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Abstract. This paper poses that transition systems constitute a good
model of distributed systems only in combination with a criterion telling
which paths model complete runs of the represented systems. Among
such criteria, progress is too weak to capture relevant liveness proper-
ties, and fairness is often too strong; for typical applications we advocate
the intermediate criterion of justness. Previously, we proposed a defini-
tion of justness in terms of an asymmetric concurrency relation between
transitions. Here we define such a concurrency relation for the transition
systems associated to the process algebra CCS as well as its extensions
with broadcast communication and signals, thereby making these process
algebras suitable for capturing liveness properties requiring justness.

1 Introduction

Transition systems are a common model for distributed systems. They consist of
sets of states, also called processes, and transitions—each transition going from
a source state to a target state. A given distributed system D corresponds to a
state P in a transition system T—the initial state of D. The other states of D
are the processes in T that are reachable from P by following the transitions. A
run of D corresponds with a path in T: a finite or infinite alternating sequence
of states and transitions, starting with P, such that each transition goes from
the state before to the state after it. Whereas each finite path in T starting
from P models a partial run of D, i.e., an initial segment of a (complete) run,
typically not each path models a run. Therefore a transition system constitutes
a good model of distributed systems only in combination with what we here call
a completeness criterion: a selection of a subset of all paths as complete paths,
modelling runs of the represented system.

A liveness property says that “something [good] must happen” eventually
[18]. Such a property holds for a distributed system if the [good] thing happens
in each of its possible runs. One of the ways to formalise this in terms of transition
systems is to postulate a set of good states ¢, and say that the liveness property
% holds for the process P if all complete paths starting in P pass through a state
of ¢ [16]. Without a completeness criterion the concept of a liveness property

appears to be meaningless.
t

Example 1 The transition system on the right —O)—0
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models Cataline eating a croissant in Paris. It abstracts from all activity in the
world except the eating of that croissant, and thus has two states only—the
states of the world before and after this event—and one transition ¢t. We depict
states by circles and transitions by arrows between them. An initial state is
indicated by a short arrow without a source state. A possible liveness property
says that the croissant will be eaten. It corresponds with the set of states &
consisting of state 2 only. The states of ¢ are indicated by shading.

The depicted transition system has three paths starting with state 1: 1, 1¢
and 1¢2. The path 1¢2 models the run in which Cataline finishes the croissant.
The path 1 models a run in which Cataline never starts eating the croissant, and
the path 1¢ models a run in which Cataline starts eating it, but never finishes.
The liveness property ¢ holds only when using a completeness criterion that
rules out the paths 1 and 1¢ as modelling actual runs of the system, leaving 1¢2
as the sole complete path. q

The transitions of transition systems can be understood to model atomic actions
that can be performed by the represented systems. Although we allow these
actions to be instantaneous or durational, in the remainder of this paper we
adopt the assumption that “atomic actions always terminate” [23]. This is a
partial completeness criterion. It rules out the path 1t in Example 1. We build
in this assumption in the definition of a path by henceforth requiring that finite
paths should end with a state.

Progress. The most widely employed completeness criterion is progress.! In the
context of closed systems, having no run-time interactions with the environment,
it is the assumption that a run will never get stuck in a state with outgoing
transitions. This rules out the path 1 in Example 1, as t is outgoing. When
adopting progress as completeness criterion, the liveness property ¢ holds for
the system modelled in Example 1.

Progress is assumed in almost all work on process algebra that deals with
liveness properties, mostly implicitly. Milner makes an explicit progress assump-
tion for the process algebra CCS in [20]. A progress assumption is built into the
temporal logics LTL [24], CTL [7] and CTL* [8], namely by disallowing states
without outgoing transitions and evaluating temporal formulas by quantifying
over infinite paths only.? In [17] the ‘multiprogramming axiom’ is a progress
assumption, whereas in [1] progress is assumed as a ‘fundamental liveness prop-
erty’.

As we argued in [10,15,16], a progress assumption as above is too strong
in the context of reactive systems, meaning that it rules out as incomplete too
many paths. There, a transition typically represents an interaction between the

! Misra [21,22] calls this the ‘minimal progress assumption’. In [22] he uses ‘progress’
as a synonym for ‘liveness’. In session types, ‘progress’ and ‘global progress’ are used
as names of particular liveness properties [4]; this use has no relation with ours.

2 Exceptionally, states without outgoing transitions are allowed, and then quantifica-
tion is over all maximal paths, i.e. paths that are infinite or end in a state without
outgoing transitions [5].
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distributed system being modelled and its environment. In many cases a transi-
tion can occur only if both the modelled system and the environment are ready
to engage in it. We therefore distinguish blocking and non-blocking transitions. A
transition is non-blocking if the environment cannot or will not block it, so that
its execution is entirely under the control of the system under consideration. A
blocking transition on the other hand may fail to occur because the environment
is not ready for it. The same was done earlier in the setting of Petri nets [26],
where blocking and non-blocking transitions are called cold and hot, respectively.

In [10,15,16] we worked with transition systems that are equipped with a
partitioning of the transitions into blocking and non-blocking ones, and refor-
mulated the progress assumption as follows:

a (transition) system in a state that admits a non-blocking transition will
eventually progress, i.e., perform a transition.

In other words, a run will never get stuck in a state with outgoing non-blocking
transitions. In Example 1, when adopting progress as our completeness crite-
rion, we assume that Cataline actually wants to eat the croissant, and does not
willingly remain in State 1 forever. When that assumption is unwarranted, one
would model her behaviour by a transition system different from that of Exam-
ple 1. However, she may still be stuck in State 1 by lack of any croissant to eat.
If we want to model the capability of the environment to withhold a croissant,
we classify ¢ as a blocking transition, and the liveness property ¢ does not hold.
If we abstract from a possible shortage of croissants, ¢ is deemed a non-blocking
transition, and, when assuming progress, ¢4 holds.

As an alternative approach to a dogmatic division of transitions in a tran-
sition system, we could shift the status of transitions to the progress property,
and speak of B-progress when B is the set of blocking transitions. In that ap-
proach, ¢ holds for State 1 of Example 1 under the assumption of B-progress
when ¢ ¢ B, but not when ¢ € B.

Justness. Justness is a completeness criterion proposed in [10,15,16]. It strength-
ens progress. It can be argued that once one adopts progress it makes sense to
go a step further and adopt even justness.

Example 2 The transition system on the top right models
Alice making an unending sequence of phone calls in Lon- 4&
don. There is no interaction of any kind between Alice and

Cataline. Yet, we may chose to abstracts from all activity ¢

in the world except the eating of the croissant by Cataline, m
and the making of calls by Alice. This yields the combined

transition system on the bottom right. Even when taking the transition ¢ to
be non-blocking, progress is not a strong enough completeness criterion to en-
sure that Cataline will ever eat the croissant. For the infinite path that loops in
the first state is complete. Nevertheless, as nothing stops Cataline from making
progress, in reality ¢ will occur. [16]
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This example is not a contrived corner case, but a rather typical illustration of
an issue that is central to the study of distributed systems. Other illustrations of
this phenomena occur in [10, Section 9.1], [14, Section 10], [11, Section 1.4], [12]
and [6, Section 4]. The criterion of justness aims to ensure the liveness property
occurring in these examples. In [16] it is formulated as follows:

Once a non-blocking transition is enabled that stems from a set of parallel
components, one (or more) of these components will eventually partake
m a transition.

In Example 2, t is a non-blocking transition enabled in the initial state. It stems
from the single parallel component Cataline of the distributed system under
consideration. Justness therefore requires that Cataline must partake in a tran-
sition. This can only be ¢, as all other transitions involve component Alice only.
Hence justness says that t must occur. The infinite path starting in the initial
state and not containing ¢ is ruled out as unjust, and thereby incomplete.

In [16,13] we explain how justness is fundamentally different from fairness,
and why fairness is too strong a completeness criterion for many applications.

Unlike progress, the concept of justness as formulated above is in need of
some formalisation, i.e., to formally define a component, to make precise for
concrete transition systems what it means for a transition to stem from a set of
components, and to define when a component partakes in a transition.

A formalisation of justness for the transition system generated by the process
algebra AWN, the Algebra for Wireless Networks [9], was provided in [10]. In the
same vain, [15] offered a formalisation for the transition systems generated by
CCS [20], and its extension ABC, the Algebra of Broadcast Communication [15],
a variant of CBS, the Calculus of Broadcasting Systems [25]. The same was done
for CCS extended with signals in [6]. These formalisations coinductively define
B-justness, where B ranges over sets of transitions deemed to be blocking, as a
family of predicates on paths, and proceed by a case distinction on the operators
in the language. Although these definitions do capture the concept of justness
formulated above, it is not easy to see why.

A more syntax-independent formalisation of justness occurs in [16]. There it
is defined directly on transition systems equipped with a, possibly asymmetric,
concurrency relation between transitions. However, the concurrency relation it-
self is defined only for the transition system generated by a fragment of CCS,
and the generalisation to full CCS, and other process algebras, is non-trivial.

It is the purpose of this paper to make the definition of justness from [16]
available to a large range of process algebras by defining the concurrency relation
for CCS, for ABC, and for the extension of CCS with signals used in [6]. We do
this in a precise as well as in an approximate way, and show that both approaches
lead to the same concept of justness. Moreover, in all cases we establish a closure
property on the concurrency relation ensuring that justness is a meaningful
notion. We show that for all these algebras justness is feasible. Here feasibility is a
requirement on completeness criteria advocated in [1,19,16]. Finally, we establish
agreement between the formalisation of justness from [16] and the present paper,
and the original coinductive ones from [15] and [6].
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2 Labelled transition systems with concurrency

We start with the formal definitions of a labelled transition system, a path,
and the completeness criterion progress, which is parametrised by the choice of
a collection B of blocking actions. Then we define the completeness criterion
justness on labelled transition system upgraded with a concurrency relation.

Definition 1 A labelled transition system (LTS) is a tuple (S, Tr, sre, target, £)
with S and Tr sets (of states and transitions), src, target: Tr — S and £: Tr —
£, for some set of transition labels .Z.

Here we work with LTSs labelled over a structured set of labels (., Act, Rec),
where Rec C Act C £ . Labels in Act are actions; the ones in £\ Act are signals.
Transitions labelled with actions model a state chance in the represented system;
signal transitions do not—they satisfy src(t) = target(t) and merely convey a
property of a state. Rec C Act is the set of receptive actions; sets B C Act
of blocking actions must always contain Rec. In CCS and most other process
algebras Rec = () and Act = £ Let Tr* = {t € Tr| £(t) € Act\ Rec} be the set
of transitions that are neither signals nor receptive.

Definition 2 A path in a transition system (S, Tr, src, target) is an alternating
sequence sgti s1tgSg--- of states and non-signal transitions, starting with a
state and either being infinite or ending with a state, such that sre(t;) = s;-1
and target(t;) = s; for all relevant .

A completeness criterion is a unary predicate on the paths in a transition system.

Definition 3 Let B C Act be a set of actions with Rec C B—the blocking ones.
Then Tr® p := {t € Tr* | £(t) ¢ B} is the set of non-blocking transitions. A path
in T is B-progressing if either it is infinite or its last state is the source of no
non-blocking transition t € Tr° .

B-progress is a completeness criterion for any choice of B C Act with Rec C B.

Definition 4 A labelled transition system with concurrency (LTSC) is a tuple
(S, Tr, sre, target, £,~») consisting of a LTS (S, Tr, sre, target, £) and a concur-
rency relation — C Tr® x Tr, such that:

tfotforallte Tr*, (1)

if t € Tr* and 7 is a path from src(t) to s € S such that t — v for
all transitions v occurring in , then there is a w € Tr® such that (2)
sre(u) = s, L(u) = £(t) and t £* u.

Informally, ¢t —* v means that the transition v does not interfere with ¢, in the
sense that it does not affect any resources that are needed by ¢, so that in a state
where ¢ and v are both possible, after doing v one can still do (a future variant
u of) t. In many transition systems —» is a symmetric relation, denoted —.
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The transition relation in a labelled transition system is often defined as
a relation Tr C S x £ x S. This approach is not suitable here, as we will
encounter multiple transitions with the same source, target and label that ought
to be distinguished based on their concurrency relations with other transitions.

Definition 5 A path 7 in an LTSC is B-just, for Rec C B C Act, if for each
transition t € Tr 5 with s := src(t) € 7, a transition u occurs in the suffix of
starting at s, such that ¢ £* u.

Informally, justness requires that once a non-blocking non-signal transition ¢ is
enabled, sooner or later a transition uw will occur that interferes with it, possibly
t itself. Note that, for any Rec C B C Act, B-justness is a completeness criterion
stronger than B-progress.

Components. Instead of introducing —* as a primitive, it is possible to obtain
it as a notion derived from two functions npe, afc : Tr — (%), for a given
set of components . These functions could then be added as primitives to the
definition of an LTS. They are based on the idea that a process represents a
system built from parallel components. Each transition is obtained as a synchro-
nisation of activities from some of these components. Now npc(t) describes the
(nonempty) set of components that are necessary participants in the execution
of t, whereas afc(t) describes the components that are affected by the execution
of t. The concurrency relation is then defined by

t—u < npct)Nafe(u) =0

saying that u interferes with ¢ iff a necessary participant in ¢ is affected by wu.
Most material above stems from [16]. However, there Tr® = Tr, so that —
is irreflexive, i.e., npc(t) N afe(t) # O for all t € Tr. Moreover, a fixed set B
is postulated, so that the notions of progress and justness are not explicitly
parametrised with the choice of B. Furthermore, property (2) is new here; it is
the weakest closure property that supports Theorem 1 below. In [16] only the
model in which —= is derived from mpc and afc comes with a closure property:

If t,v € Tr* with sre(t) = sre(v) and npe(t) N afe(v) = @, then 3)
Ju € Tr* with sre(u) = target(v), £(u) = £(t) and npc(u) = npc(t).

Trivially (3) implies (2).

An important requirement on completeness criteria is that any finite path
can be extended into a complete path. This requirement was proposed by Apt,
Francez & Katz in [1] and called feasibility. It also appears in Lamport [19] under
the name machine closure. The theorem below list conditions under which B-
justness is feasible. Its proof is a variant of a similar theorem from [16] showing
conditions under which notions of strong and weak fairness are feasible.

Theorem 1 If, in an LTSC with set of blocking actions B, only countably many
transitions from 77?5 are enabled in each state, then B-justness is feasible.

All proofs can found in the full version of this paper [13].
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Table 1. Structural operational semantics of CCS

a.P 25 P (Acr) % (Sum-L) M (SUM-R)
P+Q— P P+Q -

n / c / c / n /
PPy PP SQ @@
PlQ — P|Q PIQ — Pl P|Q " P|Q'

¢ / 4 / o ,
Pli (6,7 ¢ L) (Res) Pf(—>7£P wey B 4 by
P\L — P'\L P11 14 Py A2 P

3 CCS and its extensions with broadcast and signals

This section presents four process algebras: Milner’s Calculus of Communicating
Systems (CCS) [20], its extensions with broadcast communication ABC [15] and
signals CCSS [6], and an alternative presentation of ABC that avoids negative
premises in favour of discard transitions.

3.1 CCS

CCS [20] is parametrised with sets &7 of agent identifiers and %}, of (hand-
shake communication) names; each A € & comes with a defining equation
AY pwith P being a CCS expression as defined below. 4}, := {¢ | ¢ € €}
is the set of co-names. Complementation is extended to %, by setting ¢ = c.
Act =€, U6, U {7} is the set of actions, where 7 is a special internal action.
Below, ¢ ranges over €, U %, 1, a, £ over Act, and A, B over «7. A relabelling
is a function f: @, — %; it extends to Act by f(¢) = f(c) and f(7) := 7. The
set IPccg of CCS expressions or processes is the smallest set including:

0 inaction

a.P for « € Act and P € Pccs action prefixing
P+ @ for PQ € Pccs choice

PlQ for P,Q € Pccs parallel composition
P\L for L C %} and P € Pccs restriction

P[f] for f a relabelling and P € Pocg relabelling

A for A € of agent identifier

One often abbreviates .0 by «, and P\{c} by P\c. The traditional semantics
of CCS is given by the labelled transition relation — C Pceg X Act X Pecs,
where transitions P —% Q are derived from the rules of Table 1.

3.2 ABC—The Algebra of Broadcast Communication

The Algebra of Broadcast Communication (ABC) [15] is parametrised with sets
& of agent identifiers, % of broadcast names and 6}, of handshake communica-
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Table 2. Structural operational semantics of ABC broadcast communication

(Bro-L) (Bro-c) (BRO-R)
PP, QY PELPLQIBQ PY%, Q% Q
10flo=H#_ —_——
PIQ ™ PiQ  PIQ % PQ PIQ 5 P|Q'

tion names; each A € &/ comes with a defining equation A ' p with P being
a guarded ABC expression as defined below.
The collections A! and #? of broadcast and receive actions are given by

Bt = {bf | be B} for § € {!,7}. Act := B!V %’NJ%LU%LU{T} is the set of
actions. Below, A ranges over 7, b over A, ¢ over €, U%),, n over €, U€), U {T}
and «,f over Act. A relabelling is a function f: (# — B) U (€, — €). It
extends to Act by f(¢) = f(c), f(bf) = f(b)f and f(7) := 7. The set Papc of
ABC expressions is defined exactly as Pccs. An expression is guarded if each
agent identifier occurs within the scope of a prefixing operator. The structural
operational semantics of ABC is the same as the one for CCS (see Table 1) but
augmented with the rules for broadcast communication in Table 2.

ABC is CCS augmented with a formalism for broadcast communication taken
from the Calculus of Broadcasting Systems (CBS) [25]. The syntax without the
broadcast and receive actions and all rules except (Bro-1), (Bro-c) and (Bro-r) are
taken verbatim from CCS. However, the rules now cover the different name
spaces; (Act) for example allows labels of broadcast and receive actions. The rule
(Bro-c)—without rules like (Par-1) and (Par-r) with label b'—implements a form of
broadcast communication where any broadcast b! performed by a component in
a parallel composition is guaranteed to be received by any other component that
is ready to do so, i.e., in a state that admits a b?-transition. In order to ensure
associativity of the parallel composition, one also needs this rule for components
receiving at the same time (#;=f2="7). The rules (Bro-r) and (Bro-r) are added to
make broadcast communication non-blocking: without them a component could
be delayed in performing a broadcast simply because one of the other components
is not ready to receive it.

3.3 CCS with signals

CCS with signals (CCSS) [6] is CCS extended with a signalling operator P’s.
Informally, P’s emits the signal s to be read by another process. P’s could for
instance be a traffic light emitting the signal red. The reading of the signal
emitted by P’s does not interfere with any transition of P, such as jumping to
green. Formally, CCS is extended with a set . of szgnals ranged over by s and 7.
In CCSS the set of actions is defined as Act :=.7 U €, U%), U {7}, and the set
of labels by .Z := Act U S, where .7 := {5 | s € ./} A relabelling is a function
[ (S = L)YU (G — 6h). It extends to £ by f(¢) = f(c) for c€ 6, U and
f(7) := 7. The set Pcegs of CCSS expressions is defined just as Pccs, but now
also P’s is a process for P € Pocss and s €., and restriction also covers signals.
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Table 3. Structural operational semantics for signals of CCSS

- 5 / s ’
Ps =5 Ps P?P Q—;Q
P+Q—P+Q P+Q—P+Q
a , 5 / s /
PA—;P P?P P—g)P (Ad:cfP)
Pr — P’ Pr — P'r A" A

The semantics of CCSS is given by the labelled transition relation — C
Peess X Z x Peess derived from the rules of CCS (Table 1), where now 7, ¢
range over .Z, « over Act, ¢ over 6, U.¥ and L C %, U.¥, augmented with the
rules of Table 3. The first rule is the base case showing that a process P’s emits
the signal s. The rule below models the fact that signalling cannot prevent a
process from making progress.

The original semantics of CCSS [6] featured unary predicates P™* on pro-
cesses to model that P emits the signal s; here, inspired by [3], these predicates
are represented as transitions P —=» P. Whereas this leads to a simpler opera-
tional semantics, the price paid is that these new signal transitions need special
treatment in the definition of justness—cf. Definitions 2 and 5.

3.4 Using signals to avoid negative premises in ABC

Finally, we present an alternative operational semantics ABCd of ABC that
avoids negative premises. The price to be paid is the introduction of signals
that indicate when a state does not admit a receive action.® To this end, let
P = {b: | b € B} be the set of broadcast discards, and £ := B: U Act the set
of transition labels, with Act as in Section 3.2. The semantics is given by the
labelled transition relation — C Papc X .Z X Papc derived from the rules of
CCS (Table 1), where now c ranges over €, U %, 1 over 6, U%, U {7}, a over
Act and /£ over £, augmented with the rules of Table 4.

Lemma 1 [25] P 25 Q iff Q = P A PY% for P,Q € Papc and b € A.

3 A state P admits an action o € Act if there exists a transition P - Q.

Table 4. SOS of ABC broadcast communication with discard transitions

P PLQ Y@
P+Q %P 4+q

0-%0 a.P Y o P (a#b?)

P proQ
Pl & pig

PL>P/ def

fiofo=t£_ with o (A= P)
A= A

?
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So the structural operational semantics of ABC from Sections 3.2 and 3.4 yield
the same labelled transition relation — when transitions labelled b: are ignored.
This approach stems from the Calculus of Broadcasting Systems (CBS) [25].

4 An LTS with concurrency for CCS and its extensions

The forthcoming material applies to each of the process algebras from Section 3,
or combinations thereof. Let P be the set of processes in the language.

We allocate an LTS as in Definition 1 to these languages by taking S to be
the set P of processes, and Tr the set of derivations t of transitions P LN Q
with P, Q € P. Of course src(t)=P, target(t)=Q and ¢(t)=~. Here a derivation of
a transition P —% Q is a well-founded tree with the nodes labelled by transitions,
such that the root has label P —% @, and if p is the label of a node and K is
the set of labels of the children of this node then % is an instance of a rule of
Tables 1-4.

We take Rec := 27 in ABC and ABCd: broadcast receipts can always be
blocked by the environment, namely by not broadcasting the requested message.
For CCS and CCSS we take Rec := (), thus allowing environments that can
always participate in certain handshakes, and/or always emit certain signals.

Following [15], we give a name to any derivation of a transition: The unique
derivation of the transition a.P —% P using the rule (Acr) is called 2 P. The
unique derivation of the transition Ps — P’s is called P~*. The derivation
obtained by application of (Comm) or (Bro-c) on the derivations ¢ and w of the
premises of that rule is called ¢|u. The derivation obtained by application of
(Par-L) Or (Bro-L) on the derivation ¢ of the (positive) premise of that rule, and
using process @ at the right of |, is t|Q. In the same way, (Par-r) and (Bro-r) yield
P|u7 whereas (Sum-L), (Sum-r), (Res), (Rer) and (Rec) yield t+@Q, P+t, t\L, t[f] and
A:t. These names reflect syntactic structure: ¢|P # P|t and (t|u)|v # t|(u|v).

Table 3, moreover, contributes derivations ¢t7r. The derivations obtained by
application of the rules of Table 4 are called b:0, b:a. P, t + u, t|u and A:t, where
t and u are the derivations of the premises.

Synchrons. Let Arg := {4+, +r, L, |z, \L, [f], A5, 7 | L C 6 A f a relabelling A
Ac o Nre S} A synchron is an expression o(-3P) or o(P7*%) or o(b:) with
o€ Arg", a € Act, s€ ./, P€P and b€ AB. An argument 1 € Arg is applied
componentwise to a set X' of synchrons: ¢(X) := {15 | ¢ € X'}.

The set of synchrons ¢(t) of a derivation ¢ of a transition is defined by

(3P) = {(>P)} (t+Q) = +rs(®) s(P+t) = +rs(t)
s(tlQ) = |rs(?) S(tlu) = |ps(t) Ulrs(u) s(Plu) = |gs(u)
s(t\L) = \Lg(?) sitlfl) = [fls(®) s(Ait) = Ax(t)
s(P7?) = {(P7°)} s(tr) = re(t)

s(b:0) = {(b)} s(ba.P) = {(b:)} s(t+v) = +rs(t) U +rs(v)

Thus, a synchron of ¢ represents a path in the proof-tree ¢ from its root to a leaf.
Each transition derivation can be seen as the synchronisation of one or more
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synchrons. Note that we use the symbol ¢ as a variable ranging over synchrons,
and as the name of a function—context disambiguates.

Example 3 The CCS process P = ((c.Q + (d.R|e.S))|e.T) \c¢ has 3 outgoing
transitions: P - (Q|T)\¢, P -4 ((R|e.S)|e.T)\c and P % ((d.R|S)|e.T)\c.
Let t,, tq and t. € Tr be the unique derivations of these transitions. Then
t, is a synchronisation of two synchrons, whereas t4 and t. € Tr have only
one each: s(t-) = {\c| +1(5Q), \c|r(ZT)}, s(ta) = {\c|r+r |L(5R)} and
s(te) = {\c|z +r |r(->S)}. The derivations tq and t, € Trcan be seen as concur-
rent, because their synchrons come from opposite sides of the same parallel com-
position; one would expect that after one of them occurs, a variant of the other
is still possible. Indeed, there is a transition ((d.R|S)|e.T)\¢ - ((R]S)|e.T)\c.
Let t/, be its unique derivation. The derivation t; and ¢/, are surely differ-
ent, for they have a different source state. Even their synchrons are different:
s(t) ={\clL |L(—d>R)}. Nevertheless, t/, can be recognised as a future variant of
tq: its only synchron has merely lost an argument +g. This choice got resolved
when taking the transition ¢..

We proceed to formalise the concepts “future variant” and “concurrent” that
occur above, by defining two binary relations ~» C Tr® x Tr® and —» C Tr* x Tr
such that the following properties hold:

The relation ~ is reflexive and transitive. (4)
If t ~t and t —* v, then t' —* v. (5)
If t —* v with sre(t) = sre(v) then 3t with sre(t') = target(v) and t ~ t'.  (6)
If t ~ t' then £(t') = £(t) and ¢ £ ¢'. (7)

With ¢ —* v we mean that the possible occurrence of ¢ is unaffected by the
occurrence of v. Although for CCS the relation —* is symmetric (and 7r* = Tr),
for ABC and CCSS it is not:

Example 4 ([15]) Let P be the process b!|(b? + ¢), and let t and v be the
derivations of the bl- and c-transitions of P. The broadcast b! is in our view
completely under the control of the left component; it will occur regardless of
whether the right component listens to it or not. It so happens that if b! occurs
in state P, the right component will listen to it, thereby disabling the possible
occurrence of ¢. For this reason we have ¢t ~—* v but v /» .

Example 5 Let P be the process a’s|s, and let ¢ and v be the derivations of
the a- and 7-transitions of P. The occurrence of a disrupts the emission of the
signal s, thereby disabling the 7-transition. However, reading the signal does not
affect the possible occurrence of a. For this reason we have ¢ —* v but v £* t.

Proposition 1 Assume (4)—(7). Then the LTS (P, Tr, src, target, ), augmented
with the concurrency relation -—», is an LTSC in the sense of Definition 4.

We now proceed to define the relations ~» and —* on synchrons, and then
lift them to derivations. Subsequently, we establish (4)—(7).
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The elements +p,, +r, A4: and T of Arg are called dynamic [20]; the others are
static. (Static operators stay around when their arguments perform transitions.)
For o € Arg® let static(o) be the result of removing all dynamic elements from
o. For ¢ = ov with v € {(3P), (P7%), (b:)} let static(s) := static(o)v.

Definition 6 A synchron ¢’ is a possible successor of a synchron ¢, notation
¢~ ¢, if either ¢’ = ¢, or ¢ has the form o1|ps for some o1 € Arg*, D € {L, R}
and ¢ a synchron, and ¢’ = static(o1)|psa-

Definition 7 Two synchrons ¢ and v are directly concurrent, notation ¢ —g4 v,
if ¢ has the form o1|ps2 and v = o1|gve with {D, E} = {L, R}. Two synchrons
¢’ and v’ are concurrent, notation ¢’ — v/, if I¢,v.¢" «~ ¢ —g v~ V.

Necessary and active synchrons. All synchrons of the form O’(%P) are active;
their execution causes a transition a.P — P in the relevant component of the
represented system. Synchrons o(P %) and o(b:) are passive; they are not affect-
ing any state change. Let ag(t) denote the set of active synchrons of a derivation
t. So a transition ¢ is labelled by a signal, i.e. £(t) ¢ Act, iff ac(t) = 0.

Whether a synchron ¢ € ¢(t) is necessary for ¢ to occur is defined only for
t € Tr*. If ¢ is the derivation of a broadcast transition, i.e., £(t) = b! for some
b € %, then exactly one synchron v € ¢(t) is of the form 0(E>P), while all the
other ¢ € ¢(t) are of the form 0'(b—?>Q) (or possibly o’(b:) in ABCd). Only the
synchron v is necessary for the broadcast to occur, as a broadcast is unaffected
by whether or not someone listens to it. Hence we define n¢(t) := {v}. For all
t € Tr* with £(t) ¢ B! (i.e. £(t) € S UEC, UG, U{T}) we set nc(t) := (1),
thereby declaring all synchrons of the derivation necessary.

Definition 8 A derivation ' € Tr® is a possible successor of a derivation ¢ €
Tr®, notation t ~ t’, if ¢ and ¢’ have equally many necessary synchrons and each
necessary synchron of ¢’ is a possible successor of one of t; i.e., if [n¢(t)| = |ng(t')|
and V¢’ € ng(t'). I € ng(t). ¢ ~ ¢’.

This implies that the relation ~» between ng(t) and n¢(u) is a bijection.

Definition 9 Derivation t € Tr® is unaffected by u, notation t —» u, if Vs €
ns(t). Vo € ag(u). ¢ — v.

So t is unaffected by u if no active synchron of u interferes with a necessary
synchron of ¢. Passive synchrons do not interfere at all.

In Example 3 one has tg — t., tq ~ t), and t/, — t.. Here t — u denotes
t~—uANu-—t.

Proposition 2 The relations ~ and —» satisfy the properties (4)—(7).

5 Components

This section proposes a concept of system components associated to a transi-
tion, with a classification of components as necessary and/or affected. We then
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define a concurrency relation -—=, in terms of these components closely mirroring
Definition 9 in Section 4 of the concurrency relation —* in terms of synchrons.
We show that —* and —», as well as the concurrency relation defined in terms
of components in Section 2, give rise to the same concept of justness.

A static component is a string o € Arg™ of static arguments. Let % be the
set of static components. The static component c¢(s) of a synchron ¢ is defined
to be the largest prefix « of ¢ that is a static component.

Let comp(t) := {c(s) | ¢ € s(t)} be the set of static components of t. Moreover,
npc(t) = {c(s) | s € ne(t)} and afe(t) := {c(s) | ¢ € as(t)} are the necessary
and affected static components of ¢ € Tr. Since ns(t) C ¢(t) and as(t) C ¢(t), we
have npc(t) C comp(t) and afe(t) C comp(t).

Two static components v and § are concurrent, notation v — 0, if v = o1|p7y2
and 6 = o1|gde with {D, E} = {L, R}.

Definition 10 Derivation ¢ € Tr® is statically unaffected by u, t —*, u, iff
Yy € npc(t). Vo € afc(u).y — 6.

Proposition 3 If ¢t —*,; u then t —* u.

In Example 3 we have t4 — t. but tg £ te, for npc(t.) = comp(t.) = comp(tq) =
afe(tq) = {\c|r}. Here ¢t —; u denotes t —*5 u A u —*4 t. Hence the implication
of Proposition 3 is strict.

Proposition 4 The functions npc and afc : Tr — (€ satisty closure property
(3) of Section 2.

The concurrency relation —». defined in terms of static components according
to the template in [16], recalled in Section 2, is not identical to —e:

Definition 11 Let ¢,u be derivations. Write ¢ . u iff npe(t) N afe(u) = 0.

Nevertheless, we show that for the study of justness it makes no difference
whether justness is defined using the concurrency relation —», —*4 or —=..

Theorem 2 A path is —*-B-just iff it is ~—.-B-just iff it is —*4-B-just.

6 A coinductive characterisation of justness

In this section we show that the -—*-based concept of justness defined in this
paper coincides with a coinductively defined concept of justness, for CCS and
ABC originating from [15]. To state the coinductive definition of justness, we
need to define the notion of the decomposition of a path starting from a process
with a leading static operator.
Any derivation ¢ € Tr of a transition with src(t) = P|@ has the shape

— u|Q, with target(t) = target(u)|Q,

— ulv, with target(t) = target(u)|target(v),

— or Plv, with target(t) = P|target(v).
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Let a path of a process P be a path as in Definition 2 starting with P. Now the
decomposition of a path m of P|Q into paths 7; and 75 of P and @, respectively,
is obtained by concatenating all left-projections of the states and transitions of 7
into a path of P and all right-projections into a path of Q—notation 7 = 1 |ma.
Here it could be that 7 is infinite, yet either m; or w2 (but not both) are finite.

Likewise, t € Tr with src(t) = P[f] has the shape u[f] with target(t) =
target(u)[f]. The decomposition ' of a path m of P[f] is the path obtained
by leaving out the outermost [f] of all states and transitions in 7, notation
7 = 7'[f]. In the same way one defines the decomposition of a path of P\c.

The following co-inductive definition of the family B-justness of predicates
on paths, with one family member of each choice of a set B of blocking actions,
stems from [15, Appendix E]—here D := {¢| c € D}.

Definition 12 B-justness, for 7 C B C Act, is the largest family of predicates
on the paths in the LTS of ABC such that

— a finite B-just path ends in a state that admits actions from B only;

— a B-just path of a process P|@ can be decomposed into a C-just path of P
and a D-just path of @, for some C, D C B such that 7 € BV CND = (;

— a B-just path of P\L can be decomposed into a B U L U L-just path of P;

— a B-just path of P[f] can be decomposed into an f~!(B)-just path of P;

— and each suffix of a B-just path is B-just.

Intuitively, justness is a completeness criterion, telling which paths can actually
occur as runs of the represented system. A path is B-just if it can occur in an
environment that may block the actions in B. In this light, the first, third, fourth
and fifth requirements above are intuitively plausible. The second requirement
first of all says that if 7 = mi|me and 7 can occur in the environment that
may block the actions in B, then m; and 7y must be able to occur in such
an environment as well, or in environments blocking less. The last clause in this
requirement prevents a C-just path of P and a D-just path of Q) to compose into
a B-just path of P|Q when C contains an action ¢ and D the complementary
action ¢ (except when 7 € B). The reason is that no environment (except one
that can block T-actions) can block both actions for their respective components,
as nothing can prevent them from synchronising with each other.

The fifth requirement helps characterising processes of the form b+ (A|b) and
a.(Alb), with A YA Here, the first transition ‘gets rid of’ the choice and of
the leading action a, respectively, and this requirement reduces the justness of
paths of such processes to their suffixes.

Example 6 To illustrate Definition 12 consider the unique infinite path of the
process Alice|Cataline of Example 2 in which the transition ¢ does not occur.
Taking the empty set of blocking actions, we ask whether this path is @-just. If
it were, then by the second requirement of Definition 12 the projection of this
path on the process Cataline would need to be (-just as well. This is the path 1
(without any transitions) in Example 1. It is not (-just by the first requirement
of Definition 12, because its last state 1 admits a transition.
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We now establish that the concept of justness from Definition 12 agrees with the
concept of justness defined earlier in this paper.

Theorem 3 A path is —*;-B-just iff it is B-just in the sense of Definition 12.

If a path 7 is B-just then it is C-just for any C O B. Moreover, the collection
of sets B such that a given path 7 is B-just is closed under arbitrary intersection,
and thus there is a least set B, such that 7 is B-just. Actions a € %, are called
m-enabled [14]. A path is called just (without a predicate B) iff it is B-just
for some %7 C BC B?U €, U%, U. [15,14,6,3], which is the case iff it is
B? ) G U (gh U S-just.

In [3] a definition of justness for CCS with signal transition appears, very
similar to Definition 12; it also applies to CCSS as presented here. Generalising
Theorem 3, one can show that a path is (= or . or) —-just iff it is just in
this sense. The same holds for the coinductive definition of justness from [6].

7 Conclusion

We advocate justness as a reasonable completeness criterion for formalising live-
ness properties when modelling distributed systems by means of transition sys-
tems. In [16] we proposed a definition of justness in terms of a, possibly asym-
metric, concurrency relation between transitions. The current paper defined such
a concurrency relation for the transition systems associated to CCS, as well as
its extensions with broadcast communication and signals, thereby making the
definition of justness from [16] available to these languages. In fact, we pro-
vided three versions of the concurrency relation, and showed that they all give
rise to the same concept of justness. We expect that this style of definition will
carry over to many other process algebras. We showed that justness satisfies the
criterion of feasibility, and proved that our formalisation agrees with previous
coinductive formalisations of justness for these languages.

Concurrency relations between transitions in transition systems have been
studied in [28]. Our concurrency relation —* follows the same computational
intuition. However, in [28] transitions are classified as concurrent or not only
when they have the same source, whereas as a basis for the definition of justness
here we need to compare transitions with different sources. Apart from that, our
concurrency relation is more general in that it satisfies fewer closure properties,
and moreover is allowed to be asymmetric.

Concurrency is represented explicitly in models like Petri nets [26], event
structures [29], or asynchronous transition systems [27,2,30]. We believe that the
semantics of CCS in terms of such models agrees with its semantics in terms of
labelled transition systems with a concurrency relation as given here. However,
formalising such a claim requires a choice of an adequate justness-preserving
semantic equivalence defined on the compared models. Development of such
semantic equivalences is a topic for future research.

Acknowledgement. 1 am grateful to Peter Hofner, Victor Dyseryn and Filippo
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