
SSV 2008

A Logic for Virtual Memory

Rafal Kolanski

Sydney Research Lab., National ICT Australia, Australia 1

School of Computer Science and Engineering, UNSW, Sydney, Australia

rafal.kolanski@nicta.com.au

Abstract

We present an extension to classical separation logic which allows reasoning about virtual memory. Our logic
is formalised in the Isabelle/HOL theorem prover in a manner allowing classical separation logic notation
to be used at an abstract level. We demonstrate that in the common cases, such as user applications, our
logic reduces to classical separation logic. At the same time we can express properties about page tables,
direct physical memory access, virtual memory access, and shared memory in detail.

Keywords: Separation Logic, Virtual Memory, Interactive Theorem Proving

1 Introduction

Separation logic [14] has been used for verification of shared mutable data structures

at the application level, such as those involved in C programs [18]. While effective,

these techniques assume a view of memory as a function from addresses to values.

For operating system verification, the situation is more complex. On hardware

incorporating the virtual memory abstraction, two different virtual addresses may

point to the same physical address. In the majority of operating system code this

is not a problem, but the application view is insufficient for verifying the parts

involved with the virtual mappings themselves, such as shared memory [16].

The virtual memory abstraction offers flexible, dynamic allocation of physical

memory to running processes. It allows each process its own view of physical mem-

ory, called a virtual address space, via a set of virtual to physical address mappings.

The mappings are stored in memory in a structure called the page table.

Applications usually deal only with their own data, but an operating system

additionally manages the application’s page table as well as its own. A memory

write in this situation can result in the view of memory changing. Most of the time,

it does not; in cases when it does, only part of the address space changes. Inferring

1 National ICT Australia is funded through the Australian Government’s Backing Australia’s Ability ini-
tiative, in part through the Australian Research Council.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kolanski

separation of what may have changed from what has not allows effective reasoning

about such memory updates.

The virtual memory mechanism itself has been a target of verification [9], how-

ever apart from some work in progress [17] we have not encountered any work

dealing with proofs about programs that make essential use of the virtual memory

subsystem.

Our contribution in this work is a logic allowing effective reasoning about both

the virtual and physical layers of memory. Additionally:

• The abstract layer of our separation logic is similar to traditional separation logic

and in fact collapses to traditional separation logic for pure application reasoning,

where the active page table is not mapped into virtual memory.

• Separating conjunction extends to multiply-mapped memory addresses.

• The low-level details of page table implementation are independent of the logic.

We present an instantiation to a simple one-level page table to demonstrate the

concept.

• All of the work presented in this paper is formalised in the Isabelle/HOL theorem

prover [13].

Like [18], we use a shallow embedding of separation logic, meaning the constructs

of assertions are translated to Isabelle/HOL, rather than being considered distinct

types in the logic.

As this is a work in progress, we are using a simplified model: we use a sim-

ple machine abstraction and do not take into account memory permissions beyond

whether a virtual address is mapped/unmapped. As such permissions are merely

extra properties of virtual addresses, they can be easily integrated into our logic.

Other work [18] has shown how to integrate actual machine encodings with separa-

tion logic. We believe our logic can be likewise connected.

While the normal way to present separation logics [14] is to describe a program-

ming language, assertion language and resulting rules, we focus on the assertion

language and properties holding on heap updates only. We do this because, like

Tuch et al. [18], we aim to place our logic on top of a classical verification condition

generator such as that of Schirmer [15]. The generator outputs higher-order logic

statements involving the shallow embedding of our logic’s assertions. Thus, the pro-

gramming language is given, and the usual separation logic rules instead become

rules about the semantic effect of the program on the heap.

2 Intuition

Separation logic is traditionally based on a model of memory as a partial function

from addresses to values, called a heap. When reasoning about shared mutable data

structures [14], such as the representation of memory in a language with pointers,

separation logic offers a concise way of defining the disjointness of predicates in

memory. The primary mechanism for doing this is the separating conjunction. As

shown in Fig. 1, it works by dividing up the heap into two disjoint regions on which

each side of the conjunction must hold respectively. For instance, it allows us to

2

Kolanski

Fig. 1. Separation conjunction.

state two structures do not share memory.

As mentioned in the introduction, virtual memory is a hardware-enforced ab-

straction allowing each executing process its own view of memory, into which areas

of physical memory can be dynamically inserted. It adds a further level of indi-

rection: virtual addresses potentially map to physical addresses. Memory access

is ordinarily done through virtual addresses only, although hardware devices may

modify physical memory directly. Direct memory access can be approximated by

using a one-to-one virtual-to-physical map.

To save space, virtual to physical mappings are stored in the page table with a

granularity of pages whose size is usually dictated by the hardware. The page table

resides in physical memory at a location called its root. The full set of virtual-to-

physical mappings for a process can thus be lifted from physical memory if the root

and type of page table are known.

Each access to a virtual address may result in a page fault in cases when the

hardware fails to look up an address in the page table, for instance when that page

resides on the disk, or has not yet been allocated. The page fault handler decides

how to handle such cases. While our logic is aimed at dealing with situations useful

in the verification of page fault handlers, we do not present page fault handler

verification itself in this paper.

We will henceforth refer to physical memory as the heap in the spirit of tradi-

tional separation logic, and to the virtual-to-physical map as the virtual map.

Our logic is independent of the implementation of the page table. As an example,

in this work we use a simple implementation: the one-level page table.

The addition of virtual memory to separation logic raises the issue of what

exactly it means for two predicates to be separate, as well as what kind of state space

we are to divide into sub-states in order to be able to express their disjointness. We

want the ability to make statements on three levels: virtual to physical, physical to

values and virtual to values. We also wish to preserve the usefulness of separating

assertions in this context, as well as staying close to traditional separation logic

notation.

Although the virtual map can be lifted from the heap via the page table, the heap

alone is insufficient to make separation statements on all three levels. We observe

this in the statement: under separating conjunction, virtual address vp maps to

value x and the page table resides somewhere in physical memory. If we split the

heap into page table and non-page table subheaps, there is no way to obtain vp’s

mapping from the non-page table subheap. It also requires carrying around the

page table root as part of the state, causing divergence from traditional notation.

Instead, we propose a state consisting of two maps: the physical heap and the

virtual map. Initially, we establish a valid state in which the virtual map is lifted

out of the page table in the heap. Separation conjunction then splits both maps.

Physical-to-value assertions work on the heap, virtual-to-physical on the virtual

3

Kolanski

map, and virtual-to-value on the composition of the two, which we will call the

address space. This has two advantages:

• The page table and heap lifting is independent of our logic.

• Most operations on a single map make sense on a pair of maps, allowing us to

use notation identical to standard separation logic and abstract away low-level

details.

We begin with explaining basic notation in Sect. 3. In Sect. 4 we discuss the

virtual memory abstraction and our specific instantiation of it. In Sect. 5 we intro-

duce our logic, followed by examining its properties in Sect. 6. Finally, we discuss

related work in Sect. 7 before concluding.

3 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical nota-

tion. This section introduces further non-standard notation and in particular a few

basic data types along with their primitive operations.

The space of total functions is denoted by ⇒. Type variables are written ’a, ′b,

etc. The notation t :: τ means that HOL term t has HOL type τ .

Pairs come with the two projection functions fst :: ’a × ′b ⇒ ’a and snd :: ’a

× ′b ⇒ ′b. Sets (type ’a set) follow the usual mathematical convention. Intervals

are written as follows: {m..<n} means {i | m ≤ i < n}.

The option type
datatype ’a option = None | Some ’a

adjoins a new element None to a type ’a. We use ’a option to model partial functions,

writing ⌊a⌋ instead of Some a and ’a ⇀ ′b instead of ’a ⇒ ′b option. The Some

constructor has an underspecified inverse called the, satisfying the ⌊x⌋ = x. Function

update is written f (x := y) where f :: ’a ⇒ ′b, x :: ’a and y :: ′b and f (x 7→ y)

stands for f (x := Some y). Domain restriction is f ↾A where f ::’a ⇀ ′b and (f ↾A)

x = (if x ∈ A then f x else None).

Finite integers are represented by the type ’a word where ’a determines the word

length in bits.

Implication is denoted by =⇒ and [[A1; . . .; An]] =⇒ A abbreviates A1 =⇒

(. . . =⇒ (An =⇒ A). . .).

4 The Virtual Memory Environment

In this section, we describe the memory model our logic is currently based within:

the pointer and page table abstractions, as well as their particular instantiations to

our simple machine and one-level page table.

4.1 Pointer Abstraction and a Simple Machine

On all hardware platforms we are aware of, virtual and physical pointers are the

length of the machine word, thus the same type. We use a generic pointer model

4

Kolanski

to prevent confusion between them, while still allowing functions working on both.

This allows us to restrict parameters to a particular kind of pointer where necessary

and overload functionality where not. We begin by wrapping each in a datatype

datatype ’a pptr-t = PPtr ’a

datatype ’a vptr-t = VPtr ’a

which we enclose in a type class ptrs encompassing both types. We define a value

extraction function ptr-val satisfying
ptr-val (PPtr x) = x
ptr-val (VPtr x) = x

In order to disambiguate between pointer types in this work, we use vp for the

virtual and p for physical pointers.

Using the above, we define an instantiation of a highly simplified machine: each

32-bit pointer points to a 32-bit word in memory for a total of 232 words in an address

space. Note that traditional implementations use 8-bit values. Our three machine

types are: vptr, pptr and val, representing virtual pointers, physical pointers and

values respectively. On this machine, we define the types of the three memory views

described in Sect. 2 to be:

vmap = vptr ⇀ pptr

heap = pptr ⇀ val

addr-space = vptr ⇀ val

They represent the virtual map, heap and address space types respectively.

4.2 The Page Table Abstraction

We define our page table abstraction using Isabelle’s modular reasoning construct

called a locale [1]. It allows us to define the interface we require of a page ta-

ble implementation independent of the hardware configuration: the functions each

instantiation must provide as well as constraints they must satisfy.

The primary role of a page table is lookups in the virtual map it represents. In

order to obtain this map, we require a lifting function ptable-lift. Given a heap and

a page table root location, it obtains the virtual map.

ptable-lift::(’pptr ⇀ ′val) ⇒ ’pptr ⇒ ′vptr ⇀ ’pptr

Not all page table roots are valid, due to the finiteness of the heap as well as other

constraints such as alignment. valid-root defines what is and constitutes a valid

location for the page table:

valid-root::’pptr ⇒ bool

Finally, in order to reason about when the page table is modified, we require infor-

mation on the page table area, i.e. given a heap and a root pointer, which heap

addresses constitute the table:

ptable-area::(’pptr ⇀ ′val) ⇒ ’pptr ⇒ ’pptr set

Note that while the types in a locale are fixed throughout it, they are abstract.

The paddr, vaddr and val we instantiated our simple machine to can instantiate

’paddr, ′vaddr and ′val as their names suggest, but the page table interface specifi-

cation is completely generic.

Definition 4.1 We require two properties on these functions. Firstly, the relation-

5

Kolanski

ship between lifting the page table to a virtual map and the page table area: the

map must be lifted only out of the page table area. Secondly, that page table area

must remain unchanged so long as heap updates don’t touch it:

valid-root r =⇒ ptable-lift h r = ptable-lift (h↾ptable-area h r) r

[[valid-root r ; p /∈ ptable-area h r]] =⇒ ptable-area (h(p 7→ v)) r = ptable-area h r

Independent of the page table instantiation, theorem 4.2 follows.

Theorem 4.2 Updating the heap outside the page table area has no effect on the

resulting virtual map:

[[valid-root r ; p /∈ ptable-area h r]] =⇒ ptable-lift (h(p 7→ v)) r = ptable-lift h r

Definition 4.3 Using the supplied functions, we additionally define the concept of

the page table not being mapped in the address space it defines:

ptable-not-mapped h root ≡ let vmap = ptable-lift h root in ∀ v p. vmap v = ⌊p⌋ −→ p /∈ ptable-area h root

As mentioned in Sect. 2, we use a simple one-level page table as an example

instantiation. It is a contiguous physical memory structure consisting of an array

of machine word pointers, where word 0 defines the physical location of page 0 in

the address space, word 1 that of page 1 and so forth. While inefficient in terms of

storage, its simplicity and contiguity allows for fast experimentation with particular

memory layouts. The table is based on an arbitrarily chosen page size of 4096, i.e.

20 bits for the page number and 12 for the offset. Page table lookup works as

expected: we extract the page number from the virtual address, go to that offset in

the page table and obtain a physical frame number which replaces the top 20 bits

of the address:

lev1pt-pagesize ≡ 212

lev1pt-size ≡ 232 div lev1pt-pagesize

get-page w ≡ ptr-val w >> 12

ptr-remap vp page ≡ page AND NOT 4095 OR vp AND 4095

ptable-lift h r w ≡ case h r + get-page w of None ⇒ None
| ⌊addr⌋ ⇒ if addr !! 0 then ⌊PPtr (ptr-remap (ptr-val w) addr)⌋ else None

ptable-area h r ≡ {r ..<r + lev1pt-size}

AND, OR and NOT are bitwise operations on words. The operator >> is bitwise

right-shift on words. The term x !! n stands for bit n in word x. We use bit 0 to

denote whether a mapping is valid. This page table satisfies the properties required

in Def. 4.1.

5 Extending Separation Logic

Having specified the nature of our memory environment, we will now describe

our logic, its properties and relationship to classical separation logic as defined

by Reynolds [14]. We will begin by comparing the state structure of the two logics,

then follow with introducing all of the traditional separation logic constructs for

our new setting, as well as a few constructs specific to our logic.

As mentioned in Sect. 2, our logic is based on a two-map state consisting of a

heap and a virtual map. As a two-map is just a pair of maps, most map operations

6

Kolanski

still make sense. The operations on maps separation logic requires are map override,

domain of, disjunction, subset, domain restriction and the empty map:

m1 ++ m2 ≡ λx . case m2 x of None ⇒ m1 x | ⌊y⌋ ⇒ ⌊y⌋

dom m ≡ {a | m a 6= None}

m1 ⊥ m2 ≡ dom m1 ∩ dom m2 = ∅

m1 ⊆m m2 ≡ ∀ a∈dom m1. m1 a = m2 a

m↾A ≡ λx . if x ∈ A then m x else None

Overriding (++) takes the value of an entry in the first map when it is not defined

in the second. The domain of a map (dom) is the set of all defined values. Map

disjointness (⊥) implies their domains are disjoint. A map is a subset of another

(⊆m) if all entries in the smaller map have the same values in the larger one. Finally,

restricting a map (↾) is the same as restricting its domain.

We expand these to two-maps, using almost identical notation:

(a, b) ++ (c, d) ≡ (a ++ c, b ++ d)

tdom (a, b) ≡ (dom a, dom b)

(a, b) ⊥ (c, d) ≡ a ⊥ c ∧ b ⊥ d

(a, b) ⊆t (c, d) ≡ a ⊆m c ∧ b ⊆m d

(a, b)↾(c, d) ≡ (a↾c , b↾d)

empty ≡ (empty, empty)

We will now introduce the standard separation logic constructs into our new

setting.

We begin with the definition of separating conjunction, which our two-map

abstraction allows us to express in an identical fashion to the traditional notation:

P ∧∗ Q ≡ λs. ∃ s0 s1. s0 ⊥ s1 ∧ s = s0 ++ s1 ∧ P s0 ∧ Q s1

Note that s0 and s1 are now pairs of maps, not a heap as in traditional separation

logic.

Separation logic also defines a useful concept for dealing with heap updates:

separating implication. We say that P separately implies Q on a heap s when for

any disjoint extension of s on which P holds, Q holds for s overridden with that

extension. We can thus specify that modifying a heap in some way will establish

a property. Once more, our version looks identical to the traditional one (−→ is

implication):

P −→∗ Q ≡ λs. ∀ s ′. s ⊥ s ′ ∧ P s ′ −→ Q (s ++ s ′)

In order to make statements about the heap, traditional separation logic also

provides several heap assertions: a concrete maps-to, as well as a maps-to-something :

p 7→ v ≡ λs. s p = ⌊v⌋ ∧ dom s = {p}

p 7→ − ≡ λs. ∃ v . (p 7→ v) s

p →֒ v ≡ p 7→ v ∧∗ sep-true

p →֒ − ≡ λs. ∃ v . (p →֒ v) s

The first two are domain exact [14], meaning they apply to a specific heap and

are false for any extension of it. sep-true and sep-false are assertions defined to be

respectively true and false for any heap:

sep-true ≡ λs. True

sep-false ≡ λs. False

7

Kolanski

Fig. 2. Maps-to assertions on the heap, virtual map and address space.

The above assertions are standard separation logic assertions expressed on heaps.

We will now proceed to describing their equivalents in our logic, expressed on a

two-map state consisting of a heap and a virtual map.

Excepting the first domain exact assertion, which is the basis for all the others,

we use identical notation to standard separation logic for heap and virtual map

assertions, utilising Isabelle’s function overloading ability.

In order to maintain the domain exact property of the first maps-to assertion,

we proceed as follows. Heap assertions (leftmost on Fig. 2) are identical to normal

separation logic, with the additional constraint that they only talk about the heap:

p 7→ v ≡ λ(h, vmap). h p = ⌊v⌋ ∧ dom h = {p} ∧ vmap = empty

Virtual map assertions (middle on Fig. 2) work similarly, but only on the virtual

map. Unlike the other maps-to assertions, virtual addresses do not map to values.

Hence, we use 7→v to denote them:

vp 7→v p ≡ λ(h, vmap). vmap vp = ⌊p⌋ ∧ dom vmap = {vp} ∧ h = empty

Finally, address space assertions (rightmost on Fig. 2) involve both the heap and

virtual map. In order to be domain exact, the maps-to assertion uses exactly one

member of each, satisfying:

vp 7→ v ≡ λ(h, vmap). ∃ p. vmap vp = ⌊p⌋ ∧ h p = ⌊v⌋ ∧ dom vmap = {vp} ∧ dom h = {p}

With our new definitions, separating conjunction works as expected on predi-

cates involving only one of the maps. However, address space predicates require

entries from both maps. Thusly, under separating conjunction, if a virtual pointer

vp 7→ v via some physical pointer p, then vp and p can not map to any other values

than p and v, respectively:

(vp 7→ v ∧∗ vp ′ 7→ v ′) (h, vmap)

vp 6= vp ′ ∧ vmap vp 6= vmap vp ′

(vp 7→ v ∧∗ p 7→ v ′) (h, vmap)

vmap vp 6= ⌊p⌋

In other words, mappings of virtual pointers to values will not share physical mem-

ory with each other, nor with mappings of physical pointers to values. Heap predi-

cates and virtual map predicates are always disjoint, as they refer to two different

maps.

Since virtual pointers can alias (map to the same physical address), we define

an additional assertion to denote this case:

vp1 ∼ vp2 ≡ λ(h, vmap). vmap vp1 = vmap vp2

We also found that being able to express that a set of pointers is mapped to

some values, e.g. ptable-area r s 7→ − proved very convenient. Again utilising

overloading, we define it as:

8

Kolanski

pure P ≡ ∀ s s ′. P s = P s ′

[[(P ∧∗ Q) s; pure P ; pure Q]] =⇒ P s ∧ Q s

[[P s ∧ Q s; pure P ∨ pure Q]] =⇒ (P ∧∗ Q) s

pure P =⇒ (λs. P s ∧ Q s) ∧∗ R = (λs. P s ∧ (Q ∧∗ R) s)

[[(P −→∗ Q) s; pure P]] =⇒ P s −→ Q s

[[P s −→ Q s; pure P ; pure Q]] =⇒ (P −→∗ Q) s

Fig. 3. Pure assertions of our logic

S 7→ − ≡ λs. fold op ∧∗ (λx . x 7→ −) 2 S s

S →֒ − ≡ λs. ∀ p∈S . (p →֒ −) s

The first of these simply states that all members of the set S map to some value,

iteratively joined by ∧∗.

The final traditional separation logic construct is empty heap assertion heap: 2.

Our logic has three, depending on which of the maps we want to be empty:

2p ≡ λ(h, vmap). h = empty

2v ≡ λ(h, vmap). vmap = empty

2 ≡ 2p ⌊∧⌋ 2v

P ⌊∧⌋ Q ≡ λx . P x ∧ Q x

Where ⌊∧⌋ is the lifted ∧ operator.

We have now introduced adapted versions of all the separation logic connectives

as well as those unique to our logic. This done, we can begin reasoning about its

properties.

6 State Updates

In this section, we present various properties of our logic, describe how state updates

work and their relationship to standard separation logic.

The basic mechanics of separation logic are intuitive about simple statements, as

can be seen in these simple examples: no address may have two values; two different

allocated physical addresses may have any value:

p 7→ v1 ∧∗ p 7→ v2 = sep-false

[[h = [p1 7→ v1, p2 7→ v2]; p1 6= p2]] =⇒ (p1 7→ v1 ∧∗ p2 7→ v2) (h, empty)

We can lift these examples to the address space level, where two distinct virtual

pointers can only be separated if they map to values via different physical addresses:

[[s = ([p1 7→ v1, p2 7→ v2], [vp1 7→ p1, vp2 7→ p2]); vp1 6= vp2; p1 6= p2]]
=⇒ (vp1 7→ v1 ∧∗ vp2 7→ v2) s

[[s = ([p1 7→ v1, p2 7→ v2], [vp1 7→ p1, vp2 7→ p2]); vp1 6= vp2; p1 = p2]]
=⇒ ¬ (vp1 7→ v1 ∧∗ vp2 7→ v2) s

Connectives in our logic conform to the associative, commutative and distribu-

tive properties of classical separation logic [14], with identical notation. We have

also formalised the pure (Fig. 3) and intuitionistic (Fig. 4) assertions of separation

logic (as they apply to our logic) and proved their properties [14], once more with

no departure from standard notation.

9

Kolanski

intuitionistic P ≡ ∀ s s ′. P s ∧ s ⊆t s ′ −→ P s ′

pure P =⇒ intuitionistic P

[[intuitionistic P ; intuitionistic Q]] =⇒ intuitionistic (λs. P s ∧ Q s)

[[intuitionistic P ; intuitionistic Q]] =⇒ intuitionistic (λs. P s ∨ Q s)

(
V

x . intuitionistic (P x)) =⇒ intuitionistic (λs. ∀ x . P x s)

(
V

x . intuitionistic (P x)) =⇒ intuitionistic (λs. ∃ x . P x s)

intuitionistic (sep-true ∧∗ P)

intuitionistic (sep-true −→∗ P)

intuitionistic P =⇒ intuitionistic (P ∧∗ Q)

intuitionistic Q =⇒ intuitionistic (P −→∗ Q)

[[(P ∧∗ sep-true) s; intuitionistic P]] =⇒ P s

[[P s; intuitionistic P]] =⇒ (sep-true −→∗ P) s

Fig. 4. Intuitionistic assertions of our logic

The properties and simple examples above define a logic about heaps. In order to

begin reasoning about programs, we need to consider their role as state transformers

and hence examine the mechanics of heap updates and their effects.

In our machine instantiation, updating the heap alone is simply updating the

map, though on more realistic instantiations it will become more complex:

heap-update pptr val h ≡ h(pptr 7→ val)

In a virtual memory environment updating the heap can potentially involve chang-

ing the page table and thus the virtual map. Hence, when performing a state update

at a physical address, we re-lift the page table from the updated heap:

heap-update-p pptr val root ≡ λ(h, vmap). let h ′ = heap-update pptr val h in (h ′, ptable-lift h ′ root)

As mentioned in Sect. 2, direct access to the heap is usually limited to system

devices. Applications modify the heap through virtual addresses. The extra step

involved over a direct heap update is the lookup of the virtual address. The page

table is re-lifted as with heap-update-p:

heap-update-v vp val root (h, vmap) ≡ case vmap vp of None ⇒ arbitrary
| ⌊p⌋ ⇒ let h ′ = heap-update p val h in (h ′, ptable-lift h ′ root)

Following Tuch et al. [18], heap updates on the physical layer always succeed.

The behaviour of trying to access virtual addresses is more complex. At the hard-

ware level, accessing an unmapped address will cause a page fault interrupt, which

will redirect control to a page fault handler. The handler’s implementation may

then allocate pages, map pages, load them from disk, etc. If the fault is resolved

successfully, control is returned to the faulting process and the access is attempted

again. Hence, there are two cases: either the page is mapped or it is not. In

the former, heap-update-v will perform the update just as the hardware would. In

the latter, the term heap-update-v will not occur in the verification condition, as

transferring control to the page fault handler will only change the necessary regis-

ters, not the heap. This means the arbitrary part of heap-update-v will not occur in

verification conditions in either case.

At the application level, processes typically run in a simulated memory environ-

10

Kolanski

ment which abstracts away the inner workings of the memory subsystem. Hence,

verification of application code under the assumption of page fault handler correct-

ness can proceed by assuming that all memory implicitly required by the application

(e.g. code, stack) is resident and mapped. Page fault handler correctness in this

case is a simulation theorem showing that any execution with page faults can be

simulated by one in the virtual application setting without faults.

At the operating system level, the virtual memory mechanism is visible. Fur-

thermore, at least some system data structures, particularly in the kernel, need to

be permanently resident in memory. To make this property part of the semantics,

we can add guards to these critical kernel heap accesses, requiring the address to

be mapped. For using the guard technique, see Tuch et al. [18].

Having defined heap updates, we now proceed to reasoning about their proper-

ties. Reynolds [14] defines two properties of state mutation, expressible in a shallow

embedding (on a one-heap state) as:

(p 7→ − ∧∗ P) h

(p 7→ v ∧∗ P) (heap-update p v h)

(p 7→ − ∧∗ (p 7→ v −→∗ P)) h

P (heap-update p v h)

The former states that a property not dependent on the area of the heap being

modified holds after the update. The latter is a weakest-precondition rule useful

for backwards reasoning. It states that if P holds for a heap with the entry p

set to v, then P will hold after the update, as that is precisely what heap-update

does. Henceforth, we will refer to these as the global and weakest-precondition rules

respectively.

As mentioned in Sect. 1, most operating system code falls into the “safe” cat-

egory of using a one-to-one virtual map. Most application code likewise does not

involve memory sharing or physical regions multiply mapped into virtual ones. In

the following properties, we will present how our logic reduces down to statements

identical to normal separation logic.

In all properties about updates in this section, we assume that r represents a

valid root and s a state where the virtual map is the result of lifting the page table:

valid-root r

ptable-lift (fst s) r = snd s

Note that for physical addresses p 7→ − implies p is allocated, while for virtual

addresses vp 7→ − implies that vp is mapped and the physical address it is mapped

to is allocated.

The easiest to adapt is the physical update version of the global update rule.

Theorem 6.1 For any physical pointer p that is not part of the page table, the

classical global update rule holds:

p /∈ ptable-area (fst s) r (p 7→ − ∧∗ P) s

(p 7→ v ∧∗ P) (heap-update-p p v r s)

As the page table is not modified, no mappings change, so the the virtual map

lifted from the updated heap is identical to the original map. Apart from the

requirement on p, our notation looks exactly like that of classical separation logic.

We can rephrase the requirement on p in theorem 6.1 as a requirement on the page

table area being allocated:

11

Kolanski

(p 7→ − ∧∗ ptable-area (fst s) r 7→ − ∧∗ P) s

(p 7→ v ∧∗ ptable-area (fst s) r 7→ − ∧∗ P) (heap-update-p p v r s)

A similar transformation can also be done to the following update theorems, but

we omit this form due to space considerations.

The weakest-precondition rule is more interesting, although it is derivable from

the global update rule, due to its usefulness in backwards reasoning:

Theorem 6.2 For any physical pointer p that is not part of the page table, the

classical weakest-precondition update rule holds:

p /∈ ptable-area (fst s) r (p 7→ − ∧∗ (p 7→ v −→∗ P)) s

P (heap-update-p p v r s)

Once more the page table is not modified, meaning only one value in physical

memory changes. If the old state overridden by the new value satisfies P, then P

will hold after the update.

In the interest of brevity, we omit the simpler global update rule for virtual

pointers, focusing on the weakest-precondition rule instead. The primary difference

from theorem 6.2 is in the constraint of not residing in the page table being applied

to the physical address the virtual pointer is mapped to:

Theorem 6.3 For any virtual pointer vp, mapped to a physical address that is not

part of the page table, the classical weakest-precondition update rule holds:

the (snd s vp) /∈ ptable-area (fst s) r (vp 7→ − ∧∗ (vp 7→ v −→∗ P)) s

P (heap-update-v vp v r s)

At the end of the operation, the address space is unchanged except for all the

virtual pointers mapped to the physical address at which the heap was changed (via

heap-update-v). As we described in Sect. 5 however, vp cannot alias with any other

virtual pointer under separation conjunction, thus the modification of the heap will

only be visible through one virtual address: vp.

Furthermore, if the page table is not mapped into the address space, as is typical

for applications, heap-update-v cannot modify the page table at all:

Theorem 6.4 The weakest-precondition rule holds for any virtual pointer vp if the

page table is not mapped into the address space:

ptable-not-mapped (fst s) r (vp 7→ − ∧∗ (vp 7→ v −→∗ P)) s

P (heap-update-v vp v r s)

As access to page tables is typically restricted to the operating system, this

result demonstrates that for the application domain the update rules are identical

to that of classical separation logic under the assumptions of a valid unchanging

page table root and a valid state. For applications the page table root usually does

not change, and the valid state condition can be checked automatically. Hence, for

the application domain our logic reduces to classical separation logic.

Another observation is that applications cannot observe modifications to the

heap at locations not mapped into their address space:

Theorem 6.5 Under the assumption of the page table not being mapped into the

current address space, for any physical address p not in the page table area and not

mapped into the address space, updating the heap at p is not visible at the virtual

memory level:

12

Kolanski

p /∈ ptable-area h r v = ptable-lift h r
p /∈ ran v ptable-not-mapped h r (new-h, new-vmap) = heap-update-p p val r (h, v)

(new-vmap oo new-h) vp = (v oo h) vp

where oo is the map composition operator:

f oo g ≡ λx . case f x of None ⇒ None | ⌊y⌋ ⇒ g y

The vast majority of code, both in applications and operating systems will fall

into one of the above categories. However, the applicability of our logic does not

end at situations where page tables are not touched. We identify three categories of

page table updates, based on the modification of the virtual map: map (add entry),

remap (modify entry) and unmap (remove entry). This is a work in progress: we

have thus far formalised remap and are at present formalising map and unmap

semantics. We will conclude this section with a discussion of remap.

As we are mostly interested in safety invariant preservation, we are concerned

about what does not change during state updates. Even when updating the page

table, most of the virtual map does not change.

Definition 6.6 The set of virtual addresses whose mappings are not affected during

an update of the heap:

ptable-affected f h root ≡ let vmap = ptable-lift h root in dom vmap − vmap ∩m ptable-lift (f h) root

where m1 ∩m m2 ≡ {x ∈ dom m1. m1 x = m2 x}

During a remap operation, the domain of the virtual map remains the same, but

its range might change. Thus, properties not invalidated by the heap modification

and the change of virtual map must still hold.

Theorem 6.7 Updating the heap via some virtual pointer vp preserves a property

P if: the domain of the virtual map is not affected, vp’s mapping is not affected

and P is not invalidated by the new value at vp nor the new contents of the affected

virtual map area.

update = heap-update-v vp v r dom (snd (update s)) = dom (ptable-lift (fst s) r)
(vp 7→ − ∧∗ ptable-affected update r s →v − ∧∗ (vp 7→ v ∧∗ ptable-affected update r s →v − −→∗ P)) s

P (heap-update-v vp v r s)

7 Related work

The primary focus of this work is enhancement of separation logic, originally con-

ceived by O’Hearn, Reynolds et al. [8,14]. Separation logic has previously been for-

malised in mechanised theorem proving systems [8,20]. We enhance these abstract

models with the ability to reason about properties in a virtual memory environment.

Our exploration of virtual memory semantics is driven by the long-term goal

of our research group: a verified operating system microkernel [5] based on L4.

Earlier attempts such as UCLA Secure Linux [19], PSOS [11] and KIT [2] lacked

the theorem proving technology required to deal with the complexities of a modern

microkernel. Like our group, the VeriSoft project [6] is attempting to verify a

13

Kolanski

microkernel (VAMOS), but their focus is verifying an entire system stack, including

compiler and applications. Our focus is on creating an efficient, verified microkernel.

Kernel verification efforts acknowledge the existence of virtual memory; previous

work has involved verifying the virtual memory subsystem [9,4,7]. Reasoning about

programs running under virtual memory, however, especially the operating systems

which control it, remains mostly unexplored. The challenges of reasoning about

virtual memory are explored in the development of the Robin micro hypervisor [17].

Like our work, the developers of Robin aim to use a single semantics to describe

all forms of memory access which simplifies significantly in the well-behaved case.

They focus on reasoning about “plain memory” in which no virtual aliasing occurs

and split it into read-only and read-write regions, to permit reading the page table

while in plain memory. They do not use separation logic notation. Our work is more

abstract. We do not explicitly define “plain memory”. Rather the concept emerges

from the requirements and state. Hence, we believe our work to be a superset of

the Robin approach.

Separation logic has been successfully applied to the verification of context

switching code [10,12]. Tuch et al. demonstrated the extension of separation logic

to reasoning about C programs involving pointer manipulation [18]. Presently, our

work uses a simplified machine model with only one type and does not involve Hoare

logic. We believe our framework supports addition of these extensions.

8 Discussion

Although our logic is similar to separation logic and collapses down to separation

logic for pure application reasoning, it does not itself constitute a full separation

logic. This is due to the fact that writes to the page table are not local actions [3].

In particular, the definitions of virtual-to-physical and virtual-to-value maps-to re-

lations does not include the chunk of memory which contains the virtual mapping

itself. As a result, we do not expect the frame rule [14] to hold for state updates

involving page table modification.

The issue at the heart of this design decision is the granularity of virtual memory

mappings, which causes attempts at pointing to the exact area of memory responsi-

ble for mappings to become problematic. For instance, on a 32-bit machine with a

page size of 4096 bytes, a single-level page table and a page table entry size of four

bytes, addresses 0 and 1 both receive their mappings from the same four-byte entry

in the page table. To then say that address 0 maps to a value and separately address

1 maps to some value clearly causes a collision on those four bytes. Each entry thus

maps 4096 addresses. This is one of the simplest setups; lifting this example to a

two-level page table, the first-level entries map 1024 second-level entries, which in

turn map 4096 addresses. Additionally, modern hardware commonly uses variable

page sizes (superpages).

Our two-map method of reasoning about virtual memory thus sacrifices sepa-

ration properties during page table modification in exchange for a simpler model,

as well as easy abstraction over different hardware instantiations and multiple page

table implementations.

The alternative to our two-map method would be to use a form of sub-byte

14

Kolanski

addressing, assigning multiple owners to slices of the bytes in each page-table en-

try. While potentially preserving all properties of separation logic, we believe this

approach would make the memory model significantly more complex.

9 Conclusion and Future Work

We have presented an extension of separation logic which allows reasoning about

virtual memory and processes running within it. Our logic allows for a convenient

representation of predicates on memory at three levels: the virtual map, the physical

heap and the virtual address space. The notation abstracts away details to the

point of appearing very similar to classical separation logic. Our logic preserves

the pure and intuitionistic properties of separation logic, again without exposing

the underlying abstraction. Our work has been formalised in the Isabelle/HOL

theorem prover.

We have shown that if the page table is not involved in an update or does not

map itself, our logic reduces to normal separation logic.

Our work is highly modular. While we chose a simplified machine and page

table implementation to aid with fast experimentation, the logic does not depend

on the implementation of either. Although our framework does not presently have

read/write access rights, it can be easily extended to encompass them. We aim to

add this functionality in the near future.

As this is a work in progress, many applications and properties of our logic re-

main to be explored. The next step is more experimentation in the form of case

studies on behaviours of programs in the presence of page table manipulation, pos-

sibly refining the model presented here into a complete separation logic as discussed

in the previous section. Beyond that, we see the main direction for future work as

extending our logic to handle C program verification in the style of Tuch, Klein,

and Norrish [18].

Acknowledgements

We thank Gerwin Klein, Michael Norrish, Thomas Sewell and Harvey Tuch for

suggestions, discussion and comments on earlier versions of this paper.

References

[1] Ballarin, C., Locales and locale expressions in isabelle/isar, in: S. Berardi, M. Coppo and F. Damiani,
editors, TYPES, Lecture Notes in Computer Science 3085 (2003), pp. 34–50.

[2] Bevier, W. R., Kit: A study in operating system verification, IEEE Transactions on Software
Engineering 15 (1989), pp. 1382–1396.

[3] Calcagno, C., P. W. O’Hearn and H. Yang, Local action and abstract separation logic, in: LICS ’07:
Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science (2007), pp. 366–378.

[4] Dalinger, I., M. A. Hillebrand and W. J. Paul, On the verification of memory management mechanisms,
in: D. Borrione and W. J. Paul, editors, CHARME, Lecture Notes in Computer Science 3725 (2005),
pp. 301–316.

[5] Elphinstone, K., G. Klein, P. Derrin, T. Roscoe and G. Heiser, Towards a practical, verified kernel, in:
Proc. 11th Workshop on Hot Topics in Operating Systems, San Diego, CA, USA, 2007, p. 6, online
proceedings at http://www.usenix.org/events/hotos07/tech/ .

15

http://www.usenix.org/events/hotos07/tech/

Kolanski

[6] Gargano, M., M. Hillebrand, D. Leinenbach and W. Paul, On the correctness of operating system
kernels, in: Proc. 18th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs’05), Oxford, UK, 2005, pp. 1–16.

[7] Hillebrand, M., “Address Spaces and Virtual Memory: Specification, Implementation, and Correctness,”
Ph.D. thesis, Saarland University, Saarbrcken (2005).
URL http://www-wjp.cs.uni-sb.de/publikationen/Hil05.pdf

[8] Ishtiaq, S. S. and P. W. O’Hearn, BI as an assertion language for mutable data structures, in: POPL ’01:
Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(2001), pp. 14–26.

[9] Klein, G. and H. Tuch, Towards verified virtual memory in L4, in: K. Slind, editor, TPHOLs Emerging
Trends ’04, Park City, Utah, USA, 2004.

[10] Myreen, M. O. and M. J. C. Gordon, Hoare logic for realistically modelled machine code, in:
O. Grumberg and M. Huth, editors, TACAS, Lecture Notes in Computer Science 4424 (2007), pp.
568–582.

[11] Neumann, P. G., R. S. Boyer, R. J. Feiertag, K. N. Levitt and L. Robinson, A provably secure operating
system: The system, its applications, and proofs, Technical Report CSL-116, SRI International (1980).

[12] Ni, Z., D. Yu and Z. Shao, Using xcap to certify realistic systems code: Machine context management,
in: K. Schneider and J. Brandt, editors, TPHOLs, Lecture Notes in Computer Science 4732 (2007),
pp. 189–206.

[13] Nipkow, T., L. Paulson and M. Wenzel, “Isabelle/HOL — A Proof Assistant for Higher-Order Logic,”
LNCS 2283, Springer, 2002.

[14] Reynolds, J. C., Separation logic: A logic for shared mutable data structures, in: Proc. 17th IEEE
Symposium on Logic in Computer Science, 2002, pp. 55–74.

[15] Schirmer, N., “Verification of Sequential Imperative Programs in Isabelle/HOL,” Ph.D. thesis,
Technische Universität München (2006).

[16] Tews, H., Well-behaved memory on top of virtual memory, Presentation at the NICTA International
Workshop on System Verification, Sydney (2006).

[17] Tews, H., Formal methods in the robin project: Specification and verification of the nova
microhypervisor, Submitted to the C/C++ Verification Workshop (2007), available from
www.cs.ru.nl/∼tews/science.html.

[18] Tuch, H., G. Klein and M. Norrish, Types, bytes, and separation logic, in: M. Hofmann and M. Felleisen,
editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’07), Nice, France, 2007, pp. 97–108.

[19] Walker, B., R. Kemmerer and G. Popek, Specification and verification of the UCLA Unix security
kernel, CACM 23 (1980), pp. 118–131.

[20] Weber, T., Towards mechanized program verification with separation logic, in: J. Marcinkowski and
A. Tarlecki, editors, Computer Science Logic – 18th International Workshop, CSL 2004, Lecture Notes
in Computer Science 3210 (2004), pp. 250–264.

16

http://www-wjp.cs.uni-sb.de/publikationen/Hil05.pdf

	Introduction
	Intuition
	Notation
	The Virtual Memory Environment
	Pointer Abstraction and a Simple Machine
	The Page Table Abstraction

	Extending Separation Logic
	State Updates
	Related work
	Discussion
	Conclusion and Future Work
	References

