
0

Progress, Justness and Fairness

ROB VAN GLABBEEK and PETER HÖFNER, Data61, CSIRO and UNSW, Australia

Fairness assumptions are a valuable tool when reasoning about systems. In this paper, we classify several

fairness properties found in the literature and argue that most of them are too restrictive for many applications.

As an alternative we introduce the concept of justness.

CCS Concepts: • Theory of computation → Process calculi; Operational semantics; Program reasoning; •
Software and its engineering→ Software system models; Correctness; Semantics; • General and reference
→ Surveys and overviews;

Additional Key Words and Phrases: Fairness, Justness, Liveness, Labelled Transition Systems

1 INTRODUCTION
Fairness properties reduce the sets of infinite potential runs of systems. They are used in specification

and verification.

As part of a system specification, a fairness property augments a core behavioural specification,

given for instance in process algebra or pseudocode. The core behavioural specification typically

generates a transition system, and as such determines a set of finite and infinite potential runs of

the specified system. A fairness property disqualifies some of the infinite runs. These ‘unfair’ runs

are unintended by the overall specification. It is then up to the implementation to ensure that only

fair runs can occur. This typically involves design decisions from which the specification chooses

to abstract.

As part of a verification, a fairness property models an assumption on the specified or imple-

mented system. Fairness assumptions are normally used when verifying liveness properties, saying
that something good will eventually happen. Without making the fairness assumption, the liveness

property may not hold. When verifying a liveness property of a specification under a fairness

assumption, this guarantees that the liveness property holds for any implementation that correctly

captures the fairness requirement. When verifying a liveness property of an implemented system

under a fairness assumption, the outcome is a conditional guarantee, namely that the liveness

property holds as long as the system behaves fairly; when the system does not behave fairly, all

bets are off. Such a conditional guarantee tells us that there are no design flaws in the system other

than the—often necessary—reliance on fairness.

Progress properties reduce the sets of finite potential runs of systems. They play the same role

as fairness assumptions do for infinite runs. In the verification of liveness properties, progress

assumptions are essential. Although many interesting liveness properties hold without making

fairness assumptions of any kind, no interesting liveness property holds without assuming progress.

On the other hand, whereas a fairness assumption may be far-fetched, in the sense that run-of-the-

mill implementations tend not to be fair, progress holds in almost any context, and run-of-the-mill

implementations almost always satisfy the required progress properties. For this reason, progress

assumptions are often made implicitly, without acknowledgement that the proven liveness property

actually depends on the validity of such an assumption.

Authors’ addresses: R. van Glabbeek, P. Höfner, DATA61, CSIRO, Locked Bag 6016, UNSW, Sydney, NSW 1466, Australia.

Publication date: October 2018.

2 Rob van Glabbeek and Peter Höfner

One contribution of this paper is a taxonomy of progress and fairness properties found in the

literature. These are ordered by their strength in ruling out potential runs of systems, and thereby

their strength as an aid in proving liveness properties. Our classification includes the ‘classical’

notions of fairness, such as weak and strong fairness, fairness of actions, transitions, instructions

and components, as well as extreme fairness. We also include probabilistic fairness (cf. [51]) and
what we call full fairness [3, 8]. These are methods to obtain liveness properties, that—like fairness

assumptions—do not require the liveness property to hold for each infinite potential run. They

differ from ‘classical’ fairness assumptions in that no specific set of potential runs is ruled out.

Another contribution is the introduction of the concept of justness. Justness assumptions form a

middle ground between progress and fairness assumptions. They rule out a collection of infinite

runs, rather than finite ones, but based on a criterion that is a progress assumption in a distributed

context taken to its logical conclusion. Justness is weaker than most fairness assumptions, in the

sense that fewer runs are ruled out. It is more fundamental than fairness, in the sense that many

liveness properties of realistic systems do not hold without assuming at least justness, whereas a

fairness assumption would be overkill. As for progress, run-of-the-mill implementations almost

always satisfy the required justness properties.

The paper is organised as follows. Section 2 briefly recapitulates transitions systems and the

concept of liveness (properties). Section 3 recalls the assumption of progress, saying that a system

will not get stuck without reason. We recapitulate the classical notions of weak and strong fairness

in Section 4, and formulate them in the general setting of transition systems. In Section 5 we

capture as many as twelve notions of fairness found in the literature as instances of a uniform

definition, and order them in a hierarchy. We evaluate these notions of fairness against three

criteria from the literature, and one new one, in Section 6. In Section 7 we extend our taxonomy

by strong weak fairness, an intermediate concept between weak and strong fairness. We argue

that such a notion is needed as in realistic scenarios weak fairness can be too weak, and strong

fairness too strong. Section 8 recalls the formulations of weak and strong fairness in linear-time

temporal logic. In Section 9 we present the strongest notion of fairness conceivable, and call it full

fairness. Section 10 proves that on finite-state transition systems, strong fairness of transitions,

one of the notions classified in Section 5, is as strong as full fairness. Sections 11 and 12 relate our

taxonomy to two further concepts: probabilistic and extreme fairness. We show that probabilistic

fairness is basically identical to strong fairness of transitions, whereas extreme fairness is the

strongest possible notion of fairness that (unlike full fairness) fits the unifying definition proposed

in Section 4. Section 12 concludes the comparison of fairness notions found in the literature. We

then argue, in Section 13, that the careless use of any fairness assumption in verification tasks can

yield false results. To compensate for this deficiency, we discuss a stronger version of progress,

called justness, which can be used without qualms. Section 14 develops fairness notions based

on justness, and adds them to the hierarchy of fairness notions. Section 15 discusses fairness of

events, another notion of fairness from the literature, and shows that, although defined in a rather

different way, it coincides with justness. Sections 2–15 deal with closed systems, having no run-time

interactions with the environment. This allows us a simplified treatment that is closer to the existing

literature. Section 16 generalises almost all definitions and results to reactive systems, interacting

with their environments through synchronisation of actions. This makes the fairness notions more

widely applicable. The penultimate Section 17 evaluates the notions of fairness discussed in the

paper against the criteria for appraising fairness properties. We relate our hierarchy to earlier

classifications of fairness assumptions found in the literature in Section 18, and close with a short

discussion about future work.

Progress, Justness and Fairness 3

2 TRANSITION SYSTEMS AND LIVENESS PROPERTIES
In order to formally define liveness as well as progress, justness and fairness properties, we take

transition systems as our system model. Most other specification formalisms, such as process

algebras, pseudocode, or Petri nets, have a straightforward interpretation in terms of transition

systems. Using this, any liveness, progress, justness or fairness property defined on transition

systems is also defined in terms of those specification formalisms.

Depending on the type of property, the transition systems need various augmentations. We

introduce these as needed, starting with basic transition systems.

Definition 2.1. A transition system is a tuple G = (S, Tr, source, target, I) with S and Tr sets (of
states and transitions), source, target : Tr → S , and I ⊆ S (the initial states).

Later we will augment this definition with various attributes of transitions, such that different

transitions between the same two states may have different attributes. It is for this reason that we

do not simply introduce transitions as ordered pairs of states.

Example 1. The program x := 1; y := 3 is represented by the transition system

1 2

x := 1

3

y := 3

.

Here the short arrow without a source state indicates an initial state.

Progress and fairness assumptions are often made when verifying liveness properties. A liveness
property says that “something [good] must happen” eventually [36]. One of the ways to formalise

this in terms of transition systems is to postulate a set of good states G ⊆ S . In Example 1, for

instance, the good thing could be y = 3, so that G consists of state 3 only—indicated by shading.

The liveness property given by G is now defined to hold iff each system run—a concept yet to be

formalised—reaches a state д ∈ G .

We now formalise a potential run of a system as a rooted path in its representation as a transition

system.

Definition 2.2. A path in a transition systemG = (S, Tr, source, target, I) is an alternating sequence
π = s0 t1 s1 t2 s2 · · · of states and transitions, starting with a state and either being infinite or ending

with a state, such that source(ti) = si−1 and target(ti) = si for all relevant i; it is rooted if s0 ∈ I .

Example 1 has three potential runs, represented by the rooted paths 1 t 2u 3, 1 t 2 and 1, where t
and u denote the two transitions corresponding to the instructions x := 1 and y := 3. The rooted

path 1 t 2 models a run consisting of the execution of x := 1 only, without ever following this up

with the instruction y := 3. In that run the system stagnates in state 2. Likewise, the rooted path 1

models a run where nothing ever happens.

Including these potential system runs as actual runs leads to a model of concurrency in which

no interesting liveness property ever holds, e.g. the liveness property G for Example 1.
1

Progress, justness and fairness assumptions are all used to exclude some of the rooted paths as

system runs. Each of them can be formulated as, or gives rise to, a predicate on paths in transition

systems. We call a path progressing, just or fair, if it meets the progress, justness or fairness

assumption currently under consideration. We call it complete if it meets all progress, justness and

fairness assumptions we currently impose, so that a rooted path is complete iff it models a run of

the represented system that can actually occur.

1
A partial run is an initial part of a system run. Naturally, the paths 1 t 2 and 1 always model partial runs in Example 1,

even when we exclude them as runs. Partial runs play no role in this paper.

4 Rob van Glabbeek and Peter Höfner

3 PROGRESS
If the rooted path 1 t 2 of Example 1 is not excluded and models an actual system run, the system is

able to stagnate in state 2, and the program does not satisfy the liveness property G . The assumption

of progress excludes this type of behaviour.2 For closed systems, it says that

a (transition) system in a state that admits a transition will eventually progress, i.e., perform a
transition.

In other words, a run will never get stuck in a state with outgoing transitions.

Definition 3.1. A path in a transition system representing a closed system is progressing if either

it is infinite or its last state is the source of no transition.

When assuming progress—one only considers progressing paths—the program of Example 1

satisfies G .

Progress is assumed in almost all work on process algebra that deals with liveness properties,

mostly implicitly.Milnermakes an explicit progress assumption for the process algebra CCS in [43].

A progress assumption is built into the temporal logics LTL [50], CTL [19] and CTL* [20], namely by

disallowing states without outgoing transitions and evaluating temporal formulas by quantifying

over infinite paths only.
3
In [33] the ‘multiprogramming axiom’ is a progress assumption, whereas

in [1] progress is assumed as a ‘fundamental liveness property’. In many other papers on fairness a

progress assumption is made implicitly [2].

An assumption related to progress is that ‘atomic actions always terminate’ [46]. Here we have

built this assumption into our definition of a path. To model runs in which the last transition never

terminates, one could allow paths to end in a transition rather than a state.

4 FAIRNESS
Example 2. Consider the following program [39].

initialise y to 1

y := 0

 while (y > 0) do y := y + 1 od

This program runs two parallel threads: the first simply sets y to 0, while the second one repeatedly

increments y, as long as y > 0. We assume that in the second thread, the evaluation of the guard

y > 0 and the assignment y := y + 1 happen in one atomic step, so that it is not possible that first

the guard is evaluated (positively), then y := 0 is executed, and subsequently y := y + 1.

y := y + 1

y := 0

The transition system on the right describes the

behaviour of this program. Since initialise y to 1 is

an initialisation step, it is not shown in the transi-

tion system. In the first state y has a positive value,

whereas in the second it is 0.

A different transition system describing the same program is shown below.

y := y+1

y := 0

y := y+1

y := 0

y := y+1

y := 0

y := y+1

y := 0

y := y+1

y := 0

· · ·

2
Misra [44, 45] calls this the ‘minimal progress assumption’. In [45] he uses ‘progress’ as a synonym for ‘liveness’. In session

types, ‘progress’ and ‘global progress’ are used as names of particular liveness properties [11]; this use has no relation with

ours.

3
Exceptionally, states without outgoing transitions are allowed, and then quantification is over all maximal paths, i.e. paths
that are infinite or end in a state without outgoing transitions [16].

Progress, Justness and Fairness 5

A liveness property is that eventually y = 0. It is formalised by letting G consist of the rightmost

state in the first, or of all the bottom states in the second transition system.When assuming progress

only, this liveness property does not hold; the only counterexample is the red coloured path. This

path might be considered ‘unfair’, because the left-hand thread is never executed. A suitable fairness

assumption rules out this path as a possible system run.

To formalise fairness we use transition systems G = (S, Tr, source, target, I ,T) that are aug-

mented with a set T ⊆ P(Tr) of tasks T ⊆ Tr, each being a set of transitions.

Definition 4.1. For a given transition systemG=(S, Tr, source, target, I ,T), a taskT ∈T is enabled
in a state s ∈ S if there exists a transition t ∈ T with source(t) = s . The task is said to be perpetually
enabled on a path π in G, if it is enabled in every state of π . It is relentlessly enabled on π , if each
suffix of π contains a state in which it is enabled.

4
It occurs in π if π contains a transition t ∈ T .

A path π in G is weakly fair if, for every suffix π ′
of π , each task that is perpetually enabled on

π ′
, occurs in π ′

.

A path π in G is strongly fair if, for every suffix π ′
of π , each task that is relentlessly enabled on

π ′
, occurs in π ′

.

The purpose of these properties is to rule out certain paths from consideration (the unfair ones),

namely those with a suffix in which a task is enabled perpetually (or, in the strong case, relentlessly)

yet never occurs. To avoid the quantification over suffixes, these properties can be reformulated:

A path π in G is weakly fair if each task that from some state onwards is perpetually enabled on

π , occurs infinitely often in π .
A path π inG is strongly fair if each task that is relentlessly enabled on π , occurs infinitely often

in π .
Clearly, any path that is strongly fair, is also weakly fair.

Weak [strong] fairness is the assumption that only weakly [strongly] fair rooted paths represent

system runs. When applied to pseudocode, process algebra expressions or other system specifica-

tions that translate to transition systems, the concepts of weak and strong fairness are parametrised

by the way to extract the collection T of tasks from the specification. For one such extraction,

called fairness of directions in Section 5, weak and strong fairness were introduced in [2]. Weak

fairness was introduced independently, under the name justice, in [39], and strong fairness, under

the name fairness, in [30] and [39]. Strong fairness is called compassion in [41, 42].

Recall that the transition systems of Example 2, when merely assuming progress, do not satisfy

the liveness property G . To change that verdict, we can assume fairness, by defining a collection T
of tasks. We can, for instance, declare two tasks:T1 being the set of all transitions labelled y := y + 1

andT2 the set of all transitions labelled y := 0. Now the red path in the second transition system, as

well as all its prefixes, becomes unfair, since task T2 is perpetually enabled, yet never occurs. Thus,

in Example 2, G does hold when assuming weak fairness, with T = {T1,T2}. In fact, it suffices to

take T = {T2}. Assuming strong fairness gives the same result.

Example 3. Consider the following basic mutual exclusion protocol [39].

initialise y to 1

while (true)
ℓ0 noncritical section
ℓ1 await(y > 0){y := y−1}

ℓ2 critical section
ℓ3 y := y+1

while (true)

m0 noncritical section
m1 await(y > 0){y := y−1}

m2 critical section
m3 y := y+1

4
This is the case if the task is enabled in infinitely many states of π , in a state that occurs infinitely often in π , or in the last

state of a finite π .

6 Rob van Glabbeek and Peter Höfner

Here instructions ℓ1 andm1 wait until y > 0 (possibly forever) and then atomically execute the

instructiony := y−1, meaning without allowing the other process to change the value ofy between

the evaluation y > 0 and the assignment y := y − 1. Dijkstra [17] abbreviates this instruction as

P(y); it models entering of a critical section, with y as semaphore. Instructions ℓ3 andm3 model

leaving the critical section, and are abbreviated V(y).

ℓ1

ℓ2

ℓ3

m1

m2

m3

The induced transition system is depicted on the right, when

ignoring lines ℓ0 andm0, which play no significant role.

Let G contain the single marked state; so the good thing

we hope to accomplish is the occurrence of ℓ2, saying that the
left-hand process executed its critical section. Our tasks could

be L = {ℓ1, ℓ2, ℓ3} andM = {m1,m2,m3}. Here weak fairness

is insufficient to ensure G , but under the assumption of strong fairness this liveness property holds.

In [30, 39], the assumptions of weak and strong fairness restrict the set of infinite runs only. These

papers consider a path π in G weakly fair if either it is finite, or each task that from some state

onwards is perpetually enabled on π , occurs infinitely often in π . Likewise, a path is considered

strongly fair if either it is finite, or each task that is relentlessly enabled on π occurs infinitely

often in π . This makes it necessary to assume progress in addition to fairness when evaluating the

validity of liveness properties.

In this paper we have dropped the exceptions for finite paths. The effect of this is that the

progress assumption is included in weak or strong fairness, at least when

⋃
T ∈T T = Tr. The latter

condition can always be realised by adding the task Tr to T —this has no effect on the resulting

notions of weak and strong fairness for infinite paths. Moreover, dropping the exceptions for finite

paths poses no further restrictions on finite paths beyond progress.

5 A TAXONOMY OF FAIRNESS PROPERTIES
For a given transition system, the concepts of strong and weak fairness are completely determined

by the collection T of tasks. We now address the question how to obtain T . The different notions

of fairness found in the literature can be cast as different answers to that question.

As a first classification we distinguish local and global fairness properties.

A global fairness property is formulated for transition systems that are not naively equipped with

a set T , but may have some other auxiliary structure, inherited from the system specification (such

as program code or a process algebra expression) that gave rise to that transition system. The set

T of tasks, and thereby the concepts of strong and weak fairness, is then extracted in a systematic

way from this auxiliary structure. An example of this is fairness of actions. Here transitions are
labelled with actions, activities that happen when the transition is taken. In Example 2, the actions

are {y :=y+1, y :=0}, and in Example 3 {ℓ0, ℓ1, ℓ2, ℓ3,m0,m1,m2,m3}. Each action constitutes a task,

consisting of all the transitions labelled with that action. Formally, T = {Ta | a ∈ Act}, where Act
is the set of actions and Ta = {t | t is labelled by a}. This is in fact the notion of fairness employed

in Example 2, and using it for Example 3 would give rise to the same set of fair paths as the set of

tasks employed there.

a
c

d
bA local fairness property on the other hand is created in an

ad hoc manner to add new information to a system specifi-

cation. In the transition system on the right, for instance, we

may want to make sure that incurring the cost c is always followed by reaping the benefit b. This
can be achieved by explicitly adding a fairness property to the specification, ruling out any path

that gets stuck in the d-loop. This can be accomplished by declaring {b} a task. At the same time,

it may be acceptable that we never escape from the a-loop. Hence there is no need to declare a

Progress, Justness and Fairness 7

task {c}. Whether we also declare tasks {a} and {d} makes no difference, provided that progress is

assumed—as we do. A global fairness property seems inappropriate for this example, as it is hard

to imagine why it would treat the a-loop with the c-exit differently from the d-loop with the b-exit.
Under local fairness, a system specification consists of two parts: a core part that generates

a transition system, and a fairness component. This is the way fairness is incorporated in the

specification language TLA
+
[38]. It also is the form of fairness we have chosen to apply in [22,

Sect. 9] for the formal specification of the Ad hoc On-demand Distance Vector (AODV) protocol [48],

a wireless mesh network routing protocol, using the process algebra AWN [21] for the first part and

Linear-time Temporal Logic (LTL) [50] for the second. Under global fairness, a system specification

consists of the core part only, generating a transition system with some auxiliary structure, together

with just the choice of a notion of fairness, that extracts the set of tasks—or directly the set of fair

paths—from this augmented transition system. Below we discuss some of these global notions of

fairness, and cast them as a function from the appropriate auxiliary structure of transition systems

to a set of tasks. Examples are given afterwards.

Fairness of actions (A) Fairness of actions is already defined above; the auxiliary structure it

requires is a labelling ℓ : Tr→Act of transitions by actions. This notion of fairness appears,

for instance, in [37] and [5, Def. 3.44]. It has been introduced, under the name fairness of

transitions, in [53, Def. 1].

Fairness of transitions (T) Taking the tasks to be the transitions, rather than their labels, is

another way to define a collection T of tasks for a given transition system G. T consists of

all singleton sets of transitions of G. In the first transition system of Example 2 T would

consist of two elements, whereas the second transition system would yield an infinite set T .

This notion of fairness does not require any auxiliary structure on G. Fairness of transitions
appears in [24, Page 127] under the nameσ -fairness. A small variation, obtained by identifying

all transitions that have the same source and target, originates from [53, Def. 2].

Fairness of directions (D) We need a transition system where each transition is labelled with

the instruction or direction in the program text that gave rise to that transition. The auxiliary

structure is a function instr : Tr → I, where I is a set (of instructions or directions). Now
each instruction gives rise to a task: T := {TI | I ∈ I} withTI := {t ∈ Tr | instr(t) = I }. This
is the central notion of fairness in Francez [24]. If we would take Act := I and ℓ := instr
then fairness of actions becomes the same as fairness of directions.

Fairness of instructions (I) When allowing instructions to synchronise, each transition is derived

not from a single instruction, but from a nonempty set of them. So the auxiliary structure is a

function instr : Tr → P(I) with instr(t) , ∅ for all t ∈ Tr. The set instr(t) has two elements

for a handshake communication and N for N-way communication. There are two natural

ways to generalise fairness of directions to this setting.

The first, which we call fairness of instructions, assigns a task to each instruction; a transition

belongs to that task if that instruction contributed to it. SoT := {TI | I ∈ I}withTI :={t ∈ Tr |
I ∈ instr(t)}. This type of fairness appears in [33] under the name guard fairness.

Fairness of synchronisations (Z) The second way assigns a task to each set of instructions; a

transition belongs to that task if it is obtained through synchronisation of exactly that set

of instructions: T := {TZ | Z ⊆ I} with TZ := {t ∈ Tr | instr(t) = Z }. Here a local action,
involving one component only, counts as a singleton synchronisation. This type of fairness

appears in [33] under the name channel fairness, and in [1] under the name communication

fairness.

8 Rob van Glabbeek and Peter Höfner

Fairness of components (C) We need a transition system where each transition is labelled with

the parallel component of the represented system that gave rise to that transition.
5
When

allowing synchronisation, each transition stems from a nonempty set of components. So the

auxiliary structure is a function comp : Tr → P(C) with comp(t) , ∅ for all t ∈ Tr. Under
fairness of components each component determines a task. A transition belongs to that task if

that component contributed to it. So T := {TC | C ∈ C } with TC := {t ∈ Tr | C ∈ comp(t)}.
This is the type of fairness studied in [13, 15]; it also appears in [1, 33] under the name process

fairness.

Fairness of groups of components (G) This is like fairness of components, except that each set
of components forms a task, and a transition belongs to that task if it is obtained through

synchronisation of exactly that set of components: T := {TG | G ⊆ C } with TG := {t ∈ Tr |
comp(t) =G}. This type of fairness appears in [1] under the name channel fairness when

allowing only handshake communication, and under the name group fairness when allowing

N-way communication.

Under each of the above notions of fairness, the first transition system of Example 2 has two

tasks, each consisting of one transition. The transition system of Example 3 has six tasks of one

transition each for fairness of actions, transitions, directions, instructions or synchronisations, but

two tasks under fairness of components or groups of components. For Example 3, G holds in all

cases when assuming strong fairness, but not when assuming weak fairness.

For transition systems derived from specification formalisms that do not feature synchronisation

[2, 30, 39], fairness of instructions, of synchronisations, and of directions coincide. Likewise, fairness

of groups of components coincides with fairness of components. The notion of fairness introduced

in [2, 30] is fairness of directions, whereas [39] introduces fairness of components.

Let xy be the fairness assumptionwith x ∈ {W, S} indicatingweak or strong andy ∈ {A,T,D, I,Z,
C,G} one of the notions of fairness above.

For the forthcoming examples we use the process algebra CCS [43]. Given a set of action names a,
b, c , . . . , where each action a has a complement ā, the set of CCS processes is built from the following

constructs: 0 is the empty process (deadlock) offering no continuation; the process a.E can perform

an action a and continue as E;6 7
the process τ .E can perform the internal action τ and continue as

E; the process E + F offers a choice and can proceed either as E or as F ; the parallel composition

E |F allows E and F to progress independently; moreover, in case E can perform an action a and

F can perform its complement ā (or vice versa), the two processes can synchronise by together

performing an internal step τ ; the process E\a modifies E by inhibiting the actions a and ā; and the

relabelling E[f] uses the function f to rename action names in E. Infinite processes can be specified

by process variables X that are bound by defining equations X
def
= E, where E is a process expression

constructed from the elements described above. CCS expressions generate transition systems where

transitions are labelled with the actions a process performs—in case of synchronisation the label is

τ . The complete formal syntax and semantics is presented in Appendix A. There, we also define a

fragment of CCS, and augment the transition systems generated by this fragment with the functions

ℓ : Tr → Act , instr : Tr → P(I) and comp : Tr → P(C).

5
A parallel component c may itself have further parallel components c1 and c2, so that the collection of all parallel

components in a given state of the system may be represented as a tree (with the entire system in that state as root). A

transition that can be attributed to component c1 thereby implicitly also belongs to c . We label such a transition with c1

only, thus employing merely the leaves in such a tree. The number of components of a system is dynamic, as a single

component may split into multiple components only after executing some instructions.

6
Assuming progress, it has to perform the action.

7
We often abbreviate a .0 by a.

Progress, Justness and Fairness 9

In the following examples we use that fragment of CCS and always consider a liveness property

G , indicated by the shaded states in the depicted transition systems. Since xD-fairness coincides

with both xI and xZ-fairness whenever it is defined, i.e., if instr : Tr → P(I) maps to singleton

sets only, we do not examine this notion separately. Similar to D we could have introduced a

separate notion of fairness for the case that comp(t) always yields a singleton set of components

that specialises to C or G when it does not.

Example 4. Consider the process a |X where X
def
= a.X . Its

t1 a

a
t2 t3 a

transition system is depicted on the right, where the names

ti differentiate transitions. The process specification contains

two occurrences of the action a, which we will call a1 and

a2. These will be our instructions: instr : Tr → P(I) is given by instr(t1) = instr(t3) = {a2} and

instr(t2)= {a1}. The process has three components, namely a (named l),X (named r), and the entire

expression. Now comp : Tr → P(C) is given by comp(t1) = comp(t3) = {r} and comp(t2) = {l}.

Each of the notions of fairness I, Z, C and G yields two tasks: {t1, t3} and {t2}. On the only infinite

path that violates liveness property G , task {t2} is perpetually enabled, yet never occurs. Hence,

when assuming xy-fairness with x ∈ {W, S} and y ∈ {I,Z,C,G}, this path is unfair, and the liveness

property G is satisfied. The same holds when assuming xT-fairness, even though this notion gives

rise to three tasks. However, under the fairness assumption SA (and thus certainly under WA)

property G is not satisfied, as all three transitions form one task.

Example 5. Consider the process a |X where X
def
= b0.(X [f]). Here f is a relabelling operator

a t0

b0

t1
a t2

b1

t3
a t4

b2

t5
· · ·

with f (bi) = bi+1 for i ≥ 0 and f (a) = a. When tak-

ing y ∈ {A, I ,Z,C,G} there is a task {t0, t2, t4, . . . },
which is perpetually enabled until it occurs. So, un-

der xy-fairness the process does satisfy G . Yet under

xT-fairness each transition is a separate task, and

this property is not satisfied.

Example 6. Consider the processX whereX
def
= a.X+b. Assuming xy-fairness withy∈{A,T, I,Z}

a t1
b
t2

there is a task {t2}, so that G is satisfied. Yet, since there is

only one parallel component, SG- and SC-fairness allow

an infinite path without transition t2, so that G is not

satisfied.

Example 7. Consider the process (X |Y)\b where X
def
= a.X + b

a t1
ct3

t2 τ

and Y
def
= c .Y + ¯b. The instructions are the action occurrences in

the specification: I= {a,b, c, ¯b}. We have instr(t1)= {a}, instr(t2) =
{b, ¯b} and instr(t3) = {c}. There are three components, namely

X (called l), Y (called r), and the entire expression(X |Y)\b, with
comp(t1) = {l}, comp(t2) = {l, r} and comp(t3) = {r}. So under fairness of synchronisations, or

groups of components, there is a task {t2}, making a path that never performs t2 unfair. The same

holds under fairness of actions or transitions, as well as instructions. Hence G is satisfied. However,

under fairness of components, the tasks are {t1, t2} and {t2, t3} and G is not satisfied.

In the remainder of this section we establish a hierarchy of fairness properties; for this we

introduce a partial order on fairness assumptions.

Definition 5.1. Fairness assumption F is stronger than fairness assumption H, denoted by H ⪯ F,

iff F rules out at least all paths that are ruled out by H.

10 Rob van Glabbeek and Peter Höfner

Figure 1 classifies the above progress and fairness assumptions by strength, with arrows point-

ing towards the weaker assumptions. P stands for progress. Arrows derivable by reflexivity or

P

SA

WA

ST

WT

SI

WI

SZ(2) (2),(3)

WZ

(1)

SC

(2),(3)
(2),(3)

WC

SG

WG

Fig. 1. A classification of progress and fairness

transitivity of ⪯ are suppressed. The numbered ar-

rows are valid only under the following assump-

tions:

(1) For each synchronisation Z ⊆ I, and for each

state s , there is at most one transition t with
instr(t) = Z enabled in s .

(2) I is finite.

(3) There is a function cp :I→C such that

comp(t) = {cp(I) | I ∈ instr(t)} for all t ∈ Tr.
These assumptions hold for the transition systems

derived from the fragment of CCS presented in Ap-

pendix A. All other arrows have full generality. The

validity of the arrows is shown below (Props. 5.2–

5.5). The absence of any further arrows follows from

Examples 3–12: Example 3 separates weak from

strong fairness; it shows that Sy ⪯̸ Wy ′ for all y,y ′ ∈ {A,T, I,Z,C,G}. Example 4 shows that

there are no further arrows from SA, and thus none from WA. Example 5 shows that there are no

further arrows from ST, and thus none from WT. Together with transitivity, these two conclusions

also imply that there are no further arrows from P. Examples 6, 7 and the forthcoming Example 8

show that there are no further arrows from SG, SC and SI, respectively, and thus none from WC.

Examples 9, 10 and 12 show that there are no further arrows into ST, WA and WC, respectively,

and thus, using transitivity, no further from SZ. Example 11 shows that there are no further arrows

from WZ. Further arrows from WI or WG are already ruled out by transitivity of ⪯. □

Example 8. Consider the process X |Y where X
def
= a.X and

a ā

τ

Y
def
= ā.Y . The infinite path (aā)∞ is x I-fair and xC-fair, but not

xy-fair for y ∈ {A,T,Z,G}.

Example 9. Consider the process X |Y where X
def
= a.X and Y

def
= b .c .Y . Under ST-fairness, the

a
t1

a
t3

b
t2
c
t4

path (abc)∞ is unfair, because task {t3} is infinitely
often enabled, yet never taken. However, under xy-
fairness for y ∈ {A, I,Z,C,G} there is no task {t3}
and the path is fair.

Example 10. Consider the processX whereX
def
= a.X + c .X + b .(X [f]), using a relabelling oper-

a

c

b
c

a

b
a

c

b
· · ·

ator with f (a) = c , f (c) = a and f (b) = b. Under xA-

fairness, the path (ab)∞ is unfair, because task c is

perpetually enabled, yet never taken. However, there

are only three instructions (and one component), each

of which gets its fair share. So under xy-fairness for
Y ∈ {I,Z,C,G} the path is fair. It is also xT fair.

Example 11. Consider the process (a |X |Y)\a where X
def
= ā.ā.X and

τ

τ
τ

τ
τ
τ

Y
def
= a.Y . UnderWy-fairnesswithy∈{I,C,G} propertyG is satisfied, but

under WZ- and WT and -fairness it is not, because each synchronisation

is enabled merely in every other state, not perpetually. Since there is

only a single action τ , under xA-fairness property G is not satisfied.

Progress, Justness and Fairness 11

Example 12. Consider the process ((a+c)|X |Y |Z)\a\b\c\d
τ τ

ττ

τ

τ τ

τ

τ τ

where X
def
= ā. ¯b .X , Y

def
= c̄ . ¯d .Y and Z

def
= a.b .c .d .Z . Under WC-

fairness G is satisfied, but under Wy-fairness with y ∈

{A,T, I,Z,G} it is not.

Proposition 5.2. P ⪯ Wy ⪯ Sy for Y ∈ {A,T, I,Z,C,G}.

Proof. That Wy ⪯ Sy follows from Definition 4.1. That

P ⪯ Wy follows since for each y we have

⋃
T ∈T T = Tr. □

Proposition 5.3. WT ⪯ WZ.

Proof. Let π be a WZ-fair path on which a transition t is perpetually enabled. Then Tinstr(t), as
defined on Page 7, is a WZ-task that is perpetually enabled on π . So a transition in Tinstr(t) must

eventually occur, say in state s on π . By (1) t is the only transition from Tinstr(t) enabled in s . So t
will occur. □

Proposition 5.4. SI ⪯ SZ.

Proof. By (2) there are only finitely many SI- and SZ-tasks. Moreover, each SI-task is the union

of a collection of SZ-tasks. Let π be a SZ-fair path on which a SI-task T is infinitely often enabled

(or in the last state). Then an SZ-taskT ′ ⊆ T must be be infinitely often enabled on π (or in the last

state). So T ′
, and hence T , will occur on π . □

Proposition 5.5. SC ⪯ SI and SC ⪯ SG ⪯ SZ.

Proof. By (2) and (3) there are only finitely many SI-, SZ-, SC- and SG-tasks. Moreover, each

SC-task is the union of a collection of SI-tasks; each SG-task is the union of a collection of SZ-tasks;

and each SC-task is the union of a collection of SG-tasks. The rest of the proof proceeds as for

Proposition 5.4. □

6 CRITERIA FOR EVALUATING NOTIONS OF FAIRNESS
In this section we review four criteria for evaluating fairness properties—the first three taken from

[1]—and evaluate the notions of fairness presented so far. We treat the first criterion—feasibility—as

prescriptive, in that we discard from further consideration any notion of fairness not meeting this

criterion. The other criteria—equivalence robustness, liveness enhancement, and preservation under

unfolding—are merely arguments in selecting a particular notion of fairness for an application. In

Section 14 we propose a fifth criterion—preservation under refinement of actions—and argue that

none of the weak notions of fairness satisfies that latter criterion.

6.1 Feasibility
The purpose of fairness properties is to reduce the set of infinite potential runs of systems, without

altering the set of finite partial runs in any way. Hence a natural requirement is that any finite

partial run can be extended to a fair run. This appraisal criteria on fairness properties has been

proposed by Apt, Francez & Katz in [1] and called feasibility. It also appears in Lamport [37]

under the name machine closure. We agree with Apt et al. and Lamport that this is a necessity

for any sensible notion of fairness. By means of the following theorem we show that this criterion

is satisfied by all fairness properties reviewed so far, when applied to the fragment of CCS from

Appendix A.

Theorem 6.1. If, in a transition system, only countably many tasks are enabled in each state

then the resulting notions of weak and strong fairness are feasible.

12 Rob van Glabbeek and Peter Höfner

Proof. We present an algorithm for extending any given finite path π0 into a fair path π . We

build anN ×N-matrix with a column for the—to be constructed—prefixes πi of π , for i ≥ 0. The

columns πi will list the tasks enabled in the last state of πi , leaving empty most slots if there are

only finitely many. An entry in the matrix is either (still) empty, filled in with a task, or crossed out.

Let f : N→ N ×N be an enumeration of the entries in this matrix.

At the beginning only π0 is known, and all columns of the matrix are empty. At each step i ≥ 0

we proceed as follows:

Since πi is known, we fill the i-th column by listing all enabled tasks. In case no task is enabled

in the last state of πi , the algorithm terminates, with output πi . Otherwise, we take j to be the

smallest value such that entry f (j) ∈ N ×N is already filled in, but not yet crossed out, and the

task T listed at f (j) also occurs in column i (i.e., is enabled in the last state of πi). We now extend

πi into πi+1 by appending a transition from T to it, while crossing out entry f (j).
Obviously, πi is a prefix of πi+1, for i ≥ 0. The desired fair path π is the limit of all the πi . It is

strongly fair (and thus weakly fair), because each task that is even once enabled will appear in the

matrix, which acts like a priority queue. Since there are only finitely many tasks with a higher

priority, at some point this task will be scheduled as soon as it occurs again. □

Since our fragment of CCS yields only finitely many instructions and components, there are

only finitely many tasks according to the fairness notions I,Z,C and G. Moreover, there are only

countably many transitions in the semantics of this fragment, and consequently only countably

many action labels. Hence all fairness notions reviewed so far, applied to this fragment of CCS, are

feasible.

6.2 Equivalence robustness
Example 13. Consider the process (X |Y |Z)\b where X

def
=

τ

τ
a

e

dc

τ

τ
a

e

dc

a.e .X + b, Y
def
= ¯b and Z

def
= d .c .Z + b. Under fairness of com-

ponents, the four τ -transitions form one task, as these are the

transitions that synchronise with component Y . Thus, under
WC-fairness, the path (caed)∞ is unfair, because that task is

continuously enabled, yet never taken. However, the path

(cade)∞ is fair, since this task is infinitely often not enabled.

In partial order semantics [52] these two runs are considered

equivalent: both model the parallel composition of runs (ae)∞

of component X and (cd)∞ of component Z , with no causal

dependencies between any actions occurring in the latter two runs. For this reason WC-fairness is

is not robust under equivalence, as proposed in [1].

In general, Apt, Francez & Katz call a fairness notion equivalence robust if “for two infinite

sequences which differ by a possibly infinite number of interchanges of independent actions (i.e.

equivalent sequences), either both are fair according to the given definition, or both are unfair.” [1]

Example 14. Consider the process (X |Y)\b where X
def
=

τ
a

e

dc

a

e

dc

a.e .X + b andY
def
= ¯b + d .c .Y . Under fairness of actions, transi-

tions, instructions, synchronisations or groups of components,

the τ -transition forms a separate task. Thus, under Sy-fairness,

for y ∈ {A,T, I,Z,G}, the path (cade)∞ is unfair, because that

task is infinitely often enabled, yet never taken. However, the

path (acde)∞ is fair, since this task is never enabled. Yet these

two runs are partial-order equivalent, so also Sy-fairness for

y ∈ {A,T, I,Z,G} is not equivalence robust.

Progress, Justness and Fairness 13

That WC-, SG- and SZ-fairness are not equivalence robust was established by Apt et al. [1].

There it is further shown that on a fragment of the process algebra CSP [31], featuring only 2-way

synchronisation, SC-fairness is equivalence robust. We do not know if this result extends to our

fragment of CCS, as it is in some ways less restrictive than the employed fragment of CSP. In the

presence of N -way synchronisation (with N>2) SC-fairness is not equivalence robust [1]; this is

shown by a variant of Example 14 that features an extra component Z , performing a single action

that synchronises with both b and
¯b. Apt et al. also show that, on their fragment of CSP, WG- and

WZ-fairness are equivalence robust. We do not know if these results hold in full generality, or for

our fragment of CCS. Example 13 shows that WA- and WI-fairness are not equivalence robust.

6.3 Liveness enhancement
A notion of fairness F is liveness enhancing if there exists a liveness property that holds for some

system when assuming F, but not without assuming F. This criterion for appraising fairness notions

stems from [1], focusing on the liveness property of termination; there, F is liveness enhancing iff

there exists a system such that all its fair runs terminate, but not all its unfair runs.

When taken literary as worded above, the assumption of progress is liveness enhancing, since

the program from Example 1 does satisfy the liveness property G when assuming progress, but not

without assuming progress. Since all fairness properties reviewed here are stronger then progress,

it follows that they are liveness enhancing as well.

The notion becomes more interesting in the presence of a background assumption, which

is weaker than the fairness assumption being appraised. Assumption F then becomes liveness

enhancing if there exist a liveness property that holds for some system when assuming F but not

when merely making the background assumption. In [1] minimal progress is used as background

assumption: ‘Every process in a state with enabled local actions will eventually execute some

action.’ Here a process is what we call a component, and an action of that component is local if it it
is not a synchronisation. This is a weaker form of the assumption of justness, to be introduced in

Section 13.

In [1] it is established that WC-, WG- and WZ-fairness are not liveness enhancing on the

employed fragment of CSP, whereas SC, SG- and SZ-fairness are. The negative results are due to

the limited expressive power of that fragment of CSP; in our setting all notions of fairness reviewed

so far are liveness enhancing w.r.t. the background assumption of minimal progress. This follows

from Examples 6 and 11.

6.4 Preservation under unfolding
When using fairness of transitions in the first transition system of Example 2 the task T consists

of two elements, and G is ensured, whereas the second transition system yields an infinite set T ,

and G is not guaranteed, even though the second transition system is simply an unfolding of the

first. This could be regarded as a drawback of fairness of transitions.

A possible criterion on fairness notions is that it ought to be possible to unfold a transition

system G into a tree—which yields a bijective correspondence between the paths in G and those in

its unfolding—without changing the set of fair paths.

This criterion holds for all notions of fairness considered so far, except for fairness of transitions.

The reason is that any transition in the unfolding is inherited from a transition t in G , and thereby

inherits properties like ℓ(t), instr(t) and comp(t).
In [53], where fairness of transitions is employed, care is taken to select a particular transition

system for any given program. The one chosen has exactly one state for each combination of

control locations, and values of variables. So in terms of Example 2 it is the variant of the second

transition system in which all final states are collapsed.

14 Rob van Glabbeek and Peter Höfner

7 STRONGWEAK FAIRNESS
We present an example of a system for which none of the above fairness notions is appropriate:

weak fairness is too weak and strong fairness too strong. We consider this example not to be a corner

case, but rather an illustration of the typical way fairness is applied to real systems. Consequently,

this example places serious doubts on the notions of fairness reviewed so far. Failing to find a

concept of fairness in the literature that completely fits the requirements of this example in the

literature, we propose the concept of strong weak fairness, which is the logical combination of two

of the original fairness concepts contemplated in the literature.

Example 15. Let X be a clerk that has to serve customers that queue at three windows of an

office. Serving a customer is a multi-step process. During such a process the clerk is not able to serve

any other customer. A CCS specification of the clerk’s behaviour is X
def
= c1.e .X + c2.e .X + c3.e .X .

Here ci , for i = 1, 2, 3, is the action of starting to serve a customer waiting at window i , and e
the remainder of the serve effort. If this were a section on reactive systems we could continue

the example by evaluating this clerk in any possible context. But since we promised (at the end

of the introduction) to deal, for the time being, with closed systems only, we close the system

by specifying the three rows of customers. Let Y1

def
= c̄1.Y1 model an never ending sequence of

customers queuing at window 1, with c̄i being the action of being served at window i . Likewise
Y2

def
= c̄2.Y2, but at window 3 we place only two customers that may take the action д of going home

when not being served for a long time, and the action r of returning to window 3 later on:

Y 2,2
3

def
= c̄3.Y

1,1
3
+ д.Y 2,1

3
Y 2,1

3

def
= c̄3.Y

1,0
3
+ д.Y 2,0

3
+ r .Y 2,2 Y 2,0

3

def
= r .Y 2,1

Y 1,1
3

def
= c̄3.Y

0,0
3
+ д.Y 1,0

3
Y 1,0

3

def
= r .Y 1,1

3
Y 0,0

3

def
= 0

Here Y i, j
3

is the state in which there are i potential customers for window 3, of which j are currently
queueing. Our progress requirement says that if both customers have gone home, eventually one of

them will return to window 3. The overall system is (X |Y1 |Y2 |Y
2,2
3

)\c1\c2\c3. An interesting liveness

property G is that any customer, including the ones waiting at window 3, eventually gets served.

Two weaker properties are G2: eventually a customer waiting at window 2 will get served, and G3:

eventually either a customer waiting at window 3 will get served, or both customers that were

waiting at window 3 are at home.

As manager of the office, we stipulate that the clerk should treat all windows fairly, without

imposing a particular scheduling strategy. Which fairness property do we really want to impose?

We can exclude fairness of actions here, because, due to synchronisation into τ , no action

differentiates between serving different customers: neither WA nor SA does ensure G2.

None of the weak fairness properties presented so far is strong enough. For suppose that the

clerk would only ever serve window 1. Then the customers waiting at windows 2 and 3 represent

tasks that will never be scheduled. However, these tasks are not perpetually enabled, because each

time the clerk is between actions c1 and e , they are not enabled. For this reason, no weak fairness

property is violated in this scenario. In short: Wy for y ∈ {T, I,Z,C,G} does not even ensure G2.

Thus it appears that as manager we have to ask the clerk to be strongly fair: each component

(window) that is relentlessly enabled (by having a customer waiting there), should eventually be

served. In particular, this fairness requirement (FR) does not allow skipping window 3 altogether,

even if its last customer goes home and returns infinitely often. Technically, this amounts to

imposing Sy for some y ∈ {T, I,Z,G}. SC is too weak; it does not even ensure G3, because when

the queue-length at window 3 alternates between 2 and 1, that component is deemed to get its fair

share.

Progress, Justness and Fairness 15

Suppose that the clerk implements FR by a round robin scheduling strategy. The clerk first tries

to serve a customer from window 1. If there is no customer at window 1, or after interacting with a

client from window 1, she serves a customer from window 2 if there is one, and so on, returning to

window 1 after dealing with window 3.

At first sight, this appears to be an entirely fair scheduling strategy. However, it does not satisfy

the strong fairness requirement FR: suppose that the customers from window 3 spend most of

their time at home, with only one of them showing up at window 3 for a short time every day, and

always timed as unfortunate as possible, i.e., arriving right after the clerk started to serve window

1, and departing right before she finishes serving window 2. In that case these customers will never

be served, and hence FR is not met. Waiting at each window for the next customer to arrive does

not work either as the clerk will starve after 2 rounds at window 3.

One possible reaction to this conclusion is to reject round robin scheduling; an alternative is the

“queueing” algorithm of Park [47] (Section 3.3.2): “at each stage, the earliest clause [window] with

true guard [a waiting customer] is obeyed [served], and moved to the end of the queue.” However,

another quite reasonable reaction is that round-robin scheduling is good enough, and that the

waiting/going home scheduling of customer 3 contemplated above is so restrictive that as manager

we will not be concerned about customer 3 never being scheduled. This customer has only himself

to blame. This reaction calls for a fairness requirement that is stronger than weak fairness but

weaker than FR, in that it ensures liveness properties G2 and G3, but not G .

Park [47] essentially rejects strong fairness because of the complexity of its implementation: “The

problem of implementing strong fairness is disquieting. It is not clear that there is any algorithm

which is essentially more efficient than the queueing algorithm of 3.3.2. [. . .] If the problem is

essentially as complex as this, then strong fairness in this formwould seem an undesirable ingredient

of language specification”. In [23], Fischer& Paterson confirm the state of affairs as feared by

Park: any scheduling algorithm for the clerk above requires at least n! storage states—where n
is the number of customers—whereas a weakly fair scheduling algorithm requires only n storage

states.

7.1 Response to insistence and persistence
One of the very first formalisations of fairness found in the literature occur in [25], where two

notions of fairness were proposed. Response to insistence “states that a permanent holding of a

condition or a request p will eventually force a response q.” Response to persistence states “that the
infinitely repeating occurrence of the condition p will eventually cause q.”
The later notions of weak and strong fairness [2, 30, 39], reviewed in Sections 4 and 5, can be

seen as instantiations of the notions from [25], namely by taking the condition p to mean that

a task is enabled, and q that it actually occurs. However, the fairness notions of [25] also allow

different instantiations, more compatible with Example 15. We can take pi to be the condition that a

customer is waiting at window i , and qi the response that such a customer is served. The resulting

notion of response to insistence is much stronger than weak fairness, for it disallows the scenario

were the clerk only serves window 1. In fact, it ensures liveness properties G2 and G3. Yet, it is

correctly implemented by a round robin scheduling strategy, and does not guarantee the unrealistic

liveness property G . Qua complexity of its implementation it sides with weak fairness, as there is

no need for more than n storage states; see the last paragraph of the previous section.

In [22] we use fairness properties for the formalisation of temporal properties of routing protocols.

The situation there is fairly similar to Example 15. The fairness properties (P1), (P2) and (P3) that

we propose there are local fairness properties rather than global ones (see Section 5) and instances

of response to insistence.

16 Rob van Glabbeek and Peter Höfner

Response to insistence may fail the criterion of feasibility. Without loss of generality, we can

identify the response q of response to insistence with the task T of Definition 4.1. Response to

insistence says that the permanent holding of the request p is enough to ensure q, even if q is, from

some point onwards, never enabled. This can happen in a variant of Example 15 where the clerk

is given the possibility of serving a single customer for an unbounded amount of time. Such a

scenario clearly runs contrary to the intentions of [25]. A more useful fairness notion, probably

closer to the intentions of [25], is

if a condition or request p holds perpetually from some point onwards, and a response q is
infinitely often enabled, then q must occur.

This is the logical combination of strong fairness and response to insistence. We propose to call it

strong weak fairness.
Footnote 60 in [22] shows that the instances of response to insistence used in that paper do meet

the criterion of feasibility, and hence amount to instances of strong weak fairness.

For the same reason as above, response to persistence does not meet the criterion of feasibility

either. To make it more useful, one can combine it with strong fairness in the same fashion as above.

However, the resulting notion does not offer much that is not offered by strong fairness alone.

7.2 Strong weak fairness of instructions
We finish this section by isolating a particular form for strong weak fairness by choosing the

relevant conditions p and responses q. This is similar to the instantiation of the notions of strong

and weak fairness from Section 4 by choosing the relevant set of tasks in Section 5. Here we only

deal with strong weak fairness of instructions (SWI), by following the choices made in Section 5 for

strong and weak fairness of instructions.

To provide the right setting, we make the following two assumptions on our transition system, all

of which are satisfied on the studied fragment of CCS. By property (3) in Section 5, each instruction I
belongs to a component cp(I). Given a state P of the overall system, a given component C ∈ C , if

active at all, is in a state corresponding to a subexpression of P , denoted by PC .
We say that an instruction I is requested in state P if a transition t with I ∈ comp(t) is enabled

in Pcp(I). The instruction is enabled in P if a transition t with I ∈ comp(t) is enabled in P . The
instruction occurs in a path π if π contains a transition t with I ∈ comp(t). We recall that a path π
is strongly fair according to fairness of instructions if, for every suffix π ′

of π , each task that is

relentlessly enabled on π ′
, occurs in π ′

.

Definition 7.1. A path π in a transition system is strongly weakly fair if, for every suffix π ′
of π ,

each instruction that is perpetually requested and relentlessly enabled on π ′
, occurs in π ′

.

Applied to Example 15, instruction c̄2 is requested in each state of the system, and enabled in

each state where none of the instructions e is enabled. Instruction c̄2 being requested signifies

that a customer is waiting at window 2. Thus, on any rooted path π instruction c̄2 is perpetually

requested and relentlessly enabled, even though it is not perpetually enabled. Consequently, by

strong weak fairness of instructions, but not by weak fairness of instructions, a synchronisation

involving c̄2 will eventually occur, meaning that window 2 is served. So G2 is ensured. Likewise,

G3 is ensured, but G is not, for the moment that both customers of window 3 are at home, the

condition of c̄2 being requested is interrupted.

7.3 Adding strong weak fairness of instructions to our taxonomy
Whenever an instruction I is enabled in a state P , it is also requested, at least on our fragment of

CCS. For other transition systems we take this as an assumption necessary only for the classification

Progress, Justness and Fairness 17

of SWI-fairness. Additionally, we assume that if I is requested in state P and u is a transition from

P to Q such that cp(I) < comp(u), then I is still requested in Q . This assumption also holds on our

fragment of CCS.

By the first assumption above, SWI is a stronger notion of fairness then WI. Strictness follows

by Example 15, using G2. By definition, SWI is weaker than SI. Strictness follows by Example 15,

using G . Interestingly, SWI is stronger than SC, even though SWI has the characteristics of a weak

fairness notion.

Proposition 7.2. SC ⪯ SWI.

Proof. SupposeTC , which was given as {t ∈ Tr | C ∈ comp(t)} for a componentC , is relentlessly
enabled on an SWI-fair path π , yet never occurs in π . Since each SC-task is the union of finitely

many SI-tasks (using (2) and (3); see Proposition 5.5), there must be an instruction I with cp(I) = C
that is relentlessly enabled on π . Let P be a state on π in which I is enabled. Then, by the first

assumption above, I is also requested in state P . But since no transition t with C ∈ comp(t) is
ever scheduled, by the second assumption above, I remains requested for that component in all

subsequent states, and hence is perpetually requested. By SWI-fairness, I , and thereby TC , will
occur in π , contradicting the assumption. □

Hence the position of SWI in our hierarchy of fairness notions is as indicated in Figure 2. There

can not be any further arrows into or out of SWI, because this would give rise to new arrows

between the other notions.

8 LINEAR-TIME TEMPORAL LOGIC
Fairness properties can be expressed concisely in Linear-time Temporal Logic (LTL). LTL formu-

las [50] are build from a set AP of atomic propositions p,q, . . . by means of unary operators F and

G8
and the connectives of propositional logic. They are interpreted on total transition systems

G = (S, Tr, source, target, I) as in Definition 2.1 that are equipped with a validity relation |= ⊆ S×AP
that tells which atomic propositions hold in which states. Here a transition system is total iff each

state has an outgoing transition. It is inductively defined when an infinite path π in G satisfies an
LTL formula φ—notation π |= φ:

• π = s0t1s1t2s2 . . . |= p iff s0 |= p;
• π |= φ ∧ψ iff π |= φ and π |= ψ ;
• π |= ¬φ iff π ̸ |= φ;
• π |= Fψ iff there is a suffix π ′

of π with π ′ |= ϕ;
• π |= Gψ iff for each suffix π ′

of π one has π ′ |= ϕ.
The transition system G satisfies φ—notation G |= φ—if π |= φ for each infinite rooted path in G.

This definition of satisfaction has a progress assumption built-in, for totality implies that a path

is infinite iff it is progressing. LTL can be applied to transition systems that are not necessarily

total by simply replacing “infinite” by “progressing” in the above definition (cf. Section 3).

We apply LTL to transition systems G were some relevant propositions q are defined on the

transitions rather then the states of G. This requires a conversion of G into a related transition

system G ′
where those propositions are shifted to the states, and hence can be used as the atomic

propositions of LTL. Many suitable conversions appear in the literature [16, 29]. For our purposes,

the following partial unfolding suffices:

Definition 8.1. Given an augmented transition system G = (S, Tr, source, target, I ,APS , |=S ,APTr,
|=Tr) where |=S ⊆ S × APS supplies the validity of state-based atomic propositions, and |=Tr ⊆

Tr × APTr supplies the validity of transition-based atomic propositions.

8
In later work operators X and U are added to the syntax of LTL; these are not needed here.

18 Rob van Glabbeek and Peter Höfner

Let G ′
:= (S ′, Tr′, source′, target ′, I ,AP, |=), where S ′ := I ∪ Tr, Tr′ := {(source(t), t) | t ∈ Tr ∧

source(t) ∈ I } ∪ {(t ,u) ∈ Tr × Tr | target(t) = source(u)} source′(t ,u) = t , target ′(t ,u) = u,
AP = APS ⊎ APTr and t |= p iff p ∈ APS ∧ ((t ∈ I ∧ t |=S p) ∨ (t ∈ Tr ∧ target(t) |=S p)), or
p ∈ APTr ∧ t ∈ Tr ∧ t |= p.

This construction simply makes a copy of each state for each transition that enters it, so that

a proposition pertaining to a transition can be shifted to the target of that transition, without

running into ambiguity when a state is the target of multiple transitions. Instead of calling a state

(t , target(t)), we simply denote it by the transition t . We say that G |= φ iff G ′ |= φ, for φ an LTL

formula that may use state-based as well as transition-based atomic propositions.

In [25], response to insistence was expressed in LTL as G(Gp ⇒ Fq). Here Gp ⇒ Fq “states that

a permanent holding of a condition or a request p will eventually force a response q.” “Sometimes,

the response q frees the requester from being frozen at the requesting state. In this case once q
becomes true, p ceases to hold, apparently falsifying the hypothesis Gp. This difficulty is only

interpretational and we can write instead the logically equivalent condition ¬G(p ∧ ¬q)” [25]. The
outermost G requires this condition to hold for all future behaviours.

Using that ¬G(p ∧¬q) is equivalent to F¬p ∨ Fq, and G(F¬p ∨ Fq) is equivalent to GF¬p ∨GFq,
it follows that response to insistence can equivalently be expressed as FGp ⇒ GFq, saying that if

from some point onwards condition p holds perpetually, then response q will occur infinitely often.

Weak fairness, as formalised in Section 4, can be expressed by the same LTL formula, but taking

q to be the occurrence of a task T , a condition that holds when performing any transition from T ,
and p the condition thatT is enabled, which holds for any state with an outgoing transition fromT .
The whole notion of weak fairness (when given a collection T of tasks) is then the conjunction,

for all T ∈ T , of the formulas G(G(enabled(T)) ⇒ F(occurs(T))).
Likewise, Response to Persistence is expressed as G(GFp ⇒ Fq), where GFp ⇒ Fq is logically

equivalent to¬G(Fp∧¬q) [25]. Response to Persistence can equivalently be expressed asGFp ⇒ GFq,
saying that if condition p holds infinitely often then response q occurs infinitely often. Again,

strong fairness is expressed in the same way.

9 FULL FAIRNESS
In [53, Def. 3] a path π = s0 t1 s1 t2 s2 . . . is regarded as unfair if there exists a predicateH on the set

of states such that a state in H is reachable from each state si , yet si ∈ H for only finitely many i .
It is not precisely defined which sets of states H can be seen as predicates; if we allow any set H
then the resulting notion of fairness is not feasible.

Example 16. Let π be any infinite rooted path of the following program.

initialise (x ,y) to (0, 0)

while (true) do (x ,y) := (x+1, 0) od ∥ while (true) do (x ,y) := (x+1, 1) od

Then π can be encoded as a function fπ : N→ {0, 1}, expressing y in terms of the current value

of x . Let H := {(x , 1−fπ (x)) | x ∈ N}. H is reachable from each state of π , but never reached.
Consequently π is unfair. This holds for all infinite rooted paths. So no path is fair.

Since we impose feasibility as a necessary requirement for a notion of fairness, this rules out

the form of fairness contemplated above. Nevertheless, this idea can be used to support liveness

properties G , and in this form we propose to call it full fairness.

Progress, Justness and Fairness 19

Definition 9.1. [29] A liveness property G , modelled as a set of states in a transition system G , is
an AGEF property iff (a state of) G is reachable from every state s that is reachable from an initial

state of G.9

Definition 9.2. A liveness property G holds under the assumption of full fairness (Fu) iff G is an

AGEF property.

Full fairness is not a fairness assumption in the sense of Section 4. It does not eliminate a

particular set of paths (the unfair ones) from consideration. Nevertheless, like fairness assumptions,

it increases the set of liveness properties that hold, and as such can be compared with fairness

assumptions.

Obviously no feasible fairness property can be strong enough to ensure a liveness property that

is not AGEF, for it is always possible to follow a finite path to a state from which it is hopeless

to still satisfy G . Hence full fairness, as a tool for validating liveness properties, is the strongest

notion of fairness conceivable.

10 STRONG FAIRNESS OF TRANSITIONS
This section provides an exact characterisation of the class of liveness properties that hold under

strong fairness of transitions (ST). It follows that on finite-state transition systems, strong fairness

of transitions is as strong as full fairness.

Theorem 10.1. A liveness property G , modelled as a set of states, holds in a transition system

under the assumption of strong fairness of transitions, iff G is an AGEF property and each infinite

rooted path that does not visit (a state of) G has a loop.

Proof. As pointed out above, if G is not an AGEF-property, it holds under no fairness assumption.

Let π be a loop-free infinite rooted path that does not visit (a state of) G . Since each state of π is

visited only finitely often, there is no transition that is enabled relentlessly on π . Thus, π is ST-fair,

and consequently G does not hold under strong fairness of transitions.

Now let G be an AGEF-property and each infinite rooted path that does not visit G has a loop.

Let π be an ST-fair rooted path. It remains to be shown that π visits G . Suppose it does not.

Define the distance (from G) of a state s to be the length of the shortest path from s to a state

of G . Since G is AGEF, any state s has a finite distance. For each n ≥ 0 let Sn be set of states with

distance n. Each state in Sn , with n > 0, must have an outgoing transition to a state in Sn−1. If π is

finite, its last state is in Sn for some n > 0, and a transition (to a state in Sn−1) must be enabled in

its last state, contradicting the ST-fairness of π . So assume π is infinite. Then, there is a state on π
that is visited infinitely often. Let n ∈ N be the smallest number such that a state s in Sn is visited

infinitely often. Since π does not visit G , n > 0. Consider a transition t from s to a state in Sn−1.

This transition is relentlessly enabled on π , and thus must occur in π infinitely often. It follows

that a state in Sn−1 is visited infinitely often, yielding a contradiction. □

Corollary 10.2. A liveness property G holds in a finite-state transition system under the

assumption strong fairness of transitions iff G is an AGEF property.

Thus, on finite-state systems strong fairness of transitions is the strongest notion of fairness

conceivable. That it is strictly stronger than the other notions of Section 5 is illustrated below.

Example 17. Consider the process X |c .X , where X
def
= a.b .c .X . Let G consist of those states

where both processes are in the same local state. If we consider the finite-state transition system

9
The name stems from the corresponding CTL-formula.

20 Rob van Glabbeek and Peter Höfner

that lists all 9 possible configurations of the system then G is an AGEF property, and thus will be

reached under ST-fairness. Clearly, G is not guaranteed under SZ- and SA-fairness.

Example 5 shows that on infinite-state systems strong fairness of transitions is strictly weaker

than full fairness.

11 PROBABILISTIC FAIRNESS
When regarding nondeterministic choices as probabilistic choices with unknown probability distri-

butions, one could say that a liveness property holds under the assumption of probabilistic fairness if
it holds with probability 1, regardless of these probability distributions. Formally, a probabilistic
interpretation of a transition systemG10

is a function p : Tr → (0, 1] assigning a positive probability
to each transition, such that for each state s that has an outgoing transition the probabilities of

all transitions with source s sum up to 1. Given a probabilistic interpretation, the probability of

(following) a finite path is the product of the probabilities of the transitions in that path. The

probability of reaching a set of states G is the sum over all finite paths from the initial state to a

state in G , not passing through any states of G on the way, of the probability of that path. Now G
holds under probabilistic fairness (Pr) iff this probability is 1 for each probabilistic interpretation.

Probabilistic fairness is a meaningful concept only for countably-branching transition systems,

since it is impossible to assign each transition a positive such that their sum is 1 in case a state has

uncountably many outgoing transitions.

A form of probabilistic fairness was contemplated in [51]. Similar to full fairness, probabilistic

fairness is not a fairness assumption in the sense of Section 4, as it does not eliminate a particular

set of paths. We show that it is equally strong as strong fairness of transitions.

Theorem 11.1. On countably-branching transition systems a liveness property holds under

probabilistic fairness iff it holds under strong fairness of transitions.

Proof. We use the characterisation of strong fairness of transitions from Theorem 10.1. If a

liveness property G is not AGEF, it surely does not hold under probabilistic fairness, since there

exists a state, reachable with probability > 0, from which G cannot be reached. Furthermore, if

there exists an infinite loop-free rooted path that does not visit G , then the probabilities of the

transitions leaving that path can be chosen in such a way that the probability of remaining on this

path forever, and thus not reaching G , is positive.

Now let G be an AGEF-property that does not hold under probabilistic fairness. It remains to be

shown that there exists an infinite loop-free path that does not visit G .

Allocate probabilities to the transitions in such a way that the probability of reaching G from

the initial state is less than 1. For each state s , let ps be the probability of reaching G from that

state. Since ps is the weighted average of the values ps ′ for all states s
′
reachable from s in one step,

we have that if s has a successor state s ′ with ps ′ > ps , then it also has a successor state s ′′ with
ps ′′ < ps .

Claim: If, for a reachable state s , ps < 1 then there is a path st1s1t2s2 . . . sntn+1sn+1 with n ≥ 0

such that psi = ps for i = 1, . . . ,n and psn+1
< ps .

Proof of claim: Since G is an AGEF property, there is a path π = st1s1t2s2 . . . sk from s to a state
sk ∈ G . Clearly psk = 1. Let n ∈ N be the smallest index for which psn+1

, psn . In case psn+1
< psn

we are done. Otherwise, there must be a successor state s ′′ of sn with ps ′′ < psn , and we are also

done.

10
In this section we restrict attention to transition systems with exactly one initial state. An arbitrary transition system can

be transformed into one with this property by adding a fresh initial state with an outgoing transition to each of the old

initial states. This restriction saves us the effort of also declaring a probability distribution over the initial states.

Progress, Justness and Fairness 21

Application of the claim: By assumption, ps0
< 1, for s0 the initial state. Using the claim, there

exists an infinite path π = s0t1s1t2s2 . . . such that psi ≤ ps for all i ∈ N, and ∀i ∈N. ∃j > i . psj < psi .
Clearly, this path does not visit a state of G , and no state s can occur infinitely often in π . After
cutting out loops, π is still infinite, and moreover loop-free, which finishes the proof. □

12 EXTREME FAIRNESS
In [51], Pnueli proposed the strongest possible notion of fairness that fits in the format of Defi-

nition 4.1. A first idea (not Pnueli’s) to define the strongest notion might be to admit any set of

transitions as a task. However, the resulting notion of fairness would fail the criterion of feasibility.

Example 18. The transition system for the program of Example 16 can be depicted as an infinite

binary tree. For any path π in this tree, letTπ be the set of all transitions that do not occur in π . On
π , this task is perpetually enabled, yet does not occur. It follows that π is unfair. As this holds for

any path π , no path is fair, and the resulting notion of fairness is infeasible.

Avoiding this type of example, Pnueli defined the notion of extreme fairness by admitting any

task (i.e. any predicate on the set of transitions) that is definable in first-order logic. This makes

sense when we presuppose any formal language for defining predicates on transitions. Pnueli

is not particularly explicit about the syntax and semantics of such a language, which is justified

because one only needs to know that such formalisms can only generate only countably many

formulas, and thus only countably many tasks. With Theorem 6.1 it follows that extreme fairness

is feasible.

Assuming a sufficiently expressive language for specifying tasks, any task according to fairness

of actions, transitions, instructions, etc., is also a task according to extreme fairness. Hence the

strong version of extreme fairness (Ext)—the one considered in [51]—sits at the top of the hierarchy

of Figure 1, but still below full fairness.

Example 19. Under full fairness the following program will surely terminate.

initialise y to 1

while (y > 0) do y := y − 1 od
 while (y > 0) do y := y + 1 od

Yet, under any other notion of fairness, including probabilistic fairness, it is possible that y slowly

but surely increases (in the sense that no finite value is repeated infinitely often). Fairness (even

extreme fairness) can cause a decrease of y once in a while, but is not strong enough to counter the

upwards trend.

Pnueli invented extreme fairness as a true fairness notion that closely approximates a variant of

probabilistic fairness [51]. His claim that for finite-state programs extreme fairness and probabilistic

fairness coincides, now follows from Corollary 10.2 and Theorem 11.1.

13 JUSTNESS
Fairness assumptions can be a crucial ingredient in the verification of liveness properties of real

systems. A typical example is the verification of a communication protocol that ensures that a

stream of messages is relayed correctly, without loss or reordering, from a sender to a receiver,

while using an unreliable communication channel. The alternating bit protocol [6, 40], an example of

such a communication protocol, works by means of acknowledgements, and resending of messages

for which no acknowledgement is received.

To prove correctness of such protocols one has to make the indispensable fairness assumption

that attempts to transmit a message over the unreliable channel will not fail in perpetuity. Without

a fairness assumption, no such protocol can be found correct, and one misses a chance to check

22 Rob van Glabbeek and Peter Höfner

the protocol logic against possible flaws that have nothing to do with a perpetual failure of the

communication channel. For this reason, fairness assumptions are made in many process-algebraic

verification platforms, and are deeply ingrained in their methodology [3, 8]. The same can be said

for other techniques, such as automata-based approaches, or temporal logic.

Fairness assumptions, however, need to be chosen with care, since they can lead to false conclu-

sions.

Example 20. Consider the process P := (X | ¯b)\b where X
def
= a.X + b .X . The process X models

a
τ

a

the behaviour of relentless Alice, who keeps calling her friends, either

Bob (b) or any other (a). In parallel,
¯b models Bob, impatiently waiting

for a call by Alice. Our liveness property G is to achieve a connection

between Alice and Bob.

Under each of the notions of fairness of Sections 5–12, P satisfies G . Yet, it is perfectly reasonable

that the connection is never established: Alice could never be in the mood of calling Bob; maybe

she totally broke up with him.

The above example is not an anomaly; it describes the default situation. A fairness assumption

says, in essence, that if one tries something often enough, one will eventually succeed. There

is nothing in our understanding of the physical universe that support such a belief. Fairness

assumptions are justified in exceptional situations, the verification of the alternating bit protocol

being a good example. However, by default they are unwarranted.

In the remainder of this sectionwe investigate what is needed to verify realistic liveness properties

when not making any fairness assumptions.

Example 21. Consider the process P := X |c where X
def
= b .X . Here

b
c

bX is an (endless) series of calls between Alice and Bob in London (who

finally speak to each other again), while c is the action by Cateline of

eating a croissant in Paris. Clearly, there is no interaction between Cateline’s desire and Alice’s

and Bob’s chats. The question arises whether she is guaranteed to succeed in eating her breakfast.

Using progress, but not fairness, the answer is negative, for there is a progressing rooted path

consisting of b-transitions only. Nevertheless, as nothing stops Cateline from making progress, in

reality c will occur.

We therefore propose a strong progress assumption, called justness:

Once a transition is enabled that stems from a set of parallel components, one (or more) of
these components will eventually partake in a transition. (J)

In Example 21, justness would guarantee that Cateline will have breakfast.

To formalise justness, we employ a binary relation ⌣̸•
between transitions, with t ⌣̸• u meaning

that the transition u interferes with t , in the sense that it affects a resource that is needed by t . In
particular, t cannot run concurrently with u.

Definition 13.1. A path π in a transition system representing a closed system is just if for each
transition t with s := source(t) ∈ π , a transition u occurs in π past the occurrence of s , such that

t ⌣̸• u.

When thinking of the resources alluded to in the above explanation of ⌣̸•
as components, t ⌣̸• u

means that a component affected by the execution of u is a necessary participant in the execution

of t . The relation ⌣̸•
can then be expressed in terms of two functions npc, afc : Tr → P(C) telling

for each transition t which components are necessary participants in the execution of t , and which

Progress, Justness and Fairness 23

are affected by the execution of t , respectively. Then

t ⌣• u iff npc(t) ∩ afc(u) = ∅ .

We assume the following crucial property for our transition systems:

If t ,u ∈ Tr with source(t) = source(u) and npc(t) ∩ afc(u) = ∅ then there is a transition

v ∈ Tr with source(v) = target(u) and npc(v) = npc(t). (#)

The underlying idea is that if a transition u occurs that has no influence on components in npc(t),
then the internal state of those components is unchanged, so any synchronisation between these

components that was possible before u occurred, is still possible afterwards.

We also assume that npc(t) ∩ afc(t) , ∅ for all t ∈ Tr, that is, ⌣̸•
is reflexive. Intuitively, this

means that a least one component that is required by t is also affected when taking the transition t .
Thus, one way to satisfy the justness requirement is by executing t .

Justness is thus precisely formalised for any transition system arising from a process algebra,

Petri net, or other specification formalism for which functions afc and npc, satisfying (#) and

reflexivity of ⌣̸•
, are defined. Many specification formalisms satisfy afc(t) = npc(t) for all t ∈ Tr. In

such cases we write comp for afc and npc, and⌣ for⌣•
, this relation then being symmetric.

This applies in particular to the fragment of CCS studied in this paper; in Appendix A we

present a definition of comp which satisfies (#) and reflexivity of ⌣̸. For a ‘local’ transition

comp returns a singleton set, whereas for a CCS-synchronisation yielding a τ -transition two

components will be present. We only include minimal components (cf. Footnote 5). The transition

(P |a.Q)\c |ā.R
τ

−→ (P |Q)\c |R for example stems from a synchronisation of a and ā in the compo-

nents a.Q and ā.R. Since a.Q is a subcomponent of (P |a.Q)\c , it can be argued that the component

(P |a.Q)\c also partakes in this transition t . Yet, we do not include this component in comp(t).
The justness assumption is fundamentally different from a fairness assumption: rather than

assuming that some condition holds perpetually, or infinitely often, we merely assume it to hold

once. In this regard, justness is similar to progress. Furthermore, justness (J) implies progress: we

have P ⪯ J.

Assuming justness ensures G in Examples 1, 4, 5 and 21, but not in Examples 6, 7, 11, 12 and 20.

In Examples 2 and 3 there are three components: l(eft), r(ight) and an implicit memory (m),

where the value of y is stored. The analysis of Example 2 depends on the underlying memory model.

Clearly, any write to y affects the memory component, i.e. m ∈ afc(y := 0) and m ∈ afc(r), where
r is the atomic instruction “while (y > 0) do y := y + 1 od”. Moreover, since r involves reading
from memory, m is a necessary participant in this transition: m ∈ afc(r). If we would assume that a

write always happens immediately, regardless of the state of the memory, one could argue that

the memory is not a necessary participant in the transition y := 0. This would make justness a

sufficient assumption to ensure G . A more plausible memory model, however, might be that no

two components can successfully write to the same memory at the same time. For one component

to write, it needs to “get hold of” the memory, and while writing, no other component can get hold

of it. Under this model m ∈ npc(y := 0), so that justness is not a sufficient assumption to ensure G .

In Example 3, by the above reasoning, we have afc(ℓ1) = npc(ℓ1) = afc(m1) = npc(m1) = {l,m}.
Since npc(ℓ1) ∩ afc(m1) , ∅, we have ℓ1 ⌣̸• m1, i.e. the occurrence ofm1 can disable ℓ1. Justness
does not guarantee that ℓ1 will ever occur, so assuming justness is insufficient to ensure G .

The difference between npc and afc shows up in process algebras featuring broadcast communica-

tion, such as the one of [28]. If t models a broadcast transition, the only necessary participant is the

component that performs the transmitting part of this synchronisation. However, all components

that receive the broadcast are in afc(t). In this setting, one may expect that necessary participants in

a synchronisation are always affected (npc(t) ⊆ afc(t)). However, in a process algebra with signals

24 Rob van Glabbeek and Peter Höfner

[7, 18] we find transitions t with npc(t) ⊈ afc(t). Let t model the action of a driver seeing a red

traffic light. This transition has two necessary participants: the driver and the traffic light. However,

only the driver is affected by this transition; the traffic light is not.

In applications where npc , afc, two variants of fairness of components and fairness of groups

of components can be distinguished, namely by taking either npc or afc to be the function comp :

Tr → P(C) assumed in Section 5. Since the specification formalisms dealing with fairness found

in the literature, with the exception of our own work [18, 22, 28], did not give rise to a distinction

between necessary and affected participants in a synchronisation, in our treatment of fairness we

assume that npc = afc (= comp), leaving a treatment of the general case for future work.

Special cases of the justness assumption abound in the literature. Kuiper & de Roever [33]

for instance assume ‘fundamental liveness’, attributed to Owicki & Lamport [46], ‘ensuring that

if a process is continuously able to proceed, it eventually will.’ Here ‘process’ is what we call

‘component’. This is formalised for specific commands of their process specification language, and

in each case appears to be an instance of what we call justness. However, there is no formalisation

of justness as one coherent concept. Likewise, the various liveness axioms in [46], starting from

Section 5, can all be seen as special cases of justness. Apt, Francez & Katz [1] assume ‘minimal

progress’, also attributed to [46]: ‘Every process in a state with enabled local actions will eventually
execute some action.’ This is the special case of Definition 13.1 where npc(t) is a singleton.
In the setting of Petri nets the (necessary and affected) participants in a transition t could be

taken to be the preplaces of t . Hence t ⌣̸ u means that the transition system transitions t and u
stem from Petri net transitions that have a common preplace. Here justness says that if a Petri net

transition t is enabled, eventually a transition will fire that takes away a token from one of the

preplaces of t . In Petri-net theory this is in fact a common assumption [54], which is often made

without giving it a specific name.

In [22, 28] we introduced justness in the setting of two specific process algebras. Both have

features that resist a correct translation into Petri nets, and hence our justness assumptions cannot

be explained in terms of traditional assumptions on Petri nets. The treatment above is more general,

not tied to any specific process algebra.

In [18, 27] we argue that a justness assumption is essential for the validity of any mutual

exclusion protocol. It appears that in the correctness arguments of famous mutual exclusion

protocols appearing in the literature [35, 49] the relevant justness assumption is taken for granted,

without explicit acknowledgement that the correctness of the protocol rests on the validity of this

assumption. We expect that such use of justness is widespread.

14 UNINTERRUPTED JUSTICE
In Example 20 weak fairness (of any kind) is enough to ensure G . Now, let the action a of calling

anybody except Bob consist of two subactionsa1.a2, yielding the specificationX
′ def
= a1.a2.X

′ + b .X ′
.

Here a1 could for instance be the act of looking up a telephone number in the list of contacts, and a2

the actual calling attempt. Substituting a1.a2 for a is a case of action refinement [26], and represents
a chance in the level of abstraction at which actions are modelled. After this refinement, the system

no longer satisfies G when assuming weak fairness (only). Hence weak fairness is not preserved

under refinement of actions.

When the above is seen as an argument against using weak fairness, two alternatives come to

mind. One is to use strong fairness instead; the other is to tighten the definition of weak fairness in

such a way that that a rooted path is deemed fair only if it remains weakly fair after any action

refinement.

Progress, Justness and Fairness 25

To this end we revisit the meaning of “perpetually enabled” in Definition 4.1. This way of defining

weak fairness stems from Lehmann, Pnueli & Stavi [39], who used the words “justice” for weak

fairness and “continuously” for perpetual. Instead of merely requiring that a task is enabled in

every state, towards a more literal interpretation of “continuously” we additionally require that it

remains enabled between each pair of successive states, e.g. during the execution of the transitions.

Formalising this requires us to define enabledness during a transition. If source(t) = source(u)
then t ⌣• u tells us that the possible occurrence of t is unaffected by the possible occurrence of u.
In other words, t ⌣̸• u indicates that the occurrence of u ends or interrupts the enabledness of t ,
whereas t ⌣• u indicates that t remains enabled during the execution of u.

Definition 14.1. For a transition system G = (S, Tr, source, target, I ,T), equipped with a relation

⌣• ⊆ Tr × Tr, a task T ∈ T is enabled during a transition u ∈ Tr if t ⌣• u for some t ∈ T with

source(t) = source(u). It is said to be continuously enabled on a path π in G, if it is enabled in

every state and transition of π . A path π in G is J-fair if, for every suffix π ′
of π , each task that is

continuously enabled on π ′
, occurs in π ′

.

As before, we can reformulate the property to avoid the quantification over suffixes: A path π in G
is J-fair if each task that from some state onwards is continuously enabled on π , occurs infinitely
often in π .
Letting x range over {J,W, S} extends the taxonomy of Section 5 by six new entries, some of

which coincide (JZ, JG and J). Figure 2 shows the full hierarchy, including the entries Ext, Pr and Fu

from Sections 9–12 and J from Section 13. The arrows are valid under the assumptions (1)–(3) from

J = JZ=JG=JE=WE=SE

JT

P

SA

WA

JA

ST=Pr

WT

SI

SWI

WI

JI

(4)

SZ(2)

(2),(3)

WZ

(4)

(1)

SC

(2),(3)

(2),(3)

(2),(3)

WC

JC
(3)

SG

WG

(3),(4)

Fu

Ext

Fig. 2. A classification of progress, justness and fairness assumptions

26 Rob van Glabbeek and Peter Höfner

Section 5, and the assumption that npc = afc = comp, together with
(4) if t ⌣ u with source(t)=source(u), then ∃v∈Trwith source(v)=target(u) and instr(v)=instr(t).

This assumption says that if a transition t is enabled that does not depend on any component that

is affected by u, and u occurs, then afterwards a variant of t , stemming from the same instructions,

is still possible. This assumption strengthens (#) and holds for the transition systems derived from

the fragment of CCS presented in Appendix A.

Clearly, P ⪯ Jy ⪯ Wy ⪯ Sy for y ∈ {A,T, I,Z,C,G}.

Proposition 14.2. JI ⪯ JC.

Proof. W.l.o.g. let π be a JC-fair path on which a task TI , for a given instruction I ∈ I, is

continuously enabled. Then, using assumption (3), on π component cp(I) is continuously enabled.

Hence, the taskTcp(I) will occur in π . Let t ∈Tcp(I) be a transition in π . Then cp(I)∈comp(t)∩comp(u)
for any u ∈ TI , so that t ⌣̸ u. Thus, no transition from TI is enabled during the execution of t ,
contradicting the assumption that TI is continuously enabled on π . Hence π is JI-fair. □

Proposition 14.3. J ⪯ Jy for y ∈ {I,Z,C,G}.

Proof. W.l.o.g. let π be a JI-fair path such that a transition t is enabled in its first state. Let

I ∈ instr(t). Assume that π contains no transition u with comp(t) ∩ comp(u) , ∅. Then, using (4),

for each transition u occurring in π , a transition from TI is enabled during and right after u. So, by
JI-fairness, the task TI must occur in π , but this contradicts the assumption. It follows that π is just.

The proof for y ∈ {Z,C,G} goes likewise, for y ∈ {C,G} also using (3). □

Proposition 14.4. Jy ⪯ J for y ∈ {T,Z,G}.

Proof. W.l.o.g. let π be a just path on which a task TG , for a given G ⊆ C , is continuously

enabled. Let t ∈ TG be enabled in the first state of π .
Then, by justness, π contains a transitionu with ∅ , comp(u)∩comp(t) = comp(u)∩G . It follows

that no transition v ∈ TG is enabled during u, contradicting the assumption.

Now assume a task TZ , for a given Z ⊆ I, is continuously enabled on π . Using (3), let G =
{cp(I) | I ∈ Z }. Then also TG is continuously enabled on π , which led to a contradiction above.

Finally assume a transition t is continuously enabled on π . Let G = comp(t). Then also TG is

continuously enabled on π , which leads to a contradiction. □

The absence of any further arrows follows from Examples 3–20: Example 20 separates J-fairness

from weak fairness; it shows that Wy ⪯̸ Jy ′ (and hence Sy ⪯̸ Jy ′) for all y,y ′ ∈ {A,T, I,Z,C,G}.

Example 4, in which JT-fairness suffices to ensure G , shows that there are no further arrows from

SA, and thus none from WA and JA. Example 5, in which justness or JA-fairness suffices to ensure

G , shows that there are no further arrows from ST, and thus none from WT, JT and P. Example 12,

in which JC-fairness suffices to ensure G , shows that there are no further arrows into JC. So, using

transitivity, and remembering the results from Sections 5–9, it suffices to show that JA ⪯̸ SZ,

JI ⪯̸ WZ and JI ⪯̸ WG. This will be demonstrated by the following two examples.

Example 22. Consider the process (X |Y |Z)\b\d where X
def
=

a, c a, c

a, c
τ

a, c a, c

τ
a, c

τ

τ

¯b . ¯b .X [f]+a.X+c .X ,Y
def
= ¯d . ¯d .Y [f]+a.X+c .X and Z

def
= b .b .d .d .Z ,

using a relabelling operator with f (a) = c and f (c) = a. Under
xA-fairness, for x ∈ {J,W, S}, the path (aτ)∞ is unfair, because

task c is perpetually enabled, yet never taken. However, there are

only twelve instructions (and three components), each of which

gets its fair share. Also, each possible synchronisation will occur.

So under xy-fairness for y ∈ {I,Z,C,G} the path is fair.

Progress, Justness and Fairness 27

Example 23. Consider the process (e |X |Y |Z)\a\b\c\d\e where X
def
= ā. ¯b .X + ē , Y

def
= c̄ . ¯d .Y + ē

and Z
def
= a.b .c .d .Z . Its transition system is the same as for Example 12. Under xI- and under

xC-fairness G is satisfied, but under Wy-fairness with y ∈ {A,T,Z,G} it is not.

15 FAIRNESS OF EVENTS
An event in a transition system can be defined as an equivalence class of transitions stemming

from the same synchronisation of instructions, except that each visit of an instruction gives rise to

a different event. Fairness of events can best be explained in terms of examples.

In Examples 4 and 5 G does hold: on the infinite path that violates G there is a single event

corresponding with the action a, which is perpetually enabled.

In Example 6 G does not hold, for each round through the recursive equation counts as a separate

visit to the b-instruction, so during the run a∞ no b-event is enabled more than once. Similar

reasoning applies to Examples 7–12, where G is not ensured and/or the indicated path is SE-fair.

Fairness of events is defined in Costa & Stirling [14]—although on a restriction-free subset

of CCS where it coincides with fairness of components—and in Corradini, Di Berardini &

Vogler [12], named fairness of actions.

Capturing fairness of events in terms of tasks, as in Section 5, with the events as tasks, requires a

semantics of CCS different from the standard one given in Appendix A, yielding a partially unfolded

transition system. Example 6, for instance, needs an infinite transition system to express that after

each a-transition a different b-event is enabled, and likewise for Examples 4, 7, 11 and 12. Such

a semantics, involving an extra layer of labelling, appears in [12, 14, 15]. What we need to know

here about this semantics is that

(5) the events form a partition of the set of transitions;

(6) if an event e is enabled in two states s and s ′ on a path π , then e is enabled also in each state

and during each transition that occurs between s and s ′;
(7) if t ⌣ u with source(t)= source(u) and t ∈ e , then ∃v ∈ Tr with source(v)= target(u) and v ∈ e ,
(8) if t , t ′ ∈ e then comp(t) = comp(t ′). So let comp(e) := comp(t) when t ∈ e .

Property (6) implies immediately that strong fairness of events (SE), weak fairness of events (WE)

and J-fairness of events (JE) coincide.

Theorem 15.1. A path is just iff it is JE-fair.

Proof. ‘⇒’: Let π be a just path on which an event e is continuously enabled. By justness, a

transition u occurs in π such that comp(e) ∩ comp(u) , ∅. By assumption, event e must be enabled

during u. Hence there is a t ∈ e with t ⌣ u, i.e. comp(t) ∩ comp(u) = ∅, in contradiction with (8).

Hence π is JE-fair.

‘⇐’: W.l.o.g. let π be a JE-fair path such that a transition t is enabled in its first state. Using (5),

let e be the event with t ∈ e . Assume that π contains no transition u with comp(t) ∩ comp(u) , ∅.

Then, using (7), e is continuously enabled on π . So, by JE-fairness, the task e must occur in π , i.e., π
contains a transition v ∈ e . By (8) comp(v) = comp(t), but this contradicts the assumption. So π is

just. □

16 REACTIVE SYSTEMS
Sections 2–15 dealt with closed systems, having no run-time interactions with the environment.

We now generalise almost all definitions and results to reactive systems, interacting with their

environments through synchronisation of actions.

Example 24. Consider the CCS process a.τ , represented by the transition system

1 2

a
3

τ
.

28 Rob van Glabbeek and Peter Höfner

Here a is the action of receiving the signal ā from the environment. Will this process satisfy

the liveness property G , by reaching state 3? When assuming the progress property for closed

systems proposed in Section 3, the answer is positive. However, when taking the behaviour of the

environment into account, G is not guaranteed at all. For the environment may fail to send the

signal ā that is received as a, in which case the system will be stuck in its initial state.

To properly model reactive systems, we distinguish blocking and non-blocking transitions. A

blocking transition—a in our example—requires participation of the environment in which the

system will be running, whereas a non-blocking transition (e.g. τ) does not. In [54], blocking and

non-blocking transitions are called cold and hot. In many process algebras transitions are labelled

with actions, and whether a transition is blocking is entirely determined by its label. Accordingly,

we speak of blocking and non-blocking actions. In CCS, the only non-blocking action is τ . However,
for certain applications it makes sense to declare some other actions to be non-blocking [27]; this

constitutes a promise that we will never put the system in an environment that can block these

actions. In [28] we use a process algebra with broadcast communication: a broadcast counts as a

non-blocking action, because it will happen regardless whether anyone receives it.

In the setting of reactive systems the progress assumption of Section 3 needs to be reformulated:

a (transition) system in a state that admits a non-blocking transition will eventually progress, i.e.,
perform a transition.

Definition 16.1. A path in a transition system is progressing if either it is infinite or its last state

is the source of no non-blocking transition.

Our justness assumption is adapted in the same vein:

Once a non-blocking transition is enabled that stems from a set of parallel components, one (or
more) of these components will eventually partake in a transition.

Definition 16.2. A path π in a transition system is just if for each non-blocking transition t with
s := source(t) ∈ π , a transition u occurs in π past the occurrence of s , such that t ⌣̸• u.

The treatment of fairness is adapted to reactive systems by defining a task T to be enabled in

a state s iff there exists a non-blocking transition t ∈ T with source(t) = s (cf. Definition 4.1). In

Definition 14.1 t is also required to be non-blocking. The reason is that if sufficiently many states

on a path merely have an outgoing transition fromT that is blocking, it might very well be that the

environment blocks all those transitions, so that the system is unable to perform a transition from

T . On the other hand, performing a blocking transition from T is a valid way to satisfy the promise

of fairness. To obtain a notion of fairness where an arbitrary non-blocking transition from T is

required to occur in π , one can simply define a new task that only has the non-blocking transitions

from T .
With these amendments to the treatment of progress and fairness, the observation remains that

progress is exactly what weak or strong fairness prescribes for finite paths, provided that each

non-blocking transition occurs in a task.

Applied to CCS, where only τ -actions are non-blocking, fairness of actions looses most of its

power. All other relations in the taxonomy remain unchanged. Theorem 6.1 remains valid as well.

Definition 9.1 needs to be reformulated as follows.

Definition 16.3. A liveness property G , modelled as a set of states in a reactive transition system

G , is an AGEF property iff (a state of) G is reachable along a non-blocking path
11
from every state s

that is reachable (by any means) from an initial state of G.

11
A path containing non-blocking transitions only.

Progress, Justness and Fairness 29

With this adaptation, a non-AGEF property is never ensured, no matter which feasible fairness

property is assumed. Yet, Theorem 10.1 still holds, with the distance, in the proof, being the length

of the shortest non-blocking path to G . We do not generalise probabilistic fairness to reactive

systems.

Full fairness for reactive systems is what corresponds to Koomen’s fair abstraction rule (KFAR),
a widely-used proof principle in process algebra, introduced in [8]; see also [3, 4]. Any process-

algebraic verification that shows a liveness property of a system P by proving P weakly bisimilar

to a system Q where this liveness property obviously holds, implicitly employs full fairness.

17 EVALUATING NOTIONS OF FAIRNESS
The following table evaluates the notions of fairness reviewed in this paper against the criteria for

appraising fairness properties discussed in Sections 6, 14, 7 and 13.

Fu Ext SA ST SZ SG SI SWI SC WA WT WZ WG WI WC JA JT JI JC J Pr

feasibility +

equivalence robustness (+) − − − − − − ± ± − ? ? ? − − − ? − − + +

liveness enhancement +

pres. under unfolding + + + − + + + + + + − + + + + + − + + + +

pres. under action ref. + + + + + + + + + − − − − − − + + + + + +

useful for queues − − − − − − − + − − − − − − − − − − − − −

typically warranted − − − − − − − − − − − − − − − − + − − + +

All notions reviewed satisfy the criterion of feasibility, from Section 6.1; this is no wonder, since

we disregarded any notion not satisfying this property. The counterexamples given in Section 6.2

against the equivalence robustness of WC- and Sy-fairness, for y ∈ {A,T,Z,G,I}, can easily be

adapted to cover the other notions adorned with a − in the table above; for SWI and SC this involves

the use of N -way synchronisation, thereby leaving our fragment of CCS. The notion is meaningless

for full fairness (Fu), and the positive results for progress and justness are fairly straightforward.

It is trivial to find examples showing that JA and JT-fairness, and thus also all stronger notions,

are liveness enhancing w.r.t. the background assumption of ‘minimal progress’ (cf. Section 6.3). As

observed in Section 6.4, only fairness of transitions fails to be preserved under unfolding. Being

not preserved under refinement of actions, as discussed in Section 14, is a problem that befalls

only the notions of weak fairness. The next entry refers to the typical application of fairness

illustrated in Section 7; it is adequately handled only by strong weak fairness. The last line reflects

our observation that most notions of fairness are not warranted in many realistic situations. This is

illustrated by Example 6.4 in Section 13 for weak and strong fairness, Example 22 for JA-fairness,

and Example 23 for JI- and JC-fairness.

18 CONCLUSION, RELATED AND FUTUREWORK
We compared and classified many notions of fairness found in the literature. Our classification

is by no means exhaustive. We skipped, for instance, k-fairness [9] and hyperfairness [37]—both
laying between strong fairness and full fairness. We skipped unconditional fairness [34], introduced
in [39] as impartiality, since that notion does not satisfy the essential criterion of feasibility. We

characterised full fairness as the strongest possible fairness assumption that satisfies this important

requirement.

Comparisons of fairness notions appeared before in [1, 32, 33]. Kuiper & de Roever [33]

considered weak and strong fairness of components, instructions and synchronisations, there called

processes, guards and channels, respectively. Their findings, depicted in Figure 3, agree mostly

with ours, see Figure 1. They differ in the inclusions between WZ, WI and WC, which are presented

30 Rob van Glabbeek and Peter Höfner

without proof and deemed “easy”. It appears that our Counterexamples 11 and 12 can be translated

into the version of CSP used in [33].

SZWZ

SIWI

SCWC

Kuiper & de Roever [33]

SZWZ

SGWG

SCWC

Apt, Francez & Katz [1]

SZ

SC

WC

WZ

Joung [32]

Fig. 3. Earlier classifications of fairness assumptions

Apt, Francez & Katz [1] consider weak and strong fairness of components, groups of com-

ponents and synchronisations, there called processes, channels or groups, and communications,

respectively. The authors work with a restricted subset of CSP, on which the difference between

the weak notions of fairness and the corresponding notions of J-fairness largely disappears. Most

of their strict inclusions (see Figure 3) agree with ours, except for the ones between WZ, WG and

WC. Our counterexamples 11 and 12 cannot be translated into their subset of CSP. In fact, it follows

from [1, Prop. 5] that in their setting WZ, WG and WC are equally powerful.

Joung [32] considers weak and strong fairness of components and synchronisations, there called

processes and interactions. He also considers many variants of these notions, not covered here.

Restricting his hierarchy to the four notions in common with ours yields the third lattice of Figure 3.

Joung makes restrictions on the class of modelled systems comparable with those of [1]; as a

consequence weak fairness and J-fairness coincide. By this, his lattice agrees with ours on the

common elements.

In Section 4 we proposed a general template for strong and weak fairness assumptions, which

covers most of the notions reviewed here (but not probabilistic and full fairness). We believe this

template also covers interesting notions of fairness not reviewed here. In [10], for instance, two

transitions belong to the same task in our sense iff they are both τ -transitions resulting from

a π -calculus synchronisation of actions āy and a(z) that both lay within the scope of the same

restriction operator (νa). A more general definition of what counts as a fairness property, given in

the form of a language-theoretic, a game-theoretic, and a topological characterisation, appears in

[56].

Using fairness assumptions in the verification of liveness properties amounts to saying that if one

tries something often enough, surely it will eventually succeed. Although for some applications this

is useful, in many cases it is unwarranted. Progress assumptions, on the other hand, are warranted

in many situations, and are moreover indispensable in the verification of liveness properties. Here

we introduced the concept of justness, a stronger version of progress, that we believe is equally

warranted, and, moreover, indispensable for proving many important liveness properties. Special

cases of justness are prevalent in the literature on fairness. However, they often occur as underlying

assumptions when studying fairness, rather than as alternatives. Moreover, we have not seen them

occur in the general form we advocate here.

We showed that as a fairness assumption justness coincides with fairness of events. This could

be interpreted as saying that justness is not a new concept. However, properly defining fairness of

events requires a much more sophisticated machinery than defining justness. More importantly,

Progress, Justness and Fairness 31

this machinery casts it as a fairness assumption, thus making it equally implausible as other forms

of fairness. By recognising the same concept as justness, the precondition of an infinite series of

attempts is removed, and the similarity with progress is stressed. This makes justness an appealing

notion.

As future work we plan to extend the presented framework—in particular justness—to formalisms

providing some form of asymmetric communication such as a broadcast mechanism. Examples for

such formalisms are AWN [21] a (process-)algebra for wireless networks, and Petri nets with read

arcs [55].

REFERENCES
[1] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. 1988. Appraising Fairness in Languages for Distributed Program-

ming. Distr. Comput. 2, 4 (1988), 226–241. https://doi.org/10.1007/BF01872848
[2] Krzysztof R. Apt and Ernst-Rüdiger Olderog. 1983. Proof Rules and Transformations Dealing with Fairness. Science of

Computer Programming 3, 1 (1983), 65–100. https://doi.org/10.1016/0167-6423(83)90004-7 A technical report appeared

in 1981.

[3] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. 1987. On the Consistency of Koomen’s Fair Abstraction Rule.

TCS 51 (1987), 129–176. https://doi.org/10.1016/0304-3975(87)90052-1
[4] Jos C. M. Baeten and W. Peter Weijland. 1990. Process Algebra. Cambridge University Press. https://doi.org/10.1017/

CBO9780511624193

[5] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press.

[6] Keith A. Bartlett, Roger A. Scantlebury, and Peter T. Wilkinson. 1969. A Note on Reliable Full-duplex Transmission

over Half-duplex Links. Comm. ACM 12, 5 (1969), 260–261. https://doi.org/10.1145/362946.362970

[7] Jan A. Bergstra. 1988. ACP with Signals. In Proc. Int. Workshop on Algebraic and Logic Programming (LNCS),
J. Grabowski, P. Lescanne, and W. Wechler (Eds.), Vol. 343. Springer, 11–20. https://doi.org/10.1007/3-540-50667-5_53

[8] Jan A. Bergstra and Jan Willem Klop. 1986. Verification of an Alternating Bit Protocol by Means of Process Algebra. In

Proc. MMSSSS’85 (LNCS), Wolfgang Bibel and Klaus P. Jantke (Eds.), Vol. 215. Springer, 9–23. https://doi.org/10.1007/

3-540-16444-8_1

[9] Eike Best. 1984. Fairness and Conspiracies. Inform. Process. Lett. 18, 4 (1984), 215–220. https://doi.org/10.1016/

0020-0190(84)90114-5

[10] Diletta Cacciagrano, Flavio Corradini, and Catuscia Palamidessi. 2009. Explicit Fairness in Testing Semantics. LMCS 5,
2 (2009). https://doi.org/10.2168/LMCS-5(2:15)2009

[11] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2013. Inference of Global Progress

Properties for Dynamically Interleaved Multiparty Sessions. In Proc. Coordination’13 (LNCS), Vol. 7890. Springer,
45–59. https://doi.org/10.1007/978-3-642-38493-6_4

[12] Flavio Corradini, Maria Rita Di Berardini, and Walter Vogler. 2006. Fairness of Actions in System Computations. Acta
Inf. 43, 2 (2006), 73–130. https://doi.org/10.1007/s00236-006-0011-2

[13] Flavio Corradini, Maria Rita Di Berardini, and Walter Vogler. 2006. Fairness of Components in System Computations.

TCS 356, 3 (2006), 291–324. https://doi.org/10.1016/j.tcs.2006.02.011
[14] Gerardo Costa and Colin Stirling. 1984. A Fair Calculus of Communicating Systems. Acta Inf. 21 (1984), 417–441.

https://doi.org/10.1007/BF00271640

[15] Gerardo Costa and Colin Stirling. 1987. Weak and Strong Fairness in CCS. Information and Computation 73, 3 (1987),

207–244. https://doi.org/10.1016/0890-5401(87)90013-7

[16] Rocco De Nicola and Frits W. Vaandrager. 1995. Three Logics for Branching Bisimulation. J. ACM 42, 2 (1995), 458–487.

https://doi.org/10.1145/201019.201032

[17] Edsger W. Dijkstra. 1965. Cooperating Sequential Processes. Reprinted in: P. Brinch Hansen: The Origin of Concurrent
Programming, Springer, 2002, pp. 65–138. (1965). https://doi.org/10.1007/978-1-4757-3472-0_2

[18] Victor Dyseryn, Robert J. van Glabbeek, and Peter Höfner. 2017. AnalysingMutual Exclusion using Process Algebra with

Signals. In Proc. EXPRESS/SOS (EPTCS), Kirstin Peters and Simone Tini (Eds.), Vol. 255. Open Publishing Association,

18–34. https://doi.org/10.4204/EPTCS.255.2

[19] E. Allen Emerson and Edmund M. Clarke. 1982. Using Branching Time Temporal Logic to Synthesize Synchronization

Skeletons. Science of Computer Programming 2, 3 (1982), 241–266. https://doi.org/10.1016/0167-6423(83)90017-5

[20] E. Allen Emerson and Joseph Y. Halpern. 1986. ‘Sometimes’ and ‘Not Never’ Revisited: On Branching Time versus

Linear Time Temporal Logic. J. ACM 33, 1 (1986), 151–178. https://doi.org/10.1145/4904.4999

[21] Ansgar Fehnker, Robert J. van Glabbeek, Peter Höfner, Annabelle K. McIver, Marius Portmann, and Wee Lum Tan.

2012. A Process Algebra for Wireless Mesh Networks. In Proc. ESOP’12 (LNCS), Helmut Seidl (Ed.), Vol. 7211. Springer,

https://doi.org/10.1007/BF01872848
https://doi.org/10.1016/0167-6423(83)90004-7
https://doi.org/10.1016/0304-3975(87)90052-1
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1145/362946.362970
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-16444-8_1
https://doi.org/10.1007/3-540-16444-8_1
https://doi.org/10.1016/0020-0190(84)90114-5
https://doi.org/10.1016/0020-0190(84)90114-5
https://doi.org/10.2168/LMCS-5(2:15)2009
https://doi.org/10.1007/978-3-642-38493-6_4
https://doi.org/10.1007/s00236-006-0011-2
https://doi.org/10.1016/j.tcs.2006.02.011
https://doi.org/10.1007/BF00271640
https://doi.org/10.1016/0890-5401(87)90013-7
https://doi.org/10.1145/201019.201032
https://doi.org/10.1007/978-1-4757-3472-0_2
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1145/4904.4999

32 Rob van Glabbeek and Peter Höfner

295–315. https://doi.org/10.1007/978-3-642-28869-2_15

[22] Ansgar Fehnker, Robert J. van Glabbeek, Peter Höfner, Annabelle K. McIver, Marius Portmann, and Wee Lum Tan. 2013.

A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV. Technical Report
5513. NICTA. http://arxiv.org/abs/1312.7645

[23] Michael J. Fischer and Micheal S. Paterson. 1983. Storage Requirements for Fair Scheduling. Inf. Process. Lett. 17, 5
(1983), 249–250. https://doi.org/10.1016/0020-0190(83)90107-2

[24] Nissim Francez. 1986. Fairness. Springer. https://doi.org/10.1007/978-1-4612-4886-6
[25] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. On the Temporal Analysis of Fairness. In

Proc. POPL ’80, Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne (Eds.). ACM Press, 163–173. https:

//doi.org/10.1145/567446.567462

[26] Robert J. van Glabbeek and Ursula Goltz. 2001. Refinement of Actions and Equivalence Notions for Concurrent Systems.

Acta Inf. 37 (2001), 229–327. https://doi.org/10.1007/s002360000041
[27] Robert J. van Glabbeek and Peter Höfner. 2015. CCS: It’s not fair! Acta Inf. 52, 2-3 (2015), 175–205. https://doi.org/10.

1007/s00236-015-0221-6

[28] Robert J. van Glabbeek and Peter Höfner. 2015. Progress, Fairness and Justness in Process Algebra. Technical Report
8501. NICTA. http://arxiv.org/abs/1501.03268

[29] Robert J. van Glabbeek and Marc Voorhoeve. 2006. Liveness, Fairness and Impossible Futures. In Proc. CONCUR’06

(LNCS), Christel Baier and Joost-Pieter Katoen (Eds.), Vol. 4137. Springer, 126–141. https://doi.org/10.1007/11817949_9

[30] Orna Grumberg, Nissim Francez, Johann A. Makowsky, and Willem-Paul de Roever. 1985. A Proof Rule for Fair Termi-

nation of Guarded Commands. Information and Control 66, 1/2 (1985), 83–102. https://doi.org/10.1016/S0019-9958(85)
80014-0 IFIP conference version 1981.

[31] C.A.R. Hoare. 1978. Communicating Sequential Processes. Comm. ACM 21, 8 (1978), 666–677. https://doi.org/10.1145/

359576.359585

[32] Yuh-Jzer Joung. 2001. On Fairness Notions in Distributed Systems II. Equivalence-Completions and Their Hierarchies.

Information and Computation 166, 1 (2001), 35–60. https://doi.org/10.1006/inco.2000.3015

[33] Ruurd Kuiper and Willem-Paul de Roever. 1983. Fairness Assumptions for CSP in a Temporal Logic Framework. In

Formal Description of Programming Concepts II, Dines Bjørner (Ed.). North-Holland, 159–170.
[34] Marta Z. Kwiatkowska. 1989. Survey of Fairness Notions. Information and Software Technology 31, 7 (1989), 371–386.

https://doi.org/10.1016/0950-5849(89)90159-6

[35] Leslie Lamport. 1974. A New Solution of Dijkstra’s Concurrent Programming Problem. Commun. ACM 17, 8 (1974),

453–455. https://doi.org/10.1145/361082.361093

[36] Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE Transactions on Software Engineering 3,

2 (1977), 125–143. https://doi.org/10.1109/TSE.1977.229904

[37] Leslie Lamport. 2000. Fairness and Hyperfairness. Distr. Comput. 13, 4 (2000), 239–245. https://doi.org/10.1007/

PL00008921

[38] Leslie Lamport. 2002. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-
Wesley.

[39] Daniel J. Lehmann, Amir Pnueli, and Jonathan Stavi. 1981. Impartiality, Justice and Fairness: The Ethics of Concurrent

Termination. In Proc. ICALP’81 (LNCS), Shimon Even and Oded Kariv (Eds.), Vol. 115. Springer, 264–277. https:

//doi.org/10.1007/3-540-10843-2_22

[40] William C. Lynch. 1968. Reliable Full-duplex File Transmission over Half-duplex Telephone Line. Comm. ACM 11, 6

(1968), 407–410. https://doi.org/10.1145/363347.363366

[41] Zohar Manna and Amir Pnueli. 1989. Completing the Temporal Picture. In Proc. ICALP’89 (LNCS), Giorgio Ausiello,

Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca (Eds.), Vol. 372. Springer, 534–558. https://doi.org/10.

1007/BFb0035782

[42] Zohar Manna and Amir Pnueli. 1995. Temporal Verification of Reactive Systems – Safety. Springer. https://doi.org/10.
1007/978-1-4612-4222-2

[43] Robin Milner. 1980. A Calculus of Communicating Systems. LNCS, Vol. 92. Springer. https://doi.org/10.1007/

3-540-10235-3

[44] Jayadev Misra. 1988. A Rebuttal of Dijkstra’s Position on Fairness. (1988). http://www.cs.utexas.edu/users/misra/

Notes.dir/fairness.pdf

[45] Jayadev Misra. 2001. A Discipline of Multiprogramming — Programming Theory for Distributed Applications. Springer.
https://doi.org/10.1007/978-1-4419-8528-6

[46] Susan S. Owicki and Leslie Lamport. 1982. Proving Liveness Properties of Concurrent Programs. ACM TOPLAS 4, 3
(1982), 455–495. https://doi.org/10.1145/357172.357178

[47] David M. R. Park. 1981. A Predicate Transformer for Weak Fair Iteration. In Proc. 6
th
IBM Symposium onMathematical

Foundations of Computer Science, Hakone, Japan. 211–228. http://hdl.handle.net/2433/103001

https://doi.org/10.1007/978-3-642-28869-2_15
http://arxiv.org/abs/1312.7645
https://doi.org/10.1016/0020-0190(83)90107-2
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462
https://doi.org/10.1007/s002360000041
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
http://arxiv.org/abs/1501.03268
https://doi.org/10.1007/11817949_9
https://doi.org/10.1016/S0019-9958(85)80014-0
https://doi.org/10.1016/S0019-9958(85)80014-0
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1006/inco.2000.3015
https://doi.org/10.1016/0950-5849(89)90159-6
https://doi.org/10.1145/361082.361093
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/PL00008921
https://doi.org/10.1007/PL00008921
https://doi.org/10.1007/3-540-10843-2_22
https://doi.org/10.1007/3-540-10843-2_22
https://doi.org/10.1145/363347.363366
https://doi.org/10.1007/BFb0035782
https://doi.org/10.1007/BFb0035782
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
http://www.cs.utexas.edu/users/misra/Notes.dir/fairness.pdf
http://www.cs.utexas.edu/users/misra/Notes.dir/fairness.pdf
https://doi.org/10.1007/978-1-4419-8528-6
https://doi.org/10.1145/357172.357178
http://hdl.handle.net/2433/103001

Progress, Justness and Fairness 33

[48] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir Das. 2003. Ad hoc On-Demand Distance Vector (AODV)

Routing. RFC 3561 (Experimental), Network Working Group. (2003). https://doi.org/10.17487/RFC3561

[49] Gary L. Peterson. 1981. Myths About the Mutual Exclusion Problem. Inform. Process. Lett. 12, 3 (1981), 115–116.

https://doi.org/10.1016/0020-0190(81)90106-X

[50] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proc. FOCS’77. IEEE, 46–57. https://doi.org/10.1109/SFCS.1977.32

[51] Amir Pnueli. 1983. On the Extremely Fair Treatment of Probabilistic Algorithms. In Proc. STOC’83. ACM, 278–290.

https://doi.org/10.1145/800061.808757

[52] Vaughan R. Pratt. 1986. Modeling Concurrency with Partial Orders. International Journal of Parallel Programming 15,

1 (1986), 33–71. https://doi.org/10.1007/BF01379149

[53] Jean-Pierre Queille and Joseph Sifakis. 1983. Fairness and Related Properties in Transition Systems. Acta Inf. 19 (1983),
195–220. https://doi.org/10.1007/BF00265555

[54] Wolfgang Reisig. 2013. Understanding Petri Nets — Modeling Techniques, Analysis Methods, Case Studies. Springer.

https://doi.org/10.1007/978-3-642-33278-4

[55] Walter Vogler. 2002. Efficiency of Asynchronous Systems, Read Arcs, and the MUTEX-problem. TCS 275, 1-2 (2002),
589–631. https://doi.org/10.1016/S0304-3975(01)00300-0

[56] Hagen Völzer and Daniele Varacca. 2012. Defining Fairness in Reactive and Concurrent Systems. J. ACM 59, 3 (2012),

13. https://doi.org/10.1145/2220357.2220360

https://doi.org/10.17487/RFC3561
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/800061.808757
https://doi.org/10.1007/BF01379149
https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1145/2220357.2220360

34 Rob van Glabbeek and Peter Höfner

Table 1. Structural operational semantics of CCS

α .E
α

−→ E
E

α
−→ E ′

E + F
α

−→ E ′

F
α

−→ F ′

E + F
α

−→ F ′

E
α

−→ E ′

E |F
α

−→ E ′ |F

E
a

−→ E ′, F
ā

−→ F ′

E |F
τ

−→ E ′ |F ′

F
α

−→ F ′

E |F
α

−→ E |F ′

E
α

−→ E ′

E\a
α

−→ E ′\a
(a,α,ā)

E
α

−→ E ′

E[f]
f (α)
−→ E ′[f]

S(X)[fixYS/Y]Y ∈dom(S)
α

−→E

fixXS
α

−→ E

A CCS
CCS [43] is parametrised with a set A of names. The set ¯A of co-names is ¯A := {ā | a ∈ A },

and L := A ∪ ¯A is the set of labels. Finally, Act := L
.
∪ {τ } is the set of actions. Below, a, b, c ,

. . . range over L and α , β over Act . A relabelling is a function f : L → L satisfying f (ā) = f (a);
it extends to Act by f (τ) := τ . Let X be a set X , Y , . . . of process variables. The set TCCS of CCS

expressions is the smallest set including:

0 inaction
α .E for α ∈ Act and E ∈TCCS action prefixing
E + F for E, F ∈TCCS choice
E |F for E, F ∈TCCS parallel composition
E\a for a ∈ A and E ∈TCCS restriction
E[f] for f a relabelling and E ∈TCCS relabelling
X for X ∈ X process variable
fixXS for S : X⇀TCCS and X∈dom(S) recursion.

A partial function S : X ⇀ TCCS is called a recursive specification, and traditionally written

as {Y
def
= S(Y) | Y ∈ dom(S)}. We often abbreviate α .0 by α , and fixXS by “X where S”. A CCS

expression P is closed if each occurrence of a process variable Y in P lays within a subexpression

fixXS of P with Y ∈ dom(S); TCCS denotes the set of closed CCS expressions, or processes.
The traditional semantics of CCS is given by the labelled transition relation→ ⊆ TCCS×Act×TCCS

between closed CCS expressions. The transitions p
α

−→ q with p,q ∈ TCCS and α ∈ Act are derived
from the rules of Table 1.

To extract from each CCS process P a transition system (S, Tr, source, target, I) as in Definition 2.1,
take S to be the set of closed CCS expressions reachable from P , I = {P}, and Tr the set of proofs π
of transitions p

α
−→ q with p ∈ S . Here a proof of p

α
−→ q is a well-founded tree with the nodes

labelled by elements of TCCS ×Act × TCCS, such that the root has label p
α

−→ q, and if µ is the label

of a node and K is the set of labels of the children of this node then
K
µ is an instance of a rule of

Table 1. Of course source(π) = p, target(π) = q and ℓ(π) = α .
In Section 5we restrict our attention to the fragment of CCSwhere dom(S) is finite for all recursive

specifications S and parallel composition does not occur in the expressions S(Y). Moreover, each

occurrence of a process variable X as well as each occurrence of a parallel composition H1 |H2 in

an expression E + F is guarded, meaning that it lays in a subexpression of the form α .G. Given
a process P , let I be the set of all occurrences of action prefix operators α ._ in P . To define the

function instr , give each such action a different name n, and carry these names through the proofs

of transitions, by using

Progress, Justness and Fairness 35

αn .E
α

−→n E
E

a
−→n E ′, F

ā
−→m F ′

E |F
τ

−→n,m E ′ |F ′

and keeping the same list of names in each of the other rules of Table 1. If π ∈ Tr is a proof of a
transition p

α
−→Z q with Z a list of names (seen as a set), then instr(π) = Z . In Appendix B we show

that property (1) holds for this fragment of CCS. As CCS expressions are finite objects, property (2)

holds as well.

The set C of parallel components of a closed expression P in our fragment of CCS is defined

as the arguments (left or right) of parallel composition operators occurring in P (or the entire

process P). A component C ∈ C can be named by a prefix-closed subset of the regular language

{l, r}∗. Each action occurrence can be associated to exactly one of those components. This yields a

function cp : I → C .

Example 25. The CCS expression a.(P |b .Q)|U has at least five components—more if P , Q orU
have parallel subcomponents—namely a.(P |b .Q) (named l), P (named ll), b .Q (named lr), andU
(named r), and the entire expression (named ε). Let a1 and b1 be the indicated occurrences of a and

b. Then cp(a1) = l and cp(b1) = lr.

Now the function comp : Tr→ P(C) is given by comp(t) = {cp(I) | I ∈ instr(t)}, so that (3) is

satisfied.

B PROOF OF THE UNIQUE SYNCHRONISATION PROPERTY
An expression F is called a subexpression of a CCS expression E iff F ⪯ E, where ⪯ is the smallest

reflexive and transitive relation on CCS expressions satisfying E ⪯ α .E, E ⪯ E + F , F ⪯ E + F ,
E ⪯ E |F , F ⪯ E |F , E ⪯ E\a, E ⪯ E[f] and S(Y) ⪯ fixXS for each Y ∈ dom(S). An extended
subexpression is defined likewise, but with an extra clause fixYS ⪯ fixXS for each X ,Y ∈ dom(S).
We say that F has an unguarded occurrence in E iff F ≤ E, where ≤ is defined as ⪯, except that the

clause E ⪯ α .E is skipped, and the clauses for fix are replaced by S(X) ≤ fixXS and

if Y ≤ fixXS and Y ∈ dom(S) then S(Y) ≤ fixXS .

If α .F ≤ E then that occurrence of α in E is called unguarded.
A named CCS expression is an expression E in our fragment of CCS in which each action

occurrence is equipped with a name. It is well-named if for each extended subexpression F of E, all
unguarded action occurrences in F have a different name, and moreover, every subexpression F |G
of E satisfies n(F) ∩ n(G) = ∅, where n(E) is the set containing all names of action occurrences in E.
Clearly, if all its action occurrences have different names, E is well-named.

Claim 1: If E is well-named, then so is any subexpression F of E, and n(F) ⊆ n(E).

Proof of Claim 1: Directly from the definitions.

Claim 2: If E := fixXS is well-named then so is H := S(X)[fixYS/Y]Y ∈dom(S), and n(H) ⊆ n(E).

Proof of Claim 2: Clearly n(H) ⊆ n(S(X)) ∪
⋃

Y ∈dom(S) n(fixYS) ⊆ n(E).
By the restrictions imposed on our fragment of CCS, H has no subexpressions of the form F |G.

Let F be an extended subexpression of H . We have to show that all unguarded action occurrences

in F have different names. Since F is an extended subexpression of H , it either is an extended

subexpression of fixYS for some Y ∈ dom(S), or of the form F ′[fixYS/Y]Y ∈dom(S) for an extended

subexpression F ′
of S(X).

In the first case F is also an extended subexpression of fixXS . Since the latter expression is

well-named, all unguarded action occurrences in F have a different name.

36 Rob van Glabbeek and Peter Höfner

In the second case we consider two subcases. First suppose that no variable Y ∈ dom(S) has an
unguarded occurrence in F ′

. Then all unguarded action occurrences in F are in fact unguarded

action occurrences in F ′
. Since F ′

is an extended subexpression of E, they all have a different name.

Now suppose that a variable Y ∈ dom(S) has an unguarded occurrence in F ′
. Then, by the

restrictions imposed on our fragment of CCS, F ′
has no occurrences of either choice, parallel

composition or action prefixing, and Y is the only process variable occurring unguarded in F ′
. So

the unguarded action occurrences in F are in fact unguarded action occurrences in fixYS . Since the
latter is an extended subexpression of E, they all have different names.

Claim 3: If E is well-named and E
α

−→Z F , then so is F .

Proof of Claim 3: Using and Claims 1 and 2, a trivial structural induction on the proof of

transitions shows that if E is well-named and E
α

−→Z F , then so is F , and n(F) ⊆ n(E).

We write π : E→n if π is a proof of E
α

−→Z F for some α , F and Z such that n ∈ Z .

Claim 4: If π : E→n then E has an unguarded action occurrence named n.

Proof of Claim 4: A straightforward induction on π .

Claim 5: If E is well-named and Z ⊆ I then there is at most one proof of a transition E
α

−→Z F .

Proof of Claim 5: A straightforward induction on the proof of E
α

−→Z F, using Claims 1,2 and 4.

That property (1) holds for the fragment of CCS of Appendix A follows from Claims 3 and 5.

	Abstract
	1 Introduction
	2 Transition Systems and Liveness Properties
	3 Progress
	4 Fairness
	5 A Taxonomy of Fairness Properties
	6 Criteria for Evaluating Notions of Fairness
	6.1 Feasibility
	6.2 Equivalence robustness
	6.3 Liveness enhancement
	6.4 Preservation under unfolding

	7 Strong Weak Fairness
	7.1 Response to insistence and persistence
	7.2 Strong weak fairness of instructions
	7.3 Adding strong weak fairness of instructions to our taxonomy

	8 Linear-time Temporal Logic
	9 Full Fairness
	10 Strong Fairness of Transitions
	11 Probabilistic Fairness
	12 Extreme Fairness
	13 Justness
	14 Uninterrupted Justice
	15 Fairness of Events
	16 Reactive Systems
	17 Evaluating Notions of Fairness
	18 Conclusion, Related and Future work
	References
	A CCS
	B Proof of the Unique Synchronisation Property

