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Abstract

This document describes a formal operational model of the dy-
namic semantics of much of the C++ language (as specified in the ISO
Standard [5]). The formal model was developed in the HOL theorem-
prover, providing additional guarantees as to its good sense. This re-
port presents and explains extracts from the mechanised source-code
that was fed to HOL.

This work was performed under funding from QinetiQ’s Systems
Assurance Group under the UK MOD Output 3a research project enti-
tled Robust Languages.
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1 Introduction

This document presents the substance of the mechanised C++ semantics

that is developed in the accompanying HOL source files (see Appendix A).

Those files sum to over 12 000 lines; this document tries to cover both the

important parts in detail, and to describe the less important parts at a high

level.

The HOL mechanisation itself is necessarily the only formal part of the

deliverable. This document quotes from the sources liberally, and aims to

make these relatively easily understood by accompanying HOL extracts with

English prose. Where prose and rule appear to conflict, this will almost

certainly reflect a problem with the prose and not the rule. The rule has

been type-checked, and in some cases, will have also been validated to some

extent.
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In addition to the ISO Standard itself [5], the report draws on a number

of other sources. The annotated bibliography in Appendix B describes all of

these. The remainder of this introduction describes how to read the HOL

syntax that appears throughout the report (in Section 1.1), and then gives

a high-level picture of the C++ semantics in Section 1.2.

Section 2 describes the basic types that underlie the semantics. Here, for

example, are discussions of how C++’s hierarchical namespaces are mod-

elled with a custom data type in HOL. Sections 3–5 describe each of the

three phases identified in Section 1.2 in more detail. Section 6 describes

how the semantics has been and might be validated to increase confidence

in its correctness. Finally, Section 7 describes the omissions and faults in the

semantics.

This document supersedes all previous deliverables.

1.1 Reading HOL Source Code

This report contains a large number of extracts from the HOL source code

found in the holsrcs directory of the deliverable. HOL’s Description man-

ual [4] has full details for the following, which is a brief summary of HOL

syntax and semantics.

Where quotations are made from underlying HOL sources, the origin of

the quotation will be identified using the form HOL:thyname. The source

code for theory thyname is available in the file

holsrcs/thynameScript.sml

When compiled, the corresponding theory will have a readable signature in

the file

holsrcs/thynameTheory.sig

1.1.1 HOL Syntax

HOL is a powerful logical language, equipped with the usual features of

predicate logic (quantifiers such as ∀ and propositional connectives such as

∨ and ⇒), as well as a rich, typed term language. HOL’s types can be simple,

as with the types :bool, that of boolean values “true” and “false”, and :num,

the type of natural numbers. HOL also includes type-operators that take

other types as arguments in order to create fresh types. For example, the

function arrow -> creates the type of functions between two existing types.

In this way,
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:num -> bool

is the type of functions from natural numbers to booleans. Another type

operator (list) allows for the type of lists of elements drawn from a partic-

ular type. Finally, in higher-order logic, unlike in predicate logic, there is no

distinction between terms and formulas. The latter are simply terms of type

:bool.

Terms in HOL come in four forms: variables, constants (defined by the

user, or provided by the system), function applications and abstractions.

Function applications are usually written without parentheses around the

argument, so that one will see f x (an application of function f to argument

x) rather than f(x). Of course, sometimes the nature of the values will

require parentheses: f x + y could be parenthesised (f x) + y, which is

not the same as f(x + y).

Functions are often also “curried”, meaning that instead of f(x,y), one

will often see f x y (though the former is still possible). In f(x,y), the

type of f (a function) will be

:xty # yty -> result_ty

(where # is the Cartesian product type operator). In the second term, the

type of f is

:xty -> (yty -> result_ty)

Abstractions are λ-expressions, forming functions. For example, the term

λx. x + y

is the function which takes an argument x and returns the result of adding

x to the value y. The type of this function will be

:num -> num

Two further derived forms occur frequently in the C++ model: let and

conditional expressions. A term of the form

let pat = exp1 in exp2

evaluates exp2 in a context where the names occurring in pat are bound to

the value given by exp1. For example,

let x = 3 * 10 in x + 6
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has value 36. The use of let expressions serves only to structure the source,

and is useful for readability. By way of contrast, in a programming language

like SML, where there are side effects, the use of let can make significant

semantic differences.

Conditional expressions are written

if g then e1 else e2

where g must be of type :bool.

1.1.2 Standard HOL Types

Numbers HOL has three different numeric types: natural numbers (:num),

integers (:int) and real numbers (:real). The latter are not used in the

C++ formalisation because there is no mechanisation of the language’s

floating point numbers. All types support the standard arithmetic operators,

such as addition (+), subtraction (-) and multiplication (*). In addition,

HOL supports types of fixed-width memory “words”.

Pairs The type of pairs of σs and τs is written :σ # τ . Pair values are

written inside parentheses, with components separated by commas, e.g.,

(1,4). The function FST returns the first component of a tuple, and SND

returns the second.

Lists The type of lists of elements drawn from a type α is written :α list

(i.e., the type operator appears as a suffix). Lists can either be empty ([])

or the result of “cons”-ing an element onto the front of an existing list. The

list consisting of element h followed by list t is written h::t. A literal list

of a fixed number of elements can also be written between square brackets,

with successive elements separated by semi-colons. Thus,

[1; 2; 3]

is an alternative to writing

1 :: 2 :: 3 :: []

Lists come equipped with various standard functional language operations

such as
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++ : ’a list -> ’a list -> ’a list

CONS : ’a -> ’a list -> ’a list

EL : num -> ’a list -> ’a

FOLDL : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

HD : ’a list -> ’a

LAST : ’a list -> ’a

MAP : (’a -> ’b) -> ’a list -> ’b list

MEM : ’a -> ’a list -> bool

TL : ’a list -> ’a list

ZIP : ’a list -> ’b list -> (’a # ’b) list

The list append operation (++) is written as an infix.

Options The option type has two constructors

NONE : ’a option

SOME : ’a -> ’a option

allowing one to encode a type that represents all of the values of an existing

type, and an extra value, usually representing failure or absence. The THE

function reverses the action of SOME. If applied to NONE, its value is unspeci-

fied.

Finite Maps The finite map is a form of function where the domain is

guaranteed to be finite. The type of finite maps from σ to τ is written

:σ |-> τ . The HOL syntax for the application of a finite map fm to an

element x, is fm ’ x, with an apostrophe separating function and argument.

(Note that the result of the application is unspecified if the argument is not

in the map’s domain.)

The empty finite map (one with no domain) is FEMPTY, and updating a

map fm so that its value at k is v (ignoring whether or not fm may have al-

ready had a value for k), is written fm |+ (k,v). The function FDOM returns

the domain of a finite map.

Records Record literals are written as a sequence of assignment to field-

names in between ASCII angle brackets, thus:

<| fld1 := 3; fld2 := 5; fld3 := (F,[]) |>

New record values can be constructed from old ones with the with keyword.

For example
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rec with <| fld2 := 10; fld6 := T |>

is a record value that is everywhere identical to rec except that its fields

fld2 and fld6 have different values.

When updating records, in addition to the assignment syntax (:=), one

can also use updated_by, which allows a function to be applied to the old

value of the field. So,

rec with <| fld2 updated_by SUC; fld6 := T |>

is a record value everywhere the same as rec, except that its fld6 is true,

and its fld2 is one bigger.

1.1.3 Definitions in HOL

There are three main forms of definition used in HOL: definition of new

algebraic types, definition of functions specified equationally, and inductive

definition of relations.

Defining Types Algebraic types naturally correspond to the syntax of for-

mal languages. They are defined in a style that resembles datatype dec-

larations in functional languages such as Haskell or SML. For example, the

definition of the type for a small language of arithmetic expressions might

be:

ArithExp = Number of int

| Variable of string

| Plus of ArithExp # ArithExp

| Times of ArithExp # ArithExp

| FnCall of string # ArithExp list

In HOL’s data type definitions, the string to the left of the = (ArithExp here)

is the name of the new type. After the equals sign, there is then a list of

different possible forms for the values inhabiting the type. In the example,

we assert that expressions come in five different forms. Each form is op-

tionally accompanied by data (following the of keyword). If the arithmetic

expression is an addition, for example, then it consists of (recursively) two

arithmetic expressions representing the left and right arguments (the # sym-

bol is the type operator for Cartesian products).

As a result of a definition like the above, the new type is established, and

five new constants (known as the new type’s constructors) are defined, with

types
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Number : int -> ArithExp

Variable : string -> ArithExp

Plus : ArithExp # ArithExp -> ArithExp

Times : ArithExp # ArithExp -> ArithExp

FnCall : string # ArithExp list -> ArithExp

Thus, the new type ArithExp is inhabited by values such as Number 5,

Variable "i", and more complicatedly:

Plus (Number "3", FnCall ("sin", [Variable "pi"]))

Finally, in order to support the common, “curried” style of functional pro-

gramming, one can define multiple arguments to constructors by separating

them with the special symbol =>. If one were to write

SimpExp = Number of int

| Plus of SimpExp => SimpExp

the new type SimpExp’s second constructor Plus would have type

SimpExp -> SimpExp -> SimpExp

So, rather than taking its two arguments as a pair (as in the first ArithExp

example above), the Plus constructor for SimpExp takes its two arguments

one after the other.

When a type has been defined in this way, an expression can be analysed

with a “case expression” that allows pattern-matching. For example, one

might write an evaluator for SimpExp values:

eval e = case e of

Number i -> i

|| Plus e1 e2 -> eval e1 + eval e2

Successive cases are separated by the || symbol, and the pattern is sepa-

rated from the body by the arrow ->. This is very similar to what is possible

in functional programming languages such as SML and Haskell.

Defining Functions In HOL, definitions of functions look similar to func-

tion definitions in functional programming languages, with features such as

pattern-matching and recursion common. For example, the following is the

definition of a factorial function
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(FACT 0 = 1) ∧
(FACT (SUC n) = SUC n * FACT n)

The individual equations are separated by conjunction symbols because the

text of the definition becomes the statement of the theorem characterising

the behaviour of the new constant. (If the recursion is not well-founded, or

if there is some other error in the quoted text, then HOL does not allow the

definition to proceed, and no theorem is produced.)

Defining Relations Inductive relations allow the definition of systems of

rules, common in the definitions of operational semantics. For example, one

might write a big-step rule for applicative order reduction in the λ-calculus

as

Γ ⊢ M ⇓ (λx.M0) Γ ⊢ N ⇓ v0 (x 7→ v0), Γ ⊢ M0 ⇓ v

Γ ⊢ M N ⇓ v

This should be read as stating that an application M N reduces to a value v

if M reduces to an abstraction (λx.M0), if N reduces to some value v0, and

if the body M0 reduces to v, while the bound variable x is linked to v0.

The same rule might be presented in HOL syntax as

apeval G M (LAM x M0) ∧
apeval G N v0 ∧
apeval ((x,v0) :: G) M0 v

⇒
apeval G (APP M N) v

The use of the conjunction and implication symbols makes the propositional

structure of the rule explicit. Also, the relation being defined is always the

first symbol (apeval here) of the conclusion. Note also how the commonly

used curried style is used to define apeval.

Another example is the rule [var-to-fvalue] from the dynamic semantics

for C++:

(* RULE-ID: var-to-fvalue *)

(lookup_type s vname = SOME ty) ∧
function_type ty ∧
vname ∈ FDOM s.fnencode

⇒
mng (s, EX (Var vname) se) (s, EX (FVal vname ty NONE) se)
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(Aside) A “pretty”, more “mathematical”, version of the same rule might

appear

lookup type(s, v) = ⌊τ⌋ function type(τ) v ∈ dom(s.fnencode)

(s,EX(Var(v), se)) → (s,EX(FVal(v, τ, ∗), se))

Here I have (arbitrarily) chosen to represent the mng relation with an arrow

(→), to use Greek for the type variable (ty vs τ), and to use ⌊ ⌋ and ∗ to

represent SOME and NONE respectively. I have made EX and FVAL take tuples

of arguments, though the original EX and FVAL take curried arguments, and

I have introduced various LATEX spacing commands, all in an attempt to lay

the rule out in an aesthetically pleasing way. Unfortunately, this sort of

effort does not scale to very large rules. It is also entirely manual (at least in

HOL4; contrast Isabelle’s support for automatic generation of “reasonable”

LATEX). The Ott tool [11] might also represent a way to solve this problem.

If a translation is manual, it is inherently error-prone. (End Aside)

In the ASCII rendering, we see that the rule has three premises (sepa-

rated by ∧), and that its conclusion defines the constant mng. The inductive

relation mng is similar to the reduction relation for the λ-calculus. That was

a ternary relation describing how one language form (the second argument)

might evolve into another (the third argument), all in a context Γ.

Here, there is no separate context, so mng is just a binary relation, but

like apeval it is also defining the evolution of language forms. The first

argument is a pair of a state s and an expression, and this can be seen as the

“starting point”. The second argument is another pair, and it is the result of

the execution step.

There are two important things to note about rules of this form.

• Rules do not require a step to take place. Rather they state that a step

is permitted. If another rule describes another possible behaviour for

the same form, then that second behaviour is also permitted, and the

rules collectively describe a non-deterministic system.

• Rules’ premises represent preconditions on the behaviour. If the pre-

conditions are not satisfied then the rule can not “fire”, and the be-

haviour may not occur. Of course, another rule may allow some other

behaviour to occur for the same starting point.

The three premises in [var-to-fvalue] require that (1) the variable’s name

vname “looks up” in the state s to some type ty; that (2) this type ty be a

function type; and that (3) vname also be present in the domain of the state’s
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fnencode map. If all of these conditions are satisfied, the behaviour can oc-

cur.

In this case, the behaviour leaves the state unchanged (the same s occurs

in both arguments), but the expression form changes from a Var to an FVal,

where the latter includes the function’s type and the fact that it is not a

member function (the NONE parameter to FVal).

1.2 Understanding C++ in Three Phases

When we attempt to understand the meaning of a C++ source file (or “trans-

lation unit” to use the standardese), this task is best broken down into three

phases.

When we begin, we have a sequence of parsed external declarations

(see the Standard’s formal grammar in its Annex A: Grammar Summary).

Throughout this semantics, we assume that this sequence is well-formed

syntactically, that some trusted compiler has already checked the sources for

syntactic errors of the sort compilers can detect. For example, this means

that we assume that there are no variables left undeclared, and that all the

various expressions are well-typed. This is a not inconsiderable simplifica-

tion of the basic task, but it does seem fair to claim that such analysis is not

as interesting a problem. This abstract syntax, as consumed and manipu-

lated by the semantic model, is described in Section 2 below.

The first phase of understanding, or of ascribing meaning, is to do what

I refer to as “name resolution”. In this phase, bare names are resolved into

fully-qualified names wherever possible. For example, this phase turns a

program such as

int x;

int f(int i) { return i + x; }

into

int ::x;

int ::f(int i) { return i + ::x; }

where the names declared in the top, global namespace (x and f) have been

replaced with unambiguous versions of their names wherever they occur.

Note that the result is no longer valid C++ (it is illegal to use the explicit

qualification in names being defined), but the next phase of understand-

ing does not expect valid C++ in any case. In the presence of hierarchical

namespaces, and class namespaces inheriting from bases, Phase 1 is not

entirely trivial. It is described in some detail in Section 3.

12



The second phase of the semantics is to deal with templates. The input

to template resolution is a translation unit with most of its names resolved,

and where the translation unit consists of both “ground” (non-template)

declarations or definitions, and template declarations or definitions. The

ground definitions may refer to various template classes or functions. If so,

the appropriate template instantiations need to be made, producing fresh

ground declarations. These new declarations need to first have their names

resolved (requiring a nested “call” to Phase 1), and may in turn require more

template instantiations. In fact, template instantiation may never terminate.

Templates are further described in Section 4.

The final phase of the semantics is execution, or “dynamics”. In this

phase, top-level declarations are executed, resulting in the dynamic initial-

ization of variables, which can in turn result in the execution of source-code.

The exact order of evaluation of external declarations is allowed to vary

(see [5, §3.6.2]), and may or may not precede the execution of a program’s

main function. The rules governing dynamic behaviour specify what is to

occur when execution does occur, but do not specify how various execu-

tions are knitted together. All of the model’s dynamic rules are presented in

Section 5.

2 C++’s Basic Types

The most fundamental types in the semantics are those expressing the basic

abstract syntax of C++. The declaration of C++ types is (from HOL:types)

CPP_Type =

Void |

BChar (* "Basic char" *) |

Bool |

Unsigned of basic_integral_type |

Signed of basic_integral_type |

Class of CPP_ID |

Float |

Double |

LDouble |

Ptr of CPP_Type |

MPtr of CPP_ID => CPP_Type | (* member pointer *)

Ref of CPP_Type |

Array of CPP_Type => num |

Function of CPP_Type => CPP_Type list |
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Const of CPP_Type |

TypeID of CPP_ID

This definition allows recursion: for example, a C++ type can be a pointer

to another C++ type (using the Ptr constructor). In this simple prefix nota-

tion, the type of an “array of ten pointers to int”, is written

Array (Ptr (Signed Int)) 10

(Int is one of the four possible values inhabiting basic_integral_type,

along with Char, Short and Long.)

Similarly, a function taking two ints and returning a char is written

Function BChar [Signed Int; Signed Int]

Identifiers In the presence of templates, identifiers can take on forms such

as

List<int>::fldname

This means that identifiers are a type in the model that must in turn

be mutually recursive with the type of types. In the example above, the

type int appears within an identifier. It is also clear that identifiers occur

within types, because identifiers are the basis for naming and referring to

class types.

Therefore, we must add the following to the above definition of C++

types:

CPP_ID = IDConstant of bool => IDComp list => IDComp ;

IDComp = IDTempCall of string => TemplateArg list

| IDName of string

In other words, values of identifier type are constructed by applying the

function IDConstant to three arguments: a boolean indicating whether or

not this is an “absolute” identifier (represented in the concrete syntax by

prefixing it with ::), a list of ID components and one final ID component.

We will frequently see “bare” names that are not absolute, and which do not

have any outer namespaces attached. To abbreviate this common case, we

define the Base function:

Base s = IDConstant F [] (IDName s)
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An ID component might either be a simple name (the IDName case), or

can be a simple name applied to multiple “template arguments”. There are

three sorts of template arguments: types, templates and values; giving

TemplateArg = TType of CPP_Type

| TTemp of CPP_ID

| TVal of TemplateValueArg

So, the type above would be represented as

IDConstant F [IDTempCall "List" [TType (Signed Int)]]

(IDName "fldname")

Expressions and Statements Expressions are specified in exactly the same

way as types, with constructors such as Assign (assignment), Deref (the *

or pointer dereferencing operator) and New. The abstract syntax need not be

a perfect match for the concrete syntax. For example, there is an ExpTypeID

operator (for typeid applied to an expression argument), and TyTypeID for

when typeid is applied to a type.

The rules presented in Section 5 cover the dynamic behaviours various

expression forms. The HOL declaration is in the file HOL:expressions.

Statements are similar again (see HOL:statements), with constructors

such as CIf, Ret and Block. However, the type here is rather more compli-

cated because statements not only include expressions but must be mutually

recursive with other syntactic categories: variable and class declarations,

“class entries” (those things that can appear with a class declaration), and

initializers (which appear in variable declarations and explicitly initialize

the variable in question).

2.1 Bytes & Memory

After specifying abstract syntax for programs, one must continue by describ-

ing the state that is manipulated by the action of those programs. In fact,

each of the three phases manipulates slightly different states, and each will

be detailed in the relevant sections. However, there are a few general ob-

servations possible.

Bytes The fundamental type in the dynamic semantics is that of the byte.

(See HOL:memory for more on these matters.) Using HOL4’s support for

n-bit words, it is possible to define a type called byte, which is a word

15



containing CHAR_BIT many bits, where CHAR_BIT is a natural number under-

specified to be at least 8, but possibly more.

It is then possible to define representation and valuation functions be-

tween the HOL types of integer and byte. These functions are partial, mean-

ing that they can either return NONE to indicate failure, or SOME(v) to indicate

the successful return of the value v. These functions capture, again in a suit-

ably underspecified way, how bytes can be translated into values, and how

those same values can be converted back into bytes. For example, we know

that for the unsigned char type, all values in the range 0 up to 2CHAR_BIT−1
must have corresponding bit patterns. For types other than char, the use of

functions in both directions is perhaps not quite under-specified enough: it

assumes that if an implementation can represent a value at all, then it will

always represent a value in the same way. For example, this reduces, though

does not eliminate, the opportunities for signed zeroes to occur.

Each primitive type is given a fixed size (in numbers of bytes). This is

done in an underspecified way so that again, one can only conclude that

there are enough bytes in an int value to represent the mandated range of

values (from −(216 − 1) up to 216 − 1).

In the model to come, the function most used is

INT_VAL : CPP_Type -> byte list -> int option

which attempts to interpret the given list of bytes as a value of the provided

type, and returns its integer value, if it has one. The function might return

NONE if the list of bytes is of the wrong length, or if it is not a valid bit pattern

for the type. (The latter might occur if the required type is a pointer value

and the hardware checks such values for validity before even allowing them

into address registers.)

Memory Memory is represented as a function from natural numbers to

bytes. The address 0 is reserved as the representation for the null pointer.

Strictly speaking, one might imagine that the map should be from some

machine word (an array of four bytes, say) to bytes. However, even with

the domain of the map being N, any given program will only be able to

address a finite amount of memory because it will only be able to generate

a finite number of addresses. (All pointer types have a fixed, finite number

of bytes making up their representations.)
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2.2 Hierarchical Environments

To reflect the hierarchical nesting of namespaces and classes, the model uses

a type of hierarchical environments, giving maps from structured names into

information about those names. These maps are instances of a type called

fmaptree (see HOL:fmaptree). This type has one constructor:

FTNode : ’value -> (’key |-> (’key,’value)fmaptree) ->

(’key,’value)fmaptree

The |-> type operator returns finite maps, so FTNode takes a value, and a

finite map from keys to more fmaptrees, and returns a new fmaptree. This

type rather resembles the trie data structure. Like lists and other “container”

types, the fmaptree is polymorphic, here both in the type of keys, and the

type of values.

The operation to lookup the sub-tree at a particular key list position is

apply_path:

(apply_path [] ft = SOME ft) ∧
(apply_path (h::t) ft = if h ∈ FDOM (map ft) then

apply_path t (map ft ’ h)

else NONE)

The functions item and map are also heavily used, and return the value,

and sub-trees of an FTNode respectively.

item (FTNode i fm) = i

map (FTNode i fm) = fm

In the particular context of C++, there are two sorts of environment

(see HOL:environments). The first maps from namespace components into

values of type envinfo. An envinfo is a record of three components, each

of which are finite-maps.

envinfo = <|

varmap : string |-> addr # CPP_ID # CPP_ID list ;

typemap : IDComp |-> CPP_Type ;

classenv : IDComp |-> class_env

|>
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The varmap is a map from variable names to their l-value information.1 The

domain of this map can be strings because only functions can have template-

structured names, and these do not live in memory in the same way as ob-

jects. The typemap maps ID components to types, giving static information

both for objects and functions. The classenv field gives information about

any classes that might be declared at this level of the namespace hierarchy.

The environment type is then an abbreviation for a

(string, envinfo) fmaptree

At each point in the namespace tree, indexed by a path (or list) of names,

there is an envinfo value about the objects and classes stored in that scope.

The class_env type is an abbreviation for another sort of fmaptree

(IDComp, class_envinfo) fmaptree

In other words, a class_env is a structured map, where the components can

be full-blown IDComp values. This is necessary because classes can be con-

structed from template calls (whereas namespaces are necessarily identified

by just strings).

The information attached to each node of a class_env is the following

record type:

class_envinfo = <|

(* ironically, the location of the static variables is

only available dynamically, as classes are

initialized *)

statvars : string |-> addr # CPP_ID # CPP_ID list ;

info : state_class_info ;

refs : string # addr |-> addr # CPP_ID # CPP_ID list

|>

The statvars field records the same information for a class’s static vari-

ables as the envinfo records for normal variables. The refs field records

per-class information about reference members. Both of these fields are

only used dynamically (as static variables are declared, and as new classes

are constructed respectively). Finally, the info field records the static infor-

mation associated with a class.

1It should be clear that an address is necessary to specify an object’s identity. The ad-

ditional identifier and identifier list are used to store the dynamic information about class

types that is necessary to implement polymorphism. For more on this, see Section 5.9 below.
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3 Phase 1: Name Resolution

Name resolution must occur in a separate phase before dynamic evaluation,

and must rewrite declarations so that their name dependencies are made

explicit. This is exemplified by the program in Figure 1, where the name x

that occurs in the function ns1::f must be a reference to the x that occurs

in the outermost, global namespace. A näıve execution of the sequence

of declarations in the program would put the global x into its namespace,

and then enter namespace ns1, where it would first declare the function f,

and then the second x. A later call to ns1::f would correctly open up the

entirety of the namespace, and immediately mask the global x with ns1::x,

causing the evaluation of the body to proceed erroneously.

int x = 3;

namespace ns1 {
int f(int n) { return n + x; }
int x = 2;

}

Figure 1: A program demonstrating the need to have name resolution be a

separate phase before dynamic evaluation.

Even if one imagined a version of the dynamics that did perform name

resolution as it evaluated declarations, this semantics would still need to

transform the body of ns1::f to include the correct reference to ::x. The

rest of this section of the report will describe the relation that turns the

program in Figure 1 into

int ::x = 3;

int ::ns1::f(int n) { return n + ::x; }
int ::ns1::x = 2;

The main relation in Phase 1 is called phase1, and is defined in HOL:name_-

resolution. In the remainder of this section, I will discuss some of the more

interesting aspects of this phase of analysis.

3.1 The Name Resolution State

In order to track the current set of names that are in scope, Phase 1 uses two

environments, as per Section 2.2 above, to capture what is known about the
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current nested scopes, as well as some extra fields to describe the names

that are visible. For example, in the program of Figure 1, the global x is

visible when ::ns1::f is defined, but there is no x in the namespace ::ns1,

at least at that stage.

The HOL definition of the Phase 1 state is (see HOL:name_resolution):

P1state = <|

current_nspath : string list ;

dynclasses : string |-> bool # IDComp list #

TemplateArg list ;

dynobjs : string |-> bool # IDComp list #

TemplateArg list # dynobj_type ;

dynns : string |-> string list ;

global : state ;

accdecls : ext_decl list

|>

The three dyn fields record what names are visible in three different cate-

gories: namespaces (dynns), classes (dynclasses) and objects (dynobjs).

Each maps to information sufficient to provide an exact location for the

name.

In the case of namespace names, it is enough to provide a path from the

root, and such a path will just be of strings. For objects and classes, the path

has to be of ID components because objects and classes can be nested inside

classes (and classes might be template classes). The boolean also records

whether or not the name is local or non-local. The list of TemplateArg

values records any template parameters that the name may be associated

with if it is a template. Finally, in the case of objects, it is also necessary to

record what sort of object the name is. The options are given in the type

dynobj_type:

dynobj_type =

dStatMember | dMember | dVirtualMember | dNormalObj

Note that in this context an “object” might actually be a function (and it is

functions that provide the interest); elsewhere (particularly in the dynam-

ics) functions are not considered objects because they don’t occupy allocated

memory.

The global field of a P1state is a state from the dynamic semantics. In

Phase 1 the vast majority of the information stored in such a state is ignored;

the state is part of the P1state only for its two environments, which are
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accessed as the fields genv (the global environment), and env (the local

environment).

Finally, the accdecls field records the accumulating translated declara-

tions. It is this that provides the final output of Phase 1.

3.2 Template Names

One significant issue is the resolution of names in templates. When a tem-

plate definition is instantiated, it is important to specify how the names

occurring in the template are bound. Typically, such names might bind to

global names that are in scope at the point of the template’s definition, or to

member functions associated with the template argument.

The rule is actually fairly straightforward, at least in principle: function

names are allowed to bind to template names when the statically deter-

mined types of the function arguments refer to template parameters. Such

names have to be left alone in Phase 1.

3.3 Resolving Expressions

The first interesting phase of name resolution comes when rewriting expres-

sions. This is done with the function phase1_expr, defined in HOL:name_-

resolution, and of type

: frees_record -> P1state -> CExpr -> CExpr

where the frees_record types records a set of template arguments, which

names must be treated specially. (See HOL:frees for more on the calcula-

tion of this notion of “free variable”.)

Most of the clauses of the function phase1_expr are uninteresting recur-

sions, e.g.:

phase1_expr avds ps (COr e1 e2) =

COr (phase1_expr avds ps e1) (phase1_expr avds ps e2)

The first interesting clause is the handling of function applications, for

which see Figure 2. This is a complicated piece of code, though the structure

is relatively straightforward. At the top level, the function calls itself recur-

sively to resolve the arguments of the function call, generating the value

elist’. It is the calculation of the resolved e’ that introduces the compli-

cations. The first test checks if e is an unqualified variable. If not, then the

recursion can proceed “normally”. If e is just a simple variable however,
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phase1_expr avoids ps (FnApp e elist) =

let elist’ = MAP (phase1_expr avoids ps) elist in

let e’ =

if is_unqvar e then

let fnm = dest_unqvar e in

let atys =

εatys. listRel (expr_type ps.global RValue) elist’

atys

in

if ¬(DISJOINT
avoids

(FOLDL (λa ty. a UNION tyfrees ty) {} atys))

then

e

else if fnm ∈ FDOM ps.dynobjs then

phase1_expr avoids ps e

else

let foldthis ps0 ty =

let nss =

FST (ass_nspaces_classes avoids ps0 ty) in

let nsl = SET_TO_LIST nss

in

FOLDL (λps00 ns. open_ftnode ns ps00) ps0 nsl

in

let ps’ = FOLDL foldthis ps atys

in

Var (idattach_locn

(ps’.dynobjs ’ fnm)

(IDConstant F [] (IDName fnm)))

else

phase1_expr avoids ps e

in

FnApp e’ elist’

Figure 2: Name Resolution in Function Applications

22



then the code binds fnm to the name of the variable, and atys to the types

of the arguments.

The next test calculates the free type names of the argument types. If this

set overlaps with the names of any template arguments, then the variable

must be left alone, as per Section 3.2 above (it will be the subject of future

work if the containing template is instantiated). Next it is possible that the

name is already in the dynobjs map, which records information about the

names that are necessarily in scope. If so, this binding for the name takes

precedence, and a normal recursive call can occur. (This reflects [5, §3.4.2,

paragraph 2a].)

The final part of this clause calculates the set of associated namespaces

and associated classes, in accordance with the language of [5, §3.4.2, para-

graph 2], and then looks for the given name in this new extended names-

pace. (The function open_ftnode is used to overlay an existing P1state

with the names of another namespace.)

Another interesting case is dealing with variable names, assuming that they

have not already been caught by the function-application clause just dis-

cussed. The Var clause is presented in Figure 3. There are three cases

depending on the form of the variable. The first is when the variable is an

“absolute” name, with a leading ::. This might still be a member reference,

as in the following

class C {
int x;

int f() { return ::C::x; }
};

If this possibility is ruled out, then the name can be left unchanged. (If it’s

a static member, the name must be fine on its own.)

The second case is when there is a single bare name, with no qualifi-

cation. The qualified version of the name can be produced immediately by

consulting the dynobjs map, giving qid. Then it is necessary to determine

what sort of name the identifier is. If it is a virtual member function, the

name needs to be left unqualified, but attached to a this->. If it is a normal

member, then the qualified name needs to be used in the same way. Finally,

if it is a static member, or non-class object, the qualified name should be

used as is.

The last case is when there is a qualified name, such as name1::name2.

This is fiddly to resolve because the first element of the qualification may

refer to a namespace or a class. In either case, it is possible to resolve this
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phase1_expr avoids ps (Var id) =

case id of

IDConstant T sfs sf ->

if id_objtype ps.global id = dMember then

let cnm = class_part id in

let ps’ = open_classnode avoids.tyfvs cnm ps

in

SVar (Deref This) (mk_dynobj_id ps’ (IDtl id))

else Var id

|| IDConstant F [] sf ->

(let qid = idattach_locn (ps.dynobjs ’ (sfld_string sf)) id

in

(case SND (SND (SND (ps.dynobjs ’ (sfld_string sf)))) of

dVirtualMember -> SVar (Deref This) id

|| dMember -> SVar (Deref This) qid

|| dStatMember -> Var qid

|| dNormalObj -> Var qid))

|| IDConstant F (h::t) sf ->

(let s = sfld_string h in

let qid =

if s ∈ FDOM ps.dynclasses then

idattach_locn (ps.dynclasses ’ s) id

else

IDConstant T (MAP IDName (ps.dynns ’ s) ++ (h::t)) sf

in

if id_objtype ps.global qid = dMember then

let cnm = class_part qid in

let ps’ = open_classnode avoids.tyfvs cnm ps

in

SVar (Deref This) (mk_dynobj_id ps’ (IDtl qid))

else Var qid)

Figure 3: Name Resolution for Variables
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(class names mask namespace names), generating an unambiguous qid.

This then needs to be treated just as in the first case, possibly generating a

member reference.

3.4 Resolving Declarations: Establishing Phase 1 Names

The code in phase1_expr uses the information that has been stored in the

Phase 1 states by earlier and higher-level traversals of program syntax. In

particular, when a declaration is seen, this must cause an adjustment of the

information about names that is stored in the Phase 1 state.

For example, when a new global variable is declared, the NewGVar func-

tion is called to record this. Its type is

: CPP_Type -> IDComp -> P1state -> P1state

and its definition appears in Figure 4. The input to the NewGVar function

NewGVar ty sfnm s =

let sfnm’ =

IDConstant T (MAP IDName s.current_nspath) sfnm in

let (targs,sfstr) = break_sfld sfnm in

let ty’ =

rewrite_type

(FOLDL (λa ta. a UNION tafrees ta) {} targs)

s ty

in

s with <|

dynobjs :=

s.dynobjs |+ (sfstr, (T,MAP IDName s.current_nspath,

targs, dNormalObj)) ;

global updated_by

state_NewGVar ty s.current_nspath sfnm ;

accdecls :=

(s.accdecls ++ [Decl (VDec ty’ sfnm’)])

|>

Figure 4: Defining a New Global Variable in Phase 1

is the type of the variable being declared, its bare name (sfnm here), and

the Phase 1 state being updated. The type is rewritten so that any of the

names it mentions are themselves resolved, and the state’s dynobjs field is
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updated to map the name to a full identifier, using the current namespace

path. (The 4-tuple has T as its first component because this is known to be

a global variable; were we defining a local name, this component would be

F instead.)

Class Declarations The most interesting behaviour at the level of declara-

tions comes with classes. Here scopes are twisted in order to allow member

functions to refer to member names that have actually been declared later

in the class. For example, in

int x;

class C {
int f(int i) { return i + x; }
int x;

}

the reference to x in the body of C::f is to C::x, not to the global x. This

special dispensation only extends as far as the bodies of member functions.

Sub-classes and their names are not so lucky; there the rule is that the class

declaration must come first. If there is a conflict with an external type-name,

this is an error. For example, the following is an error:

struct B { int x; };
struct C {
B b;

struct B { int j; };
};

To make this correct, one should either explicitly qualify the type in the

declaration of member b (one could write ::B b; to refer to the external

class), or reorder so that the declaration of the nested class came before the

definition of b (which would then make field b of C have type C::B).

This analysis is illustrated in the definition of phase1_gclassdefn, one

clause of which is given in Figure 5. The first pass over the fields appears in

the binding for value ps2. The function called there, extract_class_names

passes over the fields of the class-info value (ci), and adds the names it sees

there to the state ps1. The resolved fields are then calculated in the last let

binding (to flds’). Note that the state returned from the function adds the

resolved declaration to its accumulating list of declarations (accdecls), but

otherwise resets its dynamic state to that which held immediately after the

declaration of the class (ps0).
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phase1_gclassdefn avds cnm (SOME ci) ps =

let ancs’ = MAP (λ(id,b,p). (resolve_classid ps id, b, p))

ci.ancestors in

let fullnm =

case cnm of

IDConstant b [] sf ->

IDConstant b (MAP IDName ps.current_nspath) sf

|| IDConstant b sfs sf -> resolve_classid ps cnm in

let ps0 = ps with global updated_by

new_class fullnm

(SOME (<| ancestors := ancs’ ;

fields := [] |>, {})) in

let ps1 = open_path avds.tyfvs T (id_sfs fullnm) ps0 in

let ps2 = FOLDL (λs cebp.

extract_class_names avds s

(T, id_sfs fullnm) cebp)

ps1

ci.fields in

let ps3 = open_path avds.tyfvs T (id_sfs fullnm) ps2 in

let flds’ =

FOLDL (λcelist (ce,b,p).

let ce’ = phase1_gcentry avds ps3 cnm ce

in

(celist ++ [(ce’,b,p)]))

[]

ci.fields

in

ps3 with <|

dynobjs := ps0.dynobjs ;

dynclasses := ps0.dynclasses ;

accdecls :=

(ps.accdecls ++

[Decl (VStrDec fullnm

(SOME <| ancestors := ancs’ ;

fields := flds’ |>))])

|>

Figure 5: Name Resolution for a Global Class Declaration
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Function Definitions The final aspect of name resolutions worth illustat-

ing comes with the constant phase1_fndefn, which handles resolution for

top-level function definitions. This is another large definition, presented in

Figure 6. The big case-split on the form of the function name (fnm) binds

two different Phase 1 states. The declared_ps is what is returned; and may

reflect the fact that a new function is being defined. (When the name is

qualified in some way, then the function has already been declared (usually

in a class).)

The body_ps is the name information that needs to be used when the

body of the function is analysed. For example, consider the following:

namespace ns {
int x;

class C { int f(); int i; };
}
int ns::C::f() { return x + i; }

When one comes to analyse the function f, both the global variable ns::x,

and the member variable C::i are in scope. This adjustment of scopes is

done by the calls to open_path.

4 Phase 2: Templates

In this section, I describe how the semantics models templates. I have been

inspired by Siek and Taha [12], though as I shall discuss, the dynamics of

their model is too simplistic for the full language of templates, in particular

handling template parameters that are themselves references to templates

(“higher order templates” if you will).2

One might imagine that it be possible to treat templates at “run-time”,

as if one had written a one-pass C++ interpreter. However, the example in

Figure 7 demonstrates that such a goal is impossible, or at least that one

would have to write a two pass interpreter. Any reference to the figure’s

List template, perhaps within a function that was called at a great stack

depth, causes the need to statically initialize the global node_count before

the program even begins. A näıve interpreter that attempts to execute the

program source as the source is read in will come unstuck.

As the interpreter sees the template declarations above, it does nothing.

Then it performs its global declarations, and jumps into main. At this point

it has already failed to do the right thing. Instead, the putative interpreter

2Siek and Taha do model typedef declarations within classes, which I do not.
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phase1_fndefn avds retty fnm pms body ps =

let retty’ = rewrite_type avds ps retty in

let pms’ =

MAP (λ(nm,ty). (nm, rewrite_type avds ps ty)) pms in

let funty = Function retty’ (MAP SND pms’) in

let (fnm’,declared_ps, body_ps) =

case fnm of (* if the name is qualified, then there must be an

existing declaration, so we don’t need to alter

anything in the state *)

IDConstant T [] sf -> ARB (* must be an error, see 8.3 p1 *)

|| IDConstant T (sf1::sfs) sf2 ->

(fnm, ps, open_path avds.tyfvs T (sf1::sfs) ps)

|| IDConstant F [] sf ->

(IDConstant T (MAP IDName ps.current_nspath) sf,

NewGVar funty sf ps,

NewGVar funty sf ps)

|| IDConstant F (sf1::sfs) sf2 ->

let fnm’ = resolve_classid ps fnm in

let (b,sfs,sf) = dest_id fnm’

in

(fnm’, ps, open_path avds.tyfvs b sfs ps)

in

let ps’ =

FOLDL (λps (n,ty).

newlocal ps (IDName n) ty) body_ps pms’ in

let body’ = phase1_stmt avds ps’ body

in

declared_ps with

accdecls := (declared_ps.accdecls ++

[FnDefn retty’ fnm’ pms’ body’])

Figure 6: Name Resolution for a Global Function Definition
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template <class T> class List {
T item;

List *next;

static int node_count;

};

template<class T> int List<T>::node_count = 0;

int main(void)

{
List<int> mylist;

...

}

Figure 7: A program demonstrating the difficulty of interpreting templates.

would have to scan the whole program for template applications so that it

can generate the appropriate global variable initializations. This is no better

than explicitly pre-compiling templates, so I have adopted an explicit two-

phase compilation approach.

We need to specify the possible sorts of arguments that can be passed to

templates. The Standard is quite explicit here [5, §14.3 para 1], there are

three sorts of arguments: types, templates, and “non-type, non-template”

arguments (meaning references to objects with linkage, or numbers). Thus:

TemplateArg = TType of CPP_Type

| TTemp of CPP_ID

| TVal of TemplateValueArg

Finally, there are four different sorts of non-type, non-template arguments [5,

§14.3.2 para 1]:

TemplateValueArg =

TNum of int

| TObj of CPP_ID

(* id is of suitable global (one that has

linkage etc). *)

| TMPtr of CPP_ID => CPP_Type

| TVAVar of string (* => CPP_Type *)

(* can have a value (of the given type)

substituted for this *)
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This presentation is slightly simplified because the standard also allows

arithmetic on these arguments, where this is appropriate (between TNum

and TVAVar parameters).

4.1 Instantiation and Matching

(This seection describes formalisation done in HOL:instantiation.)

Types and identifiers can be instantiated: mappings from variable names to

values are applied over the structure of the value (type or identifier), and

occurrences of variable names are replaced by the appropriate element from

the range of the function. Because there are three sorts of variables (corre-

sponding to the three different sorts of template argument), an instantiation

is actually a triple of functions (one for each sort of variable).

In Siek and Taha [12], instantiation is a very elegant operation. In a

more faithful model of more of C++, more complexities intrude. In addition

to the need for three mappings, the model must also accept that instantia-

tion can result in an invalid result. Instantiation must become partial, which

is modelled by making the types of the various instantiation functions be of

the form

inst<τ> : substitution → τ → τ option

The partiality arises at the lowest level, as in the following example:

template<class T> void f<T>(int x) { T::staticfield = x; }
void g() { f<int>(3); }

This must be an error because it is not sensible to write int::staticfield.

(Other type substitutions may also cause this to be an error, but this error

can be detected as the substitution is done, without any need to look up any

information about the argument.)

The partiality of instantiation does not prevent us from defining a partial

order over types, such that τ1 ≤ τ2 when τ2 is a more specialised/instantiated

version of τ1. As in Siek and Taha [12], we can prove reflexivity, transitiv-

ity, and antisymmetry (up to renaming of free variables). (These are sanity

results, requiring substantial proof.)

Given the partial order, it is straightforward to find the best match amongst

a set of template definitions for a given template call.

4.2 Program Instantiation

Siek and Taha have an elegant model for program instantiation. A program

is a sequence of definitions (of classes, and of static member functions). A
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template <class T> class Foo { static int f(); };
template <class T> int Foo<T>::f() { return 3; }

template <class T> class Bar { static int g(); };
template <class T> int Bar<T>::g() { return Foo<T*>::f(); }

Figure 8: In Siek and Taha’s model, the definition of class Foo<T> will get

instantiated to provide a definition of class Foo<T*> when a reference to

that type is seen inside the definition of Bar<T>::g.

definition may cause an existing template to be instantiated because of a

reference to that template within the definition. When a member function

definition is encountered, if its body includes a reference to other functions,

these functions may need to be instantiated.

For example, when analysing the program in Figure 8, the Siek and

Taha’s model will see the reference to Foo<T*>::f() in the definition of

Bar<T>::g() and instantiate the definition of Foo (it knows that it does not

already have an instantiation for a type of the form Foo<T*>). This instan-

tiation will result in a template definition (one with free variables), which

may or may not be required in the rest of the program.

This model breaks down in the presence of template parameters that

are templates because it becomes impossible to determine the dependencies

of a template definition. In the program in Figure 9, it is impossible to

tell what definition should be instantiated when processing the definition of

Baz<A>::g. In the presence of template parameters, Siek and Taha’s model

is too eager.

My model only performs instantiations when there is a ground instance

to drive the instantiation. Otherwise, it is similar to what is presented in Siek

and Taha. In particular, it is crucial to avoid instantiating member functions

unless they are called for.

The model in HOL:templates script is based around a working state of

two components: a Phase 1 state, and a sequence of ground declarations.

In addition, the template relations take a sequence of template declarations,

the “patterns”. These patterns do not change as template instantiation is

performed, whereas the other components do. Thus, the general forms of

the relations’ definition is

template_relation pats (ps0,grds0) (ps,grds) = ...

Template instantiation only begins when all of the program’s declara-
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template <class T> struct Foo { static int f(); };
template <class T> int Foo<T>::f() { return 3; }

template <class T> struct Bar { static int f(); };
template <class T> int Bar<T>::f() { return 4; }

template <template <class> class A> struct Baz {
static int g();

};
template <template <class> class A>

int Baz<A>::g() {
return A<int>::f();

}

int main() { return Baz<Foo>::g(); }

Figure 9: Siek and Taha’s model’s early instantiation breaks down when it

sees the definition of Baz<A>::g, and the call to A<int> in particular. At this

point, it can not tell which template is being instantiated in the body. By way

of contrast, my model doesn’t instantiate anything until it sees the definition

of main. (This program is available as notes/siek-taha-tempvar.cpp)
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tions have been analysed in Phase 1. This means that the process begins

with a complete Phase 1 state, and with all of the translation unit’s defini-

tions “to hand”. This is the only real difference between the model here and

Siek & Taha’s. Their core relation is presented in their Figure 6, and consists

of 4 rules, including one that checks when instantiation can finish. It is their

last rule, (C-FUN) that represents a problem: when their system encounters

a member function definition, it analyses it there and then.

In contrast, my model only performs Phase 1 analysis on such functions.

All template work is deferred until the end of Phase 1. Further, template

work requires that all class definitions have member function definitions

stripped from them and turned into separate top-level definitions. This is

not a difficult operation to perform. At this point, my model repeatedly

performs the equivalent of Siek and Taha’s rule (C-INSTFUN).

The top-level definition (from HOL:templates) is

template_analysis pats =

TC ((template_phase2_destructors pats RUNION

template_phase2_constructors pats RUNION

template_phase2_statmems pats RUNION

template_phase2_fns pats) O

TC (template_phase1 pats))

where TC is transitive closure, RUNION is relation union, and O is relation

composition.

The first phase is template_phase1, which is instantiates any needed

template classes:

template_phase1 pats (ps0, grds0) (ps, grds) =

∃id id’ sub ci0.

id ∈ used_ttypes pats grds0 ∧
id 6∈ declared_types grds0 ∧
(∀sub_id. sub_id is_sub_tid id ⇒

sub_id IN declared_types grds0) ∧
best_class_match pats id sub (id’, ci0) ∧
phase1 ([P1Decl

(Decl

(VStrDec id

(cinfo_inst sub (THE ci0))))], ps0)

([], ps) ∧
(grds = grds0 ++ [LAST ps.accdecls])

This rule first looks for a type name id that is both referred to in the ground

input declarations (grds0), and which is not declared there. It then checks
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that all identifiers that are a proper prefix of id are declared.3 Then, the

relation best_class_match scans the template declarations, and returns the

best (most specific) match. In fact, it returns both the instantiation required

to turn the template ID (id’) into the desired ID (id) and the template class

declaration, which is ci0.

The penultimate conjunct of the definition instantiates the class-info,

and performs a Phase 1 analysis of it. The resulting class declaration can be

appended to the list of ground declarations.

The second phase of template analysis looks to instantiate member func-

tions (including constructors and destructors), as well static member ob-

jects. The pattern is similar for each constant. The following is the rule for

member functions.

template_phase2_fns pats (ps0, grds0) (ps, grds) =

∃id id’ sub retty pms bod.

id ∈ used_tfns pats grds0 ∧
id 6∈ defined_fns grds0 ∧
(∀sub_id. sub_id is_sub_tid id ⇒

sub_id ∈ declared_types grds0) ∧
best_function_match pats id sub

(id’, (retty, pms, bod)) ∧
phase1 ([P1Decl

(FnDefn

(THE (type_inst sub retty))

id

(MAP (λ(n,ty).

(n,THE (type_inst sub ty)))

pms)

(THE (stmt_inst sub bod)))], ps0)

([], ps) ∧
(grds = grds0 ++ [LAST ps.accdecls])

The basic pattern of this rule is similar to that of template_phase1. First, an

identifier id is found that is both referred to among the ground declarations,

and which is not ground itself. If a matching function can be found, then

this is instantiated, and passed to the Phase 1 analysis to have its names

resolved. It is at this point that names we avoided in Figure 2 (page 22),

will get their chance to find resolution in appropriate namespaces, because

arguments that had been templates will now be concrete, ground types.

3Thus, a reference to something like C<int>::D<char> will result in the instantiation of

C<int> first.
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Note that this rule also handles template instantiation for function tem-

plates that are not associated with a class, though it is an incomplete picture

because the best_function_match relation does not consider other ground

functions, and so doesn’t deal with overloading resolution.

The definition of best_function_match appears in Figure 10. A lot of

the “heavy lifting” in this definition of the behaviour of templates comes

from the operations of matching and instantiation. This is the strength of

Siek and Taha’s approach. In this definition, the best match is one that finds

a sub that does indeed instantiate the pattern id’ to the desired id (instan-

tiating only the variables that are identified as template parameters). The

second half of the definition requires that the match be “best” by requiring

that all other contenders be instantiable to it.

best_function_match Temps id sub (id’, (retty,pms,bod)) =

(∃targs.
(cppID_inst sub id’ = SOME id) ∧
MEM (TemplateDef targs (FnDefn retty id’ pms bod))

Temps ∧
sub only_changes targsfrees targs) ∧

∀id2 retty2 pms2 bod2 sub2 targs.

MEM (TemplateDef targs (FnDefn retty2 id2 pms2 bod2))

Temps ∧
sub2 only_changes targsfrees targs ∧
(cppID_inst sub2 id2 = SOME id) ⇒
∃sub’. (cppID_inst sub’ id2 = SOME id’) ∧

sub’ only_changes targsfrees targs

Figure 10: Finding the Best Function Instantiation

5 Phase 3: Dynamics

Much of the core semantics in this section is based on the C semantics pre-

sented in my PhD thesis [6]. In particular, details of the way in which side

effects are created and applied remain the same, as does the use of an eval-

uation context, and the way in unspecified order of evaluation is handled.
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5.1 Dynamic States

The dynamic semantics updates values of the type state (see HOL:states),

given in full in Figure 11. The first four components of the state are sets

of addresses. The allocmap and initmap sets are from my C model [6],

and record which addresses have been allocated and initialized, respectively.

The new field hallocmap is necessary to allow memory to be allocated on

the heap, and for its life-span to persist beyond the end of the current block.

The second new field, constmap records which memory has been allocated

with the const cv-qualifier. (Updating such memory causes undefined be-

haviour.)

5.2 The Dynamic Relation

The fundamental relation in the dynamics semantics is mng (or “meaning”),

which is a binary relation on states and abstract syntax forms. For reasons

to do with the prevention of function call interleaving (explained below in

Section 5.5), this one relation is used for both expression and statement

forms. (One might otherwise imagine two mutually recursive relations: one

for statements and the other for expressions.)

Thus the type of mng is

: (state # ExtE) -> (state # ExtE) -> bool

making it a binary relation on pairs of states and extended expressions. An

extended expression is either

• a syntactic expression coupled with a side effect information record

(containing the three fields, update_map, ref_map and pending_ses,

(R, Υ and Π in the terminology of my thesis)); or

• a statement coupled with a continuation, which latter is a function

that takes a value and returns an expression. This latter is used to

recreate the expression in which the function call that generated the

statement occurred. Also, all expressions within statements (such as

those that appear as guards in loops and if-statements), are actually

extended expressions.

In HOL:statements, the declaration of extended expression (ExtE) is

thus mutually recursive with the type of statements:

ExtE = EX of CExpr => se_info

| ST of CStmt => conttype
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state = <|

allocmap : addr -> bool ; (* the set of stack-allocated addresses *)

hallocmap: addr -> bool ; (* the set of heap-allocated addresses *)

constmap : addr -> bool ; (* the set of read-only addresses *)

initmap : addr -> bool ; (* the set of initialised addresses *)

fnmap : CPP_ID |-> fn_info ;

(* map from function ’names’ to type information about

the given functions *)

fnencode : CPP_ID |-> byte list ;

(* map encoding function ’name’ as a byte sequence

so that its address can be stored in memory *)

fndecode : byte list |-> CPP_ID ;

(* map inverting fnencode *)

genv: environment ; (* non-local environment *)

env : environment ; (* local version of the above *)

locmap : addr -> byte ;

(* memory. Domain might also be ( void * ) words *)

stack : (environment # CExpr option #

(addr->bool) # (addr#CPP_ID) list) list ;

(* stack of (environment, this, allocation map, and objects

that need to have their destructors called)

Updated as blocks are entered and left *)

rvstk : (num # addr # CPP_ID) option list ;

(* optional return addresses for object r-values, also

identifying the allocation level for the r-value along with

the type of the object being constructed. *)

thisvalue: CExpr option ;

(* the value (i.e., this will always be an ECompVal

with a pointer value) of the this expression *)

current_exns : CExpr list

(* stack of exceptions that might be subjected

to a bare throw *)

|>

Figure 11: The HOL type of dynamic state. There are two environment

values, genv, and env. The former is for non-local, persistent identifiers,

the latter for local identifiers. Because there is no such thing as a local

namespace, there will only be a top-level node in the env field (which may,

however point to an arbitrarily deep class_env).
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Most of the time reduction occurs between expressions and expressions,

or between statements and statements, allowing one to imagine that one has

the →e and →s from the PhD’s C semantics. For example, when evaluating

expressions, rules in the dynamics have conclusions of the form

mng (s0, EX e0 se0) (s, EX e se)

where s0 and s are the initial and final states; e0 and e are the initial and

final expression forms; and se0 and se are the initial and final “side effect

records”.

Similarly, when evaluating statements, conclusions are typically of the

form

mng (s0, ST st0 c) (s, ST st c)

where st0 and st are the initial and final statement forms. Note that the

continuation (c above) never changes within statement evaluation, meaning

that statement rules will always actually repeat the given continuation from

initial to final tuple.

5.3 Special Syntactic Forms

In the abstract syntax types representing both expressions and statements, I

have added special forms that only arise as a result of evaluation and could

never be seen in an input program. The most important of these are the

forms for representing values and l-values within the expression type.

The ECompVal constructor has type

: byte list -> CPP_Type -> CExpr

and represents values as sequences of bytes, coupled with their type.

The LVal constructor is used to represent l-values, and has type

: addr -> CPP_Type -> CPP_ID list

Thus, an l-value is represented by a combination of its base address and its

type, along with the list of identifiers that allow us to represent the dynamic

types of basic object orientation; see Section 5.7 below.

In addition, there is an analogue to LVal for functions, called FVal. This

represents the identity of a function, and has type:

: CPP_ID -> CPP_Type -> CExpr option -> CExpr

A function is identified by its name, its type, and if a (non-static) member

function, the expression denoting the class object for which it is to be called.

Finally, there is the special value UndefinedExpr used to represent the

occurrence of undefined behaviour within an expression.
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5.4 Simple Expression Rules

Introducing Scopes for Expressions Because C++ expressions can cause

the creation of object r-values (for which, see Section 5.11), it is necessary

that the internal stack be extended by a new entry when the evaluation of

an expression within a statement begins. This new element on the stack

records the creation of objects during the evaluation of the expression, and

also records the state of the allocmap that held when the expression began,

so that it can be returned to on finishing the expression’s evaluation.

The model assumes that all expressions within statements are initially

wrapped inside the NoScope constructor, of type

: CExpr -> CExpr

This wrapper is dissolved once for every whole expression, in the rule [no-

scope] :

(* RULE-ID: noscope *)

T

==>

mng (s, EX (NoScope e) se)

(s with stack updated_by

CONS (s.env,s.thisvalue,s.allocmap,[]),

EX e se)

The rules for standalone and conditional statements, and for declarations

with initialisors pop this extra “frame” off the stack when expression evalu-

ation terminates.

Literals We begin with two rules for literals. We don’t have any rules for

other literal forms, such as floating point constants, though it is clear what

they would look like.

(* RULE-ID: number-literal *)

(REP_INT (Signed Int) n = SOME bl)

⇒
mng (s, EX (Cnum n) se)

(s, EX (ECompVal bl (Signed Int)) se)

The only difference with character constants is that the underlying num-

ber is pushed into a different sized space:
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(* RULE-ID: char-literal *)

(REP_INT BChar n = SOME bl)

⇒
mng (s, EX (Cchar n) se) (s, EX (ECompVal bl BChar) se)

Though not really a literal, the special C++ expression form this also

has a simple rule:

(* RULE-ID: this *)

T

⇒
mng (s, EX This se) (s, EX (THE s.thisvalue) se)

Variables Looking up object variables becomes a little complicated in the

presence of references and object orientation.

(* RULE-ID: var-to-lvalue *)

(lookup_type s vname = SOME ty0) ∧
object_type ty0 ∧
(lookup_addr s vname = SOME (a,cnm,p)) ∧
(ty = if class_type ty0 then Class cnm else ty0)

⇒
mng (s, EX (Var vname) se) (s, EX (LVal a ty p) se)

The call to lookup_type determines the variable’s static type, which will

have been set in the appropriate part of the state when the variable was

declared. The second premise checks to see that the variable is of object

type. If so, the variable will have an address. Accompanying the address is

information (cnm and p) that gives dynamic type information if the object is

of class type.

It may not be clear how a variable may come to have a dynamic type that

is separate from its static type. In fact, this is only possible in the presence of

references, which are treated as aliases for real variables. Thus, in a function

such as

int f(C &c) { return c.memfn(); }

the variable c is initialized to “point at” some existing variable, and the

address maps are set up so that c is indeed a perfect alias for some existing

l-value. But, the argument may in fact have been a derived class of C, and

so c’s dynamic type won’t be the same as its static type.

Variables can also denote functions:
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(* RULE-ID: var-to-fvalue *)

(lookup_type s vname = SOME ty) ∧
function_type ty ∧
vname ∈ FDOM s.fnencode

⇒
mng (s, EX (Var vname) se) (s, EX (FVal vname ty NONE) se)

Contextual Evaluation Just as in the C semantics, most nested evaluation

of expressions is mediated through one rule:

(* RULE-ID: econtext-expr *)

mng (s0, EX e0 se0) (s, EX e se) ∧
valid_econtext f

⇒
mng (s0, EX (f e0) se0) (s, EX (f e) se)

Here, f is a function of type :CExpr->CExpr, but restricted by the predicate

valid_econtext. This predicate restricts where evaluation can occur. For

example, a function satisfying valid_econtext would be

λe. CAnd e e2

for all possible values e2. Such a function allows reduction to occur to the

left of the CAnd constructor (i.e., &&). The corresponding function with its

“hole” on the right of the CAnd is not a valid context function.

If an undefined behaviour occurs, this is reflected by having the expres-

sion that caused it become the special UndefinedExpr value. This value can

rise to the top of any expression:

(* RULE-ID: econtext-undefinedness *)

valid_econtext f

⇒
mng (s, EX (f UndefinedExpr) se) (s, EX UndefinedExpr se)

The notion of where a function l-value decays into a pointer to a function

is also controlled by a context:

(* RULE-ID: fcontext *)

fnid ∈ FDOM s.fnencode ∧
(s.fnencode ’ fnid = bytes) ∧
valid_fvcontext f

⇒
mng (s, EX (f (FVal fnid ty NONE)) se)

(s, EX (f (ECompVal bytes (Ptr ty))) se)
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The definition of valid_fvcontext is

valid_fvcontext f =

valid_econtext f ∧
∀args. ¬(f = λf’. FnApp f’ args)

stating that a function l-value can decay as in the rule above, as long as it is

not at the head of a function application.

Finally, there is the rule allowing normal l-values to decay into their r-

value forms (the “l-value to r-value conversion”):

(* RULE-ID: lvcontext *)

valid_lvcontext f ∧
lval2rval (s0,e0,se0) (s,e,se)

⇒
mng (s0, EX (f e0) se0) (s, EX (f e) se)

The lval2rval relation can result in an UndefinedExpr if the l-value causes

a reference to a value that has already been updated within the same phase

of execution, as might happen in the expression i++ + i for example. Oth-

erwise, if the l-value denotes an object not of class type, the l-value turns

into a list of bytes (an ECompVal), ready for further manipulations to occur.

Operators The rules governing the behaviour of the standard operators

are as in the original C semantics. The rules for the standard computational

binary operators (arithmetic and shift operators) are presented in Figure 12,

and depend on an auxiliary relation binop_meaning, which is defined in

HOL:operators. Being a relation, it allows for nondeterminism and failure.

Were the model to cope with operator overloading correctly, these rules

would remain unchanged. Operator overloading would be resolved in Phases 1

and 2, allowing uses of overloaded operators to be rewritten to the function

calls that they really are.

There are analogous rules for the standard unary operators (arithmetic

and logical negation, unary plus, and bit-wise complement), presented in

Figure 13.

Sequential Operators The logical operators && and ||, the ternary con-

ditional operator ?:, and the comma operator all evaluate their arguments

in a prescribed order, and must exhaust the pending side effects that may

have accumulated in a state before they can move from one argument to the

next, if indeed they move on at all. For example, the rule where logical-and

returns false is
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(* RULE-ID: binop-fails *)

(∀res restype. ¬binop_meaning s f v1 (strip_const type1)

v2 (strip_const type2)

res restype)

⇒
mng (s, EX (CApBinary f (ECompVal v1 type1)

(ECompVal v2 type2)) se0)

(s, EX UndefinedExpr se0)

(* RULE-ID: binop-computes *)

binop_meaning s f v1 (strip_const type1)

v2 (strip_const type2)

res restype

⇒
mng (s, EX (CApBinary f (ECompVal v1 type1)

(ECompVal v2 type2)) se)

(s, EX (ECompVal res restype) se)

Figure 12: Rules for the Standard Binary Operators

(* RULE-ID: unop-computes *)

unop_meaning f ival (strip_const t) result rt

⇒
mng (s, EX (CApUnary f (ECompVal ival t)) se)

(s, EX (ECompVal result rt) se)

(* RULE-ID: unop-fails *)

(∀res rt. ¬unop_meaning f ival (strip_const t) res rt)

⇒
mng (s0, EX (CApUnary f (ECompVal ival t)) se0)

(s0, EX UndefinedExpr se0)

Figure 13: Rules for the Standard Unary Operators
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(* RULE-ID: and-false *)

is_zero t v

⇒
mng (s, EX (CAnd (ECompVal v t) sub2) se)

(s, EX (ECompVal (signed_int 0) Bool) se)

When the first argument is true (non-zero), the truth value of the second

argument is the result. The conversion of the second argument to a truth

value is achieved by negating twice:

(* RULE-ID: and-true *)

~is_zero t v ∧
is_null_se se

⇒
mng (s, EX (CAnd (ECompVal v t) sub2) se)

(s, EX (CApUnary CNot (CApUnary CNot sub2)) base_se)

The is_null_se predicate tests whether or not a side effect record is empty

of pending side effects. The base_se value is the empty side effect record;

it is the appropriate starting point for a new phase of execution after a se-

quence point has been reached.

The comma operator (CommaSep here) always evaluates both of its argu-

ments. As with the other operators, evaluation of the first argument is han-

dled by the contextual evaluation rule; we need only provide a rule for when

the left-hand expression has been fully evaluated.

(* RULE-ID: comma-progresses *)

final_value (EX e1 se)

⇒
mng (s0, EX (CommaSep e1 e2) se)

(s0, EX e2 base_se)

The whole expression is an l-value if the second expression is (this is differ-

ent from C’s behaviour) [5, §5.18] (see also HOL:notes/comma-lvalue.cpp).

The final_value predicate (from HOL:statements) checks an extended

expression to confirm that it represents a completely evaluated form. Its

definition is

(final_value (EX e se) =

is_null_se se ∧
((∃v t. e = ECompVal v t) ∨
(∃a t p. e = LVal a t p) ∨
(∃b a i. e = ConstructedVal b a i))) ∧

(final_value (ST s c) = F)
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The ConstructedVal constructor is used to refer to class r-values (for which

see Section 5.11).

Pointer Operations The two significant pointer operations are dereferenc-

ing and address-taking (the * and & operators respectively). C++ adds two

class-related variants of these operations to the existing pair, which come

across from C practically unchanged. Thus the rule for taking an address:

(* RULE-ID: addr-lvalue *)

(* See 5.3.1 p2-5 - taking the address of an lvalue *)

(SOME result = ptr_encode s a t pth)

⇒
mng (s, EX (Addr (LVal a t pth)) se)

(s, EX (ECompVal result

(Ptr (static_type (t,pth)))) se)

The function static_type computes the static type for a l-value given access

to the type and path of identifiers. (For non-class values, the static type is

simply the second argument to LVal.)

There must be two rules for dereferencing a normal pointer; it may or

may not point to a valid object. In fact, there must also be a third rule be-

cause of the possibility that the pointer value being dereferenced is actually

a pointer to a function. These rules are presented in Figure 14.

More interesting from a C++ perspective are the rules for taking the ad-

dress of class-members (and then using those pointers to members to access

members). The concrete syntax for this is rather ugly:

struct C { int x; int y; };
int C::* cintptr = &C::x; // or &C::y

In the abstract syntax, the address taking operation is written MemAddr, of

type

: CPP_ID -> IDComp -> CExpr

where the first argument is the name of the class, and the second is the

name of the field.

If the member whose address is being taken is actually a static member,

then a normal pointer is generated, as can be seen from the type attached

to the ECompVal in the conclusion of the rule. (There is a similar rule for

taking the address of a static member function.)

46



(* RULE-ID: deref-objptr *)

(* 5.3.1 p1 - pointer to an object type *)

object_type t ∧
(SOME mval = ptr_encode s addr t’ pth) ∧
(static_type (t’,pth) = t)

⇒
mng (s, EX (Deref (ECompVal mval (Ptr t))) se)

(s, EX (LVal addr t’ pth) se)

(* RULE-ID: deref-objptr-fails *)

object_type t ∧
((∀addr t’ p. ¬(SOME mval = ptr_encode s addr t’ p)) ∨
(∃t’ p. SOME mval = ptr_encode s 0 t’ p))

⇒
mng (s, EX (Deref (ECompVal mval (Ptr t))) se)

(s, EX UndefinedExpr se)

(* RULE-ID: deref-fnptr *)

(* 5.3.1 p1 - pointer to a function type *)

v ∈ FDOM s.fndecode

⇒
mng (s, EX (Deref

(ECompVal v

(Ptr (Function retty argtys))))

se)

(s, EX (FVal (s.fndecode ’ v)

(Function retty argtys)

NONE) se)

Figure 14: Rules for “C-style” Dereferencing of Pointers
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(* RULE-ID: mem-addr-static-nonfn *)

(* 5.3.1 p2 *)

object_type ty ∧
MEM (FldDecl fldname ty, T, prot)

(cinfo s cname).fields ∧
(lookup_addr s (mk_member cname fldname) =

SOME (addr, pth)) ∧
(SOME ptrval = ptr_encode s addr ty (SND pth))

⇒
mng (s, EX (MemAddr cname fldname) se)

(s, EX (ECompVal ptrval (Ptr ty)) se)

The function cinfo takes a state and a class-name and returns the informa-

tion about that class in the form of a record, one of whose fields is called

fields, being a list of all the declarations occurring within the class.

When the member is not static, the rules become a little more involved.

The rule for taking the address of a non-static member, [mem-addr-nonstatic]

is presented in Figure 15. Functions and data members are not declared in

(* RULE-ID: mem-addr-nonstatic *)

(encode_offset cnm fldname = SOME bl) ∧
((∃prot. MEM (FldDecl fldname ty, F, prot)

(cinfo s cnm).fields) ∨
(∃prot v rt args bod.

MEM (CFnDefn v rt fldname args bod, F, prot)

(cinfo s cnm).fields ∧
(ty = Function rt (MAP SND args))))

⇒
mng (s, EX (MemAddr cnm fldname) se)

(s, EX (ECompVal bl (MPtr cnm ty)) se)

Figure 15: Taking the Address of a Non-static Member

quite the same way within a class (because the functions may be accompa-

nied by their implementations), which explains the disjunctive hypothesis

in the figure. The function encode_offset takes a class and field-name and

returns the encoding of this offset as a list of bytes. It is this that will be

written into memory if the offset is stored in a variable.

Once one has a pointer-to-member value, one can dereference it, as long

as one also had a class object to hand. Unlike normal C-style dereferencing,
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dereferencing a pointer-to-member is a binary operator. The concrete C++

syntax looks like:

int f(int C::* cintptr, C c)

{
return c.*cintptr;

}

There is also a ->* operator for when one has a pointer to a class (by analogy

with the -> operator for field dereferencing). In the abstract syntax, the one

operator is called OffsetDeref.

The rule for dereferencing a pointer-to-member ([offset-deref]) is pre-

sented in Figure 16. The rule is complicated by the fact that if the pointer

to a member is to a virtual function, then the result must be a reference to a

virtual function in the class on which the dereference is performed. The in-

(* RULE-ID: offset-deref *)

(encode_offset cnm2 fldname = SOME bl) ∧
(derive_objid obj = SOME (a,Class cnm1,p)) ∧
(fld = if function_type fldty then

let (r,a) = dest_function_type fldty

in

if is_virtual s cnm2 fldname r a then

IDConstant F [] fldname

else

mk_member cnm2 fldname

else

mk_member cnm2 fldname)

⇒
mng (s, EX (OffsetDeref obj

(ECompVal bl (MPtr cnm2 fldty)))

se)

(s, EX (SVar obj fld) se)

Figure 16: Dereferencing a Pointer-to-Member

variant in the model is that if a reference is made to a virtual function, then

it must occur as the right-hand argument of a field-selection as a bare name

(hence the IDConstant F []. . . above), and conversely that if a reference is

not to a virtual function, then the field dereference must be to a completely
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qualified identifier.4

The derive_objid function in the figure is used to derive object l-value

information (i.e., address, type and path) from values that may be both

normal l-values or object r-values. Its definition is

(derive_objid (LVal a t p) = SOME (a,t,p)) ∧
(derive_objid (ConstructedVal b a cnm) =

SOME(a,Class cnm,[cnm])) ∧
(derive_objid _ = NONE)

It is possible to have null member pointers (see [5, §4.11]). We specify

encode_offset in such a way that the null member pointer constant is not

in its range, and add the rule

(* RULE-ID: offset-deref-fails *)

T

⇒
mng (s, EX (OffsetDeref

obj

(ECompVal null_member_ptr (MPtr cnm2 fldty)))

se)

(s, EX UndefinedExpr se)

It is undefined behaviour to apply the null member pointer to any class.

Assignment The rules for assignment do not need to change from their

presentation in C. Nonetheless, this semantics adopts Clive Feather’s pro-

posal [2] for handling the infamous language in the standard:

Between the previous and next sequence point an object shall

have its stored value modified at most once by the evaluation of an

expression. Furthermore, the prior value shall be accessed only to

determine the value to be stored.

Rather than count references made on the RHS of an assignment, as in my

thesis [6], the model now is that references can occur before updates, but

not the other way round. This makes the rules for assignment considerably

simpler, at the cost of requiring an analysis of all possible execution paths to

see if any of them result in an update before a reference.

The rule for a completed assignment expression is presented in Fig-

ure 17. The NONE value that is the first argument ot Assign is where a binary

4Note the contrast with C: in C++, one can write c.::B::fld, which is unambiguous, if

ugly, about which fld member is meant.
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(* RULE-ID: assign-completes *)

¬class_type lhs_t ∧
(nonclass_conversion s (v0,t0) (v,lhs_t) ∧ (* 5.17 p3 *)

(se = add_se (a, v) se0) ∧ (resv = ECompVal v lhs_t)

∨
(∀v. ¬nonclass_conversion s (v0, t0) (v, lhs_t)) ∧
(resv = UndefinedExpr) ∧
(se = se0))

⇒
mng (s, EX (Assign NONE (LVal a lhs_t [])

(ECompVal v0 t0)) se0)

(s, EX resv se)

Figure 17: Rule for the Completion of an Assignment Expression

operator can be installed, implementing the op= syntax (+=, >>= etc.). The

rule that deals with this is

(* RULE-ID: assign-op-assign *)

T

⇒
mng (s0, EX (Assign (SOME f) (LVal n t p) e) se0)

(s0, EX (Assign NONE

(LVal n t p)

(CApBinary f (LVal n t p) e)) se0)

(Note that the hypothesis true (T) means there are no preconditions on this

transition occurring.)

5.5 Statements in a Small-step Style

One might imagine that stating the statement part of a dynamic semantics in

a small-step style should be easy. (My thesis [6, §7.1] explains why the way

I formulated statements in a big-step style was a mistake.) The literature

contains many examples of how to express constructs such as while and if

in a small-step style. However, in C and C++ this is not as straightforward

as one might think because of the need to prevent function bodies from

interleaving.

Imagine a program such as that in Figure 18, and how one might eval-

uate the return-expression in main. If one simply expanded the bodies of

51



the called functions into the expression as the functions were ready to be

called, one would be permitting the simultaneous evaluation of the bodies

of f and g. But the C++ standard explicitly forbids this (§1.8 fn8), and the

C standard also hints that it is forbidden.

int global;

int f(int x) { return global * 2 + x; }
int g(int y) { while (y > 0) { global += 2; y--; } }

int main(void) {
global = 10;

return f(6) + g(10);

}

Figure 18: Where Functions Must Not Interleave

One has to arrange the semantics so that expression evaluation can con-

tinue non-deterministically until a function call is encountered and the func-

tion call is made (after arguments have been evaluated). At this point, all

further evolution of the program must occur within the function body, no

matter how deeply nested the function call may have been within an en-

closing expression. (This problem does not occur if statement evaluation

is big-step because the hypothesis in the expression rule for a function call

would be a statement rule that required the complete evaluation of the func-

tion body.)

At the base level, a function call turns an EX piece of syntax into an

extended expression tagged with ST. This is shown in the rule [function-

call] of Figure 19, governing function calls (calls to constructors are set up

a little differently, see [constructor-function-call]).

The hypotheses in [function-call] are relatively involved. The first hy-

pothesis is really a static matter: find_best_fnmatch is a placeholder for

the process that calculates which function is actually to be called. This

should really occur in Phase 1. The second hypothesis checks that if the

function to be called is going to return a class r-value, then the rvrt ar-

gument to the FnApp_sqpt constructor needs to have been filled out by

[allocate-rvrt]. Note also how the rvrt argument is pushed onto the rvstk

component of the stack, so that the body of the function will know where to

construct its result.

The third hypothesis calculates what the value for this should be in the

body of the function being called. In other words, if the function is the mem-
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(* RULE-ID: function-call *)

find_best_fnmatch s0 fnid (MAP valuetype args) rtype

params body ∧
((rvrt = NONE) ⇒ ¬class_type (strip_const rtype)) ∧
(case thisobj of

SOME (LVal a (Class cnm) p) ->

(SOME thisaddr = ptr_encode s0 a (Class cnm) p) ∧
(thisval = SOME (ECompVal thisaddr

(Ptr (Class cnm))))

|| _ -> (thisval = NONE)) ∧
(pdecls = MAP (λ((n,ty),a).

VDecInit ty (Base n)

(CopyInit (EX (NoScope a) base_se)))

(ZIP (params, args)))

⇒
mng (s0, EX (FnApp_sqpt rvrt

(FVal fnid ftype thisobj)

args)

se)

(s0 with <|

stack updated_by

(CONS (s0.env,s0.thisvalue,s0.allocmap,[]));

rvstk updated_by (CONS rvrt);

thisvalue := thisval;

env := empty_env

|>,

ST (Block T pdecls [body]) (return_cont se rtype))

Figure 19: Making a Function Call
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ber function of some class, the thisobj variable will be SOME (LVal a t p)

giving the location of the object of the given class. Note that if this is a mem-

ber function, resolution of OO-polymorphism through virtual functions

will have already been resolved and the appropriate function will have been

selected (see Section 5.7.2). Otherwise, if this is not a member function, the

value for this will be NONE.

Finally, the last hypothesis sets up the initialization of the parameters by

specifying the value of the variable pdecls. Each parameter is a new local

variable, copy-initialized by the parameter value.

In the conclusion of the rule, see Section 5.8.2 for the details behind

return_cont, and Section 5.5.2 for the operations applied to s0, setting up

the new function’s scope. The use of CONS rvrt to update the rvstk field

pushes the rvrt value onto the front of the list.

Finally, note that when this transition is made the standard rule for eval-

uating an expression within a context ([expr-econtext], p42) can not fire,

because its hypothesis is of the form

mng (s0, EX e0 se0) (s, EX e se)

but our conclusion is of the form

mng (s0, EX e0 se0) (s, ST st c)

Instead, the new rule

(* RULE-ID: econtext-stmt *)

mng (s0, EX e se0) (s, ST stmt c) ∧
valid_econtext f

⇒
mng (s0, EX (f e) se0) (s, ST stmt (cont_comp f c))

can fire, turning the enclosing expression into a statement form, with an

ever more elaborate continuation. The rôle of the continuation is to do no

more than record where the function-call was, so that when the statement

form finishes execution, its result can be slotted back into the appropriate

expression.

These rules have specified what happens when an expression evalua-

tion switches to a statement evaluation. In the opposite direction, when a

function call is about to return, one of the rules is

(* RULE-ID: return-rvalue *)

is_null_se se0

⇒
mng (s, ST (Ret (EX (ECompVal v t) se0)) (RVC c se))

(s with rvstk updated_by TL, EX (c (ECompVal v t)) se)
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In this situation, the return statement has completely evaluated its argu-

ment into a value, and there are no remaining side effects to be evaluated.

This means that the value can be put back into the containing expression

tree, and expression evaluation can continue. This is reflected by the switch

from ST to EX, and the application of the continuation c to the value. The

TL function “pops” the rvstk

Note how the argument to the return statement is itself an extended

expression. This means that the argument will be tagged with EX initially,

but may later evolve to be a statement and continuation (tagged with ST) if

the return-expression includes a function call. This means that the rule for

evaluation of the argument of return is

(* RULE-ID: return-eval-under *)

mng (s1, exte0) (s2, exte)

⇒
mng (s1, ST (Ret exte0) c) (s2, ST (Ret exte) c)

where exte0 and exte may be statements or expressions.

Statement Evaluation Strategy The basic idea behind all of the rules for

statements are that they should be evaluated until they yield a “final” form.

As is explained further in Section 5.8.2 below, such an evaluation has to be

done in the context of the continuation that is accompanying the statement.

In essence, a final form is both one that can not be further evaluated, and

also something that can be returned to a higher level as some sort of result.

The definition of final_stmt is from HOL:statements:

(final_stmt EmptyStmt c = T) ∧
(final_stmt Break c = T) ∧
(final_stmt Cont c = T) ∧
(final_stmt (Ret e) c =

case c of

LVC f se0 -> (∃a t p se. (e = EX (LVal a t p) se) ∧
is_null_se se)

|| RVC f se0 -> final_value e ∧ no_class_lval e) ∧
(final_stmt (Throw exn) c = ∃e. (exn = SOME e) ∧

final_value e) ∧
(final_stmt _ c = F)

The Throw form implements exceptions (for which, see Section 5.6); most

statements will evaluate to either an EmptyStmt, or a Ret.
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5.5.1 Simple Statements

The rules for the simplest statement forms, expression statements (using the

Standalone “constructor”) and if statements are given in Figure 20. While

an expression statement explicitly terminates (yielding an EmptyStmt), the

if statement just evolves into one of its two branches.

Loops The loop forms in C++ are modelled just as they were in my the-

sis [6, §3.4.5], as syntactic sugar for forms involving one loop and different

arrangements of the Trap, continue and break primitives. This allows just

one, unconditional rule for all loops:

(* RULE-ID: loop *)

T

⇒
mng (s, ST (CLoop guard bdy) c)

(s, ST (CIf guard (Block F [] [bdy; CLoop guard bdy])

EmptyStmt) c)

Traps, and Loop Interruptions Again, following my thesis, the rules for

traps are straightforward, though numerous because of the different possi-

ble combinations of continue (written Cont) and break (written Break).

The simplest rules for these forms are presented in Figure 21. The rule for

the way in which break, continue, return and exceptions all cause flow of

control to alter within a block is presented in Section 5.5.2 below.

Declarations in Guards C++ allows variables to be declared in the guard

positions of loop forms and if statements. This is a syntactic nicety that we

can assume has been compiled away. For example, something like

if (int i = e) { ... }

can be rewritten into

{ int i = e; if (i) { ... } }

I take a similar attitude to C++’s relaxation of C’s rule that declarations

and statements can intermingle. Such an intermingling can be rewritten to

successive nested blocks, all of which respect the basic C rule that a block is

a sequence of declarations followed by a sequence of statements.

56



(* RULE-ID: standalone-evaluates *)

mng (s1, exte) (s2, exte’)

⇒
mng (s1, ST (Standalone exte) c)

(s2, ST (Standalone exte’) c)

(* RULE-ID: standalone-finishes *)

is_null_se se ∧ final_value e ∧
(s.stack = (env,thisv,amap,[]) :: rest)

⇒
mng (s, ST (Standalone e) c)

(s with <| stack := rest; allocmap := amap |>,

ST EmptyStmt c)

(* RULE-ID: if-eval-guard *)

mng (s0, RVR guard) (s, RVR guard’)

⇒
mng (s0, ST (CIf guard t e) c)

(s, ST (CIf guard’ t e) c)

(* RULE-ID: if-true *)

scalar_type t ∧ is_null_se se ∧ ¬is_zero t v ∧
(s.stack = (env,thisv,amap,[]) :: rest)

⇒
mng (s, ST (CIf (EX (ECompVal v t) se) thenstmt elsestmt) c)

(s with <| stack := rest; allocmap := amap |>,

ST thenstmt c)

(* RULE-ID: if-false *)

scalar_type t ∧ is_null_se se ∧ is_zero t v ∧
(s.stack = (env,thisv,amap,[]) :: rest)

⇒
mng (s, ST (CIf (EX (ECompVal v t) se) thenstmt elsestmt) c)

(s with <| stack := rest; allocmap := amap |>,

ST elsestmt c)

Figure 20: Statement Rules for Expression and If Statements
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(* RULE-ID: trap-stmt-evaluation *)

mng (s0, ST st c) (s, ST st’ c)

⇒
mng (s0, ST (Trap tt st) c) (s, ST (Trap tt st’) c)

(* RULE-ID: trap-break-catches *)

T

⇒
mng (s, ST (Trap BreakTrap Break) c) (s, ST EmptyStmt c)

(* RULE-ID: trap-continue-catches *)

T

⇒
mng (s0, ST (Trap ContTrap Cont) c) (s0, ST EmptyStmt c)

(* RULE-ID: trap-continue-passes-break *)

T

⇒
mng (s, ST (Trap ContTrap Break) c) (s, ST Break c)

(* RULE-ID: trap-break-passes-continue *)

T

⇒
mng (s, ST (Trap BreakTrap Cont) c) (s, ST Cont c)

(* RULE-ID: trap-emptystmt-passes *)

T

⇒
mng (s0, ST (Trap tt EmptyStmt) c) (s0, ST EmptyStmt c)

(* RULE-ID: trap-ret-passes *)

final_value e

⇒
mng (s, ST (Trap tt (Ret e)) c) (s, ST (Ret e) c)

Figure 21: Dynamic Rules for Loop Interruptions and Traps
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5.5.2 Statements in Blocks

The compound statement is the basic syntactic structure expressing scope at

the statement level. Its manifestation in this model is as the constant Block,

with type

: bool -> var_decl list -> CStmt list -> CStmt

The initial boolean field is used to record whether or not a block has been

entered. It starts as false (F). The rule for entering a block is

(* RULE-ID: block-entry *)

T

⇒
mng (s, ST (Block F vds sts) c)

(s with stack updated_by

(CONS (s.env, s.thisvalue, s.allocmap, [])),

ST (Block T vds sts) c)

The field stack is a stack of local environments, a value for the this pointer,

a value recording the allocated memory map, and a list of class-objects that

have been allocated at this allocation level, and will need destroying later.

When a block is entered, the old value for the environment needs to be

stored so that it can be restored on block exit. Recall that the field env

stores all of the information about local entities. Information on non-local

entities is all recorded in the genv field.

After a block is entered, its variable declarations must be executed. This

is handled by the rule [block-declmng] :

(* RULE-ID: block-declmng *)

declmng mng (d0, s0) (ds, s)

⇒
mng (s0, ST (Block T (d0 :: vds) sts) c)

(s, ST (Block T (ds ++ vds) sts) c)

The auxiliary declmng (which takes mng as a parameter, allowing it to re-

curse back to it) has type

: ((state # ExtE) -> (state # ExtE) -> bool) ->

(var_decl # state) -> (var_decl list # state) -> bool

The “return” of a list of new variable declarations allows termination to be

indicated (by returning the empty list), and also allows complicated object

constructions, which involve multiple calls to initialize sub-objects, done
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through special forms of variable declaration. There is more on the simple

forms of declmng in Section 5.5.3 below.

When the declaration list is exhausted, execution of a block’s body of

statements can proceed. The congruence rule for a block is [block-stmt-

evaluate] :

(* RULE-ID: block-stmt-evaluate *)

mng (s0, ST st c) (s, ST st’ c)

⇒
mng (s0, ST (Block T [] (st :: sts)) c)

(s, ST (Block T [] (st’ :: sts)) c)

Note the form of Block required: it must have no further variable decla-

rations to evaluate, and must have been entered (has its boolean flag set

to T).

If the first statement inside a Block is, or becomes, an EmptyStmt, and

there are more statements beyond it to evaluate, then the EmptyStmt can be

discarded:

(* RULE-ID: block-emptystmt *)

¬(sts = [])

⇒
mng (s, ST (Block T [] (EmptyStmt::sts)) c)

(s, ST (Block T [] sts) c)

Alternatively, if the head statement is an exception or interruption form,

and it is followed by other statements, then it causes all following statements

to disappear:

(* RULE-ID: block-interrupted *)

final_stmt exstmt c ∧
¬(exstmt = EmptyStmt) ∧
¬(sts = [])

⇒
mng (s, ST (Block T [] (exstmt::sts)) c)

(s, ST (Block T [] [exstmt]) c)

Then, when a final statement is the only thing remaining in a block,

the block itself can exit, clearing its local stack frame in the environment,

and propagating the final statement upwards. This gives us [block-exit], in

Figure 22. By requiring that the last component of the 4-tuple at the head of

the stack component of the state be empty, we require that all local objects

have had their destructors called (for more on this, see Section 5.10). If this

condition is met, the various stacks can be popped, and the final statement
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(* RULE-ID: block-exit *)

(s.stack = (env,this,amap,[]) :: stk’) ∧
final_stmt st c ∧

⇒
mng (s, ST (Block T [] [st]) c)

(s with <| stack := stk’;

allocmap := amap;

env := env;

thisvalue := this |>,

ST st c)

Figure 22: Exiting a Block

lifted up a level. In this way, a return statement deep within multiple blocks

can eventually make its way to the top level, where its value can be passed to

the continuation through rules [return-rvalue] (page 54) or [return-lvalue]

(page 85).

Such a return can not happen prematurely: the two return rules both

have EX tags in their “result” arguments, and the rule [block-stmt-evaluate],

as well as all the other rules calling for statement evaluation recursively,

requires its recursive call to be an ST-to-ST evaluation.

5.5.3 Simple Declarations

This section discusses simple declaration forms, which are treated in a way

that is similar to the treatment in my thesis. Declarations involving class

types are typically not simple, and are discussed in Sections 5.7 (basic object

orientiation) and 5.10 (object lifetimes). There are two simple forms of

declaration: a bare declaration of a variable, such as

int x;

or a declaration coupled with an initialization

int x = 3;

These two different forms are represented with the constructors VDec and

VDecInit respectively, both constructing values in the var_decl type.

As already mentioned, the C++ mechanisation uses an auxiliary relation

declmng to do most variable declaration work. This relation is defined in

HOL:declaration_dynamics. Its simplest rule is
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(* RULE-ID: decl-vdec-nonclass *)

vdeclare s0 ty name s ∧
object_type ty ∧
¬class_type (strip_array ty)

⇒
declmng mng (VDec ty name, s0) ([], s)

This rule states that if one is declaring a variable of non-class type (and

which is not an array of a class type), then it suffices to allocate space for it

through the vdeclare relation, storing its address in the appropriate part of

the state’s environment, and also recording the type. The empty list in the

second argument to declmng signals that no further work needs to be done

for this declaration.

When a variable is to be initialized, this can occur as a direct initializa-

tion:

int x(3);

or as a copy-initialiation:

inx x = 3;

For non-classes this syntactic difference makes no difference in behaviour.

The first rule is for the direct initialization (DirectInit0 form), where the

transition is immediately to a copy-initialization:

(* RULE-ID: decl-vdecinit-start-evaluate-direct-nonclass *)

~class_type ty ∧
vdeclare s0 ty name s ∧
(SOME (a,pth) = lookup_addr s name) ∧
(loc = if ref_type ty then RefPlace NONE name

else ObjPlace a)

⇒
declmng mng

(VDecInit ty name (DirectInit0 [arg]), s0)

([VDecInitA ty loc (CopyInit (EX arg base_se))], s)

The transition is to the VDecInitA form, which records where the initializa-

tion is to be performed. The vdeclare relation is used, as before, to allocate

space for the new object, and subsequent steps in the evaluation of the dec-

laration will fill this space in. (In the case of a reference, vdeclare will not

allocate any space, but will record a type for the new name.)

The rule for the CopyInit form is similar: there is a transition to the

VDecInitA form and a call to vdeclare. (As it happens this rule can be

applied for the declaration and initialization of class objects too.)
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(* RULE-ID: decl-init-start-eval-copy *)

vdeclare s0 ty name s ∧
(SOME (a,pth) = lookup_addr s name) ∧
(loc = if ref_type ty then RefPlace NONE name

else ObjPlace a)

⇒
declmng mng

(VDecInit ty name (CopyInit arg), s0)

([VDecInitA ty loc (CopyInit arg)], s)

Once a VDecInitA form has been achieved, the initializing expression

can be evaluated.

(* RULE-ID: decl-vdecinit-evaluation *)

mng (s0, exte) (s, exte’) ∧
((f = CopyInit) ∨ (f = DirectInit))

⇒
declmng mng (VDecInitA ty loc (f exte), s0)

([VDecInitA ty loc (f exte’)], s)

Note that the initializer form f can only be a DirectInit when initializing

classes. All non-class objects will be a CopyInit form by this point.

When initializing a non-reference, expressions that yield l-values must

be allowed to undergo the “l-value to r-value” conversion:

(* RULE-ID: decl-vdecinit-lval2rval *)

lval2rval (s0,e0,se0) (s,e,se) ∧
¬ref_type ty ∧
((f = CopyInit) ∧ ¬class_type (strip_const ty) ∨
(f = DirectInit))

⇒
declmng mng (VDecInitA ty loc (f (EX e0 se0)), s0)

([VDecInitA ty loc (f (EX e se))], s)

The extra condition on the CopyInit case reflects the fact that there may

be a copy-constructor for the class type that requires a reference type as a

parameter.

Finishing an Initialization When a non-class, non-reference initialization

is ready, the rule [decl-vdecinit-finish] of Figure 23 will apply. The value

of the initializing expression is first converted to be of the appropriate type,

and the resulting value (v’, a list of bytes), is copied into memory using

the val2mem relation. Note that the state’s initmap is also initialized in the
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(* RULE-ID: decl-vdecinit-finish *)

(e = ECompVal v ty) ∧
nonclass_conversion s0 (v,ty) (v’,dty) ∧
is_null_se se ∧
~class_type dty ∧
(s = val2mem (s0 with initmap updated_by (UNION) rs) a v’) ∧
(rs = range_set a (LENGTH v’)) ∧
((f = CopyInit) ∨ (f = DirectInit)) ∧
(s.stack = (env,thisv,amap,[]) :: rest)

⇒
declmng mng

(VDecInitA dty (ObjPlace a) (f (EX e se)), s0)

([], s with <| stack := rest; allocmap := amap |>)

Figure 23: Completing the Initialization of a Non-class, Non-reference Vari-

able

process. The fact that the location attached to the VDecInitA constructor is

an ObjPlace ensures that the variable being initialized is not a reference.

5.6 Exceptions

Exceptions are modelled in a way similar to the treatment of return, break

and continue. One difference is that exceptions propagate further: the

return “value” only propagates up as far as a function call (within an ex-

pression). In contrast, an exception will continue to propagate up through

the call-stack until it hits a suitable handler.

This much allows a preliminary sketch of the behaviour. The throw form

is actually an expression (EThrow), but we set things up so that there is a

statement-level version of throw as well (Throw), and it will be this that

propagates through statement syntax. The rule [expression-throw-some]

describes the behaviour when EThrow has an argument:

(* RULE-ID: expression-throw-some *)

T

⇒
mng (s, EX (EThrow (SOME e)) se)

(s, ST (Throw (SOME (EX e se))) c)

The variable c represents the continuation that would normally convert the

result of the statement into a value to be inserted into a containing expres-
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sion tree. Because thrown values can’t ever turn into values until they ini-

tialize a handler, this c can be anything at all. Because throw-expressions are

of type void ([5, §15,p1]), they will never evaluate while a sub-expression

of some containing expression.

At the statement level, the Throw form takes an extended expression as

an argument. This evaluates its argument as one might expect (rule [throw-

expr-evaluation])

(* RULE-ID: throw-expr-evaluation *)

mng (s0, RVR e0) (s, RVR e)

⇒
mng (s0, ST (Throw (SOME e0)) c) (s, ST (Throw (SOME e)) c)

When a throw’s expression has been completely evaluated, we have

something that can then propagate upwards through the abstract syntax

of statements.

We already have a rule specifying how throw-statements traverse Block

values: [block-interrupted], repeated here:

(* RULE-ID: block-interrupted *)

final_stmt exstmt c ∧
¬(exstmt = EmptyStmt) ∧
¬(sts = [])

⇒
mng (s, ST (Block T [] (exstmt::sts)) c)

(s, ST (Block T [] [exstmt]) c)

The predicate final_stmt is true of throw and return statements with fully

evaluated arguments, as well as of break, continue and the EmptyStmt

form. The latter doesn’t cause an interruption, so is excluded by the second

hypothesis to the rule. The final hypothesis ensures that there isn’t an infi-

nite loop on this rule. The same predicate is used in the rule for exiting a

block ([block-exit], page 61).

There is also rule [trap-exn-passes] for exception statements escaping

the Trap form (which is used for handling continue and break):

(* RULE-ID: trap-exn-passes *)

exception_stmt exn

⇒
mng (s, ST (Trap tt exn) c) (s, ST exn c)

Because exceptions arise from expressions, the statement level rules

need to acknowledge this possibility. Thus, this rule for if ([if-exception]):
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(* RULE-ID: if-exception *)

is_exnval guard ∧
(s.stack = (env,thisv,ampa,[]) :: rest)

⇒
mng (s, ST (CIf guard thenstmt elsestmt) c)

(s with <| stack := rest; allocmap := amap |>,

mk_exn guard c)

where the definition of is_exnval is (from HOL:statements)

(is_exnval (ST (Throw (SOME e)) c) = final_value e) ∧
(is_exnval _ = F)

The function mk_exn takes an exception value and replaces its continua-

tion information with something appropriate for the level of the containing

statement:

mk_exn (ST (Throw (SOME e)) c0) c = ST (Throw (SOME e)) c

Of course, exceptions can arise in all the other expressions that appear

within statement forms, so there are similar rules for the standalone expres-

sion and return forms, as well as for the statement-level throw form itself.

(The rule [expression-throw-some] turns an EThrow into a Throw statement

immediately, without evaluating the argument. When the argument is eval-

uated, it may itself cause an exception.)

Because exceptions can arise in variable declarations, there is also a rule

for handling these. This is [block-declmng-exception] :

(* RULE-ID: block-declmng-exception *)

((f = CopyInit) ∨ (f = DirectInit)) ∧
declmng mng (d0, s0) ([VDecInitA ty loc (f e)], s) ∧
is_exnval e ∧
(e = ST (Throw (SOME ex)) c’)

⇒
mng (s0, ST (Block T (d0 :: vds) sts) c)

(s, ST (Block T [] [Throw (SOME ex)]) c)

Again, note how the continuation initially associated with the exception (c’)

is ignored.

5.6.1 Handling Exceptions

Handling exceptions is done with the try-catch form, which is a sequence

of handlers associated with a statement that might raise an exception. In

the concrete syntax, programmers write something like
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try {
statement ∗

}
handler+

where a handler is of the form

catch (guard ) { statement ∗ }

and a guard can be “...” (i.e., three full-stops), a type, or a standard pa-

rameter declaration (associating a type with a name).

At the abstract syntax level, this is captured by the following HOL decla-

rations (in statementsScript):

exn_pdecl = (string option # CPP_Type) option

stmt = ...

| Catch of CStmt => (exn_pdecl # CStmt) list

Statements can evaluate as usual under a Catch [catch-stmt-evaluation] :

(* RULE-ID: catch-stmt-evaluation *)

mng (s0, ST st c) (s, ST st’ c)

⇒
mng (s0, ST (Catch st hnds) c) (s, ST (Catch st’ hnds) c)

Non-exception statements pass through Catch statements, ignoring the han-

dlers [catch-normal-stmt-passes] :

(* RULE-ID: catch-normal-stmt-passes *)

final_stmt st c ∧
¬exception_stmt st

⇒
mng (s0, ST (Catch st hnds) c) (s0, ST st c)

There are three rules governing how handlers interact with thrown ex-

ceptions. The first describes the behaviour when the handler parameter is

given as “...” [catch-all] :

(* RULE-ID: catch-all *)

(exn = SOME (EX e base_se))

⇒
mng (s0, ST (Catch (Throw exn) ((NONE, hnd_body) :: rest)) c)

(s0 with current_exns updated_by (CONS e),

ST (Block F [] [hnd_body; ClearExn]) c)
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This rule introduces two new features, the current exns field of the program

state, and the ClearExn statement-form. Both are present to support the abil-

ity of programs to use throw without an argument to re-throw the “current

exception”. This is covered below in Section 5.6.2.

Otherwise, the behaviour is clear: if the top handler has “...” as its pa-

rameter, then this handler is entered (and the other handlers are discarded).

When the top handler has an explicitly-typed parameter, the handler is

only entered if the type of the thrown value matches: [catch-specific-type-

matches] in Figure 24.

(* RULE-ID: catch-specific-type-matches *)

(exn = SOME (EX e base_se)) ∧
exception_parameter_match s0 pty (value_type e) ∧
(pname = case pnameopt of SOME s -> Base s

|| NONE -> (Base " no name "))

⇒
mng (s0, ST (Catch

(Throw exn)

((SOME(pnameopt, pty), hnd_body) :: rest))

c)

(s0 with current_exns updated_by (CONS e),

ST (Block F [VDecInit pty pname

(CopyInit (EX e base_se))]

[hnd_body; ClearExn]) c)

Figure 24: Catching a Typed Exception

The string " no name " is chosen arbitrarily as the name of the invisible

temporary if the handler has just a type as its parameter and no associated

name. This name is chosen so as to not mask any existing names in scope

(no legal C++ program can have variable names that include spaces).

If the declared type pty matches the type of the exception value, then

the exception value copy-initializes the parameter, and the handler body

is executed. The constant exception_parameter_match checks the match,

embodying the rules in [5, §15.3, paragraph 3]. If there is no match, then

the remaining handlers have to be tried [catch-specific-type-nomatch] :
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(* RULE-ID: catch-specific-type-nomatch *)

(exn = SOME (EX e base_se)) ∧
¬exception_parameter_match s0 pty (value_type e)

⇒
mng (s0, ST (Catch

(Throw exn)

((SOME(pnameopt, pty), hnd_body) :: rest))

c)

(s0, ST (Catch (Throw exn) rest) c)

If no handlers, remain, the exception propagates further [catch-stmt-empty-

hnds] (generalised to allow any statements to pass through):

(* RULE-ID: catch-stmt-empty-hnds *)

T

⇒
mng (s0, ST (Catch st []) c) (s0, ST st c)

5.6.2 Using throw with No Argument

If flow of control is within an exception handler, or within a function body

that has been called from such, then it is permissible to use the expres-

sion throw without any arguments to cause the current exception to be

rethrown. This requires the model to track what the current handled ex-

ception is. More, the standard requires the state to track the notion of “most

recently caught” exception [5, §15.1, paragraph 7]), which requires the state

to track a stack of exceptions that have been caught.

The expression version EThrow is converted to the statement form as

soon as it is encountered [expression-throw-none] :

(* RULE-ID: expression-throw-none *)

T

⇒
mng (s, EX (EThrow NONE) se) (s, ST (Throw NONE) c)

(The choice of c is again irrelevant.)

There are then two rules for the statement form Throw NONE. If there is

a current exception, all is well [bare-throw-succeeds] :

(* RULE-ID: bare-throw-succeeds *)

(s0.current_exns = e::es)

⇒
mng (s0, ST (Throw NONE) c)

(s0 with current_exns := es,

ST (Throw (SOME (EX e base_se))) c)
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Otherwise, the program must call the ::std::terminate function

(* RULE-ID: bare-throw-fails *)

(s0.current_exns = [])

⇒
mng (s0, ST (Throw NONE) ct)

(s0, ST (Standalone (EX callterminate base_se)) ct)

where the special expression callterminate is defined to be

FnApp (Var (IDConstant T [IDName "std"]

(IDName "terminate")))

[]

Above, the rules for handlers also use a statement-form ClearExn. This

special value has the following rule [clear-exn] :

(* RULE-ID: clear-exn *)

(s0.current_exns = e::es)

⇒
mng (s0, ST ClearExn c)

(s0 with current_exns := es, ST EmptyStmt c)

This ensures that when a handler finishes the most recently caught excep-

tion is no longer recorded as such. If a handler rethrows the current excep-

tion, or throws a fresh exception of its own, and this exception escapes the

handler, then the flow of control will never reach the ClearExn, and this rule

will not fire.

5.6.3 Exception Specifications

The standard’s §15.4 specifies a method whereby functions can specify which

exception types they will produce. If an unexpected exception value occurs,

this results in a call to std::unexpected. This is not modelled in the dy-

namic semantics as it can be emulated with a compile-time rewriting of the

program. If a function f is specified to only raise exceptions X and Y, then it

can be rewritten to be
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f(args)

{
try {

body

}
catch (X) { throw; }
catch (Y) { throw; }
catch (...) { std::unexpected(); }

}

5.6.4 Exceptions and Object Lifetimes

Exceptions complicate the story about the construction and destruction of

objects. When a constructor runs it will typically cause a sequence of sub-

objects to also be constructed. If at any stage, an exception is raised dur-

ing this process, then those objects that have been constructed need to

have their destructors called, but naturally, those that haven’t yet been con-

structed shouldn’t have destructors called.

Consider for example

Class::Class(objty p1) : b1(3), b2(e) { body }

There are three objects that have their constructors called as a result of a

call to this constructor. One is the parameter p1, and the other are the base

classes (or data-members) b1 and b2. When this constructor is called, p1

is always eventually destroyed, but (sub-)objects b1 and b2 should live on,

unless body or e cause an exception to be raised.

To get this situation to work in the model, the state’s stack field records

object creations twice. All object creations are associated with a particular

allocation level or depth of the stack. One creation is recorded at the top of

the stack, and the other is recorded at the (lower) level where the enclosing

object is being created. If an exception is being propagated out of a block,

the destructor is called for objects when they first appear (higher/later in

the stack). Otherwise, objects that have creations recorded deeper in the

stack (which will happen if they are sub-objects), don’t get their destructors

called until that level is topmost.

For more on this, see Section 5.10, and the definition of realise_-

destructor_calls in HOL:declaration_dynamics.
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5.7 Basic Object-Orientation

The inspiration for this part of the semantics is the article by Wasserrab et

al [15], which provides a detailed model for multiple inheritance in a simple

C++-like language.

5.7.1 Class Declarations

A class declaration is similar to the original C model’s declaration of a

struct type. A class declaration takes two parameters, the name of the

class, and an optional “class-info” argument.5 The class-info, if present, is a

list of fields, coupled with a list of ancestors. The latter allows inheritance

from zero or many ancestors. Each ancestor is coupled with a boolean flag

indicating whether or not it is a virtual ancestor. As the model ignores

protection issues, there is no scope for indicating protection status for an-

cestors.

The fields are of two sorts, declarations of members (whether of “data”

fields or member functions), and nested classes. Member declarations are

accompanied by a flag indicating whether or not they are static, and a pro-

tection indicator (i.e., public, protected, or private). Again, protection

information is entirely ignored: any field access is assumed to have been

OK-ed earlier by the compiler.

Member function definitions give the function’s name, return-type, pa-

rameter list (types and names), function body, and a flag indicating whether

or not it is virtual. (Of course, even in the absence of an explicit declaration

that a member function is virtual, it may be so because of an ancestor’s prior

declaration.)

When a class declaration is encountered , its member functions are en-

tered into the state’s function map. The same function map is used for

normal (non-class) functions, but the structured nature of C++ identifiers

allows the model to distinguish both sorts of function.

5.7.2 Class L-Values and Member Functions

Classes can not be converted into r-values as other values can. This is be-

cause of the problems that arise with multiple inheritance. In particular,

with multiple inheritance in place, it is no longer true that one can extract

5The information argument is optional to allow the situation where a forward declaration

of a class occurs.
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the byte sequence for a given l-value by starting at the base address and tak-

ing as many bytes from memory as the size of the type. In particular, virtual

base classes may be at completely different places in memory, not necessar-

ily even contiguous with the rest of the object. (This is demonstrated for the

g++ compiler by the little program in notes/mult-inheritance-layout.cpp.)

The special way in which class r-values are handled is described in Sec-

tion 5.11.

The presence of classes means that the model’s presentation of l-values

changes from the way it was in the original C model. In particular, an l-

value that is statically typed as a base class needs to know dynamically that

it is really of a derived type. This information is traditionally recorded in

vtable fields. Following Wasserrab et al, my model instead records an ad-

ditional path accompanying every l-value. This path is a list of class names

(values of type CPP_ID), listing the path through the ancestry-tree that leads

from the most-derived class to the static class type. Moreover, the type that

accompanies every l-value (recall that the LVal constructor takes three ar-

guments, an address, a type and a list of identifiers), will have as the type,

the dynamic type of the l-value.

Consider, for example, the code in Figure 25. The body of function g

constructs the l-value *b when it calls f. As in the C model, this l-value will

be associated with some address, and the static type, which is Class B. The

actual l-value will be of the form

LVal a (Class D2) [D2,D1,B]

The last element of the paths in l-values is always the static class of the

value.

In Figure 25, the expression of interest is b->f(), which is syntactic

sugar for ((*b).f)(). (Note how the member selection is syntactically sub-

ordinate to the function application.) The [virtual-fn-member-select] rule

(see Figure 26) governs the evaluation of (*b).f once the left-hand-side

(*b) has evaluated to an l-value.6

In our model, the l-value’s address will be the same as the address of its

most-derived class. In other words, the a of the rule will be the same as the

address of the object d. This is not what happens in typical compilers, which

will actually make the pointer to the B sub-class point at the address of that

sub-object’s fields in the wider object’s memory layout. Then, the fact that

6Even when the model allows for class r-values, they will be given a memory location

(and thus, a life-time). This will enable them to also be l-values. In essence, it is not possible

to create an object of any sort without giving it a location. Contrast numbers, which can be

“created”, and not given a memory location, simply by writing them down.
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class B {

public: virtual int f() { return 3; }

};

class D1 : public B {

public: int f() { return 4; }

};

class D2 : public D1 { };

int g(class B *b) { return b->f(); }

int main()

{

D2 d;

return g(&d);

}

Figure 25: C++ code demonstrating OO-polymorphism. The program will

return 4. Though it appears as if B’s function f is called, the version of f

called will actually be that attached to D1.
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(* RULE-ID: virtual-fn-member-select *)

(derive_objid obj = SOME (a, Class C, Cs)) ∧
(s,{}) |- LAST Cs has least method

(IDName fld) -:

(static_retty,F,args0,body0) via

Ds ∧
(s,{}) |- (C,Cs ^ Ds) selects

(IDName fld) -:

(dyn_retty,F,args,body) via

Cs’

⇒
mng (s, EX (SVar obj (IDConstant F [] (IDName fld))) se)

(s, EX (FVal (mk_member (LAST Cs’) (IDName fld))

(Function dyn_retty (MAP SND args))

(SOME (LVal a (Class C) Cs’))) se)

Figure 26: The Rule for Virtual Member Function Dispatch

the most-derived class is a D2 is implicitly recorded in the vtable, which

will contain a pointer to D1::f.

In the rule, the variable C containing the name of the static class will be

D2, and Cs, the path variable, will be [D2,D1,B]. The fld variable will be f.

Then, the first hypothesis will check the class hierarchy to determine where

an f can be found, starting at the static type, i.e., at B. This will reveal that,

with respect to B there is an f at path [B]. This will be the value for Ds. The

same check determines four pieces of information about the function: its

static return type (in the variable static_retty, that it is not static (virtual

functions can not be static), and what its arguments and body are (args0,

and Body0).

The second hypothesis calculates which function must be called given

the class’s dynamic type. This is complicated because of the need to handle

multiple inheritance (the definition of “selects-via” is discussed below in

Section 5.9), but in this case, the path Cs’ will be found to be [D2,D1],

and the information (dyn_retty,F,args,body) found will be that for the

function D1::f.

The result of the rule in this circumstance is that the expression b->f

turns into a reference to the function D1::f (this is the call to mk_member),

coupled with with the fact that the function call is being made on an object
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whose dynamic type is D2, and whose static type is D1 (as is appropriate for

the body of the function).

Note that the function in this rule is known to be virtual by virtue of the

fact that the fieldname is unqualified: it is of the form

IDConstant F [] (IDName fld)

Name resolution will ensure that non-virtual members all have qualified

names.

Other Sorts of Member Function There are two other sorts of member

functions in C++: static member functions, and normal functions. Each

sort has its own rule in the semantics. First, the rule for static member

functions:

(* RULE-ID: static-fn-member-select *)

(derive_objid obj = SOME (a, Class cnm, Cs)) ∧
(s,{}) |- path (LAST Cs) to class_part fldid via Ds ∧
(s,{}) |- LAST Ds has least method

(IDtl fldid) -: (retty,T,ps,body)

via [LAST Ds] ∧
(ftype = Function retty (MAP SND ps)) ∧
is_qualified fldid

⇒
mng (s, EX (SVar obj fldid) se)

(s, EX (FVal fldid ftype NONE) se)

The third hypothesis (is_qualified) checks that the field name has multi-

ple components to it. This qualification will be introduced by name resolu-

tion if not already provided by the user. Name resolution will also ensure

that the name given to the field is qualified with the name of the class where

the field actually resides.

Strictly, in this rule, the first hypothesis is redundant because of this pre-

processing: we know that the field will occur in the class that is at the end

of the path Ds, and that this final element will be equal to the class-part of

the identifier. The second hypothesis reinforces this: the deduced path from

LAST Ds (which equals class_part fldid) to the host class for the given

field is the singleton [LAST Ds]. Because the member is static (witness the T

as argument 2 of the 4-tuple returned by least-method), the final function

value does not include a class component.

The rule for normal, non-static member functions is given in Figure 27.

This is very similar to the rule for static functions, but this time the identity
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(* RULE-ID: nstatic-fn-member-select *)

(derive_objid obj = SOME (a, Class cnm, Cs)) ∧
(s,{}) |- path (LAST Cs) to class_part fldid via Ds ∧
(s,{}) |- LAST Ds has least method

(IDtl fldid) -: (retty,F,ps,body)

via [LAST Ds] ∧
(ftype = Function retty (MAP SND ps)) ∧
is_qualified fldid

⇒
mng (s, EX (SVar obj fldid) se)

(s, EX (FVal fldid ftype

(SOME (LVal a (Class cnm) (Cs ^ Ds))))

se)

Figure 27: Selecting a Non-static Member Function

of the class for which the function is being called is important, and recorded

in the third argument to FVal. The dynamic type of the object stays the

same, but the static type is adjusted to reflect the class where the function

being called is defined.

Calling a Member Function Once the name of the function to be called

has been found, the step of actually entering the body of the function can

be taken. This is described in rule [function-call], already presented in Fig-

ure 19.When a member function is called, the FVal constructor stores the

address and type of the object that the function is a member of. The rule

extracts this information to initialize the this value used in the body of the

member function.

Field Selection Field selection is also based on the notion of being able to

find the most-derived declaration of the given field in the ancestor hierarchy.

There is no need to worry about adjusting this pointers, or performing

analyses with dynamic types as field selections are always done with respect

to a class’s static type. However, there is an additional complexity, stemming

from the need to give addresses to selected fields, so that they can become

well-formed l-values. In turn, this relies on knowing how a class is laid out

in memory.

The standard does require that fields belonging to a particular class type
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(* RULE-ID: nstatic-data-field-select *)

(s,{}) |- path (LAST p) to cnm2 via p’ ∧
(s,{}) |- LAST p’ has least

(IDtl fldid) -: (ty, F) (* F = non-static *)

via [LAST p’] ∧
object_type ty ∧
(mdp = (cnm1 = cnm2) ∧ (p = [cnm1])) ∧
is_qualified fldid ∧
(class_part fldid = cnm2) ∧
(SOME offn = lookup_offset s mdp fldid)

⇒
mng (s, EX (SVar (LVal a (Class cnm1) p) fldid) se)

(s, EX (LVal

(a + subobj_offset s (cnm1, p ^ p’) + offn)

ty

(SND (default_path ty))) se)

Figure 28: Calculating the Offset of a Non-static Data Member

be laid out in the order in which they appear.7 But there is no specification

of how base sub-objects are laid out. (Recall, moreover, that in the presence

of a virtual base-class, an object that is not most-derived may be split over

distinct parts of memory.)

The rule for finding the offset of a non-static data member is given in

Figure 28. Recall that static analysis done by Phase 1 will have turned all

data field references into fully-qualified identifiers. That means the dynam-

ics already knows exactly which sub-class holds the desired field. In the rule,

that sub-class is cnm2. The first hypothesis confirms that there is indeed a

path from the static type of the l-value to that sub-class (which might be

itself, of course). The second hypothesis then both extracts the type of the

field and confirms that it is not static.

The rule also determines whether or not the sub-class is actually the

most-derived class, and records this in the boolean variable mdp. This is

done so that the underspecified calculation in lookup_offset can return a

different value for field offsets depending on whether or not a class is most-

derived. (It seems very unlikely that an implementation would do this; most

would put any virtual bases at the end of their internal layout, meaning that

7The order is actually required to hold as long as they have the members have the same

access-specifiers, but the model doesn’t handle accessibility.
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all other offset calculations could proceed undisturbed.)

The variable offn is the offset of the field within its host class. The func-

tion subobj_offset is used to calculate the offset of the sub-class within

the larger containing (dynamic) class, allowing a final offset to be calcu-

lated. Finally, the second component of default_path ty function returns

the singleton list consisting of the class name if ty is a class type, and the

empty list otherwise.

What of vtables? The use of paths à la Wasserrab et al. does away with

the need for vtables. On the other hand, we wouldn’t want to specify the

model in such a way as to preclude this perfectly reasonable implementation

strategy. In particular, vtables will be catered for just as in the standard, by

maintaining that it is only in POD (“plain old data”) types where one can

rely on the address of the first field being the same as the address of the

containing struct. The calculation of sizes must also be under-specified to

allow for the presence of extra, user-invisible data at the start of a class.

5.7.3 Casting and Other Type Conversions

We have already seen one use of implicit conversion from one type of value

to another, in the rule [assign-completes] (Figure 17, page 51), where the

relation nonclass_conversion is used to this end. This relation governs the

way in which various values are allowed to be silently converted from one

type to another. Its definition is from the file HOL:declaration_dynamics,

and is repeated in Figure 29.

The most important of C++’s explicit casts is the dynamic_cast opera-

tion which allows for run-time checked manoeuvering around a class hier-

archy. First up-casts to unambiguous bases are permitted (this is the rule for

references; there are parallel rules for the dynamic casting of pointers):

(* RULE-ID: dyncast-derived-base-ref *)

(* assume that base is accessible (checked by compiler) *)

(strip_const dty = Class dcnm) ∧
(s,{}) |- path (LAST p) to dcnm unique ∧ (* static check *)

(s,{}) |- path (LAST p) to dcnm via p’

⇒
mng (s, EX (DynCast (Ref dty) (LVal a (Class scnm) p)) se)

(s, EX (LVal a (Class scnm) (p ^ p’)) se)

The second hypothesis is strictly redundant in the dynamics; along with the

base’s accessibility, this will be checked before the dynamics gets a chance to
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nonclass_conversion s (v1,ty1) (v2,ty2) =

let ty1 = strip_const ty1

and ty2 = strip_const ty2

in

(integral_type ty1 ∧ integral_type ty2 ∨
∃ty0. (ty1 = Ptr ty0) ∧ (ty2 = Ptr Void)) ∧
(∃i. (INT_VAL ty1 v1 = SOME i) ∧

(SOME v2 = REP_INT ty2 i))

(* includes null pointer conversion *)

∨
(strip_ptr_const ty1 = strip_ptr_const ty2) ∧ (v1 = v2)

∨
(∃c1 c2 addr pth1 pth2. (* this is an upcast *)

(ty1 = Ptr (Class (LAST pth1))) ∧
(ty2 = Ptr (Class c2)) ∧
(SOME v1 = ptr_encode s addr (Class c1) pth1) ∧
(s,{}) |- c2 casts pth1 into pth2 ∧
(SOME v2 = ptr_encode s addr (Class c1) pth2))

∨
(∃ty0 base derived p fld.

(ty1 = MPtr base ty0) ∧ (ty2 = MPtr derived ty0) ∧
(s,{}) |- path derived to base unique ∧
(derived, p) ∈ rsubobjs (s,{}) ∧

(* rsubobjs ensures base is not virtual *)

(LAST p = base) ∧
(v2 = v1) ∧
((SOME v1 = encode_offset base fld) ∨
(v1 = null_member_ptr)))

∨
(∃ty0 c.

(* null pointer conversion for pointers to member *)

(ty1 = Signed Int) ∧
(SOME v1 = REP_INT (Signed Int) 0) ∧
(ty2 = MPtr c ty0) ∧ (v2 = null_member_ptr))

Figure 29: The nonclass_conversion relation for implicit type conversions.

Based on the standard’s §4.
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execute. The third hypothesis is where the extended path from the dynamic

type up to the new base is constructed.

In the other direction (back down a class hierarchy), dynamic casts can

fail, and require the source type to be polymorphic (i.e., the source class

should have at least one virtual function). The rule governing this behaviour

appears in Figure 30. Note how the dynamic type of the l-value does not

(* RULE-ID: dyncast-base-other-ref *)

(strip_const dty = Class dcnm) ∧
(src_dynty = Class scnm) ∧
polymorphic s (LAST p) ∧
(s,{}) |- path scnm to dcnm via p’ ∧
(result =

if (s,{}) |- path scnm to dcnm unique then

(* should also check accessible, though I think this

could be done statically *)

LVal a src_dynty p’

else

EThrow (SOME (New (Class bad_cast_name) NONE)))

⇒
mng (s, EX (DynCast (Ref dty) (LVal a src_dynty p)) se)

(s, EX result se)

Figure 30: Performing a Polymorphic dynamic_cast

change: it remains as src_dynty. Instead the accompanying path value

adjusts: shifting from a path that leads up as far as LAST p (the original

static type), to one that leads to the class dcnm. In this way, a dynamic_cast

can move the static type from one branch of the ancestry tree to another; in

one step, one can do more than just make a down-cast.

When there isn’t a class of the desired type available, a reference cast

causes a bad_cast exception to be thrown. The accompanying rule for

dynamic-casting of pointer values has the pointer converted to a null pointer

if the destination type is unreachable.

5.8 Reference Types

Reference types pose problems in the contexts where they are distinctive:

• passed as parameters to functions;
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• returned from functions;

• when they are initialized.

Otherwise, it is obvious how the existing semantics should treat refer-

ences: they are l-values. References are only created from l-values, and

in the reverse direction, l-values can turn into r-values as required. They

will do the right things when of class types because they will have the

Wasserrab style paths attached. In other words, a reference to a base class

may actually be an l-value referring to a derived class.

The remaining sub-sections explain what happens in the three interest-

ing situations.

5.8.1 References as Parameters

When a formal parameter is of reference type, the actual parameter needs to

stay an l-value rather than reduce to an r-value. When the called function’s

environment is being established in its local stack frame, the binding for

the formal name can be directly to the actual l-value’s address and type.

In other words, nothing is allocated in memory to represent the reference.

This is not very likely in an actual environment, which will probably have

an address in memory somewhere. (The only way to detect this (and this

would require the use of undefined behaviour) would be know where local

variables were allocated, and to scan this area byte-by-byte, presumably

starting at the address of some other, non-reference, local parameter.)

This requires a change to the existing semantics, to remove function

arguments from the l-value context (as defined by valid_lvcontext). But

then, in order to allow some function arguments to decay into r-values, a

new rule is introduced:

(* RULE-ID: fnapp-lval2rval *)

lval2rval (s0,e0,se0) (s,e,se) ∧
fn_expects_rval s0

(case s0.thisvalue of

SOME (ECompVal bytes (Ptr ty)) -> SOME ty

|| _ -> NONE)

f

(LENGTH pfx)

⇒
mng (s0, EX (FnApp f (pfx ++ (e0 :: sfx))) se0)

(s, EX (FnApp f (pfx ++ (e :: sfx))) se)
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The variables pfx and sfx are lists of expressions corresponding to the

other actual parameters being passed to the function f . The predicate fn_-

expects_rval examines the type of f to determine whether or not the argu-

ment at the given position (LENGTH pfx here) is required to be an l-value.

The rule that determines that a function application’s sequence point has

been reached ([function-call-sqpt]) must also change. Previously, this rule

checked that the function and all of the arguments had been fully evaluated,

and being “fully evaluated” meant “had been evaluated to a value (consist-

ing of a list of bytes)”. The new rule checks that every parameter is either

a byte-list value (when the function doesn’t expect a reference type), or an

l-value:

(* RULE-ID: function-call-sqpt *)

(fty = Function retty argtys) ∧
EVERYi (λi e. if ref_type (EL i argtys) then

∃a t p. e = LVal a t p

else ∃v t. e = ECompVal v t)

params ∧
is_null_se se

⇒
mng (s, EX (FnApp (FVal fnid fty eopt) params) se)

(s, EX (FnApp_sqpt NONE (FVal fnid fty eopt) params)

base_se)

The EVERYi function (from HOL:utils) is of type

: (num -> ’a -> bool) -> ’a list -> bool

and checks whether or not every element of a list satisfies the given predi-

cate, but where the predicate is also given access to the element’s index in

the list.

5.8.2 References Returned from Functions

In order to return a reference from a function, the model must not force the

“l-value to rvalue” conversion that would normally turn l-value expressions

in return statements into r-values. But it must also allow that conversion

to occur when appropriate. This in turn requires the model to be able to

recognise when a function is due to return a reference as opposed to a nor-

mal value. The model achieves this by encoding this expectation in the

continuation that accompanies every statement evaluation.
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The rules for function calls (see, for example [function-call] in Figure 19

(page 53)) construct the continuation with a call to return_cont. The con-

tinuation type is defined in HOL:statements:

conttype = RVC of (CExpr -> CExpr) => se_info

| LVC of (CExpr -> CExpr) => se_info

meaning that a continuation stores both the side effect record that is to ac-

company the re-established expression, and a function which will construct

it when given the result of the function call.

The definition of return_cont is

return_cont se ty = if ref_type ty then LVC I se

else RVC I se

where I is the identity combinator (the function equal to (λx. x)).
In the continuations, the “tags”, RVC and LVC, allow other rules to deter-

mine what is expected. To return to the example of the “l-value to r-value”

conversion, this is done by the following rule:

(* RULE-ID: return-lval2rval *)

lval2rval (s0,e,se0) (s,e,se) ∧
(HD s.rvstk = NONE)

⇒
mng (s0, ST (Ret (EX e0 se0)) (RVC c ret_se))

(s, ST (Ret (EX e se)) (RVC c ret_se))

The continuation that accompanies every statement is the second argument

of the ST tag. Also note that the first argument of a return might itself be

another statement. If the original expression contained a function call, the

body of the called function, a statement, would eventually become the top

of the expression. In this rule, the use of the inner EX tag precludes this

possibility.

The second hypothesis in [return-lval2rval] prevents the l-value to r-

value conversion occurring if the function is returning a value of class type

(when the top of the rvstk component will be a SOME value). This is because

the value will be passed to a copy constructor for the class being returned,

and the copy constructor may be expecting a reference.

There are two rules allowing a return statement to pass its expression-

value to the continuation. The rule for returning normal values is [return-

rvalue] (we saw this rule earlier, in Section 5.5):
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(* RULE-ID: return-rvalue *)

is_null_se se0

⇒
mng (s, ST (Ret (EX (ECompVal v t) se0)) (RVC c se))

(s with rvstk updated_by TL, EX (c (ECompVal v t)) se)

The rule for returning a reference [return-lvalue] is similar:

(* RULE-ID: return-lvalue *)

is_null_se se0

⇒
mng (s, ST (Ret (EX (LVal a t p) se0)) (LVC c se))

(s with rvstk updated_by TL, EX (c (LVal a t p)) se)

5.8.3 Declaring References

When a reference is declared, it must also be initialized, and the initializing

expression must be an l-value. But normal initializations need to be able

to turn l-values into r-values so there is an “lvalue-to-rvalue” rule for vari-

able declarations that are accompanied by initializations (this rule earlier

appeared in Section 5.5.3):

(* RULE-ID: decl-vdecinit-lval2rval *)

lval2rval (s0,e0,se0) (s,e,se) ∧
¬ref_type ty ∧
((f = CopyInit) ∧ ¬class_type (strip_const ty) ∨
(f = DirectInit))

⇒
declmng mng (VDecInitA ty loc (f (EX e0 se0)), s0)

([VDecInitA ty loc (f (EX e se))], s)

A variable declaration of reference type is ready to “fire” when its initial-

izing expression has reduced to an l-value, and when there are no remaining

side effects in the side effect record. At this point, the variable address map

in the state is updated to point at the l-value’s address, and the type map

is also updated to make the type of the name the same as the type of the l-

value. This step is controlled by the rule [decl-vdecinit-finish-ref], for which

see Figure 31.
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(* RULE-ID: decl-vdecinit-finish-ref *)

(* if isSome, aopt is the address of a containing class *)

is_null_se se ∧
((f = CopyInit) ∨ (f = DirectInit)) ∧
(if class_type ty1 then

(s0,{}) |- dest_class ty1 casts p into p’

else (p’ = p)) ∧
(s = new_addr_binding refnm aopt (a,dest_class ty2,p’) s0) ∧
(s.stack = (env,thisv,amap,[]) :: rest)

⇒
declmng mng

(VDecInitA (Ref ty1)

(RefPlace aopt refnm)

(f (EX (LVal a ty2 p) se)), s0)

([], s with <| stack := rest; allocmap := amap |>)

Figure 31: How References are Initialized

5.9 Polymorphism & Multiple Inheritance

As already suggested, multiple inheritance has been modelled by following

the approach described in Wasserrab et al [15]. Most of the dynamic rules

have already been presented, so that the modelling of multiple inheritance is

best understood by considering the auxiliaries supporting those rules. Most

of these auxiliaries are defined in HOL:class_info.

At the top level, the rule for calculating the function that will be called

dynamically is [function-member-select], which appears in Figure 26, on

page 75. This rule describes how the call to method fld is resolved for an

object located at address a, with dynamic type C, and where the static type

of the object is the last element of the list Cs. The list Cs is also a path

through the class hierarchy, starting at the dynamic type and ending at the

current static type. (Note that an object’s dynamic type is determined on

object creation, and persists for an object’s entire life-time. In contrast, an

object’s static type is the type ascribed to it by a particular piece of code.

Different pieces of code may well “see” the same object as having different

types. In this sense, an object’s dynamic type is unchanging, but it will have

a variety of static types across the text of a program. Confusing, but true!)

The first premise (“has-least-method”) examines the static type of the

object for which the method will be called, LAST Cs. Starting at that point
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in the hierarchy it looks upwards (i.e., towards base classes) for the nearest

base class that provides an implementation of the desired method. This

base-class might be LAST Cs itself, in which case the path found (Ds) will be

the singleton consisting of just LAST Cs. There must also be a unique closest

ancestor providing the desired method. If this isn’t the case, then there will

have been a compile-time error, as the call will be statically ambiguous.

The second premise (“selects-via”) then determines the dynamic loca-

tion of the desired method. There are two cases. The simple case (reiterat-

ing the discussion in Section 5.7.2) is when there is a unique best method

for the dynamic type, C. Imagine, for example, that there is a four-element

singly-linked inheritance graph, from base B0 down to most-derived B3, with

implementations of the method fld at B0 and B2. If the object is actually

of type B3, but is statically seen as type B1, then C is B3, and Cs will be

[B3,B2,B1]. The first premise (“has-least-method”) determines that, start-

ing at B1 (the static type) there is an implementation of fld at path [B1,

B0]. This will be the instantiation of the rule’s variable Ds.

The simple case for “selects-via” checks whether or not there is also a

least method for the dynamic type (ignoring, for the moment, the path giv-

ing the static type). Thus (from HOL:class_info)

(* RULE-ID: selects-simple *)

s |- C has least method mname -: minfo via Cs’

⇒
s |- (C,Cs) selects mname -: minfo via Cs’

In the simple example, we will thus conclude that

s |- (B3, [B3,B2,B1,B0]) selects fld -: info via [B3,B2]

so that the call will be to the implementation of fld in B2, and the this

pointer will be adjusted so that the type and path information associated

with its value will be (B3,[B3,B2], i.e., a dynamic type of B3 (as always)

and a static type of B2.

The same rule applies in a much more complicatd seeming situation,

where multiple inheritance and shared base objects come into play. Con-

sider the program in Figure 32. When the call to cref.f() is made, the

type and path associated with the reference will be (D,[D,C1]). Statically,

the reference is a C1 value, but dynamically, it’s really of class D. The first

premise in rule [function-member-select] finds that there is a path (Ds in

the rule) which is appropriate for f. This path is [B]. The fact that the path

does not include the derived object’s name, and is just a bare reference to a
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#include <iostream>

class B {

public:

virtual int f() { std::cout << "B’s f\n"; return 3; }

virtual ~B() { }

};

class C1 : virtual public B {

};

class C2 : virtual public B {

public:

virtual int f() { std::cout << "C2’s f\n"; return 4; }

};

class D : public C1, public C2 {

};

int dosomething(C1 &cref)

{

return cref.f();

}

int main()

{

D d;

return dosomething(d);

}

Figure 32: Multiple inheritance with shared base objects. (This program is

in the notes directory with name diamond-multinherit.cpp.)
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class indicates that it is a path to a shared base. When such a path is the sec-

ond argument of path concatenation (the ^ operator in the second premise),

the result is just the second argument, so that the second hypothesis in the

rule becomes

s |- (D,[B]) selects f -: info via Cs’

The first, simple, rule for “selects-via” resolves this. Ignoring the path

[B], the simple rule checks whether or not there is a unique least path to an

f from D. There is such a path, and it is [D,C2]. So, the call to cref.f()

ends up being a call to the f in class C2, in an “unrelated” part of the object

hierarchy.

For those situations where there is not a unique path from the dynamic

type to a best selection, there is another more complicated rule defining

“selects-via”. In Figure 33, the inheritance hierarchy looks like

B

Left1

Left2 Right

D

where the boxed class names are those that implement the function f. The

question is which f will be called when the dynamic type is D, and when the

static type is Left1. There is no unique, least implementation of f visible

from the dynamic type (D), so the simple rule does not apply. Instead, the

notion of overrider is introduced via the rule

(* RULE-ID: selects-with-overrider *)

(∀minfo Cs’.

¬(s |- C has least method mname -: minfo via Cs’)) ∧
s |- (C,Cs) has overrider mname -: minfo via Cs’

⇒
s |- (C,Cs) selects mname -: minfo via Cs’

where the static type of the value again plays a role. In this case, the f

that gets called is that in Left2. For further details on exactly how this is

defined, see either HOL:class_info, or Wasserab et al [15].
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#include <iostream>

class B {

public:

virtual void f() { std::cout << "B’s f\n"; }

virtual ~B() { }

};

class Left1 : public B { };

class Left2 : public Left1 {

public:

virtual void f() { std::cout << "Left2’s f\n"; }

};

class Right {

public:

virtual void f() { std::cout << "Right’s f\n"; }

virtual ~Right() { }

};

class D : public Left2, public Right { };

void dosomething(Left1 &l1ref) { l1ref.f(); }

int main()

{

D d;

// d.f(); would be statically ambiguous

dosomething(d);

return 0;

}

Figure 33: A lop-sided ‘V’ inheritance hierarchy. Available as

notes/lopsided-v.cpp.
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5.10 Object Lifetimes

For comments specific to the lifetimes of class r-values, see Section 5.11

below.

Constructors Handling constructors has easily wrought the greatest change

to the simple C model. The basic approach taken has been to encode as

much as possible with “evolving syntax”. Just as while can be modelled by

having

while (G) body

become

if (G) {body; while (G) body}

so too do calls to C++ constructors create new programs “in place”. The ad-

vantage of this approach is that there is less need for relatively complicated

state to be recorded in yet more fields in the big record type state (see

Figure 11 on page 38). Instead, programs can unfold into more elaborate

forms directly. The disadvantage of this approach is that the original syntax

may not support enough forms, requiring new special syntax to be created,

or for existing forms to be extended with new parameters.

The existing handling of block-statements is an example of this latter

disadvantage. In particular, the abstract syntax has a constructor Block

with type

: bool -> decl list -> stmt list

where the boolean flag indicates whether or not the block has been entered

yet. In this way, the abstract syntax has values in it that can’t be written

down in the concrete syntax. (Simiarly, the original thesis model for C in-

cluded the RVR constructor and the FnApp_sqpt intermediate form (written

f̂) for function calls.)

Constructors are intimately tied up with declarations and initialization.

In the simple C world, a variable comes into being in two stages. First space

in memory is allocated for the variable (whether on the stack or heap), and

the variable name is associated with that space for the span of the variable’s

life. Then there is an optional initialization phase, when the piece of mem-

ory associated with the variable space is filled in with some value.

The C++ model is similar. All new objects (but not references) must be

associated with some new space. Then they may or may not be initialized.

Additionally, in C++, an object that is only declared, and which does not

appear to be initialized, will actually have its default constructor called.
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The abstract syntax supporting this is all defined in HOL:statements:

Constructor Argument Types Description

VDec name, type no initialization

VDecInit name, type, initializer initialization (unallocated)

VDecInitA varlocation, type, initializer initialization (space allocated)

For example, when a class is declared with no explicit initialization of

any sort, meaning that the default constructor will be called, the syntax

moves through all three stages. The abstract syntax corresponding to some-

thing like

{

classname c;

...

}

will be VDec "c" classname. Because this is a class type, rule [decl-vdec-

class] will fire (and can do so immediately), and the declaration will become

VDecInit "c" classname init, where the form of init will encode the

fact that a direct initialization is being performed, and that there are no

arguments. Then the rule [decl-vdecinit-start-evaluate-direct-class] fires.

Side conditions of this rule cause space to be allocated (at address a), the

state’s maps from names to addresses be updated, and for the construction

of the class to be recorded so that it can be destroyed later.

The syntax also evolves to become

VDecInitA classname (ObjPlace a) init’

where the new initializer records that a function call to a constructor is

about to happen, and where that construction will happen (i.e., init’ in-

cludes a reference to a).

There are three forms of initializer. The first two are DirectInit0 and

DirectInit and correspond to direct initialization [5, §8.5 paragraph 12].

The DirectInit0 constructor takes as arguments a list of expressions. In

this way, concrete syntax such as

{

Classname c(x,&y,z+1);

}
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is directly modelled. (When the rule [decl-vdec-class] fires, the newly cre-

ated DirectInit0 constructor takes an empty list of arguments.)

The DirectInit constructor takes one argument, an “extended expres-

sion”, which will initially be an expression constructed by an application of

the special constructor ConstructorFVal to the same argument list. This

form needs to be an extended expression so that the body of the constructor

(a statement) can be entered.

The other form of initializer is constructed by the function CopyInit.

This corresponds to the syntax

{
type varname = expression;

...

}

which is a copy-initialization [5, ibid]. When the type of the new ob-

ject is not a class, there is no difference between copy-initialization and

direct-initialization, reflected in the rule [decl-vdecinit-start-evaluate-direct-

nonclass], which moves from a DirectInit0 to a CopyInit initializer.

When a CopyInit initializer completes its evaluation, yielding a value,

that value be copied across into the space earlier allocated for the object.

For non-class types this is done with the same val2mem helper function that

is used to apply side effects. For class types, this copying must be performed

by a call to the copy constructor.

Constructor Calls The expression form corresponding to a constructor call

uses the expression form for function applications, but with a special form in

the place of the function value. This allows the normal evaluation of func-

tion applications (with the unspecified order of evaluation of arguments, for

example). The function value position is filled by a new abstract syntactic

form ConstructorFVal. This takes four parameters:

• a boolean indicating whether or not the constructor is being called for

a most-derived object or not;

• a natural number recording the allocation level of the creation. This

allocation level is the same for the class and any of its sub-classes, and

is a count from the bottom of the stack;

• the address of the space which the constructor is to operate over; and

• the name of the class that is being constructed
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So, if a declaration is made of the form

{
class v(x);

}

then, once sufficient space is allocated for the new object v (at address a,

say), the abstract syntax will look like

VDecInitA (Class (Base "class"))

(ObjPlace a)

(DirectInit

(EX (FnApp (ConstructorFVal T n a (Base "class"))

[Var "x"])

base_se))

where the number n records the allocation level for this creation. Note how

the name v has disappeared, subsumed into the allocated address at a.

The ObjPlace constructor is used to distinguish this from the situation

where a reference is being initialized. The EX constructor specifies that the

current form is an expression (as opposed to the statement that will be in

this position once the constructor body is entered). The base_se value is

the empty side-effect record. This will evolve as references to and updates

of memory occur.

Once the parameters to the constructor have been evaluated, the con-

structor body can be entered.This happens in rule [constructor-function-

call], for which see Figure 34. The basic rule is complicated enough, and

there is more complexity hidden behind the auxiliary functions and rela-

tions. The first auxiliary is the relation find_constructor_info, which

appears in the rule’s first hypothesis. This relation treats its first three pa-

rameters (s0, cnm and args) as inputs. These are the current state, the

name of the class being constructed, and the actual arguments being passed

to the constructor. The remaining arguments to the relation are “outputs”.

The variable params is the list of formal parameters (names and types). The

variable mem_inits is the list of “mem-initializers” (see [5, §12.6.2]) asso-

ciated with the constructor, and body is the constructor’s body. The find_-

constructor_info auxiliary is responsible for resolving which constructor

needs to be called, based on the types of the actual arguments.

The second hypothesis of the rule constructs the sequence of variable

declarations corresponding to the parameters, using standard functional

programming auxiliaries MAP and ZIP. Parameter passing is just like vari-
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(* RULE-ID: constructor-function-call *)

find_constructor_info s0 cnm args params mem_inits body ∧
(pdecls = MAP (λ((n,ty),a).

VDecInit ty (Base n)

(CopyInit (EX (NoScope a) base_se)))

(ZIP (params, args))) ∧
(SOME this = ptr_encode s0 a (Class cnm) [cnm]) ∧
(cpfx = construct_ctor_pfx s0 mdp (LENGTH s0.stack) a

cnm mem_inits) ∧
(newstmt =

if is_catch body then

let (bod,handlers) = dest_catch body

in

Block T pdecls

[Catch (Block F cpfx [bod])

(MAP (λ(e,st).

(e, Block F [] [st; Throw NONE]))

handlers)]

else Block T (pdecls ++ cpfx) [body])

⇒
mng (s0, EX (FnApp_sqpt (ConstructorFVal mdp subp a cnm)

args) se0)

(s0 with <|

thisvalue := SOME (ECompVal this (Ptr (Class cnm)));

stack updated_by

(CONS (s0.env, s0.thisvalue, s0.allocmap, []));

rvstk updated_by (CONS NONE);

env := empty_env

|>,

ST newstmt (RVC (λe. ConstructedVal subp a cnm)

se0))

Figure 34: Making a Call to a Class Constructor
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able declaration8, and so the model’s existing treatment of declarations can

be re-used to set up the binding between formal names and actual values.

Note that the expressions that initialize the parameters have already been

fully evaluated, so that there will be no expression evaluation done when

the declarations come to be evaluated (except for any class construction that

may be called for).

The third hypothesis calculates a value for the this value. The dynamic

and static type of the this pointer will be the same (as the pair C and

[C] are passed to ptr_encode), and thus there will not be any polymorphic

dispatch to functions in derived classes if any virtual functions are called in

the constructor bodies.

The fourth hypothesis constructs a cpfx of declaration calls to initial-

ize class members and bases. This is all done in the complicated function

construct_ctor_pfx (defined in dynamicsScript). This constructs a se-

quence of declarations to initialize the non-static members of the new class,

and the class’s immediate bases. The mem-initializers are consulted to see

what initializers should be provided. (If a mem-initializer is not provided for

a given member or base, then that object will be value- or default-initialized;

see [5, §12.6.2, paragraphs 3–4].)

For example, in Figure 35, before class C’s constructor body is even en-

tered, the parameters cptr and i need to be declared and initialized with

actual values. Subsequently, all of C’s immediate bases (just B in this case)

need to be constructed, followed by its members (ptr and sz). Note that

while the parameters need to have space allocated for them, the bases and

members do not (because the space for the entire object was allocated at

the VDecInit stage).

Assume that the constructor has been called with parameters x and y,

and that these have evaluated to values xval and yval. The sequence of

declarations that are constructed to precede the constructor body is given

in Figure 36. The first two declarations are of the parameters. The next

constructs the base B, and the last two construct the non-static members.

The body of construct_ctor_pfx is responsible for calculating the offsets

of the members (given as Boff, ptroff and szoff in the figure.

Note how the first argument of the ConstructorFVal form in the con-

struction of the base B is false; this is because B is not the most-derived

object. If there were any shared bases in the example, the most-derived

object would be “responsible” for constructing them (see [5, §12.6.2, para-

8This does away with the Cholera approach which had a number of auxiliary relations

effectively duplicating what occurred in variable declaration.
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#include <cstring>

class B {

int x;

public:

B(int i) : x(i) {}

};

class C : public B {

char *ptr;

int sz;

public:

C(char *cptr, int i)

: B(cptr[i]), ptr(cptr), sz(strlen(cptr)) { }

};

Figure 35: C++ Constructors with mem-initializers. (Available as

notes/mem-inits.cpp.)

graph 5]). If C had any non-static members of class type, then these would

be constructed with their mdp and subobj flags both set to true.

When the constructor for the base class B comes to be called, it will in

turn initialize its members. The constructor for B is called with an argument

(cptr[i]) that needs to be evaluated in the context where the parameters

are in scope, so it is clear that the declarations for the parameters must come

before the base and member initializations.

Object Destruction When an object of class type is first declared (with a

VDecInit form), it has memory allocated sufficient to contain the new class

in its entirety (including sub-objects). This allocation is reflected in the

state’s allocmap. When the block in which this declaration was made is left,

this allocation is forgotten (the stack component of the state is popped). At

the same time, the destructor for the object must be called. These required

object destructions are recorded in the stack as well.

Each element of the stack is a 4-tuple. The fourth component of these

tuples is a list of objects to destroy, encoded as a list of addresses and class

names. Potentially, one object may appear on the stack twice, both at the

topmost level and also deeper in the stack. This can occur when sub-objects

are created within a constructor for an enclosing class. If an object appears
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VDecInit (char *) cptr (CopyInit (NormE xval base_se))

VDecInit int i (CopyInit (NormE yval base_se))

VDecInitA B (ObjPlace (a + Boff))

(DirectInit

(NormE

(FnApp (ConstructorFVal F 1 (a + Boff) B)

[Deref(Plus (Var "cptr")

(Var "i"))])

base_se))

VDecInitA (char *) (ObjPlace (a + ptroff))

(CopyInit (NormE (Var "cptr") base_se))

VDecInitA int (ObjPlace (a + szoff))

(CopyInit (NormE (FnApp (Var "strlen")

[Var "cptr"])

base_se))

Figure 36: The variable declarations constructed to precede the body of C’s

constructor (from Figure 35). Assume that the enclosing class C is being

created at allocation level 1. This in turn makes B be created at that level

too (witness the second parameter of the ConstructorFVal constructor).
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twice, its presence at the top of the stack is ignored, except when the block

is being exitted through an exception (for more on this, see Section 5.6.4).

In that circumstance, objects and sub-objects alike must be destroyed in the

reverse order of their construction.

The rule for exitting from a block can only occur if the current scope’s

list of objects needing destruction is empty. As long as it is not empty, the

destructor corresponding to the object on the top of the stack is set up to be

called. This is done in rule [block-exit-destructors-to-call] :

(* RULE-ID: block-exit-destructors-to-call *)

(* normally-constructed objects at this level are always

destroyed here *)

(sel4 (HD s0.stack) = destroy_these) ∧
¬(destroy_these = []) ∧
final_stmt st c ∧
((destcalls, s) =

realise_destructor_calls (exception_stmt st) s0)

⇒
mng (s0, ST (Block T [] [st]) c)

(s, ST (Block T [] (destcalls ++ [st])) c)

(The sel4 function returns the fourth component of a tuple.) This is an-

other example of evolving syntax: the block that the flow of control is about

to leave, has this departure deferred with the insertion of new statements

before the block’s final statement. The rule allowing an exit to eventually

occur is [block-exit], for which see Figure 22 (page 61).

Actually calling a destructor is straightforward because there are no pa-

rameters, nor anything comparable to the mem-initializers. The require-

ment in the standard that sub-objects be destroyed before the body of a

destructor is entered is handled by the fact that the sub-obje1ct information

is entered into the stack ahead of the final encompassing object.

Using the Heap Classes, and other types, can be allocated on the heap

with the new operator. For non-classes the rule is [new-nonclass], in Fig-

ure 37. When the address is found for the new object (using the malloc

auxiliary), the allocation is recorded in the state’s hallocmap field, rather

than the allocmap, which is used for local objects. The hallocmap is not

affected by moving in and out of blocks.

When a class is to be allocated, a constructor must be called. This is

reflected in the rule of Figure 38. The hypotheses are very similar to the non-

class rule, but the conclusion differs because the class’s constructor must be
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(* RULE-ID: new-nonclass *)

¬class_type (strip_array ty) ∧
malloc s0 ty a ∧
(result_ty = case strip_const ty of

Array bty n -> bty

|| somety -> ty) ∧
sizeof T (sizeofmap s0) ty sz ∧
(s = s0 with <|

hallocmap updated_by (UNION) (range_set a sz) ;

constmap := if const_type ty then

s0.constmap UNION range_set a sz

else s0.constmap DIFF range_set a sz

|>) ∧
(SOME ptrval = ptr_encode s0 a result_ty [])

⇒
mng (s0, EX (New ty NONE) se)

(s, EX (ECompVal ptrval (Ptr result_ty)) se)

Figure 37: Allocating a Non-Class Object on the Heap with new

called before the pointer to the object can be returned. The use of allocation

level 0 in this rule ensures that the object’s creation will never be recorded

in the stack.

5.11 Class R-Values

As discussed earlier, r-values of class type are harder to model than r-values

of other types. (Note that the standard also talks of “temporary values” in

this context.) For example, it is legitimate to call member functions on such

values, which in turn means that such values must continue to have ad-

dresses so that this can have a value in the bodies of those member func-

tions. But once class r-values are given residence in memory, they have to

be allocated, constructed, destroyed and de-allocated properly. This opens

up many cans of worms.

The first saving grace is that class r-values can only occur as a result of

function calls. There is no way of creating a class r-value within a normal

expression except by calling a function that returns a value of the given

type.9 Once created, class r-values can be

9Compound literals can be used to initialize POD classes, but these are not general r-
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(* RULE-ID: new-simple-class *)

(* The T 0 parameters to the ConstructorFVal constructor indicate

1. the object produced is most-derived, and

2. it is not stack-allocated

*)

(Class cnm = strip_const ty) ∧
malloc s0 ty a ∧
sizeof T (sizeofmap s0) ty sz ∧
(s = s0 with <|

hallocmap updated_by (UNION) (range_set a sz) ;

constmap := if const_type ty then

s0.constmap UNION range_set a sz

else s0.constmap DIFF range_set a sz

|>) ∧
(SOME ptrval = ptr_encode s0 a ty [cnm])

⇒
mng (s0, EX (New ty (SOME args)) se)

(s, EX (CommaSep (FnApp (ConstructorFVal T 0 a cnm) args)

(ECompVal ptrval (Ptr ty)))

se)

Figure 38: Allocating a Class Object on the Heap
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• passed as parameters to other functions;

• used to initialize newly declared variables; and

• returned from functions

It is also possible for an r-value to be the “result” of an expression-statement

(the Standalone constructor in the stmt type). For example, in

class C { ... };
C f(int x);

int g(int y) { f(y + 1); ... }

the body of g, a “standalone” C r-value is created and then does nothing

(presumably there were interesting side effects incident on its creation).

The rest of this section describes the modelling of five modes of being:

creation, the three bullet-points above, and eventual destruction. In fact,

r-value destruction is straightforward because it fits into the general object

lifetime framework as already described. When a full lexical expression fin-

ishes its evaluation, the various rules for that situation cause the equivalent

of a block exit to occur, which first requires the destruction of objects from

that allocation level.

5.11.1 R-Value Creation and Function Return

R-values must live in memory, so it is important to know how the memory

they consume comes to be allocated. Thankfully, we know that all r-values

are created by function calls, so the model can arrange for memory to be

allocated when a function is about to be entered. This memory is allocated

at the level of the caller rather than the callee, which is important because

the temporary lives at the level of the caller.

Allocation is done in the rule [allocate-rvrt], in Figure 39. If the first ar-

gument slot of the FnApp_sqpt constructor is NONE (as it is initially, thanks

to rule [function-call-sqpt]), then this rule can fire, and update it. The call

to find_best_fnmatch is used to calculate the type of value returned by the

function. If that type is a class type, then space is allocated for a value of

the right size, and this type and the space’s address and the allocation level

is recorded in the first argument slot. (The allocation level information en-

sures that the object will have its destructor called at this level.) Naturally, if

values as found inside arbitrary expressions. Moreover, this model doesn’t handle that form

of initialization in any case.
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(* RULE-ID: allocate-rvrt *)

(* allocates space for a function call so that it can return an

object r-value *)

find_best_fnmatch s0 fnid (MAP valuetype args)

rtype params body ∧
(strip_const rtype = Class cnm) ∧
malloc s0 rtype a ∧
sizeof T (sizeofmap s0) rtype sz

⇒
mng (s0, EX (FnApp_sqpt NONE

(FVal fnid ftype thisobj)

args)

se0)

(s0 with allocmap updated_by (UNION) (range_set a sz),

EX (FnApp_sqpt (SOME

(LENGTH s0.stack, a,

dest_class (strip_const rtype)))

(FVal fnid ftype thisobj)

args)

se0)

Figure 39: Allocating Memory into Which Class R-Values will be Constructed
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the return type of the function call is not a class type, then the first argument

slot will remain NONE.

We have already seen how [function-call] (p53) subsequently transfers

the information from the FnApp_sqpt constructor onto the state’s rvstk

stack when the function call enters the body of the function. The last step

of r-value creation comes when a return statement is executed.

At the base level, all r-values must be created by returning an l-value in

a function such as10

C f(...)

{
C x;

...

return x;

}

If this is the case, we will eventually see the following situation in the ab-

stract syntax:

ST (Block T [] [Return (EX (LVal a t p) se)]) (RVC c)

This tells us that we have an l-value due to be returned but that the state-

ment continuation is expecting an r-value. The last thing we want happen-

ing at this point is for [block-exit-destructors-to-call] to fire: that may well

invalidate the l-value. For this reason, the definition of final_stmt (p55)

checks to see that the expression being returned is not a class l-value when

there is an RVC continuation.

Instead, a fresh object needs to be constructed, calling a constructor to

do so. This is done in the rule [ret-construct-rvalue] :

(* RULE-ID: ret-construct-rvalue *)

(HD s.rvstk = SOME (alvl, a,cnm)) ∧
¬(e0 = ConstructedVal alvl a cnm)

⇒
mng (s, ST (Ret (EX e0 se0)) (RVC c se))

(s, ST (Ret (EX (FnApp (ConstructorFVal T alvl a cnm)

[e0])

se0))

(RVC c se))

10There are many possible variations on this of course: the l-value need not be an auto-

matic variable but might be some global; if returning an automatic, the block where it is

allocated need not be the body of the whole function; etc
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Calling a constructor will eventually return a ConstructedVal value that

has been allocated to fill in the appropriate space, at address a’. Note that

the type of the value e0 may not be exactly the same as the value being

returned. Indeed it does not need to be of class type at all. For example, the

rule above would fire in the program

class C {
public:

C(int x) { ... }
...

}

C f(...) { int x; ... return 3; }

When the call to the constructor returns it will be with a ConstructedFVal

value at the given address. This then allows [ret-class-rvalue] to fire:

(* RULE-ID: ret-class-rvalue *)

(HD s.rvstk = SOME (alvl,a,cnm)) ∧
(e0 = ConstructedVal alvl a cnm)

⇒
mng (s, ST (Ret (EX e0 se0)) (RVC c se))

(s with <|

rvstk updated_by TL;

stack updated_by record_creation alvl a cnm

|>,

EX (c e0) se)

The function record_creation records the creation of a class in the stack

component of the state so that it can be destroyed at the appropriate point

later. The function is defined in HOL:declaration_dynamics:

record_creation alvl a cnm stk =

let stk’ = update_nth_rev (LENGTH stk)

(upd4 (CONS (a,cnm))) stk

in

if alvl < LENGTH stk ∧
¬MEM (a,cnm) (sel4 (REV_EL alvl stk))

then

update_nth_rev alvl (upd4 (CONS (a,cnm))) stk’

else

stk’
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In all cases, the creation of the object is recorded at the top of the stack. The

utility function update_nth_rev updates a list at the given index, where

the elements are counted with the first element being #1 (rather than the

typical 0), and from the end of the list (the bottom of the stack). Then,

if the allocation level of the object is less than the length of the stack, this

indicates that the object really “belongs” to an earlier allocation level. This

will happen if the object is a sub-object of some larger object.

Eliding Unnecessary Copy Constructions In the standard’s §12.8, para-

graph 15, it is said

when a temporary class object that has not been bound to a ref-

erence (12.2) would be copied to a class object with the same

cv-unqualified type, the copy operation can be omitted by con-

structing the temporary object directly into the target of the

omitted copy

Such a situation arises when the expression attached to a return statement

is itself a call to a function returning an object of the same class type that

is being returned. We can model this possible optimisation with the rule

[ret-pass-rvrt] :

(* RULE-ID: ret-pass-rvrt *)

(fnc = FVal fnid ftype thisobj) ∧
find_best_fnmatch s fnid (MAP valuetype args)

(Class cnm) params body ∧
(HD s.rvstk = SOME (alvl, a, cnm))

⇒
mng (s, ST (Ret (EX (FnApp_sqpt NONE fnc args) se)) c)

(s, ST (Ret (EX (FnApp_sqpt (SOME(alvl,a,cnm)) fnc

args)

se))

c)

As per the standard’s language, this rule only fires if the type returned by

the inner function is the same as the type of the function enclosing the

return statement.11 Nor does this rule stop [allocate-rvrt] from firing. If

the latter happens, an unnecessary copy will be performed, but this reflects

the standard’s permission rather than requirement of the optimisation.

11If the expected return type is an ancestor of the type of the object actually being returned,

then a copy constructor will be called and the return value will be subjected to “slicing”.
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Creation of R-Values By Explicitly Calling Constructors C++ allows con-

structors to be called “as normal functions” within expressions (actually this

is known as explicit type conversion (functional notation), see [5, §5.2.3]).

For example

class C {
public:

C(int x) { ... }
...

};
int g(C);

int f(int y)

{
return g(C(y + 3));

}

The model does not explicitly model this in the abstract syntax, but assumes

instead that for every class constructor there is an accompanying function

with arguments of the same type and declared as returning an object of the

given class type. When an explicit type conversion appears for a class, a call

to this accompanying function can be substituted.

5.11.2 R-Values as Parameters and Initializers

We have already seen that when a value is passed as a parameter, that is

treated identically to the copy-initialization of an automatic variable with

the parameter’s name. Thus, if we have

int f(C parameter) { body }

and this function f is called

... f(expression) ...

then this becomes the equivalent of

{
C parameter = expression;

{
body

}
}
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Thus, we can handle class r-value parameters as initializers. The only dif-

ference between the two scenarios is that the initializing expression will al-

ready be fully evaluated when it has been created as a parameter (because

function arguments must be fully evaluated before execution of a function

can begin).

If a class r-value has been passed as a parameter, the abstract syntax will

look like:

VDecInit ty nm (CopyInit (EX (ConstructedVal alvl a cnm) se))

If the ty is equal to Class cnm, then the space already allocated for the r-

value can be used for the local variable. This behaviour is captured in rule

[decl-parameter-copy-elision] :

(* RULE-ID: decl-parameter-copy-elision *)

T

⇒
declmng mng

(VDecInit (Class cnm) nm

(CopyInit (EX (NoScope (ConstructedVal alvl a cnm))

base_se)),

s0)

([], new_addr_binding nm NONE (a,cnm,[cnm])

(new_type_binding nm (Class cnm) s0))

There is another scenario where unnecessary copying can be avoided:

if the local variable has had space allocated for it, and the expression to

be evaluated is about to perform a function call returning an r-value of

the same type, then this function call can construct its result in the space

allocated for the local variable, and [allocate-rvrt] can again be avoided.

The rule for this behaviour is [decl-fncall-copy-elision] :
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(* RULE-ID: decl-fncall-copy-elision *)

(fnc = FVal fnid ftype thisobj) ∧
find_best_fnmatch s0 fnid (MAP valuetype args)

(Class cnm) params body

⇒
declmng mng

(VDecInitA (Class cnm) (ObjPlace a)

(CopyInit (EX (FnApp_sqpt NONE fnc args) se)),

s0)

([VDecInitA

(Class cnm) (ObjPlace a)

(CopyInit

(EX (FnApp_sqpt (SOME(LENGTH s0.stack,a,cnm))

fnc

args)

se))],

s0)

If it hasn’t been short-circuited by [decl-parameter-copy-elision], a class

copy-initialization eventually finishes when the expression under the CopyInit

constructor is a ConstructedVal with the same address as was allocated.

This is rule [decl-class-copy-finishes] :

(* RULE-ID: decl-class-copy-finishes *)

is_null_se se ∧
(e = ConstructedVal alvl a cnm) ∧
(s.stack = (env,thisv,amap,[]) :: rest) ∧
(s’ = s with <| stack := rest; allocmap := amap |>)

⇒
declmng mng

(VDecInitA (Class cnm) (ObjPlace a)

(CopyInit (EX e se)), s)

([], s’ with stack updated_by record_creation alvl a cnm)

Note how the alvl variable is not constrained, but we can argue that it will

in fact be the length of the stack once it is popped of the information that

pertained to the initializer expression. This is because copy-initialisation is

not used for sub-object construction, and this rule does not get a chance to

fire if the allocation level is from ealier in the stack (as happens in [decl-

parameter-copy-elision]).
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6 Validation

There are at least two possible forms of mechanical validation possible for

a semantics such as the one presented in this report: sanity theorems, and

evaluation of the specification on ground programs. In addition, there are

informal, social, routes to validation. This section of the report describes the

(limited) steps already taken along these three paths, and discusses what

might still be done.

Sanity theorems A sanity theorem is a result that we expect to be true of a

specification, should be relatively easy to prove, and whose falseness would

indicate a serious flaw in the specification. (Such theorems are a class of

“formal challenge”, as discussed in Rushby [10].)

Throughout the HOL sources, there are a number of sanity theorems.

These are identified by ML comments of the form (* SANITY *). There are

39 of these. There is also one slightly more substantial result in the the-

ory HOL:sanity, and its proof pales beside those of transitivity, reflexivity

and anti-symmetry of name instantiation in HOL:instantiation. These are

painful to establish because of the complexity of the abstract syntax that can

be instantiated, but they are important because they indicate that Siek and

Taha’s basic framework [12] is still usable in the more complicated setting

of this C++ semantics.

My earlier work on C [6], which included a number of simple sanity

theorems, also included proofs of the “standard” properties beloved of pro-

gramming language theorists: type safety and progress. These properties

demonstrate respectively that expressions of a given type continue to posses

that type as they evaluate, and that an operational semantics never “blocks”

but only finishes program evaluation in a valid final state (the return of a

value, or some sort of abort state, say).

Such results for C++ would likely be considerable work. In particular,

type safety would be difficult because the current semantics has an inade-

quate description of the type system. (The focus of this report is the dynamic

semantics, which only uses the type system in a very small number of places,

mostly where it is needed due to the requirements of object-oriented poly-

morphism. I’m confident the report’s treatment of polymorphim is correct;

elsewhere, I am far less confident.)

Execution of Concrete Programs The file HOL:concrete_tests includes

more theorems, but of a slightly different nature: exploring the behaviour
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of the model when applied to concrete examples. The last test (t6) is name

resolution on the following, small program, featuring a local class.

int x;

int f()

{
struct s {

int g() { return x; }
int x;

};
s val;

val.x = x;

return val.g();

}

The test confirms that this pair of declarations is interpreted as if it were

int ::x;

int ::f()

{
struct s {

int g() { return s::x; }
int x;

};
s val;

val.s::x = ::x;

return val.s::g();

}

Even this much is a great deal of work to do by hand, as the length of the

proof leading to the t6 result demonstrates. There is even a little proof

automation involved in getting this result, but any tool for working with

larger programs would require considerably more engineering effort.

The deliverable also includes a directory holsrcs/testfiles, where

there is some preliminary work towards the creation of a symbolic evalu-

ator to demonstrate that programs in the model can behave as one might

expect. This work builds on the ideas in [1], allowing symbolic exploration

of a semantic definition that features non-deterministic branching. For the

moment, the code only handles a sequence of external declarations not re-

quiring any expression evaluation, which is very minimalist indeed. Again,

more in this vein would require a significant investment of work.
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Tools of this form really also require some sort of parser for C++ source

code, as having to write out abstract syntax trees by hand is a major annoy-

ance. For example, the t6 program has to be presented to the tool in the

form given in Figure 40. There, one sees that the program is a sequence of

external declarations (the ext_decl type is defined at the bottom of theory

HOL:statements). There are two declarations, one for the variable x, and

one for the function f. The body of f is a Block with a list of two declara-

tions followed by a list of two statements. The first of the two declarations

is the desclaration of the struct s, with its two member declarations nested

inside that.

The abstract syntax for C++ programs is given in theory files HOL:types,

HOL:expressions and HOL:statements. One route into the HOL model’s

abstract syntax might be via the parse-trees generated by g++’s front-end.

Social Process The treatment of multiple inheritance in this report owes

a great deal to the article by Wasserrab et al [15]; similarly, the treatment of

templates is informed by Siek and Taha [12]. Both of these resources have

appeared in the academic literature, and build in turn on earlier work in

their respective areas. I feel confident therefore that my adoption of these

formal models here is well-justified. My work on modelling C expressions

was also published academically [7], so the underlying C semantics has met

with some degree of social examination.

Clearly, it would be ideal to now put the C++ semantics before the pub-

lic. The academic community’s thirst for novelty, and the current absence

of any “deep” proofs, might make it difficult to publish the whole semantics

academically. My feeling is that the most interesting material for this audi-

ence might be name resolution (Section 3). This is the sort of thing that is

usually thought trivial, but which is in fact quite complex in C++. The treat-

ment of object lifetimes in the presence of exceptions and object r-values is

also probably academically novel.

Publication in other venues would also be desirable. The ISO commit-

tee behind the standardisation process is currently obsessing over the next

revision to the standard, adding a great deal more complexity to the exist-

ing language and aiming to do so before 2010. It seems unlikely therefore

that the committee would want to pay much attention to new material that

would, to them, appear to have come “out of left field”. Simply making the

report (and HOL source code) available on an accessible web-page would

perhaps be a good first step. As its commissioners, QinetiQ (or the UK Min-

istry of Defence?) should perhaps decide how to best publicise the work in
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[Decl (VDec (Signed Int) (Base "x"));

FnDefn (Signed Int) (Base "f") []

(Block F

[VStrDec (Base "s")

(SOME <|

ancestors := [];

fields := [

(CFnDefn F (Signed Int) (IDName "g") []

(SOME

(SOME (Ret (EX (Var (Base "x"))

base_se)))),

F, Public);

(FldDecl (IDName "x") (Signed Int),

F, Public)

]

|>);

VDec (Class (Base "s")) (Base "val")]

[Standalone

(EX

(Assign NONE

(SVar (Var (Base "val")) (Base "x"))

(Var (Base "x")))

base_se);

Ret (EX (FnApp (SVar (Var (Base "val")) (Base "g"))

[])

base_se)])]

Figure 40: The Abstract Syntax Corresponding to Test Program t6
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these non-academic venues.

7 Omissions and Possible Fixes

The most significant omission in this semantics is a treatment of overload-

ing. This is a complicated feature of the language, but one that is purely syn-

tactic, and one that is checked and resolved entirely by the compiler. If this

semantics were to handle overloading, it would be done in Phase 1 (Name

Resolution) and Phase 2 (Templates). There a call to a bare f would ulti-

mately turn into a call into the f whose parameters’ types best matched the

types of the actual arguments. This resolved call would then be to an exact

name and type combination, so that f might become ::ns::f(int,char)

for example.

Similarly, there is no treatment of operator overloading. Again, any mod-

elling of this feature would naturally occur in Phases 1 and 2, where calls to

operators such as + would be resolved into calls to functions over particular

types, in particular namespaces and classes.

Two other large omissions in the realm of statics are const, and pro-

tection statuses (including friend functions). In general, the const-ness of

an expression influences the selection of particular functions to call (more

name resolution), and can prevent certain expressions from being written

at all. These latter constraints are an important part of the practice of pro-

gramming with C++, but again, are checked by the compiler. The semantics

does model the fact that it is undefined behaviour to update memory that

has been declared as const.

Protection statuses (i.e., the designation of certain fields or base classes

as being public, protected or private), are similarly a static mechanism,

and have almost no impact on the dynamics of a program. (They make

a difference to the behaviour of dynamic_cast, and to the dynamic type-

matching that is done in exception handlers.) I feel that all of these omis-

sions are justified given the commission to prefer treatment of dynamics

rather than static issues.

The semantics does not handle references to functions. Supporting these

would require more rules in the dynamic semantics, but these rules will be

directly analogous to the rules presented below: wherever an LV constructor

(which is for l-values of object type) appears, there will need to also be a

rule for FV, which is for function values. The semantics also doesn’t handle

initialization of const references from r-values.

The model also omits delete, placement-new, and some of the con-
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straints on what may or may not be done with constructors (for example,

that in[5, §12.1, para 15]). Other language features completely ignored

(mainly on the grounds that they are of less interest) are: enumerated

types, typedef declarations, unions, bit-field members and the goto and

switch statements (these omissions have all been inherited from the origi-

nal C model).

A Mechanised Sources

The deliverable consists of a compressed tar-file, that when unpacked con-

sists of a directory called qinetiq-cpp, which in turn contains four directo-

ries

• holsrcs, containing the HOL source files of the mechanisation. These

files will build with the version of HOL4 present in the Subversion

repository at SourceForge, with date 2007-10-13. See Section A.1 be-

low for instructions on how this version of HOL can be retrieved, and

how the deliverable’s HOL source files can then be built and checked.

• talks, containing the LATEX source and a PDF for the talk presented

at the DARP meeting in Newcastle in April 2006. The source assumes

that the LATEX packages latex-beamer and PSTricks are available.

• docs, containing LATEX sources and a PDF version of this document, as

well as sources for the notes on the earlier deliverables (nos. 1–4).

• notes, some C++ source files that illustrate various aspects of C++

behaviour. An accompanying text file explains some of the behaviours.

A.1 Building HOL Source-Files

HOL4 builds on Windows XP, MacOS X and Linux. Though untested on a

recent Solaris, we expect it should also build there. The only dependency is

on the Moscow ML compiler and interpreter [9]; so HOL should build and

run on all the platforms where Moscow ML builds and runs.

Getting HOL From SourceForge To get a particular, dated, version of the

HOL4 sources from the Subversion (svn) repository, one must issue the com-

mand

svn co -r date-spec https://hol.svn.sf.net/svnroot/hol/HOL
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where date-spec is the desired date (best specified as an ISO 8601 string)

enclosed in braces. The whole should in turn be enclosed in quotes in or-

der to avoid having the braces confuse the command-line shell. For exam-

ple, "{2007-10-13}". When the svn command is issued, the source code

is downloaded from SourceForge and put into a directory called HOL. The

source code (and all the accompanying svn meta-data) fits into 200MB.

Once a copy of the sources have been downloaded, further commands

can be used to update this copy to correspond to different dates. The com-

mands need to be issued from within the HOL directory. The update com-

mand is

svn update -r date-spec

Installing HOL Once the sources have been downloaded, the installation

instructions from the page at http://hol.sourceforge.net should be fol-

lowed to build a copy of HOL. An installation of the Moscow ML compiler

(v2.01) will also be required.

Building Deliverable Sources When HOL4 has been installed, the Holmake

program (found in the HOL/bin directory) can be run in the holsrcs direc-

tory of the C++ deliverable to create and check the logical theories.
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++ (list operation), 6
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^ (path concatenation), 89

|+ (finite map update), 7
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Assign, 50

bad_cast exception, 81

Base function, 14

base_se, 45
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Break (stmt constructor), 56
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case expressions in HOL, 9
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Cchar, 40
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cinfo, 48

class r-values, 100–109
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creation and return of, 102–107
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ClearExn, 68, 70
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Cnum, 40

CommaSep, 45

conditional expressions, 6
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ConstructorFVal, 93

constructors, of algebraic types, 8
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CopyInit, 62
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current_exns (state field), 68, 69

declmng relation, 59, 61
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EL (list operation), 6
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finite maps, 7
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FOLDL (list operation), 6
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genv (state field), 21
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HD (list operation), 6

HOL definitions, 8–12

IDComp, 14

IDConstant, 14

identifiers, 14–15

if-then-else in HOL, 6

inductive definitions in HOL, 10–12

initmap (state field), 64

is_exnval, 66

is_null_se, 45

is_qualified, 76

LAST (list operation), 6

let expressions, 5

lookup_type, 41

loops, 56
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and dynamic types, 73
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MAP (list operation), 6
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member functions
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decl-vdecinit-finish-ref, 86
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rule (dynamic)

addr-lvalue, 46

allocate-rvrt, 103

and-false, 45

and-true, 45

assign-completes, 51

assign-op-assign, 51

bare-throw-fails, 70

bare-throw-succeeds, 69

binop-computes, 44

binop-fails, 44

block-declmng, 59

block-declmng-exception, 66

block-entry, 59

block-exit, 61
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block-interrupted, 60, 65

block-stmt-evaluate, 60

catch-all, 67

catch-normal-stmt-passes, 67

catch-specific-type-matches,

68

catch-specific-type-nomatch,

69

catch-stmt-empty-hnds, 69

catch-stmt-evaluation, 67

char-literal, 40

clear-exn, 70
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deref-objptr, 47
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dyncast-base-other-ref, 81

dyncast-derived-base-ref, 79
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econtext-undefinedness, 42
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function-call, 52–54, 77

function-call-sqpt, 83

if-eval-guard, 57

if-exception, 65

if-false, 57

if-true, 57

loop, 56
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new-nonclass, 100

new-simple-class, 101
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nstatic-fn-member-select, 77

number-literal, 40
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offset-deref-fails, 50

ret-class-rvalue, 105
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ret-pass-rvrt, 106

return-eval-under, 55

return-lval2rval, 84

return-lvalue, 85

return-rvalue, 54, 84

standalone-evaluates, 57

standalone-finishes, 57

static-fn-member-select, 76
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trap-break-catches, 58

trap-break-pass-continue, 58

trap-continue-catches, 58

trap-continue-pass-break, 58

trap-emptystmt-passes, 58

trap-exn-passes, 65

trap-ret-passes, 58

trap-stmt-evaluation, 58

unop-computes, 44

unop-fails, 44

var-to-fvalue, 10, 41

var-to-lvalue, 41

virtual-fn-member-select, 75

rvstk (state field), 54, 84, 104

sanity theorems, 110

sel4 function, 99

selects-via relation, 87, 89

slicing, 106

SND, 6

SOME (option constructor), 7

ST, 37, 61

stack (state component), 97

stack (state field), 59

Standalone, 56
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static_type, 46

templates, 12, 28–36

temporaries, see class r-values

THE (HOL function), 7

This, 41

this, 52

Throw, 55, 64

TL (list operation), 6

TL (list operation) function, 55

Trap, 56

UndefinedExpr, 39, 42

updated_by (record update), 8

val2mem, 63

valid_econtext, 42

valid_fvcontext, 42

valid_lvcontext, 43, 82

Var, 23, 41

VDec, 61

VDecInit, 61

VDecInitA, 62

vdeclare, 62

vtables, 73, 79

with (record update), 7

ZIP (list operation), 6
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