
IEEE SECURITY AND PRIVACY MAGAZINE 1

Benchmarking Flaws Undermine Security
Research

Erik van der Kouwe∗, Gernot Heiser†, Dennis Andriesse∗, Herbert Bos∗ and Cristiano Giuffrida∗ ∗Vrije
Universiteit Amsterdam, The Netherlands—{e.vander.kouwe,d.a.andriesse,h.j.bos,c.giuffrida}@vu.nl

†UNSW Sydney and CSIRO’s Data61—gernot@unsw.edu.au

Abstract—Benchmarking systems is difficult. Mistakes can compromise guarantees and threaten reproducibility and comparability. We
conduct a study to show that benchmarking flaws are widespread in systems security defense papers, even at tier-1 venues. We aim to
raise awareness and provide recommendations for safeguarding the scientific process in our community.

Index Terms—benchmarking, computer systems, performance evaluation, reproducibility of results, security, standardization guidelines

F

1 INTRODUCTION

Benchmarking is essential in systems security—to com-
pare different solutions and reproduce prior results. At every
program committee meeting for every top venue in our field,
heated discussions revolve around the question whether the
performance numbers reported in papers X and Y are reliable
and how they relate to each other. Making the wrong call is
bad, as nobody wants to accept or reject papers for the wrong
reasons. And after we accept a paper, we want to be able
to reproduce and compare the results in a meaningful way.
In this article, we examine publications from top security
conferences to determine whether they contain benchmarking
flaws that threaten the validity of their results. As we do not
allege intent, we avoid the term benchmarking crimes, used
earlier in the literature, including Heiser’s web page [1], that
provides the basis for the flaws/crimes we study.

Bluntly speaking, benchmarking flaws threaten the va-
lidity of the research results in publications. The obvious
question then is: How safe are we as a community from this
threat? And if we are not safe, how serious is this threat,
and how can we mitigate it? Phrased differently, we want
to know how well the systems security research community
detects anomalies in benchmarking in evaluation sections of
papers published in tier-1 venues, what the consequences
are of false negatives, and how to fix these “vulnerabilities”.

In the community, there is wide agreement that perfor-
mance benchmarks are important to advance the field [2].
In systems, almost all security mechanisms incur some
performance overhead [3]. The aim is to keep the overhead
as low as possible, while raising the bar for attackers as
high as possible. Given an unlimited performance budget,
techniques to build secure systems under common threat
models are already well-established—memory safety being
a typical example [4]. As a result, much modern systems
security research focuses on practical defenses [such as
control-flow integrity [5] or randomization [6]], that trade off
some security to achieve realistic performance guarantees.

In this article, we take a closer look at benchmarking
flaws in systems security. While it would be good to also
benchmark the security of a solution, doing so in an unbiased
way is much harder [7], and this article focuses primarily

on performance benchmarking of defenses (expanding on
other dimensions when appropriate). After discussing the
objectives of performance benchmarking in general, we
carefully explore all the pitfalls that authors may encounter
when assessing the performance of their research artefact. For
each of these benchmarking flaws, we explain the negative
impact they may have on the validity or usefulness of the
evaluation.

Finally, we assess the state of benchmarking in systems
security. We selected systems defense papers from the tier-1
computer security venues where systems security defenses
are routinely published (IEEE Symposium on Security and
Privacy, USENIX Security, ACM Conference on Computer
and Communications Security (CCS), and Network and
Distributed System Security Symposium (NDSS)). We sifted
through 50 papers and analyzed them for benchmarking
flaws. For this purpose, we selected all defense papers with
benchmarking results published in 2010 and 2015. As nearly
all papers in our data set have at least some benchmarking
issue (and many have several) and we found no clear
difference between the more recent and the older papers,
we conclude that improper benchmarking is a serious threat
with little improvement in recent years.

This article summarizes the key results of our study; our
earlier conference paper contains the complete results [8].
Here we discussion the implications of these results in more
detail, and propose an approach to solve the problem of
benchmarking flaws in our community.

2 BENCHMARKING FLAWS

Almost every paper in computer systems requires an evalu-
ation that determines whether and how well the presented
system achieves its goals. One important purpose of the
evaluation is to compare against other work: it should show
that the system improves the state of the art in some way and
allows possible subsequent papers to demonstrate that they
improve this system. To allow for comparison, an evaluation
must meet a number of requirements. First of all, it should
be complete, in the sense that it verifies all the claimed



IEEE SECURITY AND PRIVACY MAGAZINE 2

contributions of the system and shows the extent of any
negative impact the system may have. All the presented
results must be relevant in the sense that they actually
tell the reader something meaningful about the system.
Another important characteristic is soundness, that is, the
requirement that all the numbers measure what is intended
with reasonable accuracy and repeatability. Finally, a general
principle of science requires papers to be reproducible. That
is, the information provided in the paper should be sufficient
enough to allow others to build the system and perform its
evaluation in the same way as the original. A good paper
should meet all of these requirements, but unfortunately,
experience shows that this is often hard to come by in
practice. Indeed, we found that most papers contain a
number of benchmarking flaws that violate these properties.

In this section, we describe the benchmarking flaws we
identified and explain their importance. Our list is based in
large part on a web page by Heiser [1] (who uses the term
benchmarking crimes), aimed at operating systems researchers.
We adapt the list to the context of security research, and
also perform a systematic and large-scale survey of systems
defense papers at top conferences (see Section 3) to deter-
mine whether these benchmarking flaws are common in
published systems security papers. We find that these flaws
apply not only to the operating systems community, but
extend to other subfields of computer systems, in particular,
systems security. This is particularly important because, as
we shall see, Heiser’s original web page [1] published in 2010
had insufficient impact in the systems security community.
Benchmarking flaws are still widespread and their relevance
has, in fact, grown over time.

We placed the 22 benchmarking flaws we identified into
groups and assigned codes (a letter for the group plus a num-
ber for the specific flaw) to simplify later references to them.
We describe the groups and the individual benchmarking
flaws and later elaborate on their impact in Section 3. A
more detailed description including examples can be found
in the conference paper [8].

2.1 Selective Benchmarking
There is no single number that can fully express how well a
system performs. Performance overhead is multidimensional
as different operations are affected in different ways. For
example, a system that performs CFI [5] instruments indirect
branches but leaves other operations alone. Therefore, it
is likely to incur substantial overhead for programs and
workloads that perform many function calls, especially if they
are indirect (e.g., common C++ programs), but it will incur
minimal overhead if the program spends most of its time in
a loop that calls no functions. This has several implications
for benchmarking, and when a paper does not consider these
implications it might result in a performance evaluation
becoming anywhere from slightly inaccurate to completely
meaningless.

• A1: Not evaluating potential performance degradation oc-
curs whenever a paper does not include benchmarks
that evaluate all the operations whose performance
one might reasonably expect to be impacted.

• A2: Benchmark subsetting without proper justification
applies to papers that arbitrarily select a subset of

benchmark suites and present it as a single overall
performance overhead number as if it were still
representative.

• A3: Selective data sets that hide deficiencies arises when
papers fail to test operation performance over an
appropriate range of settings (for example, core
count), which uncovers all-important performance
characteristics.

2.2 Improper Handling of Benchmark Results
Our second group of flaws deals with correctly interpreting
benchmarking results. Even when running the right bench-
marks, the presentation of their results can be misleading if
they are processed in incorrect ways. This group contains
five flaws related to the incorrect handling of benchmark
results:

• B1: Microbenchmarks representing overall performance re-
sults in misleading results that provide no indication
of how fast a system would run in practice.

• B2: Throughput degraded by x% ⇒ overhead is x% refers
to cases where measurements are conducted in such
a way that performance overhead is hidden by idle
time (the CPU is not fully loaded).

• B3: Bad math refers to incorrect computations using
overhead numbers; for example, from the use of
percentage points to present a difference in overhead.

• B4: No indication of significance of data is an issue when-
ever averaged measurement results are presented
without some indication of the amount of variation.

• B5: Incorrect averaging across benchmark scores often
occurs when authors use the arithmetic mean to
average overhead ratios, while only the geometric
mean is correct in this case [9].

2.3 Using the Wrong Benchmarks
This group of benchmarking flaws pertains to using the
wrong benchmarks and consists of the following three
benchmarking flaws:

• C1: Benchmarking of simplified simulated system refers
to cases where the benchmarks are not run on a real
system but rather an emulated version.

• C2: Inappropriate and misleading benchmarks refers to the
use of benchmarks that are not suitable for measuring
the expected overheads.

• C3: Same dataset for calibration and validation applies to
papers that test a trained system where the data set
used for testing overlaps with the training data set.

2.4 Improper Comparison of Benchmarking Results
Raw measurements like runtime or throughput numbers
are rarely meaningful in isolation. Instead, they must be
interpreted by comparing them to a baseline to determine
how much overhead the system incurs and/or to competing
systems to determine whether the system can improve their
performance. We separated this issue into the following three
different benchmarking flaws:

• D1: No proper baseline refers to computing overhead
compared to an unsuitable baseline.



IEEE SECURITY AND PRIVACY MAGAZINE 3

• D2: Evaluating only against oneself refers to cases where
authors compare their new system to their own earlier
work rather than the state of the art.

• D3: Unfair benchmarking of competitors refers to papers
that do compare against competitors but do so in an
unfair way.

2.5 Benchmarking Omissions
The following group of flaws covers necessary measurements
for evaluations that are not yet covered by the other bench-
marking flaws:

• E1: Not all contributions evaluated refers to cases where
a paper claims to achieve a certain goal but does
not empirically determine whether this goal has been
reached. It is critical that papers verify claims.

• E2: Measuring only runtime overhead occurs whenever
a system should be expected to impact performance
characteristics that are not measured, such as memory
usage.

• E3: False positives/negatives not tested is an issue for
papers that involve classification but do not verify its
accuracy.

• E4: Elements of solution not tested incrementally refers to
papers that test the combined impact of the proposed
approach but fail to isolate whether all the proposed
elements of the solution provide a useful contribution
to the overall result.

2.6 Missing Information
The following final group contains benchmarking flaws
where important information has been left out of a paper:

• F1: Missing platform specification applies to papers that
lack a description of the hardware setup used to
perform the experiments.

• F2: Missing software versions is similar but refers to the
software.

• F3: Subbenchmarks not listed applies to papers that run
a benchmarking suite but do not present the results
of the individual subbenchmarks, just the overall
number.

• F4: Relative numbers only involves presenting only
ratios of overheads without presenting the actual
measured numbers.

3 STUDY RESULTS

To determine the prevalence of the benchmarking flaws
discussed in Section 2 and to gain a better idea of what
these flaws look like in practice, we investigated 50 papers
published at top security venues. We focused our analysis on
the traditional “top 4” venues in security: USENIX Security,
Security & Privacy, CCS, and NDSS, selecting all systems
defense papers from these venues in 2010 and 2015. The
conference paper [8] lists all the papers selected for our
analysis.

For each of the 50 selected papers and each benchmarking
flaw described in Section 2, we determined whether the
paper contains a particular flaw. Two people independently
categorized each paper for each flaw as correct, flawed,

underspecified, or not applicable. In most cases, both readers
came to the same conclusions, suggesting that our method-
ology is reproducible. For papers where there were some
disagreements, the readers discussed their assessments to
converge on a final classification. This was the case for eight
out of the 50 papers (16%). In only two cases did the discus-
sion lead to the addition of a benchmarking flaw initially
missed by one of the readers. The remaining disagreements
concerned the precise extent of flaws identified by both
readers.

Figure 1 shows the number of papers containing each
flaw, counting as a single occurrence a paper that contains the
same flaw multiple times. In some cases, we were unable to
determine whether the methodology in the paper is sound be-
cause important elements of the experiments or their analyses
were not specified with a sufficient level of detail. We have
classified these paper/flaw pairs as underspecified. Note
that underspecification is problematic even if the underlying
methodology is sound because it hampers reproducibility
and makes it harder for later competitors to perform a fair
comparison with prior work.

Our results show that benchmarking flaws are a major
problem. Over all pairs of paper and their applicable flaw,
the flaw either applies or the paper is underspecified with
regard to the flaw in 256 out of the 851 cases (30%). However,
not all flaws are equally common. The lack of indication of
the significance of data and benchmark subsetting without
proper justification are by far the most widespread, affecting
80 and 69%, respectively, of the applicable papers we
investigated. None of the other flaws affect a majority of
the papers but four additional ones affect 40% or more of the
papers to which they apply. This shows that several types of
benchmarking flaws are widespread even in peer-reviewed
papers at the top venues.

Figure 2 shows a histogram of the number of benchmark-
ing flaws (including underspecification) per paper. High-
impact flaws are explained in the next section. It is notable
that from our sample of 50 papers, we found only one paper
without any benchmarking flaws. Flaws are fairly evenly
spread between papers, with many papers being very close to
the average number of benchmarking flaws per paper (5.0 for
all flaws and 1.7 for high-impact flaws). As such, the results
would seem to suggest that the problem of benchmarking
flaws is not an issue of a few authors and reviewers being
particularly careless (or malicious), but rather a community-
wide lack of awareness of or attention to these problems.
This is further corroborated by the fact that many prevalent
benchmarking flaws require very little effort to fix, as detailed
later.

4 IMPACT

We examine the impact of frequent flaws, i.e., those found in
at least 10 papers (the conference version [8] has the complete
analysis).

4.1 Selective Benchmarking

A1: Not Evaluating Potential Performance Degradation. We
found two major groups of papers that contain this flaw:
those where overhead figures are missing entirely and those



IEEE SECURITY AND PRIVACY MAGAZINE 4

0 5 10 15 20 25 30 35 40 45 50

F4 – Relative numbers only
F2 – Missing software versions

F1 – Missing platform specification
E4 – Elements of solution not tested incrementally

E3 – False positives/negatives not tested
E2 – Measuring only run-time overhead

D2 – Evaluating only against oneself
C3 – Same dataset for calibration and validation

B5 – Incorrect averaging across benchmark scores
B4 – No indication of significance of data

B3 – Bad math
B1 – Microbenchmarks representing overall perf.

A3 – Selective data sets that hide deficiencies
A2 – Benchmark subsetting w/o proper justification

OTHER FLAWS
F3 – Subbenchmarks not listed

E1 – Not all contributions evaluated
D3 – Unfair benchmarking of competitors

D1 – No proper baseline
C2 – Inappropriate and misleading benchmarks

C1 – Benchmarking of simplified simulated system
B2 – Throughput degr. by x% → overhead is x%
A1 – Not evaluating potential perf. degradation

HIGH-IMPACT FLAWS

Classification of Papers per Flaw

Correct Underspecified Flawed Not applicable

Fig. 1. Benchmarking flaws study overview.

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
p

ap
er

s

Number of flaws (including underspecified)

all flaws high-impact flaws

Fig. 2. Histogram of number of flaws per paper

that do not reflect all potential slowdown. In both cases,
this flaw makes it difficult (if not impossible) to assess the
practicality of the presented solution and its improvements
over the state of the art. Moreover, papers that present
inappropriate performance measurements may even hamper
scientific progress because they prevent competing systems

that perform poorly on these inappropriate measures, or not
as efficiently on appropriate measures, from being published.
Even worse, they may encourage more benchmarking flaws
in future systems, as authors struggle to exceed overly
optimistic performance figures. As such, we consider this
flaw to be high impact.

A2: Benchmark Subsetting Without Proper Justification. We
found that many papers using standardized benchmarking
suites leave out some subbenchmarks. Based on the particu-
lar benchmarks that are often left out, it is very likely that this
will result in an underestimation of performance overhead
in practice [8]. We conclude that leaving out subbenchmarks
can have a major impact on the soundness of measurements
as well as the comparability between competing systems and
therefore requires a proper and exact justification. Moreover,
if different papers use different subsets, the overall slowdown
is no longer suitable for comparing performance.

4.2 Improper Handling of Benchmark Results
B2: Throughput Degraded by x% ⇒ Overhead Is x%. Based on
our study, we believe that all instances of this benchmarking
flaw are likely to result in an underestimate of performance
overhead, although without the necessary data it is impos-
sible to determine by how much. Because this flaw is likely



IEEE SECURITY AND PRIVACY MAGAZINE 5

to affect the soundness of performance measurements in all
cases, we consider it to be a high-impact benchmarking flaw.

B4: No Indication of Data Significance. Some indication
of variation is important because it is an indication of how
reliable the numbers are and whether, given the measurement
inaccuracy, the measured differences are actually meaningful.
However, we expect the overall impact of this flaw to be
relatively mild for papers where researchers set up their
experiments correctly.

B5: Incorrect Averaging Across Benchmark Scores. To deter-
mine the impact of incorrect averaging, we compared the
geometric mean with the presented average. For four out
of the eight papers where we could compute this mean,
the difference in the arithmetic mean is at least 1% higher
than that of the geometric mean, overestimating the overall
overhead. For the worst case that we found, the arithmetic
mean is more than twice the geometric mean, while the
remainder overestimate overhead by 2–16%.

4.3 Improper Comparison of Benchmarking Results
D1: No Proper Baseline. We found that some papers have
an incorrect baseline, while others do not present one at
all. The former are always likely to either underestimate
overhead or overestimate effectiveness. This threatens both
the soundness and comparability of the results. Absolute
performance numbers without baselines cannot be compared
between systems and therefore provide little meaningful
information. Because we found that the lack of a proper
baseline was a serious problem in all cases, we consider this
flaw to be high impact.

4.4 Benchmarking Omissions
E2: Measuring Only Runtime Overhead. Papers that do not
measure important sources of overhead other than runtime
are incomplete; however, the impact of this incompleteness
differs from case to case. If, for example, memory overhead
can theoretically be assumed to be minor and similar to that
of prior work, the impact is limited. If, on the other hand,
there is reason to believe that the paper incurs significant
memory overhead yet does not measure it, this could be a
problem for later papers that improve upon this overhead.

4.5 Missing Information
F1: Missing Platform Specification. This benchmarking flaw
makes reproducing the exact results based on the contents of
the paper impossible. It may make the results less comparable
but does not affect the validity of the results.

F2: Missing Software Versions. This benchmarking flaw
hampers reproducibility, as the software about which infor-
mation is missing should be expected to have an impact on
performance.

5 RECOMMENDATIONS

Our analysis shows that benchmarking flaws are very
common and potentially have a major impact on the quality
of published research in systems security. Based on the
results, we suggest that being mindful of the most important
flaws will improve the quality of published research with

relatively little effort, and we have provided a list of such
suggestions [8].

However, we also feel that our results expose an un-
derlying problem: benchmarking practices do not receive
the attention and priority they deserve in our community.
Making a lasting impact requires more than just pointing au-
thors to a few specific problems, which has been done before
(though without examining published papers) by Heiser [1].
Instead, we would like to provide authors, reviewers, and
program committee chairs with some guidance as to the right
way of benchmarking in systems security. This will not be
the last word on benchmarking in security, but we hope that
our suggestions will begin the discussion.

We do not do research and write papers in isolation,
as we are part of a community that sets examples and
expectations of what a good paper is supposed to be like.
Moreover, there is great pressure to publish, and putting a lot
of effort in evaluation is not always the most rewarding way
to spend one’s limited time. As such, incentive structures
matter for benchmarking practices and, as a community,
we need to think about how we can best reward good
research. To improve our benchmarking practices—as our
study has shown is urgently needed—bottom-up changes
from individual authors are insufficient; rather, a coordinated
effort is needed. In particular, we consider the changes we
believe are necessary for the community as a whole, for
the individual authors writing papers, and for the program
committees that decide which papers to publish or not
publish.

5.1 Community

The community of security researchers must be the starting
point for any solution to the problem of benchmarking
flaws, as any approach without community support will
be unrewarding for researchers and therefore unlikely to
succeed. There are several tasks that we feel individual
community members should address and others that should
be addressed by the community as a whole.

While our paper [8] identifies a number of problems in
benchmarking and examines the way they are addressed
in top conferences, this should not be the last word on the
subject. We call upon the community to further investigate
these issues because it is impossible to come up with the best
solution without first knowing the full extent of the problem.
The following are a several specific directions that we feel
must be explored:

1) We only cover systems defenses, but we expect that
similar issues exist in other areas of systems security
that rely on experimental validation.

2) We focus primarily on performance, but the measure-
ment of effectiveness (that is, the level of security)
is also very important and even harder to measure
properly than is performance.

3) Even though we include all four tier-1 conferences
in our field, it would be beneficial to also consider
lower-tier conferences where many in our field also
publish, and where the review process may be
simplified and/or the program committee members
less experienced.



IEEE SECURITY AND PRIVACY MAGAZINE 6

4) Although we take a bird’s-eye view and look for
many flaws in a large number of papers in a binary
fashion, there is value in more in-depth studies of
why and how specific flaws are introduced and
what their impact in practice is (for example, by
reproducing experiments using different setups).

5) In cooperation with conference organizers, it would
be possible to compare submitted, accepted, and
camera-ready papers, which would be valuable to
evaluate the effectiveness of the review process to
reduce the number of benchmarking flaws.

Although conferences focus mostly on technical content,
we feel it is important to also use these venues to draw
attention to research practices within our community. A
practical solution may be to set up workshops cohosted
with our top conferences that serve specifically as a place to
discuss this type of metaresearch.

We call upon the community to establish a consensus
on a set of best practices. Leading researchers in each
subfield, working together, could establish a set of accepted
benchmarks and write a performance evaluation guide. In
particular, this evaluation guide should include a checklist
that authors and program committees can apply to determine
whether a certain paper meets the minimum requirements.
Our list of benchmarking flaws can serve as a basis, though
we would recommend a positively formulated checklist that
indicates what we expect of a paper rather than one that
focuses only on specific ways to get it wrong. This checklist
must receive broad endorsement in the community before it
can be effective.

More concretely, we should agree upon the benchmarks to
use (as a minimum) for which types of systems and how they
are to be configured. This can help new researchers learn how
to properly perform benchmarking, set standards to ensure
that systems are benchmarked properly, and make certain
that the performance measurements of similar systems are
comparable. Even though some benchmarks are already in
widespread use in our community [for example, Standard
Performance Evaluation Corporation (SPEC) CPU], it is
important to highlight their constraints (in this case, it
only exercises the CPU and mostly remains in usermode)
and provide additions and/or alternatives where they are
not suitable. Configuration is also of particular importance
because, in many cases (for example sufficient concurrency
for ApacheBench, or a suitable optimization level for SPEC
CPU), it has a significant impact on the soundness or the
result.

In addition to guidelines that indicate what is expected of
authors, we feel that the community should also actively help
authors achieve these goals with reasonable effort. In partic-
ular, it would be helpful to build open source frameworks
that save researchers time when setting up benchmarking for
their systems in accordance with the guidelines. As for the
investigations of existing benchmarking practices, we need
suitable venues to publish this article, not only to make it
more worthwhile for community members to make the effort
to build tools that benefit us all, but also to ensure visibility
and community involvement in these projects. Practically
speaking, these could be the same workshops that we also
proposed for publication of metaresearch on benchmarking

practices in our field.

5.2 Authors
Improving benchmarking practices in systems security
critically depends on the authors who actually run those
benchmarks and present their results. We hope that the
community efforts described in the previous section will
make clear to authors what is expected of them and provide
them with the information and tools that they need to achieve
this with minimal effort. In this section, we describe how we
expect authors to follow best practices and how they should
be able to use resources to the fullest extent possible.

Our first recommendation is that authors start consider-
ing benchmarking requirements early in the project, rather
than as a part of the final paper writing stage. Evaluation is
fundamentally a part of research, and research prototypes
should be designed to facilitate easy (and, if possible, auto-
mated) verification of each individual contribution claimed in
the work. As such, listing contributions should be one of the
first steps and will serve as a basis to select the most suitable
benchmarks based on the community consensus described in
the previous section. In addition, nearly all of the proposed
systems involve some kind of tradeoff. For example, security
benefits will often result in slower performance and higher
memory usage. When listing contributions, authors should
be precise about the limitations and cost and evaluate
these with suitable benchmarks, again, based on community
consensus.

As for the paper-writing stage, our study shows that
in many cases, critical information is missing, which, if
explicitly added to the paper, could have prevented some of
the benchmarking flaws. Our advice is to be complete and
clearly list the limitations, explaining why these limitations
are there. In particular, for cases where standard solutions are
not viable, the author should clearly explain why this is the
case and select the next best alternative. The author should
discuss unambiguously what the impact of these differences
is expected to be. When presenting evaluation results, au-
thors must ensure that they present the most meaningful
quantities (avoiding flaws B3 and B5) and include relevant
statistics to indicate how statistically significant the measured
impacts are (avoiding flaw B4). With regard to completeness,
authors should take utmost care to describe all parts of their
experimental setup to allow for independent verification of
their approach. Ideally, authors should open source their
code and the environment/scripts needed for reproduction.
By following these steps, many flaws can be prevented with
relatively little effort.

Finally, researchers should apply the community consen-
sus checklist to determine whether they meet the require-
ments and have avoided benchmarking flaws. Even when
carefully planning experiments and writing the paper, it is
easy to forget about some of the points. The checklist offers
an opportunity to match the benchmarking in the paper with
the reviewers’ expectations.

5.3 Program Committees
The goal of any researcher is to have their work published
and, within our community, conferences are the main venue
to achieve this. Program committees act as gatekeepers,



IEEE SECURITY AND PRIVACY MAGAZINE 7

allowing only the work that is of sufficient quality to
be published. Although traditionally program committees
could only decide to accept or reject a paper, the IEEE
Symposium on Security and Privacy has switched to a rolling
deadline system, with other top security conferences recently
following suit. This introduces the possibility to require
revisions, and allows the program committee to give a paper
that is interesting but not of sufficient quality an opportunity
to improve, followed by a second round of reviews, similar
to the model used by scientific journals.

We propose using this opportunity to enforce the guide-
lines to be formulated by the community. In particular,
reviewers should consider the benchmarking practices check-
list and mark any benchmarking flaws found in their reviews.
Benchmarking flaws need not lead to immediate rejection
but should be fixed in the revision stage. In many cases,
it would likely suffice to require that any deviation from
community best practices be made clear and justified in
the paper. In more severe cases, where it appears that
high-impact benchmarking flaws do, in fact, undermine
the validity of the results and a round of revisions is not
sufficient to address the problem, we should reject those
papers. It is important to have specific discussions about
how we weigh correctness against expected impact. With
benchmarking issues exposed, it becomes easier to make this
tradeoff and reduce the number of papers that do not meet
the community quality standards.

6 RELATED WORK

Benchmarking in Systems Security: Although there
have been several studies that determine whether computer
science papers perform measurements in appropriate ways
(among others [10], [11], [12], [13]), to the best of our
knowledge, none of them are specific to benchmarking in
systems security. The most closely related work is Heiser’s
original web page about benchmarking crimes [1], which
serves as inspiration for this article. Compared to Heiser’s
web page (which has been updated since our publication), we
propose an extended classification and present a systematic
analysis of benchmarking flaws in peer-reviewed defense
papers. We also formulate concrete recommendations.

Studies Considering Evaluation Quality: A number
of authors have examined how well papers in various fields
evaluate their work. Kuz et al. [10] investigate benchmarking
for multicore systems to propose a better approach but
only consider six papers. Skadron et al. [11] investigate
papers in computer architecture to determine their topics
and performance evaluation techniques. They provide an
overview and discussion of the various techniques but do not
go into any depth about incorrect benchmarking practices.
Mytkowicz et al. [12] present a study to determine whether
measurement error is considered correctly in computer
systems experiments and provide suggestions on how to
improve this. Rossow et al. [13] study the methodological
rigor and prudence in papers using malware execution.
Although their approach for identifying flaws is similar to
ours, the pitfalls they identify are quite different because
they focus on malware analysis rather than performance.

Benchmarking Advice: Some other papers also pro-
vide benchmarking advice but do so without a systematic

study, instead using examples and their own tests to verify
that the identified pitfalls result in questionable results.
Schwarzkopf et al. [14] identify benchmarking problems
in cloud research and Seltzer et al. [15] discuss the problems
associated with standardized benchmarks in file systems
research. Even though these studies demonstrate important
benchmarking problems, the lack of a systematic study
means they cannot determine the impact these potential
problems have on the research literature.

7 CONCLUSION

Although the security community expends considerable
effort on defending systems from increasingly dangerous
threats, it devotes much less attention to the correctness
of research results. Benchmarking flaws, in particular, have
been largely neglected. As the focus of systems research
is increasingly shifting to practical, low-overhead defenses,
benchmarking flaws are increasingly relevant and are now
the “elephant in the room.” We assessed the magnitude of the
problem in 50 defense papers in top systems security venues,
suggesting that benchmarking flaws are widespread and
show no sign of improvement, thus hampering research com-
parability and reproducibility. Encouragingly, many common
benchmarking flaws can be easily prevented by following
our guidelines for authors. We have made available a
checklist [16] to allow interested readers to easily apply
our findings to their own work.

ACKNOWLEDGMENTS

This project was supported by the European Union’s Horizon
2020 research and innovation program under grant agree-
ment 786669 (ReAct) and 825377 (UNICORE), by the U.S.
Office of Naval Research under contract N00014-17-1-2782,
by Cisco Systems, Inc. through grant 1138109, and by The
Netherlands Organisation for Scientific Research (NWO)
639.023.309 VICI “Dowsing” and NWO 639.021.753 VENI
“PantaRhei”. This article reflects only the authors’ view. The
funding agencies are not responsible for any use that may be
made of the content.

REFERENCES

[1] G. Heiser, “Systems benchmarking crimes,” https://www.cse.unsw.
edu.au/∼gernot/benchmarking-crimes.html.

[2] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in ICSE,
2003.

[3] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder, “High system-
code security with low overhead,” in IEEE Security&Privacy, 2015.

[4] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Soft-
bound: Highly compatible and complete spatial memory safety for
C,” in PLDI, 2009.

[5] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in ACM CCS, 2005.

[6] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-
R. Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical
code randomization resilient to memory disclosure,” in IEEE
Security&Privacy, 2015.

[7] S. M. Bellovin, “On the brittleness of software and the infeasibility
of security metrics,” IEEE Security&Privacy, 2006.

[8] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida,
“Sok: Benchmarking flaws in systems security,” Proc. 4th IEEE
Eurpean Sym. Security and Privacy (EuroS&P), 2019.



IEEE SECURITY AND PRIVACY MAGAZINE 8

[9] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the
correct way to summarize benchmark results,” Communications of
the ACM, vol. 29, no. 3, pp. 218–221, 1986.

[10] I. Kuz, Z. R. Anderson, P. Shinde, and T. Roscoe, “Multicore OS
benchmarks: We can do better,” in HotOS, 2011.

[11] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and V. S. Pai,
“Challenges in computer architecture evaluation,” IEEE Computer,
vol. 36, no. 8, pp. 30–36, 2003.

[12] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Producing wrong data without doing anything obviously wrong!”
ACM SIGPLAN Notices, vol. 44, no. 3, pp. 265–276, 2009.

[13] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. Van Steen, “Prudent practices for
designing malware experiments: Status quo and outlook,” in IEEE
Security&Privacy, 2012.

[14] M. Schwarzkopf, D. G. Murray, and S. Hand, “The seven deadly
sins of cloud computing research,” in HotCloud, 2012.

[15] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang, “The case for
application-specific benchmarking,” in HotOS, 1999.

[16] “Threats to validity and relevance in security research,” https:
//www.vusec.net/threats-to-validity-in-security-research/.

Erik van der Kouwe Erik van der Kouwe is an
assistant professor at the VUSec systems secu-
rity group at the Vrije Universiteit Amsterdam. He
received his PhD in software reliability from prof.
Andy Tanenbaum, and afterwards broadened hist
scope to include systems security. His recent
work is on practical compiler-assisted defenses
against zero-day vulnerabilities and on properly
benchmarking such defenses.

Gernot Heiser Gernot Heiser is Scientia Profes-
sor and John Lions Chair of Operating Systems
at UNSW Sydney, and Chief Research Scientist
at CSIRO’s Data61. His research is on high-
performance, highly dependable operating sys-
tems, especially microkernels, for security- and
safety-critical systems, with a strong track record
of transferring research outcomes to real-world
applications. He holds a PhD from ETH Zurich,
an MSc from Brock University and a BSc from
the University of Freiburg. He is a Fellow of the

IEEE, a Fellow of the ACM and a Fellow of the Australian Academy of
Technology and Engineering (ATSE).

Dennis Andriesse Dennis Andriesse is a secu-
rity researcher at Intel. He obtained his PhD in
System and Network Security from Vrije Univer-
siteit Amsterdam and has a broad interest in low-
level security.

Herbert Bos Herbert Bos is full professor of
Systems Security at Vrije Universiteit Amster-
dam where he co-leads the VUSec group with
Cristiano Giuffrida and Erik van der Kouwe. He
obtained his Ph.D. from Cambridge University
Computer Laboratory (UK). Coming from a sys-
tems background, he drifted into security a few
years ago and never left. He is doomed to wander
the earth and not find true happiness until he
has recruited an additional assistant professor
in systems security for VUSec. So if this is you,

please apply!

Cristiano Giuffrida Cristiano Giuffrida is an
Assistant Professor in the Computer Systems
Section at the Vrije Universiteit Amsterdam. His
research interests include systems security, reli-
ability, and availability. Giuffrida received a PhD
from the Vrije Universiteit Amsterdam in 2014. He
was awarded the Roger Needham Award and the
Dennis M. Ritchie Award for the best PhD thesis
in Computer Systems (Europe and worldwide) in
2015.


