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Abstract. We present a tool for automatic generation of packed bit-
fields and tagged unions for systems-level C, along with automatic, ma-
chine checked refinement proofs in Isabelle/HOL. Our approach pro-
vides greater predictability than compiler-specific bitfield implementa-
tions, and also provides a basis for formal reasoning about these typically
non-type-safe operations. The tool is used in the implementation of the
seL4 microkernel, and hence also in the lowest-level refinement step of
the L4.verified project which aims to prove the functional correctness of
seL4. In the seL4 implementation, it has eliminated the need for unions
entirely.

1 Introduction

In this paper we present a tool that automatically generates inline-able C func-
tions to implement tagged unions of packed bitfield types, based on a simple
domain-specific language specification. We then generalise, and suggest a tech-
nique to exploit the desires of systems programmers to ease program verification.

The motivation for this work was the C implementation of the seL4 micro-
kernel, and the needs of the associated L4.verified project [8, 3]. The seL4 micro-
kernel [5, 7] is an evolution of the L4 family [17] for secure, embedded devices.
The L4.verified project aims to prove its functional correctness. The need to pro-
duce code that can be verified with reasonable effort requires the disciplined use
of ‘ugly’ programming idioms, those which violate the basic abstractions of the
underlying semantic model. In our case, these are heap type aliases, i.e. unions,
non-type-safe pointer accesses, and sub-machine-word manipulations. These vi-
olations occur commonly together, in the tagged union and bitfield construct.
See Fig. 1 for an example from the OKL4 kernel [19], a current commercial
implementation of L4. This pattern is very regular, and an obvious target for
automation. Generation of this code is desirable for two reasons: First, via con-
trolled tagged unions, it adds functionality to C in a disciplined, type-safe way.
Second, bitfield implementations vary widely, both in performance and in actual
behaviour between compilers, and even different versions of the same compiler.
As a result, they are usually mistrusted by kernel programmers. In contrast, our
generated code is fast, predictable and formally correct.

⋆ NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council.



union {

struct {

BITFIELD2(word_t,

type : 2,

tcb_p : BITS_WORD - 2

);

} x;

word_t raw;

};

Fig. 1. Example of combined union/bitfield usage. From OKL4 2.1, ”include/caps.h”,
lines 92-100.

Our approach is to provide an opaque, abstract type, implementing the
tagged-union/bitfield semantics, together with generated accessor functions. The
tool automatically provides the proofs that the functions behave as expected.
Whilst this is not a radically new idea, our approach is successful precisely
because we target the regular low-level functions, which nonetheless comprise
roughly 10% of the code within seL4. This tool also provides a case study for
the use of the C semantics of Tuch et al. [26], and Dawson’s Isabelle/HOL li-
brary for machine-word [4]. The remainder of the paper is laid out as follows:
Section 2 introduces the specification language used to describe the bit-level lay-
out of structures, Section 3 shows the C code generation framework, and Section
4 explains the framework of automatically generated proofs to allow reasoning
without descending to the level of pointers and bit manipulation.

2 Specification Language

The tagged-union/packed-bitfield structure is useful in a number of contexts e.g.
Hardware-dictated page-table layouts, hardware register mapping, and highly
optimised data structure storage. As a running example, we will consider a sub-
set of the seL4/ARM capability representation. Capabilities are used as a proxy
for authority, and we consider only two capability types: Null caps (null cap)
which function as placeholders, and Untyped caps (untyped cap) which convey
authority over a power of two sized block of memory. The capability is repre-
sented as a two word (64 bit) bitfield: Null caps contain no data other than the
type tag, whereas Untyped caps have two fields: capBlockSize and capPtr, a
pointer aligned on a 16-byte boundary.

The cap representations are specified as follows (the full grammar is included
in Fig. 5). First the machine word size (32 bits for ARM) is specified with the
base keyword:

base 32

Next, bitfield blocks are specified. Fields are listed from most-significant
to least-significant bit (Fig. 2). The padding keyword introduces anonymous
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padding space, to achieve the desired alignment, and the field keyword re-
serves space for a named field. In the null cap example, padding 32 reserves
one empty machine word, field capType 4 allocates a 4 bit field at the top
of the second word, and padding 28 explicitly fills the remainder of the second
word. The trailing padding is mandatory, where the fields do not fill the lower
bits of the last word.

block null_cap {

padding 32

field capType 4

padding 28

}

block untyped_cap {

padding 27

field capBlockSize 5

field capType 4

field_high capPtr 28

}

Fig. 2. Packed bitfield layout

Padding between fields is inserted explicitly, fields are forbidden to cross
word boundaries, and the size of each block must be a multiple of the base
word size. These restrictions ensure that the implementation maps efficiently
onto common machine operations, and present no difficulties in practice. The
field high keyword specifies that a field should be left-aligned to the word size
when read or written, padded on the right with zero bits, see Fig. 3.

Finally, blocks are grouped together into tagged unions (Fig. 4).

The tagged union keyword is followed by the name of the union, and the
name of the tag field, then a list of block names, together with their associated
tag values. All blocks in the union must be the same size, and each must contain
a tag field. All tag fields must be the same size, and at the same location within
the block.
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Fig. 3. field high implementation

tagged_union cap capType {

tag null_cap 0

tag untyped_cap 1

}

Fig. 4. Tagged union specification

3 Generated Code

This section gives a brief overview of the code generated from the specifications
above. Each block and union in the specification language is translated to a
C representation with appropriate access and update functions. Each object is
represented by a struct containing simply an array of machine words, and for
each union, an enum of tag values. The wrapping struct allows pass and return
by value in C.

struct cap {

uint32_t words[2];

};

typedef struct cap cap_t;

enum cap_tag {

cap_null_cap = 0,

cap_untyped_cap = 1,

};

typedef enum cap_tag cap_tag_t;

For each block and union, the tool generates create, access and update func-
tions. Each such function is generated in a purely functional version, which passes
and returns a stack object of appropriate struct type:

static inline cap_t CONST

cap_untyped_cap_set_capBlockSize(cap_t cap, uint32_t v) {

assert(((cap.words[0] >> 28) & 0xf) ==

cap_untyped_cap);

cap.words[1] &= ~0x1f;

cap.words[1] |= (v << 0) & 0x1f;

return cap;

}

Also generated is a pointer lifted version, which operates indirectly on heap
values through a supplied pointer:
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entity_list ::= empty

| entity_list block

| entity_list tagged_union

| entity_list base

base ::= "base" INTLIT

block ::= "block" IDENTIFIER "{" fields "}"

fields ::= empty

| fields "padding" INTLIT

| fields "field_high" IDENTIFIER INTLIT

| fields "field" IDENTIFIER INTLIT

tagged_union ::= "tagged_union" IDENTIFIER IDENTIFIER "{" tags "}"

tags ::= empty

| tags "tag" IDENTIFIER INTLIT

Fig. 5. Specification language grammar

static inline void

cap_untyped_cap_ptr_set_capBlockSize(cap_t *cap_ptr,

uint32_t v) {

assert(((cap_ptr->words[0] >> 28) & 0xf) ==

cap_untyped_cap);

cap_ptr->words[1] &= ~0x1f;

cap_ptr->words[1] |= (v << 0) & 0x1f;

}

The prototypes for the remaining functions are given in Fig. 6.
Note that the generated API only provides functions that read the tag field

through the union type, and no function to write it directly. This imposes a
class-like behaviour on the types. The subtype is set implicitly at creation time,
and can only be modified by overwriting with an object of a different type. This
will turn out to be an important property for verification.

In practice the output is automatically pruned, so that only those functions
actually used in the source are generated. This speeds the proof process. As
the specification language is highly focussed and carefully limited, the generated
code is simple and fast, highly predictable, and easily inlined by the compiler.

4 Generated Specifications

The final and most novel part of the approach consists of the automatically gen-
erated, machine checked function specifications together with their automated
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static inline uint32_t CONST

cap_get_capType(cap_t cap);

static inline uint32_t PURE

cap_ptr_get_capType(cap_t *cap_ptr);

static inline cap_t CONST

cap_untyped_cap_new(uint32_t capBlockSize,

uint32_t capPtr);

static inline void PURE

cap_untyped_cap_ptr_new(cap_t *cap_ptr,

uint32_t capBlockSize,

uint32_t capPtr);

static inline uint32_t CONST

cap_untyped_cap_get_capBlockSize(cap_t cap);

static inline uint32_t PURE

cap_untyped_cap_ptr_get_capBlockSize(cap_t *cap_ptr);

static inline cap_t CONST

cap_untyped_cap_set_capBlockSize(cap_t cap,

uint32_t v);

static inline void

cap_untyped_cap_ptr_set_capBlockSize(cap_t *cap_ptr,

uint32_t v);

Fig. 6. Generated function prototypes for the example

proofs. The function of the generated proofs is to not only to show implemen-
tation correctness, but also to provide sufficient reasoning power to allow any
statement involving the generated functions to be rephrased in terms of simple
operations on abstract, high-level types in the theorem prover. This means that
we can avoid invoking bit manipulations and pointer dereferences when reason-
ing about the packed structures as part of a larger proof. We can instead reason
about higher-level types, for which there is well established support.

This abstract representation is expressed in terms of Isabelle’s record types,
which behave much like struct or record constructs in typical programming lan-
guages, providing access and update of disjoint fields. The bitfields from the C
level are represented as records of fields on the abstract level. For example, the
untyped cap block is represented as follows:

record cap_untyped_cap_CL =

capBlockSize_CL :: "word32"

capPtr_CL :: "word32"
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Tagged unions are represented by an algebraic datatype wrapping the records
corresponding to the component bitfields, with one constructor for each. Tag
fields are not included in the record representation, but are implied by the choice
of constructor within the union type. Any bitfields which are empty after the
removal of the tag field are represented simply by a naked constructor, with no
associated record. The cap union translates thus:

datatype cap_CL =

Cap_null_cap

| Cap_untyped_cap cap_untyped_cap_CL

The name convention is that the C types and identifiers, when parsed into
Isabelle, are tagged by appending C, whereas the lifted types are tagged with CL.
The connection between the C level and the abstract level will be provided by two
functions in the example below: cap_lift and cap_untyped_cap_lift. The former
lifts any cap_C to a cap_CL, and the latter lifts a cap_C with the untyped cap

tag directly to a cap_untyped_cap_CL. It is under-specified in all other cases.

The properties of the generated functions are expressed as strongest-postcon-
dition Hoare rules. Specifically, we use Schirmer’s [23] verification environment
for imperative programs in Isabelle/HOL. It contains a verification condition gen-
erator (VCG) which automates reasoning about Hoare-triples. Tuch’s et al. [26]
instantiation to C parses the generated code directly into Isabelle/HOL and into
Schirmer’s representation language SIMPL.

As an example, we will take the generated specification of the also generated
C function cap untyped cap set capBlockSize. It takes two arguments, an un-
typed capability cap and a new block size v. It returns the original capability
with the new block size. The formal specification below translates this into a
record update:

"Γ ⊢ {|s. cap_get_tag ´cap = cap_untyped_cap |}
´ret__struct_cap_C :==

PROC cap_untyped_cap_set_capBlockSize(´cap, ´v)

{|cap_untyped_cap_lift ´ret__struct_cap_C =

cap_untyped_cap_lift scap (|capBlockSize_CL := sv AND (mask 5) |) ∧
cap_get_tag ´ret__struct_cap_C = cap_untyped_cap |}"

The specification above reads as follows. For all program contexts Γ , if the
tag of the C-struct cap in the current state (indicated by ´) equals the value
cap_untyped_cap, and we execute the function cap_untyped_cap_set_capBlockSize

with parameters cap and v, storing its return value in ret__struct_cap_C, we will
arrive at the following post condition: lifting the return value to the abstract
record type is the same as lifting the value of cap in the initial state s, and then
performing an update of the abstract record field capBlockSize_CL with the value
v had in state s. Additionally, as a convenience for automated methods in the
larger proof, we provide that the tag of the return value remains cap_untyped_cap.
A separate specification states (and the tool proves) that the function is side-
effect free, i.e. that no global variables, including the heap, are changed. The
term AND (mask 5) carries the additional information that the field has a size of
5 bits. This form proved more convenient so far than the alternative of having
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an abstract field of word length 5, because casting between word lengths often
introduces additional proof obligations.

The meaning of the rule can also be expressed by means of the commuting
diagram in Fig. 7.

•
λcap. cap(|capBlockSize CL := v AND (mask 5)|)

// •//

•
cap untyped cap set capBlockSize(...,v)

//

cap untyped cap lift

OO

•

cap untyped cap lift

OO

Fig. 7. Refinement picture for field update.

For Fig. 7, consider cap untyped cap set capBlockSize as a function from
cap t (its first argument) to cap t (its return value). Control flows left to right,
and r (| a := x |) is the Isabelle syntax for the record r, with field a updated
with value x. This makes it clear that the function of the rule is to allow us to
transform a function call into a record update, by commuting it with a lift. We
can therefore take any precondition of the form P (cap_untyped_cap_lift cap),
and commute it past any number of field updates, to produce a postcondition
of the form P (f (cap_untyped_cap_lift cap), where f is the composition of a
number of record updates.

•
(|capBlockSize CL = capBlockSize AND (mask 5), capPtr CL = capPtr AND (mask 28)|)

// •//

•
cap untyped cap new(capBlockSize,capPtr)

// •

cap untyped cap lift

OO

Fig. 8. Refinement picture for initialisation

That this is be useful becomes clear when we consider the equivalent diagram
for the cap_untyped_cap_new function (Fig 8), which returns a new untyped
capability. This provides a starting point for our chain of reasoning, by pro-
viding the identity cap_untyped_cap_lift cap = (|capBlockSize_CL=capBlockSize

AND (mask 5),capPtr_CL=capPtr AND (mask 28) |). We can base our argument on
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such a case, as long as bitfield objects are only initialised via the appropriate
* new functions, and the type tags are never externally modified. This justifies
the API restriction introduced in Section 3, which is adhered to by the seL4
kernel implementation without loss of convenience or performance.

Equivalent rules are proved automatically for all the generated functions, and
their pointer-lifted versions. The latter involve direct heap access to record fields
and automate the interactive reasoning Tuch provides [25]. Additionally to what
Tuch provides, we make use of the concept of packed records that allows us to
ignore padding in record implementations, and derive more precise properties
of the corresponding memory layout. Packed records are represented by a type
class in Isabelle that simply states that all fields in the record have sufficient size
to make padding unnecessary.

The proofs for the specifications above are fully automated and generally
consists of two to three automated method invocations in Isabelle. The first of
these is a call to the C-level VCG mentioned above. The second and possibly
third, first reduce the remaining proof obligation from variable, heap, and struct-
updates to a goal on bit-vectors only. This is then solved automatically with a
carefully designed set of a generic, algebraic rewrite rules for the bit operations
involved in the generated functions. The direct proof script for one specification
of a typical C-function is about 10 lines of Isabelle script only.

5 Related Work

Earlier work on OS verification includes PSOS [10] and UCLA Secure Unix [27].
Later, KIT [2] describes verification of process isolation properties down to object
code level, but for an idealised kernel far simpler than modern microkernels. The
Verisoft project [11, 12] is attempting to verify a whole system stack, including
hardware, compiler, applications, and a simplified microkernel VAMOS. The
VFiasco [14] project is attempting to verify the Fiasco kernel, another variant of
L4 directly on the C++ level. These verification projects do not use generated C
code for automating parts of their proof obligations. In the Verisoft case, there
is no reason to distrust the compiler as it is verified as well [20, 15]. Directly
using C or dropping down to assembly code to implement the desired features
does not have the benefit of the high-level reasoning support and API the tool
presented here provides, though.

The verified proofs in this work build directly on Tuch’s et al. memory model
for C [26, 25, 24] which in turn builds on work by Schirmer [23, 22] that provides
a generic framework, verification condition generator, and Hoare-logic [13] for
imperative programs. Both are intended for interactive verification. This paper
uses the predictable structure of the generated code to completely automate the
pointer level proofs on the C implementation.

This work also builds directly on Dawson’s machine-word library [4] for Is-
abelle/HOL. Despite recent progress in tools like Yices [6], bit-vector proofs for
machine words remain hard to automate. Traditional SAT solvers are usually
too slow to handle the resulting proof obligations on realistic word sizes. Again
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due to the predictable nature of the generated code, the tool is able to fully au-
tomate the bit-level verification conditions with a set of algebraic rewrite rules.
This means that switching to different, say 64-bit based, architectures should
not result in any noticeable slowdown of the generated proofs.

General translation validation [21] and compiler correctness like Leroy’s et al.
work [16] are related to the topic. As mentioned above, the tool presented here
can exploit the known, predictable nature of the application domain to provide
a convenient interface to and integration into client proofs.

Related to generated correctness proofs is also the idea of proof-carrying
code [18], which usually focusses on the machine level and on specific proper-
ties like memory safety or resource constraints. Functional correctness is not
usually targeted, because it is impossible to automate completely. Barthe et
al. [1] come close by automatically transforming certificates from source code
to machine code and, similarly to the work presented here, generating proofs
for generated code. In contrast to this, the bitfield generator here does not re-
quire any source-level proof as input. It generates a full functional correctness
statement automatically.

Denney et al. [9] automatically prove properties about generated aerospace
software. The generated code appears more complex than the one presented here,
but the semantics they are using is not foundational and the properties do not
cover full functional correctness, but specific safety properties only.

6 Conclusion

This paper has summarised a generator for tagged unions of packed bitfields in
the C programming language as they are used in low-level systems code and
operating system kernel implementations. In theory, this data structure can be
implemented with C primitives without resorting to a generator. However, com-
piler implementations of bitfields seem to be so unpredictable in memory layout
and performance over different platforms and compilers that kernel programmers
distrust this compiler feature more than others.

The tool generates efficient, predictable, and above all correct C code from a
short, high-level description that is detailed enough to provide precise memory
layout specification which is important to map data, for instance, to memory
mapped hardware device registers. The generated code includes the data type
itself as well as an API for convenient, high-level access on the stack and on the
heap.

This work shows that an automatic correctness proof of generated code for
controlled environments is not hard to achieve, even if this code contains bit-
level reasoning and pointer access. The proof is foundational in the sense that
it assumes no specific axioms on the application domain, but is built directly
on the semantics of the C programming language. The proof is machine-checked
in the theorem prover Isabelle/HOL and provides an example of translation-
validation: Instead of proving the correctness of the generator, the correctness
of the generated code is proven instead.

10



The usefulness of the tool reaches further than a stand-alone correctness
proof. The Hoare-triples proven integrate directly, in the same formal model,
with larger implementation proofs of client-code using the generated bitfields.
The Hoare-triples are designed such that client-proofs and code have no need to
reason about the internal representation or bit-level operations that are carried
out. They provide an abstract interface. Translation validation has likely made
this easier achieve than in a generator correctness proof. No meta-level reasoning
or switching of formal models is required.

The tool is expected to automate an estimated 10% of the C implementation
proofs in the L4.verified project, covering 5,000 lines of C code with 7,000 lines
of generated proof. The seL4 kernel, including all generated inline functions
is 14,000 lines of code. The tool is generally applicable to code that needs to
have direct, reliable control over the memory layout of data structures. The
technique of generating proofs that integrate well into interactive environments
should generalise easily to reasonably constrained application domains where the
structure of the generated proof is highly predictable.
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