
A Branching Time Model of CSP

Rob van Glabbeek1,2

1 Data61, CSIRO, Sydney, Australia
2 Comput. Sci. and Engineering, University of New South Wales, Sydney, Australia

Abstract. I present a branching time model of CSP that is finer than
all other models of CSP proposed thus far. It is obtained by taking a
semantic equivalence from the linear time – branching time spectrum,
namely divergence-preserving coupled similarity, and showing that it is
a congruence for the operators of CSP. This equivalence belongs to the
bisimulation family of semantic equivalences, in the sense that on transi-
tion systems without internal actions it coincides with strong bisimilarity.
Nevertheless, enough of the equational laws of CSP remain to obtain a
complete axiomatisation for closed, recursion-free terms.

1 Introduction

The process algebra CSP—Communicating Sequential Processes—was presented
in Brookes, Hoare & Roscoe [4]. It is sometimes called theoretical CSP, to
distinguish it from the earlier language CSP of Hoare [10]. It is equipped with a
denotational semantics, mapping each CSP process to an element of the failures-
divergences model [4,5]. The same semantics can also be presented operationally,
by mapping CSP processes to states in a labelled transition system (LTS), and
then mapping LTSs to the failures-divergences model. Olderog & Hoare [13]
shows that this yields the same result. Hence, the failures-divergences model of
CSP can alternatively be seen as a semantic equivalence on LTSs, namely by
calling two states in an LTS equivalent iff they map to the same element of the
failures-divergences model.

Several other models of CSP are presented in the literature, and each can be
cast as a semantic equivalence on LTSs, which is a congruence for the operators
of CSP. One such model is called finer than another if its associated equivalence
relation is finer, i.e., included in the other one, or more discriminating. The
resulting hierarchy of models of CSP has two pillars: the divergence-strict models,
most of which refine the standard failures-divergences model, and the stable
models, such as the model based on stable failures equivalence from Bergstra,

Klop & Olderog [2], or the stable revivals model of Roscoe [16].
Here I present a new model, which can be seen as the first branching time

model of CSP, and the first that refines all earlier models, i.e. both pillars men-
tioned above. It is based on the notion of coupled similarity from Parrow &

Sjödin [14]. What makes it an interesting model of CSP—as opposed to, say,
strong or divergence-preserving weak bisimilarity—is that it allows a complete
equational axiomatisation for closed recursion-free CSP processes that fits within
the existing syntax of that language.

2 Rob van Glabbeek

2 CSP

CSP [4,5,11] is parametrised with a set Σ of communications. In this paper I
use the subset of CSP given by the following grammar.

P,Q ::= STOP | div | a → P | P ⊓Q | P ✷Q | P ⊲ Q |
P‖AQ | P\A | f(P) | P △Q | P ΘA Q | p | µp.P

Here P and Q are CSP expressions, a ∈ Σ, A ⊆ Σ and f : Σ → Σ. Furthermore,
p ranges over a set of process identifiers. A CSP process is a CSP expression in
which each occurrence of a process identifier p lays within a recursion construct
µp.P . The operators in the above grammar are inaction, divergence, action pre-

fixing, internal, external and sliding choice, parallel composition, concealment,
renaming, interrupt and throw. Compared to [15,17], this leaves out
– successful termination (SKIP) and sequential composition (;),
– infinitary guarded choice,
– prefixing operators with name binding, conditional choice,
– relational renaming, and
– the version of internal choice that takes a possibly infinite set of arguments.

The operators STOP , a →, ⊓, ✷, \A, f() and recursion stem from [4], and div

and ‖A from [13], whereas ⊲, △ and ΘA were added to CSP by Roscoe [15,17].

div
τ

−→ div (a → P)
a

−→ P P ⊓Q
τ

−→ P P ⊓Q
τ

−→ Q

P
a

−→ P ′

P ✷Q
a

−→ P ′

P
τ

−→ P ′

P ✷Q
τ

−→ P ′ ✷Q

Q
a

−→ Q′

P ✷Q
a

−→ Q′

Q
τ

−→ Q′

P ✷Q
τ

−→ P ✷Q′

P
a

−→ P ′

P ⊲ Q
a

−→ P ′

P
τ

−→ P ′

P ⊲ Q
τ

−→ P ′ ⊲ Q
P ⊲ Q

τ
−→ Q

P
α

−→ P ′

f(P)
f(α)
−→ f(P ′)

P
α

−→ P ′
(α/∈A)

P‖AQ
α

−→ P ′‖AQ

P
a

−→ P ′ Q
a

−→ Q′
(a∈A)

P‖AQ
a

−→ P ′‖AQ′

Q
α

−→ Q′
(α/∈A)

P‖AQ
α

−→ P‖AQ′

P
α

−→ P ′
(α/∈A)

P\A
α

−→ P ′\A

P
a

−→ P ′
(a∈A)

P\A
τ

−→ P ′\A

P
α

−→ P ′
(α/∈A)

P ΘA Q
a

−→ P ′ ΘA Q

P
a

−→ P ′
(a∈A)

P ΘA Q
a

−→ Q

P
α

−→ P ′

P△Q
α

−→ P ′△Q

Q
τ

−→ Q′

P△Q
τ

−→ P ′△Q′

Q
a

−→ Q′

P△Q
a

−→ Q′
µp.P

τ
−→ P [µp.P/p]

Table 1. Structural operational semantics of CSP

The operational semantics of of CSP is given by the binary transition relations
α

−→ between CSP processes. The transitions P
α

−→ Q are derived by the rules
in Table 1. Here a, b range over Σ and α, β over Σ

.

∪ {τ}, and relabelling
operators f are extended to Σ

.

∪ {τ} by f(τ) = τ . The transition labels α are
called actions, and τ is the internal action.

A Branching Time Model of CSP 3

3 The Failures-Divergences Model of CSP

The process algebra CSP stems from Brookes, Hoare & Roscoe [4]. It is also
called theoretical CSP, to distinguish it from the language CSP of Hoare [10].
Its semantics [5] associates to each CSP process a pair 〈F,D〉 of failures F ⊆
Σ∗ × P(Σ) and divergences D ⊆ Σ∗, subject to the conditions:

(ε, ∅) ∈ F (N1)

(st, ∅) ∈ F ⇒ (s, ∅) ∈ F (N2)

(s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y) ∈ F (N3)

(s,X) ∈ F ∧ ∀ c ∈ Y. (sc, ∅) /∈ F ⇒ (s,X ∪ Y) ∈ F (N4)

∀Y ∈ Pfin (X). (s, Y) ∈ F ⇒ (s,X) ∈ F (N5)

s ∈ D ⇒ st ∈ D (D1)

s ∈ D ⇒ (st,X). (D2)

Here ε ∈ Σ∗ is the empty sequence of communications and st denotes the con-
catenation of sequences s and t ∈ Σ∗. If 〈F,D〉 is the semantics of a process P ,
(s, ∅) ∈ F , with s 6∈ D, tells that P can perform the sequence of communications
s, possibly interspersed with internal actions. Such a sequence is called a trace

of P , and Conditions N1 and N2 say that the set of traces of any processes is
non-empty and prefix-closed. A failure (s,X) ∈ F , with s /∈ D, says that after
performing the trace s, P may reach a state in which it can perform none of
the actions in X, nor the internal action. A communication x ∈ Σ is thought to
occur in cooperation between a process and its environment. Thus (s,X) ∈ F
indicates that deadlock can occur if after performing s the process runs in an en-
vironment that allows the execution of actions in X only. From this perspective,
Conditions N3 and N4 are obvious.

A divergence s ∈ D is a trace after which an infinite sequence of internal
actions is possible. In the failures-divergences model of CSP divergence is re-
garded catastrophic: all further information about the process’ behaviour past
a divergence trace is erased. This is accomplished by flooding : all conceivable
failures (st,X) and divergences st that have s as a prefix are added to the model
(regardless whether P actually has a trace st).

A CSP process P from the syntax of Section 2 has the property that for any
trace s of P , with s /∈ D, the set next(s) of actions c such that sc is also a trace
of P is finite. By (N3–4), (s,X) ∈ F iff (s,X ∩ next(s)) ∈ F . It follows that if
(s,X) /∈ F , then there is a finite subset Y of X, namely X ∩ next(s), such that
(s, Y) /∈ F . This explains Condition (N5).

In Brookes & Roscoe [5] the semantics of CSP is defined denotationally:
for each n-ary CSP operator Op, a function is defined that extracts the failures
and divergences of Op(P1, . . . , Pn) out of the failures and divergences of the
argument processes P1, . . . , Pn. The meaning of a recursively defined CSP process
µp.P is obtained by means of fixed-point theory. Alternatively, the failures and
divergences of a CSP process can be extracted from its operational semantics:

4 Rob van Glabbeek

Definition 1. Write P =⇒ Q if there are processes P0, . . . , Pn, with n ≥ 0, such
that P = P0, Pi

τ
−→ Pi+1 for all 0 ≤ i < n, and Pn = Q.

Write P
α
=⇒ Q if there are processes P ′, Q′ with P =⇒ P ′ α

−→ Q′ =⇒ Q.
Write P

α̂
=⇒ Q if either α ∈ Σ and P

α
=⇒ Q, or α = τ and P =⇒ Q.

Write P
s

=⇒ Q, for s = a1a2 . . . an ∈ Σ∗ with n ≥ 0, if there are processes
P0, . . . , Pn such that P = P0, Pi

ai=⇒ Pi+1 for all 0 ≤ i < n, and Pn = Q.

Let I(P) = {α ∈ Σ ∪ {τ} | ∃Q.P
α

−→ Q}.

Write P⇑ if there are processes Pi for all i≥0 with P
s

=⇒ P0
τ

−→ P1
τ

−→
s ∈ Σ∗ is a divergence trace of a process P if there is a Q with P

s
=⇒ Q⇑.

The divergence set of P is D(P) := {st | s is a divergence trace of P}.
A stable failure of a process P is a pair (s,X) ∈ Σ∗ × P(Σ) such that

P
s

=⇒ Q for some Q with I(Q) ∩ (X ∪ {τ}) = ∅. The failure set of a process P
is F (p) = {(s,X) | s ∈ D(P) or (s,X) is a stable failure of P}.

The semantics [[P]]
FD

of a CSP process P is the pair 〈F (P),D(P)〉.
Processes P and Q are failures-divergences equivalent, notation P ≡FD Q, iff

[[P]]
FD

= [[Q]]
FD

. Process P is a failures-divergences refinement of Q, notation
P ⊒FD Q, iff F (P) ⊆ F (Q) ∧ D(P) ⊆ D(Q).

The operational semantics of Section 2 (then without the operators ⊲, △ and ΘA)
appears, for instance, in [13], and was created after the denotational semantics. In
Olderog & Hoare [13] it is shown that the semantics [[P]] of a CSP process
defined operationally through Def. 1 equals the denotational semantics given
in [5]. The argument extends smoothly to the new operators ⊲, △ and ΘA [17].
This can be seen as a justification of the operational semantics of Section 2.

In Brookes, Hoare & Roscoe [4] a denotational semantics of CSP was
given involving failures only. Divergences were included only implicitly, namely
by thinking of a trace s as a divergence of a process P iff P has all failures (st,X).
So the semantics of div or µX.X is simply the set of all failure pairs. As observed
in De Nicola [6], this approach invalidates a number of intuitively valid laws,
such as P ✷ div = div. The improved semantics of [5] solves this problem.

In Hoare [11] a slightly different semantics of CSP is given, in which a
process is determined by its failures, divergences, as well as its alphabet. The
latter is a superset of the set of communications the process can ever perform.
Rather than a parallel composition ‖A for each set of synchronising actions
A ⊆ Σ, this approach has an operator ‖ where the set of synchronising actions
is taken to be the intersection of the alphabets of its arguments. Additionally,
there is an operator |||, corresponding to ‖∅. This approach is equally expressive
as the one of [5], in the sense that there are semantics preserving translations in
both directions. The work reported in this paper could just as well have been
carried out in this typed version of CSP.

4 A Complete Axiomatisation

In [4,5,6,11,15,17] many algebraic laws P = Q, resp. P ⊑ Q, are stated that are
valid w.r.t. the failures-divergences semantics of CSP, meaning that P ≡FD Q,

A Branching Time Model of CSP 5

resp. P ⊑FD Q. If Th is a collection of equational laws P = Q then Th ⊢ R = S
denotes that the equation R = S is derivable from the equations in Th using
reflexivity, symmetry, transitivity and the rule of congruence, saying that if Op
is an n-ary CSP operator and Pi = Qi for i = 1, . . . , n then Op(P1, . . . , Pn) =
Op(Q1, . . . , Qn). Likewise, if Th is a collection of inequational laws P ⊑ Q then
Th ⊢ R ⊑ S denotes that the inequation R ⊑ S is derivable from the inequations
in Th using reflexivity, transitivity and the rule saying that if Op is an n-ary CSP
operator and Pi ⊑ Qi for i = 1, . . . , n then Op(P1, . . . , Pn) ⊑ Op(Q1, . . . , Qn).

Definition 2. An equivalence ∼ on process expressions is called a congruence

for an n-ary operator Op if Pi ∼ Qi for i = 1, . . . , n implies Op(P1, . . . , Pn) ∼
Op(Q1, . . . , Qn). A preorder � is a precongruence for Op, or Op is monotone for
�, if Pi � Qi for i = 1, . . . , n implies Op(P1, . . . , Pn) � Op(Q1, . . . , Qn).

If ∼ is a congruence for all operators of CSP (resp. � is a precongruence for all
operators of CSP) and Th is a set of (in)equational laws that are valid for ∼
(resp. �) then any (in)equation R = S with Th ⊢ R = S (resp. R ⊑ S with
Th ⊢ R ⊑ S) is valid for ∼ (resp. �).

≡FD is a congruence for all operators of CSP. This follows immediately from
the existence of the denotational failures-divergences semantics. Likewise, ⊑FD

is a precongruence for all operators of CSP [4,5,6,11,13,15,17].

Definition 3. A set Th of (in)equational laws—an axiomatisation—is sound

and complete for an equivalence ∼ (or a preorder �) if Th ⊢ R = S iff R ∼ S
(resp. Th ⊢ R ⊑ S iff R � S). Here “⇒” is soundness and “⇐” completeness.

InDe Nicola [6] a sound and complete axiomatisation of ⊑FD for recursion-free
CSP, and no process identifiers or variables, is presented. It is quoted in Table 2.
As this axiomatisation consist of a mix of equations and inequations, formally
it is an inequational axiomatisation, where an equation P = Q is understood as
the conjunction of P ⊑ Q and Q ⊑ P . This mixed use is justified because ≡FD

is the kernel of ⊑FD: one has P ≡FD Q iff P ⊑FD Q ∧Q ⊑FD P .
In [6], following [4,5], two parallel composition operators ‖ and ||| were con-

sidered, instead of the parametrised operator ‖A. Here ‖ = ‖Σ and |||= ‖∅. In
Table 2 the axioms for these two operators are unified into an axiomatisation
of ‖A. Additionally, I added axioms for sliding choice, renaming, interrupt and
throw—these operators were not considered in [6]. The associativity of parallel
composition (Axiom P0) is not included in [6] and is not needed for complete-
ness. I added it anyway, because of its importance in equational reasoning.

The soundness of the axiomatisation of Table 2 follows from ⊑FD being a pre-
congruence, and the validity of the axioms—a fairly easy inspection using the de-
notational characterisation of [[]]. To obtain completeness, write ✷

i∈I
Pi, with

I={i1, . . . , in} any finite index set, for Pi1 ✷Pi2 ✷ . . .✷Pin , where✷i∈∅
Pi repre-

sents STOP . This notation is justified by Axioms E2–4. Furthermore, ⊓
j∈J

Pj ,

with J={j1, .., jm} any finite, nonempty index set, denotes Pj1 ⊓Pj2 ⊓ . . .⊓Pjm .
This notation is justified by Axioms I2 and I3. Now a normal form is a defined as
a CSP expression of the form div or ⊓

j∈J
Rj , with Rj =

(

✷
k∈Kj

(akj → Rkj)
)

6 Rob van Glabbeek

⊥ div ⊑ P

I1 P ⊓ P = P
I2 P ⊓Q = Q ⊓ P
I3 P ⊓ (Q ⊓R) = (P ⊓Q) ⊓R
I4 P ⊓Q ⊑ P

E1 P ✷ P = P
E2 P ✷Q = Q ✷ P
E3 P ✷ (Q✷ R) = (P ✷Q) ✷R
E4 P ✷ STOP = P
E5 P ✷ div = div

D1 P ✷ (Q ⊓R) = (P ✷Q) ⊓ (P ✷R)
D2 P ⊓ (Q✷ R) = (P ⊓Q) ✷ (P ⊓R)
D3 (a → P) ✷ (a → Q) = a → (P ⊓Q)
D4 (a → P) ⊓ (a → Q) = a → (P ⊓Q)
SC P ⊲ Q = (P ✷Q) ⊓Q

P0 P‖A(Q‖AR) = (P‖AQ)‖AR
P1 P‖AQ = Q‖AP
P2 (P ⊓Q)‖AR = (P‖AR) ⊓ (Q‖AR)
P3 P‖Adiv = div

P4 If P =✷
i∈I

(ai → Pi) and Q =✷
j∈J

(bj → Qj) then :

P‖Q =✷
ai /∈A

(ai → (Pi‖AQ))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → (P‖AQj))

H1 (P ⊓Q)\A = (P\A) ⊓ (Q\A)
H2 (P ✷ a → Q)\A = ((P ✷Q)\A) ⊓ (Q\A)

H3
(

✷
i∈I

(bi → Pi)
)

\A =
(

✷
i∈I

(bi → (Pi\A))
)

if ∀ i ∈ I. bi /∈ A

H4 div\A = div

R1 f(P ⊓Q) = f(P) ⊓ f(Q)
R2 f(P ✷Q) = f(P)✷ f(Q)
R3 f(a → P) = f(a) → f(P)
R4 f(STOP) = STOP

R5 f(div) = div

T1 (P ⊓Q)ΘA R = (P ΘA R) ⊓ (QΘA R)
T2 (P ✷Q)ΘA R = (P ΘA R)✷ (QΘA R)
T3 (a → P)ΘA Q = a → (P ΘA Q) if a /∈ A
T4 (a → P)ΘA Q = a → Q if a ∈ A
T5 STOP ΘA Q = STOP

T6 div ΘA Q = div

U1 (P ⊓Q)△R = (P △R) ⊓ (Q△R)
U2 (P ✷Q)△R = (P △R)✷ (Q△R)
U3 (a → P)△Q = (a → (P △Q))✷Q
U4 STOP △ P = P
U5 div△ P = div

Table 2. A complete axiomatisation of ⊑FD for recursion-free CSP

A Branching Time Model of CSP 7

for j ∈ J , where the subexpressions Rkj are again in normal form. Here J and
the Kj are finite index sets, J nonempty.

Axioms ⊥ and I4 derive P ⊓ div = div. Together with Axioms D1, SC,
P1–4, H1–4, R1–5, T1–6 and U1–5 this allows any recursion-free CSP ex-
pression to be rewritten into normal form. In [6] it is shown that for any two
normal forms P and Q with P ⊑FD Q, Axioms ⊥, I1–4, E1–5 and D1–4 de-
rive ⊢ P = Q. Together, this yields the completeness of the axiomatisation of
Table 2.

5 Other Models of CSP

Several alternative models of CSP have been proposed in the literature, in-
cluding the readiness-divergences model of Olderog & Hoare [13] and the
stable revivals model of Roscoe [16]. A hierarchy of such models is surveyed in
Roscoe [17]. Each of these models corresponds with a preorder (and associated
semantic equivalence) on labelled transition systems. In [7] I presented a survey
of semantic equivalences and preorders on labelled transition systems, ordered
by inclusion in a lattice. Each model occurring in [17] correspond exactly with
with one of the equivalences of [7], or—like the stable revivals model—arises as
the meet or join of two such equivalences.

In the other direction, not every semantic equivalence or preorder from [7]
yields a sensible model of CSP. First of all, one would want to ensure that it
is a (pre)congruence for the operators of CSP. Additionally, one might impose
sanity requirements on the treatment of recursion.

The hierarchy of models in [17] roughly consist of two hierarchies: the stable
models, and the divergence-strict ones. The failures-divergences model could be
seen as the centre piece in the divergence-strict hierarchy, and the stable failures
model [15], which outside CSP stems from Bergstra, Klop & Olderog [2],
plays the same role in the stable hierarchy. Each of these hierarchies has a maxi-
mal (least discriminating) element, called FL⇓ and FL in [17]. These correspond
to the ready trace models RT ↓ and RT of [7].

The goal of the present paper is to propose a sensible model of CSP that
is strictly finer than all models thus far considered, and thus unites the two
hierarchies mentioned above. As all models of CSP considered so far have a
distinctly linear time flavour, I here propose a branching time model, thereby
showing that the syntax of CSP is not predisposed towards linear time models.
My model can be given as an equivalence relation on labelled transition system,
provided I show that it is a congruence for the operators of CSP. I aim for
an equivalence that allows a complete axiomatisation in the style of Table 2,
obtained by replacing axioms that are no longer valid by weaker ones.

One choice could be to base a model on strong bisimulation equivalence [12].
Strong bisimilarity is a congruence for all CSP operators, because their opera-
tional semantics fits the tyft/tyxt format of [9]. However, this is an unsuitable
equivalence for CSP, because it fails to abstract from internal actions. Even the
axiom I1 would not be valid, as the two sides differ by an internal action.

8 Rob van Glabbeek

A second proposal could be based on weak bisimilarity [12]. This equivalence
abstracts from internal activity, and validates I1. The default incarnation of weak
bisimilarity is not finer than failures-divergences equivalence, because it satisfies
div = STOP . Therefore, one would take a divergence-preserving variant of this
notion: the weak bisimulation with explicit divergence of Bergstra, Klop &

Olderog [2]. Yet, some crucial CSP laws are invalidated, such as I3 and D1.
This destroys any hope of a complete axiomatisation along the lines of Table 2.

My final choice is divergence-preserving coupled similarity [7], based on cou-
pled similarity for divergence-free processes from Parrow & Sjödin [14]. This
is the finest equivalence in [7] that satisfies I3 and D1. In fact, it satisfies all of
the axioms of Table 2, except for the ones marked red: ⊥, I4, E1, E5, D2–4,
SC, P2, P3, H2, U2, U3 and U5.

Divergence-preserving coupled similarity belongs to the bisimulation family
of semantic equivalences, in the sense that on transition systems without internal
actions it coincides with strong bisimilarity.

In Section 6 I present divergence-preserving coupled similarity. In Section 7 I
prove that it is a congruence for the operators of CSP, and in Section 8 I present
a complete axiomatisation for recursion-free CSP processes without interrupts.

6 Divergence-Preserving Coupled Similarity

Definition 4. A coupled simulation is a binary relation R on CSP processes,
such that, for all α ∈ Σ ∪ {τ},

– if P R Q and P
α

−→ P ′ then there exists a Q′ with Q
α̂
=⇒ Q′ and P ′ R Q′,

– and if P R Q then there exists a Q′ with Q =⇒ Q′ and Q′ R P .
It is divergence-preserving if P R Q and P⇑ implies Q⇑. Write P ⊒∆

CS Q if
there exists a divergence-preserving coupled simulation R with P R Q. Two
processes P and Q are divergence-preserving coupled similar, notation P ≡∆

CS Q,
if P ⊒∆

CS Q and Q ⊒∆
CS P .

Note that the union of any collection of divergence-preserving coupled simu-
lations is itself a divergence-preserving coupled simulation. In particular, ⊒∆

CS

is a divergence-preserving coupled simulation. Also note that in the absence of
the internal action τ , coupled simulations are symmetric, and coupled similarity
coincides with strong bisimilarity (as defined in [12]).

Intuitively, P ⊒∆
CS Q says that P is “ahead” of a state matching Q, where

P ′ is ahead of P if P =⇒ P ′. The first clause says that if P is ahead of a
state matching Q, then any transition performed by P can be matched by Q—
possibly after Q “caught up” with P by performing some internal transitions.
The second clause says that if P is ahead of Q, then Q can always catch up, so
that it is ahead of P . Thus, if P and Q are in stable states—where no internal
actions are possible—then P ⊑∆

CS Q implies Q ⊑∆
CS P . In all other situations,

P and Q do not need to be matched exactly, but there do exists under- and
overapproximations of a match. The result is that the relation behaves like a weak
bisimulation w.r.t. visible actions, but is not so pedantic in matching internal
actions.

A Branching Time Model of CSP 9

Proposition 1. ⊒∆
CS is reflexive and transitive, and thus a preorder.

Proof. The identity relation Id is a divergence-preserving coupled simulation,
and if R, R′ are divergence-preserving coupled simulations, then so is R ; R′

∪ R′ ; R. Here R ;R′ is defined by P R ; R′ R iff there is a Q with P R Q R′ R.
R ; R′ is divergence-preserving: if PRQR′R and P⇑, then Q⇑, and thus R⇑.

The same holds for R′ ; R, and thus for R ; R′ ∪ R′ ; R.
To check that R ; R′ ∪ R′ ; R satisfies the first clause of Def. 4, note that if

Q R′ R and Q
α̂
=⇒ Q′, then, by repeated application of the first clause of Def. 4,

there is an R′ with R
α̂
=⇒ R′ and Q′ R′ R′.

Towards the second clause, if P R Q R′ R, then, using the second clause for
R, there is a Q′ with Q =⇒ Q′ and Q′ R P . Hence, using the first clause for R′,
there is an R′ with R =⇒ R′ and Q′ R′ R′. Thus, using the second clause for
R′, there is an R′′ with R′ =⇒ R′′ and R′′ R′ Q′, and hence R′′ R′ ; R P ′. ⊓⊔

Proposition 2. If P =⇒ Q then P ⊑∆
CS Q.

Proof. I show that Id ∪{(Q,P)}, with Id the identity relation, is a coupled sim-
ulation. Namely if Q

α
−→ Q′ then surely P

α
=⇒ Q′. The second clause of Def. 4 is

satisfied because P =⇒ Q. Furthermore, if Q⇑ then certainly P⇑, so the relation
is divergence-preserving. ⊓⊔

Proposition 3. P ⊒∆
CS Q iff P ⊓Q ≡∆

CS Q.

Proof. “⇒”: Let R be the smallest relation such that, for any P andQ, P ⊒∆
CS Q

implies P R Q, (P ⊓Q) R Q and Q R (P ⊓Q). It suffices to show that R is a
divergence-preserving coupled simulation.

That R is divergence-preserving is trivial, using that (P ⊓Q)⇑ iff P⇑ ∨Q⇑.

Suppose P ∗ R Q and P ∗ α
−→ P ′. The case that P ∗ = P with P ⊒∆

CS Q is
trivial. Now let Q be Q∗ ⊓ P ∗. Since P ∗ α

−→ P ′, surely Q
α
=⇒ P ′, and P ′ R P ′.

Finally, let P ∗ = (P ⊓Q) with P ⊒∆
CS Q. Then α = τ and P ′ is either P or Q.

Both cases are trivial, taking Q′ = Q.
Towards the second clause of Def. 4, suppose P ∗ R Q. The case P ∗ = P

with P ⊒∆
CS Q is trivial. Now let Q be Q∗ ⊓ P ∗. Then Q =⇒ P ∗ and P ∗ R P ∗.

Finally, let P ∗ = (P ⊓Q) with P ⊒∆
CS Q. Then Q =⇒ Q and Q R (P ⊓Q).

“⇐”: Suppose P ⊓Q ⊒∆
CS Q. Since P ⊓ Q

τ
−→ P there exists a Q′ with

Q =⇒ Q′ and P ⊒∆
CS Q′. By Prop. 2 Q′ ⊒∆

CS Q and by Prop. 1 P ⊒∆
CS Q. ⊓⊔

7 Congruence Properties

Proposition 4. ≡∆
CS is a congruence for action prefixing.

Proof. I have to show that P ≡∆
CS Q implies (a → P) ≡∆

CS (a → Q).
Let R be the smallest relation such that, for any P and Q, P ⊑∆

CS Q implies
P R Q, and P ≡∆

CS Q implies (a → P) R (a → Q). It suffices to show that R

is a divergence-preserving coupled simulation.

10 Rob van Glabbeek

Checking the conditions of Def. 4 for the case P R Q with P ⊑∆
CS Q is

trivial. So I examine the case (a → P) R (a → Q) with P ≡∆
CS Q.

Suppose (a → P)
α

−→ P ′. Then α = a and P ′ = P . Now (a → Q)
α

−→ Q and
P R Q, so the first condition of Def. 4 is satisfied.

For the second condition, (a → Q) =⇒ (a → Q), and, since Q ≡∆
CS P ,

(a → Q) R (a → P). Thus, R is a coupled simulation.
As a → P does not diverge, R moreover is divergence-preserving. ⊓⊔

Since STOP ⊒∆
CS (a→ STOP) ⊲ STOP but STOP 6⊑∆

CS (a→ STOP) ⊲ STOP ,
and thus b → STOP 6⊒∆

CS b →
(

(a → STOP) ⊲ STOP
)

, the relation ⊒∆
CS is not

a precongruence for action prefixing.
It is possible to express action prefixing in terms of the throw operator:

a → P is strongly bisimilar with (a → STOP)Θ{a} P . Consequently, ⊒∆
CS is not

a precongruence for the throw operator.

Proposition 5. ≡∆
CS is a congruence for the throw operator.

Proof. Let A ⊆ Σ. Let R be the smallest relation such that, for any P1, P2, Q1,
Q2, P1 ⊒∆

CS Q1 and P2 ≡∆
CS Q2 implies P1 R Q1 and (P1 ΘA P2) R (Q1 ΘA Q2).

It suffices to show that R is a divergence-preserving coupled simulation.
So let P1 ⊒∆

CS Q1, P2 ≡∆
CS Q2 and (P1 ΘA P2)

α
−→ P ′. Then P1

α
−→ P ′

1

for some P ′
2, and either α /∈ A and P ′ = P ′

1 ΘA P2, or α ∈ A and P ′ = P2.
So there is a Q′

1 with Q1
α̂
=⇒ Q′

1 and P ′
1 ⊒∆

CS Q′
1. If α /∈ A it follows that

(Q1 ΘA Q2)
α̂
=⇒ (Q′

1 ΘA Q2) and (P ′
1 ΘA P2) R (Q′

1 ΘA Q2). If α ∈ A it follows
that (Q1 ΘA Q2)

α
=⇒ Q2 and P2 R Q2.

Now let P1 ⊒∆
CS Q1 and P2 ≡∆

CS Q2. Then there is a Q′
1 with Q1 =⇒ Q′

1 and
Q′

1 ⊒∆
CS P1. Hence Q1 ΘA Q2 =⇒ Q′

1 ΘA Q2 and (Q′
1 ΘA Q2) R (P1 ΘA P2).

The same two conditions for the case P R Q because P ⊒∆
CS Q are trivial.

Thus R is a coupled simulation. That R is divergence-preserving follows because
P1 ΘA P2⇑ iff P1⇑. ⊓⊔

I proceed to show that ⊒∆
CS is a precongruence for all the other operators of

CSP. This implies that ≡∆
CS is a congruence for all the operators of CSP.

Proposition 6. ⊒∆
CS is a precongruence for internal choice.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi ⊒
∆
CS Qi

for i = 1, 2 implies Pi R Qi (i = 1, 2) and (P1 ⊓ P2) R (Q1 ⊓Q2). It suffices to
show that R is a divergence-preserving coupled simulation.

So let Pi ⊒
∆
CS Qi for i = 1, 2 and (P1 ⊓ P2)

α
−→ P ′. Then α = τ and P ′ = Pi

for i = 1 or 2. Now Q1 ⊓Q2 =⇒ Qi and Pi R Qi.
Now let Pi ⊒∆

CS Qi for i = 1, 2. Then there is a Q′
1 with Q1 =⇒ Q′

1 and
Q′

1 ⊒∆
CS P1. By Prop. 2 P1 ⊒∆

CS P1 ⊓ P2 and by Prop. 1 Q′
1 ⊒∆

CS P1 ⊓ P2.

The same two conditions for the case P R Q because P ⊒∆
CS Q are trivial.

Thus R is a coupled simulation. That R is divergence-preserving follows because
P1 ⊓ P2⇑ iff P1⇑ ∨ P2⇑. ⊓⊔

A Branching Time Model of CSP 11

Proposition 7. ⊒∆
CS is a precongruence for external choice.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi ⊒
∆
CS Qi

for i = 1, 2 implies Pi R Qi (i = 1, 2) and (P1 ✷ P2) R (Q1 ✷Q2). It suffices to
show that R is a divergence-preserving coupled simulation.

So let Pi ⊒
∆
CS Qi for i = 1, 2 and (P1 ✷ P2)

α
−→ P ′. If α ∈ Σ then Pi

α
−→ P ′

for i = 1 or 2, and there exists a Q′ with Qi
α
=⇒ Q′ and P ′ ⊒∆

CS Q′. Hence
Q1 ✷Q2

α
=⇒ Q′ and P ′ R Q′. If α = τ then either P1

τ
−→ P ′

1 for some P ′
1 with

P ′ = P ′
1 ✷ P2, or P2

τ
−→ P ′

2 for some P ′
2 with P ′ = P1 ✷ P ′

2. I pursue only the
first case, as the other follows by symmetry. Here Q1 =⇒ Q′

1 for some Q′
1 with

P ′
1 ⊒∆

CS Q′
1. Thus Q1 ✷Q2 =⇒ Q′

1 ✷Q2 and (P ′
1 ✷ P2) R (Q′

1 ✷Q2).

Now let Pi ⊒
∆
CS Qi for i = 1, 2. Then, for i = 1, 2, there is aQ′

i withQi =⇒ Q′
i

and Q′
i ⊒

∆
CS Pi. Hence Q1 ✷Q2 =⇒ Q′

1 ✷Q′
2 and (Q′

1 ✷Q′
2) R (P1 ✷ P2).

Thus R is a coupled simulation. That R is divergence-preserving follows
because P1 ✷ P2⇑ iff P1⇑ ∨ P2⇑. ⊓⊔

Proposition 8. ⊒∆
CS is a precongruence for sliding choice.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi ⊒
∆
CS Qi

for i = 1, 2 implies Pi R Qi (i = 1, 2) and (P1 ⊲ P2) R (Q1 ⊲ Q2). It suffices to
show that R is a divergence-preserving coupled simulation.

So let Pi ⊒
∆
CS Qi for i = 1, 2 and (P1 ⊲ P2)

α
−→ P ′. If α ∈ Σ then P1

α
−→ P ′,

and there exists a Q′ with Q1
α
=⇒ Q′ and P ′ ⊒∆

CS Q′. Hence Q1 ⊲ Q2
α
=⇒ Q′ and

P ′ R Q′. If α=τ then either P ′=P2 or P1
τ

−→ P ′
1 for some P ′

1 with P ′=P ′
1 ⊲P2.

In the former case Q1 ⊲ Q2 =⇒ Q2 and P2 R Q2. In the latter case Q1 =⇒ Q′
1 for

some Q′
1 with P ′

1 ⊒∆
CS Q′

1. Thus Q1 ⊲ Q2 =⇒ Q′
1 ⊲ Q2 and (P ′

1 ⊲P2) R (Q′
1 ⊲Q2).

Now let Pi ⊒∆
CS Qi for i = 1, 2. Then there is a Q′

2 with Q2 =⇒ Q′
2 and

Q′
2 ⊒∆

CS P2. By Prop. 2 P2 ⊒∆
CS P1 ⊲ P2 and by Prop. 1 Q′

2 ⊒∆
CS P1 ⊲ P2.

Thus R is a coupled simulation. That R is divergence-preserving follows
because P1 ⊲ P2⇑ iff P1⇑ ∨ P2⇑. ⊓⊔

Proposition 9. ⊒∆
CS is a precongruence for parallel composition.

Proof. Let A ⊆ Σ. Let R be the smallest relation such that, for any Pi and Qi,
Pi ⊒

∆
CS Qi for i = 1, 2 implies (P1‖AP2) R (Q1‖AQ2). It suffices to show that

R is a divergence-preserving coupled simulation.
So let Pi ⊒∆

CS Qi for i = 1, 2 and (P1‖AP2)
α

−→ P ′. If α /∈ A then Pi
α

−→ P ′
i

for i = 1 or 2, and P ′ = P ′
1‖AP

′
2, where P ′

3−i := P3−i. Hence there exists a Q′
i

with Qi
α̂
=⇒ Q′

i and P ′
i ⊒

∆
CS Q′

i. Let Q′
3−i := Q3−i. Then Q1‖AQ2

α̂
=⇒ Q′

1‖Q
′
2

and (P ′
1‖P

′
2) R (Q′

1‖Q
′
2). If α ∈ A then Pi

α
−→ P ′

i for i = 1 and 2. Hence, for
i = 1, 2, Qi

α
=⇒ Q′

i for some Q′
i with P ′

i ⊒
∆
CS Q′

i. Thus Q1‖AQ2
α
=⇒ Q′

1‖AQ
′
2 and

(P ′
1‖AP

′
2) R (Q′

1‖AQ
′
2).

Now let Pi ⊒∆
CS Qi for i = 1, 2. Then, for i = 1, 2, there is aQ′

i withQi =⇒ Q′
i

and Q′
i ⊒

∆
CS Pi. Hence Q1‖AQ2 =⇒ Q′

1‖AQ
′
2 and (Q′

1‖AQ
′
2) R (P1‖AP2).

Thus R is a coupled simulation. That R is divergence-preserving follows
because P1‖AP2⇑ iff P1⇑ ∨ P2⇑. ⊓⊔

12 Rob van Glabbeek

Proposition 10. ⊒∆
CS is a precongruence for concealment.

Proof. Let A ⊆ Σ. Let R be the smallest relation such that, for any P and Q,
P ⊑∆

CS Q implies (P\A) R (Q\A). It suffices to show that R is a divergence-
preserving coupled simulation.

So let P ⊑∆
CS Q and P\A

α
−→ P ∗. Then P ∗ = P ′\A for some P ′ with

P
β

−→ P ′, and either β ∈ A and α = τ , or β = α /∈ A. Hence Q
β

−→ Q′ for some
Q′ with P ′ ⊑∆

CS Q′. Therefore Q\A
α

−→ Q′\A and (P ′\A) R (Q′\A).

Now let P ⊑∆
CS Q. Then there is a Q′ with Q =⇒ Q′ and Q′ ⊒∆

CS P . Hence
Q\A =⇒ Q′\A and (Q′\A) R (P\A).

To check that R is divergence-preserving, suppose (P\A)⇑. Then there are
Pi and αi ∈ A ∪ {τ} for all i > 0 such that P

α1−→ P1
α2−→ P2

α3−→ By the
first condition of Def. 4, there are Qi for all i > 0 such that Pi R Qi and
Q

α̂1=⇒ Q1
α̂2=⇒ Q2

α̂3=⇒ This implies Q\A =⇒ Q1\A =⇒ Q2\A =⇒
In case αi ∈ Σ for infinitely many i, then for infinitely many i one has

Qi−1
αi=⇒ Qi and thus Qi−1\A

τ
=⇒ Qi\A. This implies that (Q\A)⇑.

Otherwise there is an n > 0 such that αi = τ for all i ≥ n. In that case Pn⇑
and thus Qn⇑. Hence (Qn\A)⇑ and thus (Q\A)⇑. ⊓⊔

Proposition 11. ⊒∆
CS is a precongruence for renaming.

Proof. Let f : Σ → Σ. Let R be the smallest relation such that, for any P and
Q, P ⊑∆

CS Q implies f(P) R f(Q). It suffices to show that R is a divergence-
preserving coupled simulation.

So let P ⊑∆
CS Q and f(P)

α
−→ P ∗. Then P ∗ = f(P ′) for some P ′ with

P
β

−→ P ′ and f(β) = α. Hence Q
β

−→ Q′ for some Q′ with P ′ ⊑∆
CS Q′. Therefore

f(Q)
α

−→ f(Q′) and f(P ′) R f(Q′).

Now let P ⊑∆
CS Q. Then there is a Q′ with Q =⇒ Q′ and Q′ ⊒∆

CS P . Hence
f(Q) =⇒ f(Q′) and f(Q′) R f(P).

To check that R is divergence-preserving, suppose f(P)⇑. Then P⇑, so Q⇑
and f(Q)⇑. ⊓⊔

Proposition 12. ⊒∆
CS is a precongruence for the interrupt operator.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi ⊒∆
CS Qi

for i = 1, 2 implies P2 R Q2 and (P1△P2) R (Q1△Q2). It suffices to show that
R is a divergence-preserving coupled simulation.

So let Pi ⊒∆
CS Qi for i = 1, 2 and (P1△P2)

α
−→ P ′. Then either P ′ = P ′

1△P2

for some P ′
1 with P1

α
−→ P ′

1, or α = τ and P ′ = P1 △ P ′
2 for some P ′

2 with
P2

τ
−→ P ′

2, or α ∈ Σ and P2
α

−→ P ′.
In the first case there is a Q′

1 with Q1
α̂
=⇒ Q′

1 and P ′
1 ⊒∆

CS Q′
1. It follows that

(Q1 △Q2)
α̂
=⇒ (Q′

1 △Q2) and (P ′
1 △ P2) R (Q′

1 △Q2).
In the second case there is a Q′

2 with Q2 =⇒ Q′
2 and P ′

2 ⊒∆
CS Q′

2. It follows
that (Q1 △Q2) =⇒ (Q1 △Q′

2) and (P1 △ P ′
2) R (Q1 △Q′

2).
In the last case there is a Q′

2 with Q2
α
=⇒ Q′

2 and P ′
2 ⊒∆

CS Q′
2. It follows that

(Q1 △Q2)
α
=⇒ Q′

2 and P ′
2 R Q′

2.

A Branching Time Model of CSP 13

Now let Pi ⊒
∆
CS Qi for i = 1, 2. Then, for i = 1, 2, there is aQ′

i withQi =⇒ Q′
i

and Q′
i ⊒

∆
CS Pi. Hence Q1 △Q2 =⇒ Q′

1 △Q′
2 and (Q′

1 △Q′
2) R (P1 △ P2).

Thus R is a coupled simulation. That R is divergence-preserving follows
because P1 △ P2⇑ iff P1⇑ ∨ P2⇑. ⊓⊔

8 A Complete Axiomatisation of ≡∆

CS

A set of equational laws valid for ≡∆
CS is presented in Table 3. It includes the laws

from Table 2 that are still valid for ≡∆
CS . I will show that this axiomatisation

is sound and complete for ≡∆
CS for recursion-free CSP without the interrupt

operator. The axioms U2 and U3, which are not valid for ≡∆
CS , played a crucial

rôle in reducing CSP expressions with interrupt into normal form. It is not trivial
to find valid replacements, and due to lack of space and time I do not tackle this
problem here.

The axiom H5 replaces the fallen axiom H2, and is due to [17]. Here the
result of hiding actions results in a process that cannot be expressed as a normal
form built up from a →, ⊓ and ✷. For this reason, one needs a richer normal form,
involving the sliding choice operator. It is given by the context-free grammar

N → D | D ⊲ I
I → D | I ⊓ I
D → STOP | div | E | div ✷E
E → (a → N) | (a → N)✷ E .

Definition 5. A CSP expression is in head normal form if it is of the form
(

[div ✷] ✷
i∈I

(ai → Ri)
)

⊲⊓
j∈J

Rj , with Rj =
(

[div ✷] ✷
k∈Kj

(akj → Rkj)
)

for j ∈ J . Here I, J and theKj are finite index sets, and the parts between square
brackets are optional. Here, although ⊓

i∈∅
Pi is undefined, I use P ⊲⊓

i∈∅
Pi to

represent P . An expression is in normal form if it has this form and also the
subexpressions Ri and Rkj are in normal form.

A head normal form is saturated if the div-summand on the left is present
whenever any of the Rj has a div-summand, and for any j ∈ J and any k ∈Kj

there is an i ∈ I with ai = akj and Ri =Rkj .

My proof strategy is to ensure that there are enough axioms to transform any
CSP process without recursion and interrupt operators into normal form, and
to make these forms saturated; then to equate saturated normal forms that are
divergence-preserving coupled simulation equivalent.

Due to the optional presence in head normal forms of a div-summand and a
sliding choice, I need four variants of the axiom H5; so far I have not seen a way
around this. Likewise, there are 4× 4 variants of the axiom P4 from Table 2, of
which 6 could be suppressed by symmetry (P4–P13). There are also 3 axioms
replacing P2 (P14–P16).

14 Rob van Glabbeek

I1 P ⊓ P = P
I2 P ⊓Q = Q ⊓ P
I3 P ⊓ (Q ⊓R) = (P ⊓Q) ⊓R

E2 P ✷Q = Q ✷ P
E3 P ✷ (Q✷ R) = (P ✷Q) ✷R
E4 P ✷ STOP = P

S1 P ⊲ P = P
S2 P ⊲ (Q ⊲ R) = (P ⊲ Q) ⊲ R
S3 (P ⊲ Q) ⊲ R = (P ✷Q) ⊲ R
S4 (P ⊓Q) ⊲ R = (P ✷Q) ⊲ R
S5 STOP ⊲ P = P

S6 (P ⊲ Q) ⊓ (R ⊲ S) = (P ✷R) ⊲ (Q ⊓ S)
S7 (P ⊲ Q) ✷ (R ⊲ S) = (P ✷R) ⊲ (Q ✷ S)
D1 P ✷ (Q ⊓R) = (P ✷Q) ⊓ (P ✷R)

Prune (a → P)✷ a → (P ⊓Q) = a → (P ⊓Q)

P0 P‖A(Q‖AR) = (P‖AQ)‖AR
P1 P‖AQ = Q‖AP
P4–P13 more axioms for parallel composition follow on the next page

H1 (P ⊓Q)\A = (P\A) ⊓ (Q\A)

H5
(

✷
i∈I

(ai → Pi)
)

\A =
(

✷
ai 6∈A

(ai → (Pi\A))
)

⊲⊓
ai∈A

(Pi\A)

H6
(

div ✷✷
i∈I

(ai → Pi)
)

\A =
(

div ✷✷
ai 6∈A

(ai → (Pi\A))
)

⊲⊓
ai∈A

(Pi\A)

H7

(

(

✷
i∈I

(ai → Pi)
)

⊲ P ′
)

\A =
(

✷
ai 6∈A

(ai → (Pi\A))
)

⊲
(

P ′\A ⊓⊓
ai∈A

(Pi\A)
)

H8

(

(

div ✷✷
i∈I

(ai → Pi)
)

⊲ P ′
)

\A =
(

div ✷✷
ai 6∈A

(ai → (Pi\A))
)

⊲
(

P ′\A ⊓⊓
ai∈A

(Pi\A)
)

R0 f(P ⊲ Q) = f(P) ⊲ f(Q)
R1 f(P ⊓Q) = f(P) ⊓ f(Q)
R2 f(P ✷Q) = f(P)✷ f(Q)
R3 f(a → P) = f(a) → f(P)
R4 f(STOP) = STOP

R5 f(div) = div

T0 (P ⊲ Q)ΘA R = (P ΘA R) ⊲ (QΘA R)
T1 (P ⊓Q)ΘA R = (P ΘA R) ⊓ (QΘA R)
T2 (P ✷Q)ΘA R = (P ΘA R)✷ (QΘA R)
T3 (a → P)ΘA Q = a → (P ΘA Q) if a /∈ A
T4 (a → P)ΘA Q = a → Q if a ∈ A
T5 STOP ΘA Q = STOP

T6 div ΘA Q = div

Table 3. A complete axiomatisation of ≡∆
CS for recursion-free CSP without interrupt

A Branching Time Model of CSP 15

Below P =✷
i∈I

(ai → Pi) and Q =✷
j∈J

(bj → Qj).

(P4) P‖AQ =✷
ai /∈A

(ai → (Pi‖AQ))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → (P‖AQj))

(P5) (div ✷ P)‖AQ = div ✷✷
ai /∈A

(ai → (Pi‖AQ))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → ((div ✷ P)‖AQj))

(P6) (div ✷ P)‖A(div ✷Q) = div ✷✷
ai /∈A

(ai → (Pi‖A(div ✷Q)))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → ((div ✷ P)‖AQj))

(P7) (P ⊲ P ′)‖AQ =
(

✷
ai /∈A

(ai → (Pi‖AQ))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → ((P ⊲ P ′)‖AQj))
)

⊲ P ′‖AQ

(P8) ((div ✷ P) ⊲ P ′)‖AQ =
(

div ✷✷
ai /∈A

(ai → (Pi‖AQ))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → (((div ✷ P) ⊲ P ′)‖AQj))
)

⊲ P ′‖AQ

(P9) (P ⊲ P ′)‖A(div ✷Q) =
(

(div ✷✷
ai /∈A

(ai → (Pi‖A(div ✷Q)))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → ((P ⊲ P ′)‖AQj))
)

⊲ P ′‖A(div ✷Q)

(P10) ((div ✷ P) ⊲ P ′)‖A(div ✷Q) =
(

div ✷✷
ai /∈A

(ai → (Pi‖A(div ✷Q)))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → (((div ✷ P) ⊲ P ′)‖AQj))
)

⊲ P ′‖A(div ✷Q)

(P11) (P ⊲ P ′)‖A(Q ⊲ Q′) =
(

✷
ai /∈A

(ai → (Pi‖A(Q ⊲ Q′)))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → ((P ⊲ P ′)‖AQj))
)

⊲
(

P ′‖A(Q ⊲ Q′) ⊓ (P ⊲ P ′)‖AQ
′
)

(P12) ((div ✷ P) ⊲ P ′)‖A(Q ⊲ Q′) =
(

div ✷✷
ai /∈A

(ai → (Pi‖A(Q ⊲ Q′)))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → (((div ✷ P) ⊲ P ′)‖AQj))
)

⊲
(

P ′‖A(Q ⊲ Q′) ⊓ ((div ✷ P) ⊲ P ′)‖AQ
′
)

Table 3. A complete axiomatisation of ≡∆
CS for recursion-free CSP (continued)

16 Rob van Glabbeek

(P13) ((div ✷ P) ⊲ P ′)‖A((div ✷Q) ⊲ Q′) =
(

div✷

✷
ai /∈A

(ai → (Pi‖A((div ✷Q) ⊲ Q′)))✷

✷
aj=bj∈A

(ai → (Pi‖AQj))✷

✷
bj /∈A

(bj → (((div ✷ P) ⊲ P ′)‖AQj))
)

⊲
(

P ′‖A((div ✷Q) ⊲ Q′) ⊓ ((div ✷ P) ⊲ P ′)‖AQ
′
)

Below P =✷
i∈I

(ai → Pi) and Q =⊓
j∈J

Qj .

(P14) P‖AQ =✷
ai /∈A

(ai → (Pi‖AQ)) ⊲⊓
j∈J

(P‖AQj))

(P15) (div ✷ P)‖AQ =
(

div ✷✷
ai /∈A

(ai → (Pi‖AQ))
)

⊲⊓
j∈J

((div ✷ P)‖AQj))

Below P =⊓
i∈I

Pi and Q =⊓
j∈J

Qj .

(P16) P‖AQ =⊓
ai /∈A

(Pi‖AQ) ⊓⊓
j∈J

(P‖AQj))

Table 3. A complete axiomatisation of ≡∆
CS for recursion-free CSP (continued)

9 Soundness

Since divergence-preserving coupled similarity is a congruence for all CSP oper-
ators, to establish the soundness of the axiomatisation of Table 3 it suffices to
show the validity w.r.t. ≡∆

CS of all axioms. When possible, I show validity w.r.t.
strong bisimilarity, which is a strictly finer equivalence.

Definition 6. Two processes are strongly bisimilar [12] if they are related by a
binary relation R on processes such that, for all α ∈ Σ ∪ {τ},

– if P R Q and P
α

−→ P ′ then there exists a Q′ with Q
α

−→ Q′ and P ′ R Q′,
– if P R Q and Q

α
−→ Q′ then there exists a P ′ with P

α
−→ P ′ and P ′ R Q′.

Proposition 13. Axiom I1 is valid for ≡∆
CS .

Proof. {(P ⊓ P, P), (P, P ⊓ P) | P a process} ∪ Id is a divergence-preserving
coupled simulation. ⊓⊔

Proposition 14. Axiom I2 is valid even for strong bisimilarity.

Proof. {(P ⊓Q,Q ⊓ P) | P,Q processes} ∪ Id is a strong bisimulation. ⊓⊔

Proposition 15. Axiom I3 is valid for ≡∆
CS .

Proof. The relation {
(

P ⊓ (Q ⊓ R), (P ⊓ Q) ⊓ R
)

,
(

(P ⊓ Q) ⊓ R,P ⊓ (Q ⊓ R)
)

,
(

Q⊓R, (P⊓Q)⊓R
)

,
(

P⊓Q,P⊓(Q⊓R)
)

,
(

R,Q⊓R
)

,
(

P, P⊓Q
)

|P,Q,R processes}
∪ Id is a divergence-preserving coupled simulation. ⊓⊔

A Branching Time Model of CSP 17

Proposition 16. Axioms E2–4 are valid for strong bisimilarity.

Proof. The relation {
(

P ✷ (Q ✷ R), (P ✷ Q) ✷ R
)

| P,Q,R processes} ∪ Id is
a strong bisimulation. So is {(P ✷ Q,Q ✷ P) | P,Q processes} ∪ Id , as well as
{(P ✷ STOP , P) | P a process} ∪ Id . ⊓⊔

Proposition 17. Axiom S1 is valid for ≡∆
CS .

Proof. {(P ′ ⊲ P, P), (P, P ′ ⊲ P) | P ′ ⊒∆
CS P} ∪ Id is a divergence-preserving

coupled simulation. This follows from Prop. 2. ⊓⊔

Proposition 18. Axiom S2 is valid for ≡∆
CS .

Proof. {
(

P ⊲(Q⊲R), (P ⊲Q)⊲R
)

,
(

(P ⊲Q)⊲R, P ⊲(Q⊲R)
)

| P,Q,R processes}∪Id
is a divergence-preserving coupled simulation. ⊓⊔

Proposition 19. Axiom S3 is valid for ≡∆
CS .

Proof. {
(

(P ⊲Q)⊲R, (P ✷Q)⊲R
)

,
(

(P ✷Q′)⊲R, (P ⊲Q)⊲R
)

,
(

Q⊲R, (P ✷Q)⊲R
)

,
(

R,Q ⊲ R
)

| Q′ ⊒∆
CS Q} ∪ Id is a divergence-preserving coupled simulation. ⊓⊔

Proposition 20. Axiom S4 is valid for ≡∆
CS .

Proof. {
(

(P ⊓Q)⊲R, (P✷Q)⊲R
)

,
(

(P ′
✷Q′)⊲R, (P ⊓Q)⊲R

)

,
(

P ⊲R, (P✷Q)⊲R
)

,
(

Q ⊲ R, (P ✷Q) ⊲ R
)

,
(

R,Q ⊲ R
)

| P ′ ⊒∆
CS P ∧Q′ ⊒∆

CS Q} ∪ Id is a divergence-
preserving coupled simulation. Checking this involves Prop. 2. ⊓⊔

Proposition 21. Axiom S5 is valid for ≡∆
CS .

Proof. The relation {(STOP ⊲ P, P), (P,STOP ⊲ P) | P a process} ∪ Id is a
divergence-preserving coupled simulation. ⊓⊔

Proposition 22. Axiom S6 is valid for ≡∆
CS .

Proof. {
(

(P ⊲Q)⊓(R⊲S), (P ✷R)⊲(Q⊓S)
)

,
(

(P ′
✷R′)⊲(Q⊓S), (P ⊲Q)⊓(R⊲S)

)

,
(

P ⊲Q, (P ✷R) ⊲ (Q⊓S)
)

,
(

R⊲S, (P ✷R) ⊲ (Q⊓ S)
)

,
(

Q⊓S, (P ⊲Q)⊓ (R⊲S)
)

,
(

S, (P ′
✷R′) ⊲ (Q⊓ S)

)

,
(

S,R ⊲ S
)

,
(

S,Q⊓ S
)

| P ′ ⊒∆
CS P ∧R′ ⊒∆

CS R} ∪ Id is a
divergence-preserving coupled simulation. ⊓⊔

Proposition 23. Axiom S7 is valid for ≡∆
CS .

Proof. {
(

(P ⊲Q)✷(R⊲S), (P✷R)⊲(Q✷S)
)

,
(

(P✷R)⊲(Q✷S), (P ⊲Q)✷(R⊲S)
)

,
(

Q′
✷ (R ⊲ S), (P ✷ R) ⊲ (Q ✷ S)

)

,
(

(P ⊲ Q) ✷ S′, (P ✷ R) ⊲ (Q ✷ S)
)

,
(

Q′
✷ S′, Q′

✷ (R ⊲ S)
)

,
(

Q′
✷ S′, (P ⊲ Q) ✷ S′

)

, | Q =⇒ Q′ ∧ S =⇒ S′} ∪ Id

is a divergence-preserving coupled simulation. ⊓⊔

Proposition 24. Axiom D1 is valid for ≡∆
CS .

Proof. {
(

P ′
✷ (Q ⊓ R), (P ✷Q) ⊓ (P ✷ R)

)

,
(

(P ✷Q) ⊓ (P ✷R), P ✷ (Q ⊓ R)
)

,
(

P ′
✷ Q,P ′

✷ (Q ⊓ R)
)

| P =⇒ P ′} ∪ Id is a divergence-preserving coupled
simulation. ⊓⊔

Proposition 25. Axiom Prune is valid for ≡∆
CS.

Proof. {
(

(a→P)✷a→(P ⊓Q), a→(P ⊓Q)
)

,
(

a→(P ⊓Q), (a→P)✷a→(P ⊓Q)
)

}
∪ Id is a divergence-preserving coupled simulation. ⊓⊔

18 Rob van Glabbeek

Proposition 26. Axioms P0–1 and P4–10 are valid for strong bisimilarity.

Axioms P11–16 are valid for ≡∆
CS .

Proof. Straightforward. ⊓⊔

Proposition 27. Axioms U4, H1, R0–5 and T0–6 are valid for strong bisim-

ilarity. Axioms H5–8 are valid for ≡∆
CS.

Proof. Straightforward. ⊓⊔

Proposition 28. Axiom U1 is valid for ≡∆
CS .

Proof. {
(

(P ⊓Q)△R′, (P △R)⊓ (Q△R)
)

,
(

(P △R)⊓ (Q△R), (P ⊓Q)△R
)

,
(

P △ R′, (P ⊓ Q) △ R′
)

| R =⇒ R′} ∪ Id is a divergence-preserving coupled
simulation. ⊓⊔

10 Completeness

Let Th be the axiomatisation of Table 3.

Proposition 29. For each recursion-free CSP process P without interrupt op-

erators there is a CSP process Q in normal form such that Th ⊢ P = Q.

Proof. By structural induction on P it suffices to show that for each n-ary CSP
operator Op, and all CSP processes P1, ..., Pn in normal form, also Op(P1, ..., Pn)
can be converted to normal form. This I do with structural induction on the
arguments Pi.
– Let P = STOP or div. Then P is already in normal form. Take Q := P .
– Let P = a → P ′. By assumption P ′ is in normal form; therefore so is P .
– Let P = P1 ⊓ P2. By assumption P1 and P2 are in normal form. So P =

(

(

[div ✷]✷
i∈I

(ai →Ri)
)

⊲⊓
j∈J

Rj

)

⊓
(

(

[div ✷]✷
l∈L

(al →Rl)
)

⊲⊓
j∈M

Rj

)

with Rj =
(

[div ✷]✷
k∈Kj

(akj → Rkj)
)

for j ∈ J ∪ M . With Axiom S5 I

may assume that J,M 6= ∅. Now Axiom S6 converts P to normal form.
– Let P = P1 ✷ P2. By assumption P1 and P2 are in normal form. So P =

(

(

[div ✷]✷
i∈I

(ai →Ri)
)

⊲⊓
j∈J

Rj

)

✷

(

(

[div ✷]✷
l∈L

(al →Rl)
)

⊲⊓
j∈M

Rj

)

with Rj =
(

[div✷]✷
k∈Kj

(akj → Rkj)
)

for j ∈ J∪M . With S5 I may assume

that J,M 6= ∅. Now Axioms S7 and D1 convert P to normal form.
– Let P = P1 ⊲ P2. Axioms S2–4 and D1 convert P to normal form.
– Let P = P1‖AP2. Axioms P1 and P4–16, together with the induction hy-

pothesis, convert P to normal form.
– Let P = P\A. Axioms H1 and H5–8, together with the induction hypoth-

esis, convert P to normal form.
– Let P = f(P). Axioms R0–5, together with the induction hypothesis, con-

vert P to normal form.
– Let P = P1 ΘA P2. Axioms T0–6, together with the induction hypothesis,

convert P to normal form.

A Branching Time Model of CSP 19

Lemma 1. For any CSP expression P in head normal form there exists a sat-

urated CSP expression Q in head normal form.

Proof. Let P =
(

[div✷]✷
i∈I

(ai →Ri)
)

⊲⊓
j∈J

Rj . Then P has the form S ⊲R.

By Axioms S1–3 Th ⊢ P = (S ✷ R) ⊲ R. By means of Axioms D1 and S4 the

subexpression S ✷ R can be brought in the form [div ✷]✷
l∈L

(al → Rl). The

resulting term is saturated. ⊓⊔

Definition 7. A CSP expression
(

✷
i∈I

(bi → Pi)
)

is pruned if, for all i, h ∈ I,
bi = bh ∧ Pi ⊒∆

CS Ph ⇒ i = h.

Theorem 1. Let P and Q be recursion-free CSP processes without interrupt

operators. Then P ≡∆
CS Q iff Th ⊢ P = Q.

Proof. “⇐” is an immediate consequence of the soundness of the axioms of Th,
and the fact that ≡∆

CS is a congruence for all operators of CSP.
“⇒”: Let depth(P) be the length of the longest trace of P—well-defined

for recursion-free processes P . If P ≡∆
CS Q then depth(P) = depth(Q). Given

P ≡∆
CS Q, I establish Th ⊢ P = Q with induction on depth(P).
By Prop. 29 I may assume, without loss of generality, that P and Q are in

normal form. By Lem. 1 I furthermore assume that P and Q are saturated. Let
P =

(

[div✷]✷
i∈I

(ai→Ri)
)

⊲⊓
j∈J

Rj and Q=
(

[div✷]✷
l∈L

(al→Rl)
)

⊲⊓
j∈M

Rj

with Rj =
(

[div ✷]✷
k∈Kj

(akj → Rkj)
)

for j∈J ∪M , where Ri, Rl and Rkj are
again in normal form.

Suppose that there are i, h ∈ I with i 6= h, ai = ah and Ri ⊒∆
CS Rh. Then

Ri ⊓ Rh ≡∆
CS Rh by Prop. 3. Since depth(Ri ⊓ Rh) < depth(P), the induc-

tion hypothesis yields Th ⊢ Ri ⊓ Rh = Rh. Hence Axiom Prune allows me to
prune the summand ai → Ri from ✷

i∈I
(ai →Ri). Doing this repeatedly makes

✷
i∈I

(ai→Ri) pruned. By the same reasoning I may assume that✷
l∈L

(al→Rl)

is pruned.
Since P⇑ ⇔ Q⇑ and P and Q are saturated, P has the div-summand iff Q

does. I now define a function f : I → L such that af(i) = ai and Ri ⊒
∆
CS Rf(i)

for all i ∈ I.
Let i ∈ I. Since P

ai−→ Ri, by Def. 4 Q
ai=⇒ Q′ for some Q′ with Ri ⊒∆

CS Q′.
Hence either there is an l ∈ L such that al = ai and Rl =⇒ Q′, or there is a
j ∈ M and k ∈ Kj such that akj = ai and Rkj =⇒ Q′. Since P is saturated,
the first of these alternatives must apply. By Prop. 2 Q′ ⊒∆

CS Rl and by Prop. 1
Ri ⊒∆

CS Rl. Take f(i) := l.
By the same reasoning there is a function g : L → I such that ag(l) = al

and Rl ⊒
∆
CS Rg(l) for all l ∈ L. Since ✷

i∈I
(ai →Ri) and ✷

l∈L
(al →Rl) are

pruned, there are no different i, h ∈ I (or in L) with ai = ah and Ri ⊒∆
CS Rh.

Hence the functions f and g must be inverses of each other. It follows that
Q =

(

[div ✷]✷
i∈I

(ai → Rf(i))
)

⊲⊓
j∈M

Rj with Ri ≡∆
CS Rf(i) for all i ∈ I. By

induction Th ⊢ Ri = Rf(i) for all i ∈ I.
So in the special case that I = M = ∅ I obtain Th ⊢ P = Q. (*)

20 Rob van Glabbeek

Next consider the case J = ∅ but M 6= ∅. Let j ∈ M . Since Q =⇒ Rj , there is
a P ′ with P =⇒ P ′ and Rj ⊒∆

CS P ′. Moreover, there is a P ′′ with P ′ =⇒ P ′′ and
P ′′ ⊒∆

CS Rj . Since J = ∅, P ′′ = P ′ = P , so P ≡∆
CS Rj . By (*) above Th ⊢ P=Rj .

This holds for all j ∈ J , so by Axiom I1 Th ⊢ Q =
(

[div ✷]✷
i∈I

(ai → Ri)
)

⊲ P .
By Axiom S1 one obtains Th ⊢ P = Q.

The same reasoning applies when M = ∅ but J 6= ∅. So henceforth I assume
J,M 6= ∅. I now define a function h : J →M with Th ⊢Rj =Rh(j) for all j ∈ J .

Let j ∈ J . Since P
τ

=⇒ Rj , by Def. 4 Q =⇒ Q′ for some Q′ with Rj ⊒
∆
CS Q′,

and Q′ =⇒ Q′′ for some Q′′ with Q′′ ⊒∆
CS Rj . There must be an m ∈ M with

Q′′ =⇒ Rm. By Def. 4 Rj =⇒ R′ for some R′ with Rm ⊒∆
CS R′, and R′ =⇒ R′′

for some R′′ with R′′ ⊒∆
CS Rm. By the shape of Rj one has R′′ = R′ = Rj , so

Rj ≡
∆
CS Rm. By (*) above Th ⊢ Rj = Rm. Take h(j) := m.

By the same reasoning there is a function e :M → J with Th ⊢ Rm =Re(m)

for all m ∈M . Using Axioms I1–3 one obtains Th ⊢ P = Q. ⊓⊔

11 Conclusion

This paper contributed a new model of CSP, presented as a semantic equivalence
on labelled transition systems that is a congruence for the operators of CSP. It
is the finest I could find that allows a complete equational axiomatisation for
closed recursion-free CSP processes that fits within the existing syntax of the
language. For τ -free system, my model coincides with strong bisimilarity, but in
matching internal transitions it is less pedantic than weak bisimilarity.

It is left for future work to show that recursion is treated well in this model,
and also to extend my complete axiomatisation with the interrupt operator of
Roscoe [15,17].

An annoying feature of my complete axiomatisation is the enormous collec-
tions of heavy-duty axioms needed to bring parallel compositions of CSP pro-
cesses in head normal form. These are based on the expansion law ofMilner [12],
but a multitude of them is needed due to the optional presence of divergence-
summands and sliding choices in head normal forms. In the process algebra
ACP the expansion law could be avoided through the addition of two auxil-
iary operators: the left merge and the communication merge [3]. Unfortunately,
failures-divergences equivalence fails to be a congruence for the left-merge, and
the same problems exists for any other models of CSP [8, Section 3.2.1]. In [1]
an alternative left-merge is proposed, for which failures-divergences equivalence,
and also ≡∆

CS , is a congruence. It might be used to eliminate the expansion law
P4 from the axiomatisation of Table 2. Unfortunately, the axiom that splits a
parallel composition between a left-, right- and communication merge (Axiom
CM1 in [3]), although valid in the failures-divergences model, is not valid for
≡∆

CS . This leaves the question of how to better manage the axiomatisation of
parallel composition entirely open.

A Branching Time Model of CSP 21

References

1. L. Aceto & A. Ingólfsdóttir (1991): A Theory of Testing for ACP. In J.C.M. Baeten
& J.F. Groote, editors: Proc. CONCUR’91, LNCS 527, Springer, pp. 78–95, doi:10.
1007/3-540-54430-5_82.

2. J.A. Bergstra, J.W. Klop & E.-R. Olderog (1987): Failures without chaos: a new

process semantics for fair abstraction. In M. Wirsing, editor: Formal Description

of Programming Concepts – III, Proceedings of the 3th IFIP WG 2.2 working

conference, Ebberup 1986, North-Holland, Amsterdam, pp. 77–103.
3. J.A. Bergstra & J.W. Klop (1984): Process Algebra for Synchronous Communica-

tion. Inform. and Control 60, pp. 109–137, doi:10.1016/S0019-9958(84)80025-X.
4. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating

sequential processes. Journ. of the ACM 31(3), pp. 560–599, doi:10.1145/828.833.
5. S.D. Brookes & A.W. Roscoe (1985): An improved failures model for communicat-

ing processes. In S.D. Brookes, A.W. Roscoe & G. Winskel, editors: Seminar on

Concurrency, LNCS 197, Springer, pp. 281–305, doi:10.1007/3-540-15670-4_14.
6. R. De Nicola (1985): Two Complete Axiom Systems for a Theory of Communicating

Sequential Processes. Information and Control 64(1-3), pp. 136–172, doi:10.1016/
S0019-9958(85)80048-6.

7. R.J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II; The

semantics of sequential systems with silent moves. In E. Best, editor: Proc. CON-
CUR’93, LNCS 715, Springer, pp. 66–81, doi:10.1007/3-540-57208-2_6.

8. R.J. van Glabbeek & F.W. Vaandrager (1993): Modular Specification of Pro-

cess Algebras. Theoretical Computer Science 113(2), pp. 293–348, doi:10.1016/
0304-3975(93)90006-F.

9. J.F. Groote & F.W. Vaandrager (1992): Structured Operational Semantics and

Bisimulation as a Congruence. Information and Computation 100(2), pp. 202–
260, doi:10.1016/0890-5401(92)90013-6.

10. C.A.R. Hoare (1978): Communicating sequential processes. Communications of the

ACM 21(8), pp. 666–677, doi:10.1145/359576.359585.
11. C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall.
12. R. Milner (1990): Operational and algebraic semantics of concurrent processes. In

J. van Leeuwen, editor: Handbook of Theoretical Computer Science, chapter 19,
Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242. Alternatively see
Communication and Concurrency, Prentice-Hall, 1989, of which an earlier version
appeared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980.

13. E.-R. Olderog & C.A.R. Hoare (1986): Specification-oriented semantics for com-

municating processes. Acta Informatica 23, pp. 9–66, doi:10.1007/BF00268075.
14. J. Parrow & P. Sjödin (1992): Multiway Synchronization Verified with Coupled

Simulation. In R. Cleaveland, editor: Proc. CONCUR ’92, LNCS 630, Springer,
pp. 518–533, doi:10.1007/BFb0084813.

15. A.W. Roscoe (1997): The Theory and Practice of Concurrency. Prentice-Hall.
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf.

16. A.W. Roscoe (2009): Revivals, stuckness and the hierarchy of CSP models. Journal
of Logic and Algebraic Programming 78(3), pp. 163–190, doi:10.1016/j.jlap.
2008.10.002.

17. A.W. Roscoe (2010): Understanding Concurrent Systems. Springer, doi:10.1007/
978-1-84882-258-0.

http://dx.doi.org/10.1007/3-540-54430-5_82
http://dx.doi.org/10.1007/3-540-54430-5_82
http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/3-540-15670-4_14
http://dx.doi.org/10.1016/S0019-9958(85)80048-6
http://dx.doi.org/10.1016/S0019-9958(85)80048-6
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1016/0304-3975(93)90006-F
http://dx.doi.org/10.1016/0304-3975(93)90006-F
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.1007/BFb0084813
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf
http://dx.doi.org/10.1016/j.jlap.2008.10.002
http://dx.doi.org/10.1016/j.jlap.2008.10.002
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-1-84882-258-0

	A Branching Time Model of CSP

