s’ is of type state option with None indicating failure. More details about
the semantics can be found at [27].

Our Hoare triples are partial for termination, but demand absence of failure.

{|P|} c {|Q|} ≡ ∀s s’. (c, s) ⇒ s’ ∧ P s −→ (∃r. s’ = �r� ∧ Q r)

Figures 6 and 7 show the rules of the program logic. Their soundness derives directly from
the operational semantics. Figure 6 summarises the rules for traditional commands such as
SKIP, WHILE, etc. and Fig. 7 gives the rules for the commands that interact with the TLB.
We note that the traditional rules are completely standard, as intended. We write 〈〈b〉〉 s to
denote that "[[b]]b s �= None": the precondition in the IF and WHILE rules must be strong
enough for failure free evaluation of b. The rules in Fig. 7 are in weakest-precondition form.
They have a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without failure. The
assignment succeeds if the virtual address vp is consistent in the current state (vp /∈ iset

s) and vp is mapped (Addr vp ↪→s pp), where
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Fig. 7 Hoare logic rules for commands with TLB effects

vp ↪→s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = �pp�)
The effect of the assignment is the heap, iset and gset update heap_iset_gset_upd

(from Sect. 6.2). The rule for the command UpdateRoot, only available in kernel mode,
updates the current page table root to the value of the expression rte and the state by
root_iset_gset_upd. The UpdateASID command, also only available in kernel mode, sets
the new ASID a, increases the iset using snp_incon, and records a page table snapshot for
the oldASIDusing new_snp. Finally, Flush is the instruction that themakes the iset smaller,
and removes mappings in the snapshots of inactive ASIDs, using iset_gset_snp_upd.

7 Safe Set

This section introduces a reduction theorem that restricts and simplifies the assignment rule,
which is the most frequent reasoning step in any usual program. The general assignment
rule reasons about a) consistency of the target address in the current state b) valid address
translation, and c) potential update of the iset and the gset.

The rule explicitly mentions page table walks, which means the proof engineer has to
discharge page table obligations even if the memory write has nothing to do with page tables.
This is not what systems programmers do. They instead establish invariants under which
most of the code can be reasoned about without awareness of the TLB or page tables.

Given a TLB-consistent set of virtual addresses, this set can only become unsafe to write
to when we change one of the page table mappings that translate the addresses in this set. If
none of these are contained in the set, any write to the set is safe, even if it may change other
mappings and increase the TLB iset. To formalise this notion, we re-use another function
fromKolanski’s page table interface [15]: ptable_trace. It takes a heap, a root, and a virtual
address va, and returns the set of physical addresses visited in the page table walk for va.
Memory writes outside the ptable_trace for va will not change the outcome of the walk
for va. Generalising this notion to a set of virtual addresses, we define

ptrace_set V s = (
⋃

v∈V ptable_trace (heap s) (root s) v)

where f ‘ V applies f to all elements of the set V. The ptrace_set V gives us the set of
physical addresses that encode the translation for the virtual addresses in V. We can now
define what a safe set is:

safe_set V s ≡ ∀va∈V. va ∈ C s ∧ (∃p. va ↪→s p ∧ p /∈ ptrace_set V s)

where C s ≡ {va | va /∈ iset s}. In words, a set V is a safe set in state s iff all addresses
va ∈ V are consistent in the current state, if they map to a physical address p, and if that
address is not part of the page table encoding for any of the addresses in V.
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Our first observation is that once a set V is a safe set, assignments in V can no longer make
it unsafe, and the safe set property will remain invariant:

Theorem 5 Any write to the safe set will preserve the safe set. Formally:

{|λs. safe_set V s ∧ (∃vp v. [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ∈ V)|}
lval ::= rval {|λs. safe_set V s|}

Proof We apply the weakest-precondition rule for assignment and reason that a write to a
mapped virtual address vp from the set V does not resolve to the page table trace of set V, and
therefore will not change any page table entries for the set V. Hence none of the addresses in
V will be added to the inconsistent set in the incon_comp update, and if they were consistent
before, they will be consistent afterwards. While we might have changed other mappings,
the trace of the mappings for V has not changed, and so all conditions of safe_set are still
satisfied. ��

We know with Theorem 5 that the safe set will remain invariant, so we could now ignore
the iset completely, but since the proof engineer might want to keep track of it for other
purposes, we still record it in the rule. However, in contrast to the general assignment rule,
if the post condition does not mention the TLB, now neither will the precondition.

Theorem 6 In the assignment rule, it is sufficient to check the static safe set instead of the
dynamic inconsistency set iset.

{|λs. (∃vp v. [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ∈ V ∧
Q (heap_iset_gset_upds (the_phy_ad vp s �→ v))) ∧ safe_set V s|}

lval ::= rval {|Q|}
where the_phy_ad vp s ≡ the (pt_lookup (heap s) (root s) (mode s) (Addr vp))

Proof Follows directly from the definition of safe_set and the assignment rule. ��
For code that is not interested in TLB effects, i.e. outside context switching and page table

manipulations, this rule enables proof engineers to reason as if no TLB was present. The
majority of OS and user-level code satisfies this condition. The rule still mentions address
translation, but the translation is now static within V, i.e. can be computed once. The reduction
to checking a static set of addresses also give us justification that compilers do not introduce
additional complexity into reasoning under the TLB, they merely add addresses that need to
be part of this safe set, e.g. the area of virtual memory that contains code, stack, and globals.

8 Case Studies

In this section, we apply the program logic and its reduction theorems to the main scenarios
where TLB effects are relevant. These are: kernel-level code without TLB or page table
manipulations, standard user-level code, context-switching, and page table manipulations.
Of these, page table manipulations turn out to be the least interesting, their example theorems
are available in our theory files [27], while we present the rest here.

The case study uses the seL4 microkernel as inspiration to distill out code sequences for
a toy kernel that manages page tables and the TLB, and prevents users from accessing these,
as well as other kernel data structures, directly. It maintains a set of page tables, typically one
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per user, potentially shared. This setting applies to all major protected-mode OS kernels, e.g.
Linux, Windows, MacOS, as well as microkernels. While simplified, the case study aims to
be realistic in demonstrating popular techniques for avoiding TLB flushes, such as ASIDs,
and uses a so-called kernel window to reduce page tables switches. The kernel window is a
set of virtual addresses, unavailable to the user, backed by kernel mappings with permissions
that make them available only in kernel mode.2

As is customary, the mappings for this kernel window are global and constant, and each
user-level page table that the kernel maintains has a number of known kernel mapping entries
which reside at the same position in the page table encoding. This gives us a ready candi-
date for safe-set reasoning about kernel code: all addresses in the kernel window minus the
addresses that are used to encode the kernel mappings in page table data structures.

Since the aim is to show reasoningprinciples, not to prove correctness of a particular kernel,
the examples below use two-level ARMv7 page tables with a simple concrete encoding, and
a specific layout. The encoding and layout should generalise readily to larger settings. In
addition to the page tables (one per user) that are stored in the kernel window, we assume the
existence of one further kernel data structure: a map root_map from page table roots to the
ASID for the user of this page table. A real OS kernel might maintain these as part of a larger
data structure. We ignore the details here, and use them only to formulate basic invariants
the kernel must maintain.

The main invariants we use in this example are (a) all kernel data structures reside in
physical kernel memory, (b) they do not overlap, (c) page table roots are aligned to page
directory size, (d) the current ASID is associated correctly with the current page table root,
(e) all page tables contain the kernel mappings, (f) the kernel mappings are global and static,
(g) the user mappings are always non-global, (h) no page table contains mappings that allows
user mode to resolve to physical kernel memory, and (i) the mapping from page table roots
to ASIDs is injective. The following two properties are true for most of the execution of
the system, but are invalidated temporarily: (j) The kernel window minus the entries that
encode kernel mappings is a safe set. This property only holds in kernel mode. (k) The ASID
snapshots agree with the page table for that ASID/user. This property is invalidated for a
specific ASID between page table manipulations and flush instructions.

Formally:

mmu_layout s ≡
kdata_area s ⊆ kphy_mem ∧ non_overlap (kdata s) ∧ aligned (roots s) ∧
partial_inj (root_map s) ∧ root_map s (root s) = �asid s� ∧ umappings s ∧
kmappings s ∧ sat_glb_set s

The memory area of the kernel data structures is the union of the footprint of all static data
structures plus the footprint of all page tables. The memory area of a page table starting at
root rt is the set of all addresses that can be produced by a ptable_trace.

pt_area s rt ≡ ⋃
v ptable_trace (heap s) rt v

kdata s ≡ map (pt_area s) (root_log s) @ [rt_map_area]
kdata_area s ≡ ⋃

(set (kdata s))

The definitions of non-overlapping and aligned page table roots are:

2 This is the technique attacked by Meltdown [17]. Since hardware manufacturers are in the process of fixing
this flaw, we present themore interesting setting instead of the less complex and slower scenario with a separate
kernel address space.
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non_overlap [] = True
non_overlap (x · xs) = (x ∩ ⋃

(set xs) = ∅ ∧ non_overlap xs)

aligned rts ≡ ∀rt∈rts. addr_val rt && mask 14 = 0

where mask n = (1 << n) - 1, 214 is the size of page directories, and && is bit-wise and.
We define partial injectivity for correctly associating ASIDs with page table roots as:

partial_inj f ≡ ∀x y. x �= y −→ f x �= f y ∨ f x = None ∧ f y = None

The restriction on user mappings is easily phrased with our previous address translation
predicates, where roots s = set (root_log s), root_log is a list of page table roots
with root_map s r �= None, and set turns a list into a set.

umappings s ≡
∀rt∈roots s. ∀va pa. pt_lookup (heap s) rt User va = �pa�

−→ pa /∈ kphy_mem ∧ non_glb (heap s) rt va

The presence of kernel mappings is more technical. We spare the reader the details of the
formal page table encoding, but note that it represents a constant offset translation, such that
for all virtual addressesva in the kernelwindow,wegetAddr va ↪→s Addr (va - offset)

for a constant offset, i.e. the outcome of the translation is easily described statically. This is
a simple yet realistic setup, similar to what e.g. seL4 uses. Finally, the assertion sat_glb_set

(definition omitted) in mmu_layout states that the global set of the abstract TLB is equal to
the globally mapped virtual addresses of the active page table, which is also equal to that of
all page tables in the system. Both definitions can be found online [27].

To avoid flushing the TLB, we maintain for most of the execution the additional invariant
that the TLB is fully consistent for all ASIDs that we might switch to, and that for each ASID
the TLB snapshot agrees with the page table that we would switch to for that ASID. This
means, if there were page table modifications for a user we are about to switch to, we assume
that the corresponding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs as argument
to exclude. We assert ASID consistency as:

asids_consistent S s ≡ assigned_asids_consistent S s ∧ gset_consistent s

assigned_asids_consistent S s ≡
∀r a. let is = fst (pt_snpshot s a); pt = snd (pt_snpshot s a);

wlk = ptd_walk a (heap s) r
in root_map s r = �a� ∧ a /∈ S ∪ {asid s} −→ is ∪ pt_comp pt wlk = ∅

gset_consistent s ≡
∀r a. let is = fst (pt_snpshot s a); pt = snd (pt_snpshot s a);

wlk = ptd_walk a (heap s) r
in r ∈ roots s −→ gset s ∩ (is ∪ pt_comp pt wlk) = ∅

With assigned_asids_consistent we ensure that for all known page tables and ASIDs,
unless they are explicitly excluded or they are current ASID, the pt_comp between snapshot
and memory as well as the corresponding set of inconsistent addresses are empty. Similarly,
the assertion gset_consistent ensures the TLB-consistency of the globally mapped virtual
addresses for all the page table present in the memory. Note that this predicate does not have
exclusions.

This concludes the formalisation of the necessary kernel invariants.
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8.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel has switched
to user mode, the iset should be empty for the current ASID, and since the user cannot
perform any actions that add addresses to this set, it will remain empty. Most actions that
have any effect on the iset are explicitly privileged, i.e. unavailable in user mode. Only
assignments could possibly have an adverse effect.

The following theorem shows that they do not, and that any arbitrary assignment in user
mode will preserve not only this property of the iset, but, almost trivially, also all kernel
invariants. In that sense it is a simple demonstration of the separation that virtual memory
achieves between kernel and user processes.

Theorem 7 When the kernel invariants hold, we are in user mode, and the iset is empty,
then these three conditions are preserved, and the heap is updated as expected. We assume
that the address the left-hand side resolves to is mapped.

{|λs. mmu_layout s ∧ mode s = User ∧
iset s = ∅ ∧ [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ↪→s p|}

lval ::= rval
{|λs. mmu_layout s ∧ mode s = User ∧ iset s = ∅ ∧ heap s p = �v�|}

Proof See lemma user_safe_assignment in the theory files [27]. ��
The essence of the rule above is the same as Kolanski’s assignment rule [15] without TLB.

The invariant part of the rule could be moved to the definition of validity and be hidden from
the user completely. Like Kolanski, we still had to assume that the address vp is mapped,
because we do not distinguish between recoverable page faults and program failure. In the
settings we are interested in, we aim to avoid page faults. In a setting with dynamically
mapped pages, e.g. by a page fault handler, the logic can be extended to take this conditional
execution into account, for instance using an exception mechanism or a conditional jump. In
that case, the condition that addresses are mapped can be dropped, and we arrive at a standard
Hoare logic assignment rule.

8.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel execution without
virtual memory modifications does as well.

As mentioned in Sect. 7, the safe set for kernel execution is the entire kernel window, i.e.
the virtual addresses that are mapped by the global mappings, minus the addresses of the
page table entries that encode these global mappings. Since we will need to re-establish this
set every time we switch to a different page table, and it is always safe to reduce the safe set,
we not only remove the kernel window encoding in the current page table, but also that of
of all other page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short, closed form
of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp - offset. With
these, we can formulate a theorem for assignments in kernel mode that do not touch any
of the virtual memory data structures, i.e. when the write does not take place in any of the
addresses covered by kdata.
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Theorem 8 If the mmu_layout invariants hold, we are in kernel mode, and we are performing
a write in the kernel safe set that does not touch any MMU-relevant data structures, then
the mmu_layout invariants are preserved and the effect is a simple heap update with known
constant address translation.

{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s ∧
asids_consistent ∅ s ∧ [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧
Addr vp ∈ kernel_safe s ∧ k_phy_ad vp /∈ kdata_area s|}

lval ::= rval
{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s ∧

asids_consistent ∅ s ∧ heap s (k_phy_ad vp) = �v�|}

Proof See lemma kernel_safe_assignemnt in the theory files [27]. ��
This lemma covers kernel code that is uninteresting for the purposes of the MMU and

TLB, which is the majority of code in a normal kernel. The Isabelle theories [27] also contain
examples for page table modifications. The main difference to this theorem is that, while the
write still happens in the safe set, and the safe set is preserved, there are now inconsistent
addresses that need to be flushed before we return to user mode. These could be for the active
page table, but also for an inactive page table, where the need for flushing is observed in the
asids_consistent invariant.

8.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing interesting
happens to the TLB. This section is the opposite: context switching. There are many ways
for the OS to implement context switching—our example shows one where we change to a
new address space, i.e. a new page table and ASID, without flushing the TLB, establishing
the conditions of Theorem 7 for user-level reasoning. Switching page table roots without
flushing is non-trivial, and the ARM architecture manual [3, Chapter B3.10] even gives a
specific sequence of instructions to achieve this. The manual uses this sequence, because
speculative execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user. Theorem 9
below shows that our model is conservative for speculative execution, but precise enough so
we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID by using
a reserved ASID (in this case 0). It first switches to this reserved ASID, then sets the new
page table root, then switches to the ASID for that root, before it switches to user mode.

Theorem 9 The context switch sequence to a newASID a and new page table root r preserves
the mmu_layout and ASID snapshot consistency invariants and establishes the conditions
for user-level reasoning, provided that the TLB has no inconsistent addresses at this point,
that the reserved ASID 0 is not used for any user page table, and that that r is a known page
table associated with ASID a.

{|λs. mmu_layout s ∧ asids_consistent ∅ s ∧ mode s = Kernel ∧
iset s = ∅ ∧ 0 /∈ ran (root_map s) ∧ root_map s (Addr r) = �a�|}

UpdateASID 0;; UpdateRoot (Const r);; UpdateASID a;; SetMode User
{|λs. mmu_layout s ∧ iset s = ∅ ∧ mode s = User ∧ asids_consistent ∅ s|}

Proof See lemma context_switch_invariants in the theory files [27]. ��
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For compiler correctness, we would additionally need to know that ASID 0 does not
have inconsistent entries for the code and data areas of the kernel, which is maintained if
ASID 0 is used only in the way above. To make this more explicit, we could add a static set
to the program logic for code and data that must always be consistency, and the condition
asids_consistent would maintain that at least the global kernel mappings are consistent
in ASID 0.

This concludes the case study examples for our logic. We have seen that we can reason
about user code, kernel code, and context switching code, each at their appropriate level of
abstraction.

8.4 Application to seL4

Wehave not yet applied the reasoning framework presented here to the verification of the seL4
microkernel. Below are the steps that one would have to undertake to do so. The functional
correctness proof of seL4 is itself a stack of multiple refinement layers.

1. Choose one or more refinement layers to apply the model to.
2. Integrate virtual memory translation into that layer and derive from existing invariants

that kernel memory behaves like plain memory.
3. Implement the abstract TLB in the seL4 machine interface.
4. Force the current program logic of the chosen seL4 refinement layer to provide failure

on memory accesses according to the model shown here.
5. Formulate and prove the necessary invariants to show absence of these failures, based on

the TLB invariants shown in the case study presented here.

In more detail, the first step in this chain is the one with most freedom and likely the
largest impact on the effort of the integration of TLB behaviour into the seL4 model. At the
current state of investigation, it looks like the best layer to introduce TLB behaviour is not on
the machine or even C code level, but in the abstract specification of seL4. This is because
this layer still models all relevant memory accesses, and at the same time is the simplest one
to reason about, providing the richest set of invariants and properties of the behaviour of the
kernel. In terms of refinement soundness, the abstraction level does not matter, because when
all layers are composed, failure neither refines nor is refined by non-failure. The greatest
fidelity would be achieved at the machine code level, since that would additionally include
any effects the compiler might introduce. To transport TLB behaviour to this level, it may
still be easiest to prove absence of TLB failures on the abstract level and encode their absence
by using refinement assertions on the more concrete layers. These are assertions that can be
assumed when reasoning purely on that level or below, but must be proved during refinement.

The second step, integration of virtual memory, is largely orthogonal to TLB behaviour,
but is a prerequisite for using it. We estimate that this will cause the largest effort, about
5 person months, on the currently 1-million-line proof base of seL4, since it affects the
semantics of every memory access. To show that the memory model essentially remains
the same as before would require either the application of existing page table invariants to
memory accesses that previously needed no further preconditions or would require a separate
refinement layer that provides the simpler memory model to the rest of the kernel in the style
of CertiKOS. The latter is complex in seL4 since establishing the invariants necessary for
correct global mappings is interwoven with authority management, which is one of the more
advanced parts of seL4. Overall, this task is not hard, but technically involved. The necessary
safety invariants are already proved, but the model and proof would have to be rearranged.
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Step 3, implementing the abstract TLB state in the seL4 machine interface, should be
straightforward.

Step 4, adding TLB failure semantics to memory accesses, should also be straightforward,
given the thin formal interface for accessing kernel memory that the rest of the proof uses. It
will simply lead to failure in more cases.

Step 5, proving absence of these failures,will require the addition of invariants thatmention
the TLB state, similar to the ones presented in this paper. Since changes to this state are few
and local in seL4, the additional proof effort should be low. We estimate about 1 person
month for this part.

9 Summary

We have presented a program logic for reasoning about low-level OS code in the presence of
cached address translation, with a multi-stage TLB, ASIDs, and global entries. The model
and case study use the ARMv7 architecture, but our interface to page table encodings is
generic and should apply to all architectures with conventional multi-level page tables. The
details of TLB maintenance may differ between architectures, i.e. Intel x86 does not require
an explicit TLB flush on context switch, but the ideas of the model should again transfer
readily.

The model can also capture the effect of problematic hardware, such as the recent Melt-
down attack [17] which exploits the fact that permission bits of TLB entries are not checked
during speculative execution on some platforms, and uses a cache side channel to thereby
make kernel-only TLB mappings readable to user space. To conservatively formalise the
effect of this attack, one could change the model to ignore read restrictions in TLB entries.
A system that can be proved safe under that conservative model, will then be safe under
Meltdown.

We currently do not treat locked (pinned) TLB entries—themain effect would be explicitly
allowing inconsistency between the TLB and the page table, with the TLB taking preference.
Our logic does not address concurrency aspects—they are orthogonal. In a multi-core setting,
each core has its own TLB which reads from global memory. Modifying a page table that
is active on another core is almost never safe, unless the change merely adds new mappings
or the change happens in the same safe set style presented here, where the execution on all
cores must adhere to the intersection of all safe sets.

Weak memory and caches do have an interaction point with the TLB, because page table
walks are subject to both and caches can be either virtually or physically indexed. We expect
our safe set reasoning to transfer directly, requiring cache flushes and/or barrier instructions
in addition to TLB flushes. We leave a cache formalisation for future work.

The strength of the model and logic is its simplicity, which took multiple iterations to
achieve, finding a balance between abstraction soundness, not too complex reasoning, and
not too much conservatism for allowing optimisations and idioms used in real OS code,
resulting in a program logic that feels familiar to proof engineers. The logic allows us to
prove reduction theorems that mirror the informal reasoning OS engineers perform when
they write kernel code. It also allows us to drop into a simpler setting when we reason about
code that does not affect virtual memory mappings. In these cases, we only need to show
that memory accesses are within a set of safe addresses. Our work shows that reasoning in
the presence of a TLB does not need to be significantly more onerous than without.
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