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Preface

This volume contains the proceedings of the 3rd International Workshop on
Systems Software Verification (SSV) held in Sydney, Australia, February 25—
27, 2008.

The purpose of SSV is to bring together researchers and developers from
both academia and industry, who are facing real software and real problems to
find real, applicable solutions. By “real” we mean problems such as time-to-
market or reliability that the industry is facing and is trying to fix in software
that is deployed in the market place. A real solution is one that is applicable to
the problem in industry and not one that only applies to an abstract, academic
toy version of it. SSV discusses software analysis/development techniques and
tools, and serves as a platform to discuss open problems and future challenges
in dealing with existing and upcoming system code.

This volume starts with the abstracts of two invited presentation, followed
by 13 papers that were selected by the Programme Committee out of 24 sub-
missions after an intense reviewing and discission phase. Each paper has been
examined by at least 3 reviewers and we would like to thank the members of
the Programme Committee as well as the external reviewers for their detailed
and thorough investigation of each contribution.

The workshop programme comprised the presentation of the 13 accepted
papers, four tool demonstrations given by

e Christof Efkemann and Helge Lding (University of Bremen, Germany),
e Ansgar Fehnker (NICTA, Australia),

e Ralf Huuck (NICTA, Australia),

e Bastian Schlich (RWTH Aachen, Germany),

and two invited talks presented by

e Kim Guldstrand Larsen (Aalborg University/CISS, Denmark) and

e Hongseok Yang (University of London, United Kingdom).

We would like to thank the the Programme Committee, the authors, and
the workshop organizers for their contribution to the success of this 3rd Inter-
national Workshop on Systems Software Verification. Finally, we are grateful
for the generous support we received from National ICT Australia (NICTA)
funded under the Australian Governments Backing Australias Ability program
through the Department of Communications, Information Technology and the
Arts (DCITA) and the Australian Research Council (ARC).

February 2008 Ralf Huuck, Gerwin Klein, and Bastian Schlich
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SSV 2008

Invited talk: Validation, Performance
Analysis and Synthesis of Embedded Systems

Kim Larsen

Aalborg University, Denmark

Abstract

Within the upcoming European Joint Technology Initiative ARTEMIS as well as several national initiatives
such as CISS (www.ciss.dk) and DaNES (http://www.danes.aau.dk/), model-driven development is a key
to dealing with the increasing complexity of embedded systems, while reducing the time and cost to market.
The use of models should permit early assessment of the functional correctness of a given design as well as
requirements for resources (e.g. energy, memory, and bandwidth) and real-time and performance guarantees.
Thus, there is a need for quantitative models allowing for timed, stochastic and hybrid phenomenas to be
modeled an analysed.

UPPAAL and the branches CORA and TIGA provide an integrated tool environment for modelling, val-
idation, verification and synthesis of real-time systems modelled as networks timed automata, extended
with data types and user-defined functions. The talk will provide details on the expressive power of timed
automata in relationship to embedded systems as well as details on the power and working of the UPPAAL
verification engine.

In this talk we demonstrate how UPPAAL has been applied to the validation, performance analysis and
synthesis of embedded control problems. The applications include so-called task graph scheduling and MP-
SoC systems consisting of application software running under different RTOS on processors interconnected
through an on-chip network. Also we show how CORA and TIGA has been used to synthesize optimal (e.g.
wrt. energy or memory) scheduling strategies given applications, including Dynamic Voltage Scaling and a
climate controller.

Keywords: UPPAAL, Timed Automata

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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SSV 2008

Invited talk: On Scalable Shape Analysis

Hongeseok Yang

Queen Mary University of London, UK

Abstract

Shape analysis is a precise form of pointer analysis, which can be used to verify deep properties of data
structures such as whether or not they are cyclic, whether they are nested, etc. Shape analyses are also
expensive, and the tremendous number of abstract states they generate is an impediment to their use in
verification of sizeable programs. In this talk, I will describe the techniques for improving the scalability of
shape analyses. With these techniques, we have improved our analysis that was able to handle programs of
up to 1,000 lines, such that it can now analyze programs of up to 10,000 lines. Our experiments also show
that the new analysis is precise. It identifies memory safety errors and memory leaks in several Windows and
Linux device drivers and, after these bugs are fixed, it automatically proves integrity of pointer manipulation
for these drivers.

This order of magnitude improvement in sizes of programs verified is obtained by combining several ideas.
One is the local reasoning idea of separation logic, which reduces recomputation of analysis of procedure
bodies, and which allows efficient transfer functions for primitive program statements. Another is an
interprocedural analysis algorithm which aggressively discards intermediate states. The most important new
technical contribution of the work is a new join (or widening) operator, which greatly reduces the number
of abstract states used by the analysis while not greatly reducing precision; the join is also integrated with
procedure summaries in an interprocedural analysis.

This is joint work with Oukseh Lee, Cristiano Calcagno, Dino Distefano and Peter O’Hearn.

Keywords: Separation Logic, Shape Analysis

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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A Comparative Study of Industrial Static
Analysis Tools

Par Emanuelsson! 2

Ericsson AB
Datalinjen 4
SE-583 30 Linkoping, Sweden

Ulf Nilsson'

Dept. of Computer and Information Science
Linkoping University
SE-581 83 Linkdping, Sweden

Abstract

Tools based on static analysis can be used to find defects in programs. Tools that do shallow analyses based
on pattern matching have existed since the 1980’s and although they can analyze large programs they have
the drawback of producing a massive amount of warnings that have to be manually analyzed to see if they
are real defects or not. Recent technology advances has brought forward tools that do deeper analyses that
discover more defects and produce a limited amount of false warnings. These tools can still handle large
industrial applications with millions lines of code. This article surveys the underlying supporting technology
of three state-of-the-art static analysis tools. The survey relies on information in research articles and
manuals, and includes the types of defects checked for (such as memory management, arithmetics, security
vulnerabilities), soundness, value and aliasing analyses, incrementality and IDE integration. This survey is
complemented by practical experiences from evaluations at the Ericsson telecom company.

Keywords: Static analysis, dataflow analysis, defects, security vulnerabilities.

1 Introduction

Almost all software contain defects. Some defects are found easily while others are
never found, typically because they emerge seldom or not at all. Some defects that
emerge relatively often even go unnoticed simply because they are not perceived as
errors or are not sufficiently severe. Software defects may give rise to several types
of errors, ranging from logical/functional ones (the program sometimes computes
incorrect values) to runtime errors (the program typically crashes), or resource leaks
(performance of the program degrades possibly until the program freezes or crashes).

L Thanks to Dejan Baca, Per Flodin, Fredrik Hansson, Per Karlsson, Leif Linderstam, and Johan Ringstrém
from Ericsson for providing tool evaluation information.

2 Email: par.emanuelsson@ericsson.com
3 Email: ulfni@ida.liu.se

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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Programs may also contain subtle security vulnerabilities that can be exploited by
malicious attackers to gain control over computers.

Fixing defects that suddenly emerge can be extremely costly in particular if
found at the end of the development cycle, or even worse, after deployment. Many
simple defects in programs can be found by modern compilers, but the predominat-
ing method for finding defects is testing. Testing has the potential of finding most
types of defects, however, testing is costly and no amount of testing will find all
defects. Testing is also problematic because it can be applied only to executable
code, i.e. rather late in the development process. Alternatives to testing, such as
dataflow analysis and formal verification, have been known since the 1970s but
have not gained widespread acceptance outside academia—that is, until recently;
lately several commercial tools for detecting runtime error conditions at compile
time have emerged. The tools build on static analysis [27] and can be used to find
runtime errors as well as resource leaks and even some security vulnerabilities stat-
ically, i.e. without executing the code. This paper is a survey and comparison of
three market leading static analysis tools in 2006/07: PolySpace Verifier, Coverity
Prevent and Klocwork K7. The list is by no means exhaustive, and the list of com-
petitors is steadily increasing, but the three tools represent state-of-the-art in the
field at the moment.

The main objective of this study is (1) to identify significant static analysis func-
tionality provided by the tools, but not addressed in a normal compiler, and (2) to
survey the underlying supporting technology. The goal is not to provide a ranking
of the tools; nor is it to provide a comprehensive survey of all functionality pro-
vided by the tools. Providing such a ranking is problematic for at least two reasons:
Static analysis is generally only part of the functionality provided by the tool; for
instance, Klocwork K7 supports both refactoring and software metrics which are
not supported by the two other tools. Even if restricting attention only to static
analysis functionality the tools provide largely non-overlapping functionality. Sec-
ondly, even when the tools seemingly provide the same functionality (e.g. detection
of dereferencing of null pointers) the underlying technology is often not comparable;
each tool typically finds defects which are not found by any of the other tools.

Studying the internals of commercial and proprietary tools is not without prob-
lems; in particular, it is virually impossible to get full information about technical
solutions. However, some technical information is publicly available in manuals
and white papers; some of the tools also originate from academic tools which have
been extensively described in research journals and conference proceedings. While
technical solutions may have changed somewhat since then, we believe that such
information is still largely valid. We have also consulted representatives from all
three providers with the purpose to validate our descriptions of the tools. Still it
must be pointed out that the descriptions of suggested technical solutions is subject
to a certain amount of guessing in some respects.

This technological survey is then complemented by a summary and some exam-
ples of tool evaluations at Ericsson.

The rest of the report is organized as follows: In Section 2 we define what we
mean by the term static analysis and survey some elementary concepts and precon-
ditions; in particular, the trade off between precision and analysis time. In Section

4
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3 we summarize the basic functionality provided by the three tools—Coverity Pre-
vent, Klocwork K7 and PolySpace Verifier/Desktop—focusing in particular on the
support for the C and C++ programming languages. The section also surveys sev-
eral industrial evaluations of the tools over time at Ericsson, in particular involving
the products from Coverity and Klocwork. Section 4 contains conclusions.

2 Static analysis

Languages such as C and, to a lesser extent, C4+-+ are designed primarily with
efficiency and portability in mind*, and therefore provide little support to avoid or
to deal with runtime errors. For instance, there is no checking in C that read or
write access to an array is within bounds, that dereferencing of a pointer variable
is possible (that the variable is not null) or that type casting is well-defined. Such
checks must therefore be enforced by the programmer. Alternatively we must make
sure that the checks are not needed, i.e. guarantee that the error conditions will
never occur in practice.

By the term static analysis we mean automatic methods to reason about run-
time properties of program code without actually executing it. Properties that we
consider include those which lead to premature termination or ill-defined results of
the program, but precludes for instance purely syntactic properties such as syntax
errors or simple type errors.® Nor does static analysis address errors involving
the functional correctness of the software. Hence, static analysis can be used to
check that the program execution is not prematurely aborted due to unexpected
runtime events, but it does not guarantee that the program computes the correct
result. While static analysis can be used to check for e.g. deadlock, timeliness
or non-termination there are other, more specialized, techniques for checking such
properties; although relying on similar principles. Static analysis should be con-
trasted with dynamic analysis which concerns analysis of programs based on their
execution, and includes e.g. testing, performance monitoring, fault isolation and
debugging.

Static analysis does not in general guarantee the absence of runtime errors, and
while it can reduce the need for testing or even detect errors that in practice cannot
be found by testing, it is not meant to replace testing.

The following is a non-exhaustive list of runtime problems that typically cannot
be detected by traditional compilers and may be difficult to find by testing, but
which can be found by static analysis:

e Improper resource management: Resource leaks of various kinds, e.g. dynamically
allocated memory which is not freed, files, sockets etc. which are not properly
deallocated when no longer used;

e Illegal operations: Division by zero, calling arithmetic functions with illegal values
(e.g. non-positive values to logarithm), over- or underflow in arithmetic expres-

4 Or so it is often claimed; in fact, even in ANSI/ISO Standard C there are many language constructs
which are not semantically well-defined and which may lead to different behavior in different compilers.

5 The borderline is not clear; some checks done by compilers, such as type checking in a statically typed
language, are closer to runtime properties than syntactic ones. In fact, in a sufficiently rich type system
some type checking must be done dynamically.
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sions, addressing arrays out of bounds, dereferencing of null pointers, freeing
already deallocated memory;

e Dead code and data: Code and data that cannot be reached or is not used. This
may be only bad coding style, but may also signal logical errors or misspellings
in the code;

e Incomplete code: This includes the use of uninitialized variables, functions with
unspecified return values (due to e.g. missing return statements) and incomplete
branching statements (e.g. missing cases in switch statements or missing else
branches in conditional statements).

Other problems checked for by static analysis include non-termination, uncaught
exceptions, race conditions etc.

In addition to finding errors, static analysis can also be used to produce more
efficient code; in particular for “safe” languages like Java, where efficiency was not
the primary objective. Many runtime tests carried out in Java programs can in
practice be avoided given certain information about the runtime behavior. For
instance, tests that array indices are not out-of-bounds can be omitted if we know
that the value of the indices are limited to values in-bounds. Static analysis can
provide such information.

Static analysis can also be used for type inference in untyped or weakly typed
languages or type checking in languages with non-static type systems [21]. Finally
static analysis can be used for debugging purposes (see e.g. [1]), for automatic test
case generation (see e.g. [19]), for impact analysis (see e.g. [26]), intrusion detection
(see e.g. [29]) and for software metrics (see e.g. [30]). However, in this paper we
focus our attention on the use of static analysis for finding defects and software
vulnerabilities which typically would not show up until the code is executed.

Most interesting properties checked by static analyses are undecidable, meaning that
it is impossible, even in theory, to determine whether an arbitrary program exhibits
the property or not. As a consequence static analyses are inherently imprecise—
they typically infer that a property (e.g. a runtime error) may hold. This implies
that

(i) if a program has a specific property, the analysis will usually only be able
to infer that the program may have the property. In some special cases the
analysis may also be able to infer that the program does have the property.

(ii) if the program does not have the property, there is a chance that (a) our analysis
is actually able to infer this (i.e. the program does not have the property), but
it may also happen that (b) the analysis infers that the program may have the
property.

If the property checked for is a defect then we refer to case (ii)(b) as a false positive.
Hence, if the analysis reports that a program may divide by zero we cannot tell in
general whether it is a real problem (item (i)) or if it is a false positive (item (ii)(b)).
The precision of the analysis determines how often false positives are reported. The
more imprecise the analysis is, the more likely it is to generate false positives.
Unfortunately precision usually depends on analysis time. The more precise
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the analysis is, the more resource consuming it is, and the longer it takes. Hence,
precision must be traded for time of analysis. This is a very subtle trade-off—if the
analysis is fast it is likely to report many false positives in which case the alarms
cannot be trusted. On the other hand a very precise analysis is unlikely to terminate
in reasonable time for large programs.

One way to avoid false positives is to filter the result of the analysis, removing
potential errors which are unlikely (assuming some measure of likelihood). However,
this may result in the removal of positives which are indeed defects. This is known
as a false negative—an actual problem which is not reported. False negatives may
occur for at least two other reasons. The first case is if the analysis is too optimistic,
making unjustified assumptions about the effects of certain operations. For instance,
not taking into account that malloc may return null. The other case which may
result in false negatives is if the analysis is incomplete; not taking account of all
possible execution paths in the program.

There are a number of well-established techniques that can be used to trade-off
precision and analysis time. A flow-sensitive analysis takes account of the control
flow graph of the program while a flow-insensitive analysis does not. A flow-sensitive
analysis is usually more precise—it may infer that x and y may be aliased (only)
after line 10, while a flow-insensitive analysis only infers that x and y may be
aliased (anywhere within their scope). On the other hand, a flow-sensitive analysis
is usually more time consuming.

A path-sensitive analysis considers only valid paths through the program. It
takes account of values of variables and boolean expressions in conditionals and loops
to prune execution branches which are not possible. A path-insensitive analysis
takes into account all execution paths—even infeasible ones. Path-sensitivity usually
implies higher precision but is usually more time consuming.

A context-sensitive analysis takes the context—e.g. global variables and actual
parameters of a function call—into account when analyzing a function. This is also
known as inter-procedural analysis in contrast to intra-procedural analysis which
analyses a function without any assumptions about the context. Intra-procedural
analyses are much faster but suffer from greater imprecision than inter-procedural
analyses.

Path- and context-sensitivity rely on the ability to track possible values of pro-
gram variables; for instance, if we do not know the values of the variables in the
boolean expression of a conditional, then we do not know whether to take the then-
branch or the else-branch. Such value analysis can be more or less sophisticated; it
is common to restrict attention to intervals (e.g. 0 < x < 10), but some approaches
rely on more general relations between several variables (e.g. x > y+z). Another
important issue is aliasing (see e.g. [14,28]); when using pointers or arrays the value
of a variable can be modified by modifying the value of another variable. Without
a careful value and aliasing analyses we will typically have large numbers of false
positives, or one has do ungrounded, optimistic assumptions about the values of
variables.

The undecidability of runtime properties implies that it is impossible to have
an analysis which always finds all defects and produces no false positives. A frame-
work for static analysis is said to be sound (or conservative or safe) if all defects

7
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checked for are reported, i.e. there are no false negatives but there may be false
positives. 6 Traditionally, most frameworks for static analysis have aimed for sound-
ness while trying to avoid excessive reporting of false positives (e.g. the products
from PolySpace). However, most commercial systems today (e.g. Coverity Prevent
and Klocwork K7) are not sound (i.e. they will not find all actual defects) and also
typically produce false positives.

It is sometimes claimed that static analysis can be applied to incomplete code
(individual files and/or procedures). While there is some truth to this, the quality
of such an analysis may be arbitrarily bad. For instance, if the analysis does not
know how a procedure or subprogram in existing code is called from outside it
must, to be sound, assume that the procedure is called in an arbitrary way, thus
analyzing executions that probably cannot occur when the missing code is added.
This is likely to lead to false positives. Similarly incomplete code may contain a
call to a procedure which is not available, either because it is not yet written, or it
is a proprietary library function. Such incomplete code can be analyzed but is also
likely to lead to a large number of false positives and/or false negatives depending
on if the analysis makes pessimistic or optimistic assumptions about the missing
code.

On the positive side, it is often not necessary to provide complete code for
missing functions or function calls. It is often sufficient to provide a stub or a
top-level function that mimics the effects of the properties checked for.

The tools studied in this report adopt different approaches to deal with incom-
plete code and incremental analysis when only some code has been modified (as
discussed in the next section).

3 A comparison of the tools

Shallow static analysis tools based on pattern matching such as FlexeLint [17] have
existed since the late 1980s. Lately several sophisticated industrial-strength static
analysis tools have emerged. In this report we study tools from three of the main
providers—PolySpace, Coverity and Klocwork. There are several other static anal-
ysis tools around, including PREfix/PREfast from Microsoft [3], Astree [7], which
are not as widely available. A tool which has existed for some years but not un-
til recently has become commercially available is CodeSonar from Grammatech,
founded by Tim Teitelbaum and Tom Reps, which is similar in style and ambition
level to Coverity Prevent and Klocwork K7, see [18]. Even if we focus here on tools
intended for global and “deep” (=semantic) analysis of code, more lightweight tools
like FlexeLint may still be useful in more interactive use and for local analysis.
There are also dynamic tools that aim for discovering some of the kinds of defects
as the static analysis tools do. For example Insure++ [22] and Rational Purify [24]

6 Soundness can be used in two completely different senses depending on if the focus is on the reporting of
defects or on properties of executions. In the former (less common) sense soundness would mean that all
positives are indeed defects, i.e. there are no false positives. However, the more common sense, and the one
used here, is that soundness refers to the assumptions made about the possible executions. Even if there is
only a small likelihood that a variable takes on a certain value (e.g. x=0) we do not exclude that possibility.
Hence if the analysis infers that X may be zero in an expression 1/x, there is a possibility that there will be
a runtime error; otherwise not. This is why a sound analysis may actually result in false positives, but no
false negatives.
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detect memory corruption errors.

A rough summary of major features of the three systems studied here can be
found in Table 1. Such a table is by necessity incomplete and simplistic and in the
following sub-section we elaborate on the most important differences and similari-
ties. A more thorough exposition of the tools can be found in the full version of the
paper, see [16].

3.1  Functionality provided

While all three tools have much functionality in common, there are noticeable dif-
ferences; in particular when comparing PolySpace Verifier [15,23] against Coverity
Prevent [10,11] and Klocwork K7 [20]. The primary aim of all three tools obviously
is to find real defects, but in doing so any tool will also produce some false positives
(i.e. false alarms). While Coverity and Klocwork are prepared to sacrifice finding
all bugs in favor of reducing the number of false positives, PolySpace is not; as a
consequence the former two will in general produce relatively few false positives but
will also typically have some false negatives (defects which are not reported). It is
almost impossible to quantify the rate of false negatives/positives; Coverity claims
that approximately 20 to 30 per cent of the defects reported are false positives.
Klocwork K7 seems to produce a higher rate of false positives, but stays in approx-
imately the same league. However, the rate of false positives obviously depends on
the quality of the code. The rate of false negatives is even more difficult to estimate,
since it depends even more on the quality of the code. (Obviously there will be no
false negatives if the code is already free of defects.) According to Coverity the rate
of defect reports is typically around 1 defect per 1-2 KLoC.

PolySpace, on the other hand, does in general mark a great deal of code in
orange color which means that it may contain a defect, as opposed to code that
is green (no defects), red (definite defect) or grey (dead code). If orange code
is considered a potential defect then PolySpace Verifier produces a high rate of
false positives. However, this is a somewhat unfair comparison; while Coverity and
Klocwork do not even give the developer the opportunity to inspect all potential
defects, PolySpace provides that opportunity and provides instead a methodology
in which the developer can systematically inspect orange code and classify it either
as correct or faulty. In other words, Coverity and Klocwork are likely to “find
some bugs”, but provide no guarantees—the rest of the code may contain defects
which are not even reported by the tool. PolySpace on the other hand can provide
guarantees—if all code is green (or grey) it is known not to contain any bugs (wrt
the properties checked for, that is). On the other hand it may be hard to eliminate
all orange code.

All three tools rely at least partly on inter-procedural analyses, but the ambi-
tion level varies significantly. PolySpace uses the most advanced technical solution
where relationships between variables are approximated by convex polyhedra [8] and
all approximations are sound—that is, no execution sequences are forgotten, but
some impossible execution paths may be analyzed due to the approximations made.
Coverity Prevent and Klocwork K7 account only of interval ranges of variables in
combination with “simple” relationships between variables in a local context with
the main purpose to prune some infeasible execution paths, but do not do as well as

9



EMANUELSSON AND NILSSON

PolySpace. Global variables and nontrivial aliasing are not accounted for or treated
only in a restricted way. As a consequence neither Coverity nor Klocwork take all
possible behaviors into account which is one source of false negatives. It is some-
what unclear how Coverity Prevent and Klocwork K7 compare with each other, but
impression is that the former does a more accurate analysis.

Another consequence of the restricted tracking of arithmetic values of variables
in Coverity Prevent and Klocwork K7 is that the products are not suitable for
detecting arithmetic defects, such as over- and underflows or illegal operations like
division by zero. The products did not even provide arithmetic checkers at the time
of the study. PolySpace on the other hand does provide several arithmetic checkers,
setting it apart from the others.

While PolySpace is the only tool that provides arithmetic checkers, it is also the
only one among the three which does not provide any checkers for resource leaks;
in particular there is no support for discovering defects in dynamic management
(allocation and deallocation) of memory. As a consequence there are also no checkers
e.g. for “use-after-free”. This lack can perhaps be explained by PolySpace’s focus
on the embedded systems market, involving safety or life critical applications where
no dynamic allocation of memory is possible or allowed.

While PolySpace appears to be aiming primarily for the embedded systems mar-
ket, Klocwork and Coverity have targeted in particular networked systems and ap-
plications as witnessed, for instance, by a range of security checkers. Klocwork and
Coverity address essentially the same sort of security issues ranging from simple
checks that critical system calls are not used inappropriately to more sophisticated
analyses involving buffer overruns (which is also supported by PolySpace) and the
potential use of so-called tainted (untrusted) data. The focus on networked appli-
cation also explains the support for analyzing resource leaks since dynamic manage-
ment of resources such as sockets, streams and memory is an integral part of most
networked applications.

Coverity supports incremental analysis of a whole system, where only parts
have been changed since last analysis. Results of an analysis are saved and reused
in subsequent analyses. An automatic impact analysis is done to detect and, if
necessary, re-analyze other parts of the code affected indirectly by the change. Such
an incremental analysis may take significantly less time than analyzing the whole
system from scratch. With the other tools analysis of the whole system has to be
redone. All of the tools provide the possibility to analyze a single file. However
such an analysis will be much more shallow than analyzing a whole system where
complete paths of execution can be analyzed.

Both Klocwork and Coverity provide means for writing user defined checkers and
integrating them with the analysis tools, see e.g. [9,4]. However, the APIs are non-
trivial and writing new, non-trivial checkers is both cumbersome and error prone.
There are no explicit guidelines for writing correct checkers and no documented
support for manipulation of abstract values (e.g. interval constraints). There is also
no support for reusing the results of other checkers. Termination of the checker is
another issue which may be problematic for users not familiar with the mathematical
foundations of static analysis, see e.g. [6,27].

All three tools support analysis of the C programming language and C++. At
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Table 1
Summary of features of Coverity Prevent, Klocwork K7 and PolySpace Verifier

Functionality Coverity KlocWork PolySpace
Coding style No Some No
Buffer overrun Yes Yes Yes
Arithmetic over/underflow No No Yes
lllegal shift operations No No Yes
Undefined arithmetic operations No No Yes
Bad return value Yes Yes Yes
Memory/resource leaks Yes Yes No
Use after free Yes Yes No
Uninitialized variables Yes Yes Yes
Size mismatch Yes Yes Yes
Stack use Yes No No
Dead code/data Yes Yes Yes (code)
Null pointer dereference Yes Yes Yes
STL checkers Some Some No?
Uncaught exceptions Beta (C++) No No
User assertions No No Yes
Function pointers No No Yes
Nontermination No No Yes
Concurrency Lock order No Shared data
Tainted data Yes Yes No
Time-of-check Time-of-use Yes Yes No
Unsafe system calls Yes Yes No
MISRA support No No Yes
Extensible Yes Some No
Incremental analysis Yes No No
False positives Few Few Many
False negatives Yes Yes No
Software metrics No Yes No
Language support C/C++ C/C++/Java C/C++/Ada

the initial time of this study only Klocwork supported analysis of Java but Coverity
was announcing a new version of Prevent with support for Java. Only PolySpace
supported analysis of Ada. Klocwork was the only provider which claimed to handle
mixed language applications (C/C++/Java).

The downside of PolySpace’s sophisticated mechanisms for tracking variable val-
ues is that the tool cannot deal automatically with very large code bases without
manual partitioning of the code. While Coverity Prevent and Klocwork K7 are able
to analyze millions of lines of code off-the-shelf and overnight, PolySpace seems to
reach the complexity barrier already at around 50 KLoC with the default settings.
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On the other hand PolySpace advocates analyzing code in a modular fashion. Anal-
ysis time is typically not linear in the number of lines of code—analyzing 10 modules
of 100 KLoC is typically orders of magnitude faster than analyzing a single program
consisting of 1,000 KLoC. However this typically involves human intervention and
well-defined interfaces (which may be beneficial for other quality reasons...)

On the more exotic side Coverity provides a checker for stack use. It is unclear
how useful this is since there is no uniform way of allocating stack memory in
different compilers. Klocwork is claimed to provide similar functionality but in a
separate tool. PolySpace set themselves aside from the others by providing checkers
for non termination, both of functions and loops. Again it is unclear how useful such
checkers are considering the great amount of research done on dedicated algorithms
for proving termination of programs (see e.g. [13,2]). Coverity has a checker for
uncaught exceptions in C++ which was still a beta release. PolySpace provides
a useful feature in their support for writing general assertions in the code. Such
assertions are useful both for writing stubs and may also be used for proving partial
correctness also of functional properties; see [25].

None of the tools provide very sophisticated support for dealing with concur-
rency. Klocwork currently provides no support at all. Coverity is able to detect
some cases of mismatched locks but does not take concurrency into account dur-
ing analysis of concurrent threads. The only tool which provides more substantial
support is PolySpace which is able to detect shared data and whether that data is
protected or not.

Both Coverity and Klocwork have developed lightweight versions of their tools
aimed for frequent analysis during development. These have been integrated with
Eclipse IDEs. However the defect databases for Coverity and Klocwork have not
been integrated into Eclipse IDEs or TPTP. PolySpace has integrated with the
Rhapsody UML tool to provide a UML static analysis tool. It analyzes generated
code and links back references to the UML model to point out where defects have
been detected. Besides that PolySpace has its general C++ level advantages with a
sound analysis (no false negatives) and presumably problems with analyzing large
code bases (larger than 50-100 KLoC)—a restriction which should be more severe
in the UML situation compared to hand-coded C++.

3.2 Experiences at Ericsson

A number of independent evaluations of static analysis tools were performed by de-
velopment groups at Ericsson. Coverity was evaluated by several groups. Klocwork
has also been subject to evaluations but not quite as many. There was an attempt
to use PolySpace for one of the smallest applications, but the evaluation was not
successful; the tool has either presented no results within reasonable time (a couple
of days’ execution) or the results were too weak to be of use (too much orange code
to analyze). We do not know if this was due to the tool itself or to the actual
configuration of the evaluations. It would have been valuable to compare results
from PolySpace, which is sound, to those of Klocwork and Coverity. Perhaps that
would give some hint on the false negative rate in Klocwork and Coverity.
Some general experiences from use of Coverity and Klocwork were:
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e The tools are easy to install and get going. The development environment is easy
to adapt and no incompatible changes in tools or processes are needed.

e The tools are able to find bugs that would hardly be found otherwise.

e It is possible to analyze even large applications with several million lines of code
and the time it takes is comparable to build time.

e Even for large applications the false positive rate is manageable.

¢ Several users had expected the tools to find more defects and defects that were
more severe. On the other hand, several users were surprised that the tools found
bugs even in applications that had been tested for a long time. There might be a
difference in what users find reasonable to expect from these tools. There might
also be large differences in what users classify as a false positive, a bug or a severe
bug.

e It is acceptable to use tools with a high false positive rate (such as FlexeLint) if
the tool is introduced in the beginning of development and then used continuously.

e [t is unacceptable to use tools with a high false positive rate if the product is
large and the tool is introduced late in the development process.

e Many of the defects found could not cause a crash in the system as it was defined
and used at the moment. However if the system would be only slightly changed
or the usage was changed the defect could cause a serious crash. Therefore these
problems should be fixed anyway.

e Even if the tools look for the same categories of defects, for instance memory
leaks, addressing out of array bounds etc, the defects found in a given category
by one tool can be quite different from those found by another tool.

e Handling of third party libraries can make a big difference to analysis results.
Declarations for commercial libraries that come with the analysis tool can make
the analysis of own code more precise. If source for the library is available defects
in the library can be uncovered, which may be as important to the quality of the
whole application as the own code.

e There are several aspects of the tools that are important when making a tool
selection that has not been a part of the comparison in this paper; such as pricing,
ease of use, integration in IDEs, other functionality, interactiveness etc.

Below follows some more specific results from some of the evaluations. We do not
publish exact numbers of code sizes and found bugs etc for confidentiality reasons
since some of the applications are commercial products in use.

Evaluation 1 (Coverity and FlexeLint): The chosen application had been
thoroughly tested, both with manually designed tests and systematic tests that were
generated from descriptions. FlexeLint was applied and produced roughly 1,200,000
defect reports. The defects could be reduced to about 1,000 with a great deal of
analysis and following filtering work. These then had to be manually analyzed.
Coverity was applied to the same piece of code and found about 40 defects; there
were very few false positives and some real bugs. The users appreciated the low
false positive rate. The opinion was that the defects would hardly have been found
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by regular testing.

The users had expected Coverity to find more defects. It was believed that there
should be more bugs to be found by static analysis techniques. It was not known if
this was the price paid for the low false positive rate or if the analyzed application
actually contained only a few defects. The users also expected Coverity to find more
severe defects. Many of the findings were not really defects, but code that simply
should be removed, such as declarations of variables that were never used. Other
defects highlighted situations that could not really occur since the code was used in
a restricted way not known to the analysis tool.

Evaluation 2 (Coverity): A large application was analyzed with Coverity. Part
of the code had been previously analyzed with FlexeLint. The application had been
extensively tested.

Coverity was perceived both as easy to install and use, and no modifications to
existing development environment was needed. The error reports from the analysis
were classified as follows

e 55 per cent were no real defects but perceived only as poor style,
e 2 per cent were false positives,

e 38 per cent were considered real bugs, and 1 per cent were considered severe.

The users appreciated that a fair number of defects were found although the code
had already been thoroughly tested.

Evaluation 3 (Coverity and Klocwork): An old version of an application that
was known to have some memory leaks was analyzed using Coverity and Klocwork.

In total Klocwork reported 32 defects including 10 false positives and Coverity
reported 16 defects including 1 false positive. Only three defects were common to
both tools! Hence Klocwork found more defects, but also had a larger false positive
rate. Although the tools looked for similar defects the ones actually found were
largely specific to each tool. This suggests that each of the tools fail in finding
many defects.

Looking at only the memory leaks the results were similar. Klocwork reported
12 defects of which 8 were false, totalling 4 real defects and Coverity reported 7
defects all of which were true defects. None of the tools found any of the known
memory leaks.

Evaluation 4 (Coverity and Klocwork): Old versions of two C++ products
were analyzed with Coverity and Klocwork. Trouble reports for defects that had
been detected by testing were available. One purpose was to compare how many
faults each of the tools found. Another purpose was to estimate how many of the
faults discovered in testing were found by the static analysis tools.

Coverity found significantly more faults and also had significantly less false pos-
itives than Klocwork. One of the major reasons for this was the handling of third
party libraries. Coverity analyzed the existing source code for the libraries and
found many faults in third party code! Klocwork did not analyze this code and
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hence did not find any of these faults. Besides that the analysis of the libraries that
Coverity did resulted in fewer false positives in the application code since it could
be derived that certain scenarios could not occur.

The time of analyses was about the same as build time for both tools—i.e. is
good enough for overnight batch runs but not for daily, interactive use during de-
velopment.

Both tools lacked integration with CM tool Clearcase, the source code had to be
copied into the repository of the analysis tools. There was no way to do inspection
of analysis results from an IDE, but the reviews had to be done in the GUI of the
analysis tools.

Coverity was preferred by the C++ developers. It had incremental analysis that
would save time and it could easily analyze and report on single components.

Although the main part of the evaluation was on old code some studies were done
on programs during the development. The development code had more warnings
and most of them were real faults; most of these were believed to have been found
during function test. It had been anticipated that more faults would be found in
low level components, but these components proved to be stable and only a few
defects were discovered. More faults were however found in high level components
with more frequent changes.

Evaluation 5 (Coverity, Klocwork and CodePro): A Java product with
known bugs was analyzed. A beta version of Coverity Prevent with Java analysis
capabilities was used. None of the known bugs were found by the tools. Coverity
found more real faults and had far less false positives than Klocwork. For Coverity
one third of the warnings were real bugs.

Klocwork generated many warnings; 7 times the number of warnings of Coverity.
The missing analysis of the third party library seemed to be the major reason.
However, Klocwork does a ranking of the potential defects and when only the four
most severe levels of warnings were considered the results were much better—there
were few false positives.

CodePro Analytix (developed and marketed by Instantiations) is a tool aimed
for analysis during development. It is integrated into the Eclipse IDE and the results
of an analysis cannot be persistently saved, but only exist during the development
session with the IDE. The analysis is not as deep as that of Coverity or Clockwork,
but is faster and can easily be done interactively during development. The tool
generates a great deal of false positives, but these can be kept at a tolerable level
by choosing an appropriate set of analysis rules. No detailed analysis was done of
the number of faults and if they were real faults or not.

In this evaluation there was a large difference in the number of warnings gener-
ated, Coverity 92 warnings, Klocwork 658 warnings (in the top four severities 19),
CodePro 8,000 warnings (with all rules activated).

4 Conclusions

Static analysis tools for detection of runtime defects and security vulnerabilities can
roughly be categorized as follows
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¢ String and pattern matching approaches: Tools in this category rely mainly
on syntactic pattern matching techniques; the analysis is typically path- and
context-insensitive. Analyses are therefore shallow, taking little account of se-
mantic information except user annotations, if present. Tools typically generate
large volumes of false positives as well as false negatives. Tools (often derivatives
of the lint program) have been around for many years, e.g. FlexeLint, PC-Lint
and Splint. Since the analysis is shallow it is possible to analyze very large pro-
grams, but due to the high rate of false positives an overwhelming amount of
post-processing may be needed. These tools are in our opinion more useful for
providing almost immediate feedback in interactive use and in combination with
user annotations.

¢ Unsound dataflow analyses: This category of tools which have emerged re-
cently rely on semantic information; not just syntactic pattern matching. Tools
are typically path- and context-sensitive but the precision is limited so in prac-
tice the tools have to analyze also many impossible paths or make more-or-less
justified guesses what paths are (im-)possible. This implies that analyses are
unsound. Aliasing analysis is usually only partly implemented, and tracking of
possible variable values is limited; global variables are sometimes not tracked at
all. A main objective of the tools, represented e.g. by Coverity Prevent and Kloc-
work K7, is to reduce the number of false positives and to allow for analysis of
very large code bases. The low rate of false positives (typically 20-30 per cent
in Coverity Prevent) is achieved by a combination of a unsound analysis and fil-
tering of the error reports. The downside is the presence of false negatives. It is
impossible to quantify the rate since it depends very much on the quality of the
code, but in several evaluations Coverity and Klocwork find largely disjoint sets
of defects. This category of tools provide no guarantees—the error reports may
or may not be real defects (it has to be checked by the user), and code which is
not complained upon may still be defective. However, the tools will typically find
some bugs which are hard to find by other techniques.

¢ Sound dataflow analyses: Tools in this category are typically path- and
context-sensitive. However, imprecision may lead to analysis of some infeasi-
ble paths. They typically have sophisticated mechanisms to track aliasing and
relationships between variables including global ones. The main difficulty is to
avoid excessive generation of false positives by being as precise as possible while
analysis time scales. The only commercial system that we are aware of which has
taken this route is PolySpace Verifier/Desktop. The great advantage of a sound
analysis is that it gives some guarantees: if the tool does not complain about
some piece of code (the code is green in PolySpace jargon) then that piece of
code must be free of the defects checked for.

There is a forth category of tools which we have not discussed here—namely tools
based on model checking techniques [5]. Model checking, much like static analysis,
facilitates traversal and analysis of all reachable states of a system (e.g. a piece
of software), but in addition to allowing for checking of runtime properties, model
checking facilitates checking of functional properties (e.g. safety properties) and also
so-called temporal properties (liveness, fairness and real-time properties). There
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are commercial tools for model checking hardware systems, but because of efficiency
issues there are not yet serious commercial competitors for software model checking.

It is clear that the efficiency and quality of static analysis tools have reached
a maturity level were static analysis is not only becoming a viable complement
to software testing but is in fact a required step in the quality assurance of certain
types of applications. There are many examples where static analysis has discovered
serious defects and vulnerabilities that would have been very hard to find using
ordinary testing; the most striking example is perhaps the Scan Project [12] which
is a collaboration between Stanford and Coverity that started in March, 2006 and
has reported on more than 7,000 defects in a large number of open-source projects
(e.g. Apache, Firebird, FreeBSD/Linux, Samba) during the first 18 months.

However, there is still substantial room for improvement. Sound static analysis
approaches, such as that of PolySpace, still cannot deal well with very large code
bases without manual intervention and they produce a large number of false posi-
tives even with very advanced approximation techniques to avoid loss of precision.
Unsound tools, on the other hand, such as those from Coverity and Klocwork do
scale well, albeit not to the level of interactive use. The number of false positives is
surprisingly low and clearly at an acceptable level. The price to be paid is that they
are not sound, and hence, provide no guarantees: they may (and most likely will)
find some bugs, possibly serious ones. But the absence of error reports from such a
tool only means that the tool was unable to find any potential defects. As witnessed
in the evaluations different unsound tools tend to find largely disjoint defects and
are also known not to find known defects. Hence, analyzed code is likely to contain
dormant bugs which can only be found by a sound analysis.

Most of the evaluations of the tools have been carried out on more or less ma-
ture code. We believe that to fully ripe the benefits of the tools they should not be
used only at the end of the development process (after testing and/or after using
e.g. FlexeLint), but should probably be used throughout the development process.
However, the requirements on the tools are quite different at an early stage com-
pared to at acceptance testing. Some vendors “solve” the problem by providing
different tools, such as PolySpace Desktop and PolySpace Verifier. However, we
rather advocate giving the user means of fine-tuning the behavior of the analysis
engine. A user of the tools today has very limited control over precision and the rate
of false positives and false negatives—there are typically a few levels of precision
available, but the user is basically in the hands of the tools. It would be desirable
for the user to have better control over precision of the analyses. There should for
example be a mechanism to fine-tune the effort spent on deriving value ranges of
variables and the effort spent on aliasing analysis. For some users and in certain
situations it would be acceptable to spend five times more analysis time in order
to detect more defects. Before an important release it could be desirable to spend
much more time than on the day to day analysis runs. In code under development
one can possibly live with some false negatives and non-optimal precision as long as
the tool “finds some bugs”. As the code develops one can improve the precision and
decrease the rate of false positives and negatives; in particular in an incremental tool
such as Coverity Prevent. Similarly it would be desirable to have some mechanism
to control the aggressiveness of filtering of error reports.

17



EMANUELSSON AND NILSSON

References

[1] Ball, T. and S. Rajamani, The SLAM Project: Debugging System Software via Static Analysis, ACM
SIGPLAN Notices 37 (2002), pp. 1-3.

[2] Ben-Amram, A. M. and C. S. Lee, Program Termination Analysis In Polynomial Time, ACM Trans.
Program. Lang. Syst. 29 (2007).

(3] Bush, W., J. Pincus and D. Sielaff, A Static Analyzer For Finding Dynamic Programming Errors,
Software, Practice and Experience 30 (2000), pp. 775-802.

[4] Chelf, B., D. Engler and S. Hallem, How to Write System-specific, Static Checkers in Metal, in: PASTE
’02: Proc. 2002 ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools and
Engineering (2002), pp. 51-60.

[5] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, Cambridge, MA, USA, 1999.

[6] Cousot, P. and R. Cousot, Abstract Interpretation: A Unified Lattice Model For Static Analysis of
Programs by Construction Or Approximation of Fixpoints, in: Conf. Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (1977), pp. 238-252.

[7] Cousot, P., R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux and X. Rival, The ASTREE
Analyser, in: M. Sagiv, editor, Proceedings of the European Symposium on Programming (ESOP’05),
Lecture Notes in Computer Science 3444 (2005), pp. 21-30.

(8] Cousot, P. and N. Halbwachs, Automatic Discovery of Linear Restraints Among Variables of a Program,
in: Conf. Record of the Fifth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (1978), pp. 84-97.

overity Inc., overity Exten ser’s Manua. 4), .
9] C ity 1 “C ity E d™ User’'s M 1(2.4),” (2006

[10] Coverity Inc., Coverity Prevent™: Static Source Code Analysis for C and C++ (2006), product
information.

[11] Coverity Inc., “Coverity Prevent™ User’s Manual 2.4,” (2006).
[12] Coverity Inc., The Scan Ladder (2007), URL: http://scan.coverity.com.

[13] Dershowitz, N. and Z. Manna, Proving Termination With Multiset Orderings, Commun. ACM 22
(1979), pp. 465-476.

[14] Deutsch, A., Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting, in: Proc. PLDI
(1994), pp. 230-241.

[15] Deutsch, A., Static Verification of Dynamic Properties, White paper, PolySpace Technologies Inc
(2003).

[16] Emanuelsson, P. and U.Nilsson, A Comparative Study of Industrial Static Analysis Tools (Extended
Version), Technical Reports in Computer and Information Science no 2008:3, Linkoping University
Electronic Press (2008), URL: http://www.ep.liu.se/ea/trcis/2008/003/.

[17] Gimpel Software, “PC-lint/FlexeLint,” (1999), URL: http://www.gimpel.com/lintinfo.htm.

(18] GrammaTech Inc., Overview of GrammaTech Static Analysis Technology (2007), white paper.

[19] King, J., Symbolic Execution and Program Testing, Comm. ACM 19 (1976), pp. 385-394.

[20] Klocwork Inc., Detected Defects and Supported Metrics (2005), K7 product documentation.

[21] Palsberg, J. and M. Schwartzbach, Object-Oriented Type Inference, in: Conf Proc Object-Oriented
Programming Systems, Languages, And Applications (OOPSLA ’91) (1991), pp. 146-161.

[22] Parasoft Inc., Automating C/C++ Runtime Error Detection With Parasoft Insure++ (2006), white
paper.

(23] PolySpace Technologies, “PolySpace for C Documentation,” (2004).
[24] Rational Software, Purify: Fast Detection of Memory Leaks and Access Errors, White paper (1999).

[25] Rosenblum, D. S., A Practical Approach to Programming With Assertions, IEEE Trans. Softw. Eng.
21 (1995), pp. 19-31.

18


http://scan.coverity.com
http://www.ep.liu.se/ea/trcis/2008/003/
http://www.gimpel.com/lintinfo.htm

EMANUELSSON AND NILSSON

[26] Ryder, B. and F. Tip, Change Impact Analysis For Object-Oriented Programs, in: Proc. of 2001 ACM
SIGPLAN-SIGSOFT workshop on Program Analysis For Software Tools And Engineering (PASTE
’01) (2001), pp. 46-53.

[27] Schwartzbach, M., Lecture Notes on Static Analysis (2006), BICS, Univ. Aarhus, URL:
http://www.brics.dk/"mis/static.pdf.

(28] Steensgaard, B., Points-to Analysis in Almost Linear Time, in: ACM POPL, 1996, pp. 32-41.

[29] Wagner, D. and D. Dean, Intrusion Detection via Static Analysis, in: Proc. of 2001 IEEE Symp. on
Security and Privacy (SP’01) (2001), pp. 156-168.

[30] Wagner, T., V. Maverick, S. Graham and M. Harrison, Accurate Static Estimators For Program

Optimization, in: Proc. of ACM SIGPLAN 1994 Conf. on Programming Language Design And
Implementation (PLDI ’94) (1994), pp. 85-96.

19


http://www.brics.dk/~{}mis/static.pdf

SSV 2008

Pervasive Compiler Verification —
From Verified Programs to Verified Systems

Dirk Leinenbach' ?

German Research Center for Artificial Intelligence (DFKI)
P.O. Bozx 15 11 50
66041 Saarbricken, Germany

Elena Petrova'!+

Saarland University, Computer Science Dept.
P.O. Bozx 15 11 50
66041 Saarbricken, Germany

Abstract

‘We report in this paper on the formal verification of a simple compiler for the C-like programming language
C0. The compiler correctness proof meets the special requirements of pervasive system verification and al-
lows to transfer correctness properties from the CO layer to the assembler and hardware layers. The compiler
verification is split into two parts: the correctness of the compiling specification (which can be translated
to executable ML code via Isabelle’s code generatore) and the correctness of a C0 implementation of this
specification. We also sketch a method to solve the boot strap problem, i.e., how to obtain a trustworthy
binary of the C0O compiler from its C0 implementation. Ultimately, this allows to prove pervasively the
correctness of compiled CO programs in the real system.

Keywords: Compiler Verification, Theorem Proving, System Verification, HOL, Hoare Logic

1 Introduction

The Verisoft project aims at the pervasive formal verification of computer systems
comprising hardware (the verified VAMP processor [7,12] and devices [1,18]), system
software [15], and applications [5]. ‘Pervasive’ means to prove a single, integrated
correctness theorem for the whole system instead of verifying separate properties
for each layer without justification that they formally fit together (cf. [30]).
Except for very small parts of the system level software, software in Verisoft
is implemented in the C-like programming language C0. This language has been
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designed to be expressive enough to allow implementation of low-level software
while—at the same time—being ‘neat’ to allow for efficient formal verification of
medium-sized CO applications. However, pervasive verification does not stop at
the C0 level. To allow execution of verified programs on the real hardware they
must be compiled to binary code. This translation could itself introduce errors
into an otherwise verified C0 program. Thus, verification of the translation process
is essential for pervasive system verification when using a high-level programming
language. Furthermore, the formulation of the compiler correctness statement has
to be adequate for pervasive verification [24].

In order to bridge the gap between verified software and verified hardware, we
have defined a compiling specification for a C0 compiler in Isabelle / HOL [35]
and additionally implemented the compiler in C0. Both the compiling specification
and its implementation have been formally verified [23,38]. For the latter we have
shown using a C0 verification environment [40] that it produces the same list of
assembler instructions as specified by the compiling specification. For the former
we have verified a small-step simulation theorem, which states that the original
C0 program and the compiled code behave equivalently. This theorem respects
resource restrictions (e.g., bounded memory size) of the target machine and permits
to discharge them at the C0 level. That the theorem is formulated in a small-step
manner allows to argue about interleaving and non-terminating computations.

This paper is supposed to give an overview of the compiler verification efforts in
Verisoft. For more details and precise formal definitions see [23,38].

1.1  Requirements Analysis and Related Work

Compiler verification is a well established field [13]. There are correctness proofs
covering issues from simple expression translation in [27] to compilers with optimiza-
tions in [8,25]. Also, different source languages are considered: from toy languages
to subsets of C [25] and Java [41] or the Java virtual machine [22].

In the Verifix project [14], impressive work concerning correct compilers has
been done. In [44], the authors present an elegant theory for the translation of
intermediate languages to machine languages; the work was partially formalized in
the PVS theorem prover. The implementation of a compiler for ComLisp (a subset
of Common Lisp) was verified on the machine code level by a manual check [16].

Recently, Leroy et al. have formally verified an optimizing two-step translation
from Clight (a subset of C) first to the intermediate language C Minor and then to
PowerPC assembler [8,25]. The proof in the Coq proof assistant is based on big-step
semantics of the source and target languages. An executable compiler was obtained
by automatic (unverified) extraction from the Coq specification.

However, a compiler correctness theorem to be used for pervasive system verifi-
cation has to meet extra requirements. We highlight the most important ones.

Language Model

CO0 is a sequential language and even the target machine is a uni-processor ar-
chitecture. So, sequential reasoning, big-step semantics, and classical Hoare logics
seem to be adequate. But interleaving and non-terminating system software as well
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Fig. 1. Semantics Layers in Verisoft

as interrupt driven devices demand a concurrent model [2,18]. Small-step semantics
and a small-step compiler correctness theorem are appropriate to handle this.

Compiler correctness proofs w.r.t. small steps semantics exist on paper [26,34].
But the proofs are usually carried out ‘big step style’ by a straightforward induction
over the syntax tree. This works only for terminating programs. In our context it is
much more comfortable to work with a compiler correctness statement in the form
of a small-step simulation theorem as it has been done for a back-end in [44].

The Verisoft project uses several semantical layers to base reasoning on the
right abstraction level [2]. This increases efficiency—when using the more abstract
layers—while still allowing formulation and verification of detailed, concrete prop-
erties on the lower layers. Figure 1 depicts this stack. Results from the higher
layers have to be formally transferred to the lower layers using meta theorems. Fi-
nally, this yields a single correctness theorem for the complete system. To support
C0 programs which invoke in-line assembler code in the Hoare logic, we formalize
the effect of the in-line assembler parts axiomatically using so-called XClalls [2].
Their implementation has to be plugged in at the level of the C05 semantics which
combines C'0 with in-line assembler.

Pervasiveness

In [9] the specification of an optimizing compiler back-end from the SSA inter-
mediate language has been formally verified. However, the machine model used
there is not the language of a realistic processor and hence the work does not suffice
to bridge the gap between software and hardware for pervasive verification. On the
other hand, the work from [43] describes a framework for modeling the semantics
of expression evaluation including non-determinism in the evaluation order. In the
context of pervasive verification, such complicated languages are not desirable as
they make correctness proofs of larger programs infeasible.

Pervasive verification has to handle resource restrictions on the target machine.
Our compiler correctness theorem incorporates these restrictions and allows to dis-
charge them at the CO rather than at the assembler level which simplifies reasoning
and increases productivity. The small-step character of our simulation theorem
allows to easily argue about resource restrictions also for intermediate states.

The famous CLI project [6] resulted in a stack of verified components including a
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compiler specification. The produced collection of verified programs has mostly been
done in low-level languages. Recently, Zhong Shao [33] presented very nice logics
for the assembler level verification of different kinds of low-level software. However,
to allow for the efficient verification of medium-sized applications we have to use a
high-level implementation language.

Farly papers consider only verification of a compiling specification rather than
verification of its implementation, although in [11,29] the authors already pointed
out the necessity of the implementation correctness proof. Later, Goerigk et al.
added a new aspect of compiler correctness, namely the bootstrapping problem, i.e.,
generation of the first trustworthy executable of a verified compiler [16].

Integration of Solutions

As pointed out above, there are many additional challenges for compiler verifi-
cation due to pervasive verification. Some of them have been solved (in isolation)
in a similar or even more general way in other work. However, in the context of
pervasive verification an essential part of the verification effort has to be invested
in the combination of the individual solutions into a single framework. In addition
to the impressive work of the CLI stack project [6], early work from Joyce [21]
discusses problems imposed by the formal combination of a verified compiler with
verified hardware. To the best of our knowledge, the work presented in this paper
is the first which integrates all the separate solutions into a single framework that
provably [2] meets the needs of pervasive verification of complex systems.

1.2 Outline

The remainder of this paper is structured as follows. In Section 2, we introduce
the CO language and sketch its small-step semantics. We present a simulation
theorem for the compiling specification in Section 3 and a correctness proof for
the compiler implementation in Section 4. The section about the correct compiler
implementation contains a sketch of our approach to solve the bootstrap problem.
We conclude in Section 5 and discuss some future work.

2 The C0 Language

Semantics of the full C language are complex [17,36,37] and the use of all features
of C leads to an error-prone programming style [31]. In contrast, formal verification
of programs is easier and more efficient for programming languages with concise
semantics. Verisoft uses the C-like imperative language C'0 which has sufficient
features to implement all system and application software in Verisoft while still
allowing for efficient verification of programs with several thousand lines of code.
C0 has several limitations compared to standard C [20]; we list the most im-
portant ones. Side effects in expressions are not allowed, which forbids in particu-
lar function calls as subexpressions and requires a special function call statement.
Pointers are typed and must not point to local variables or to functions; void point-
ers and pointer arithmetic are not supported. Arrays have to be of fixed size and
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ty = Boolt | Inty | Chart | Unsignedr
| Stro(S x ty list) | Arrp(N, ty) | Ptro(S) | Nullt

Fig. 2. Data Type ty for CO Types

expr = Lit(lit) | Var(S) | Arr(expr, expr) | Str(expr,S)
| UnOp(unop, expr) | BinOp(binop, expr, expr)
| LazyBinOp(lazyop, expr, expr)
| AddrOf (expr) | Deref (expr)

Fig. 3. Data Type expr for CO Expressions

are represented by a separate type in C0. Low-level data types (unions or bit fields)
and control flow statements (switch, goto, long jumps) are not supported.

C0 supports four basic types: booleans, 32-bit signed integers, 32-bit natural
numbers, and 8-bit signed integers. Pointers, fixed size arrays, and structures are
supported as aggregate types (cf. Figure 2). Pointer types do not directly include the
type to which the point; instead, we use an additional indirection via type names.
This allows the definition of self-referencing pointer types (e.g., a list component
type whose ‘next’ field is a pointer to the component type). The mapping from type
names to types is handled via a so-called type name environment (cf. Section 2.1).
Observe, that there exists a special type for null pointer constants. FElementary
types comprise basic types and pointers.

Variable names and literals are expressions. If e and 7 are expressions and cn
is a component name, then array access e[i], access to structure components e.cn,
dereferencing *e, and the ‘address-of’ operator &e are also expressions. Addition-
ally, CO supports the usual unary and binary operators. In Figure 3, we give a
formal definition of the data type expr which models C'0 expressions in Isabelle.

C0 statements are modeled in Isabelle via the data type stmt (cf. Figure 4).
Observe, that statements of a C'0 program are annotated with unique identifiers of
type sid (which is isomorphic to the natural numbers). These identifiers allow us to
map statements occurring in the dynamic program rest to the original statements
in the function table of a C'0 program and to determine the function they belong
to and their relation to other statements of the program.

In the following, let s and e (with arbitrary subscripts) denote statements and
expressions. Besides sequential composition comp(s1, s2), while loops while(e, s),
conditional statements if (e, s1, s2), and the empty statement skip, C'O supports the
following statements.

Assignments come in two flavors. Normal assignments ass(e;, e,) copy the value
of one expression to another. Unlike standard C, C'0 supports assignments of arbi-
trary aggregate types. o Complex assignments assc(e;,l.), which assign a complex

5 1In addition to the rather restricted assignments of structures in C90, the C99 standard supports as-
signments like x = (struct s){.n1 = el, n2 = e2};. However, C restricts this kind of assignments to
initializers.
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stmt = skip | comp(stmt, stmt)
| ass(expr, expr, sid) | assc(expr, lit., sid) | new(expr,S, sid)
| return(expr, sid) | if (expr, stmt, stmt, sid)
| while(expr, stmt, sid) | asm(asm list, sid)
| scall(S,S, expr list, sid) | xcall(S, expr list, expr list, sid)

Fig. 4. Data Type stmt for CO Statements

literal l. to an expression, are needed to initialize variables of aggregate types in a
single step. This is required for the equivalence proof to the Hoare logic [40]. The
left side of complex assignments is a normal expression of some aggregate type and
the right side is a literal of the same type. Observe, that complex literals are only
supported in this special case and must not be used inside normal expressions.

Dynamic allocation of zero-initialized heap memory for a type t is supported via
new (e, t) which assigns a pointer to the newly allocated memory region to the left
side expression e. Observe, that C'0 does not support explicit deallocation. Instead,
a garbage collector will be used to deallocate unreachable parts of the heap in user
applications. ® The implementation correctness of a copying garbage collector for
C0 has already been formally verified but is not yet integrated into the compiler
correctness proof.

Function calls to a function f with parameters e; to e, are represented by
scall(x, f,e1,...,ey). Because CO expressions must not have side effects, function
calls are not supported as subexpressions. Instead, the return value of the func-
tion will be copied implicitly to variable z. Return from functions is handled by
return(e).

In the remainder of this paper we will often use the shorthand notation r;s;t
instead of comp(r, comp(s,t)) for consecutive statements r, s, and t.

2.1 CO0 Small-step Semantics

C0 programs are represented in Isabelle by a symbol table gst for the global vari-
ables, a type name environment te, and a function table ft. The symbol table is a
list of variable names together with their types. The type name environment maps
type names to types. The function table maps function names to functions which
are represented by a tuple consisting of a symbol table for the function’s parameters,
a symbol table for the local variables, the function’s return type, and a statement
representing the body of the function.

Configurations

Configurations ¢ of the C'0 small-step semantics consist of two components: the
program rest c.pr :: stmt and the memory configuration c.mem. The program rest
stores those statements which still have to be executed. It is initialized with the

6 The operating system kernel of the Verisoft project [19,15] does only allocate a fixed amount of memory
at startup. Thus, garbage collection is not necessary and the collector is deactivated for the kernel.
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body of the ‘main’ function and grows / shrinks during program execution. A
program has terminated when c.pr = skip.

The memory configuration is a triple consisting of a global memory frame
c.mem.gm :: frame, a stack of local memory frames c.mem.lm :: (gvar x frame) list,
and a memory frame for heap variables c.mem.hm :: frame. Each memory frame
m consists of a symbol table m.st which lists the variables of the frame and of a
content function m.ct :: N — mecell which maps addresses (natural numbers) to
memory cells. A single memory cell can store values of elementary types. Values
of aggregate types are stored flattened as a consecutive sequence of memory cells.
Each local memory frame stores additionally a so-called g-variable which encodes
the memory location where the function’s result has to be stored.

Generalized Variables

Generalized variables (short g-variables) are a structural way of referring to
memory objects. Pointers in the C'0 small-step semantics are represented using
g-variables. There are three base cases for g-variables: global variables of name x
are represented by gvar,, (), local variables = in the i-th local memory frame by
guary, (i, ), and nameless heap variables with index ¢ by gvary,, (7). The inductive
case defines g-variables for structure and array access. If g is a g-variable of structure
type then a component ¢' = gvarg, (g,n) of name n is also a g-variable. If g is a
g-variable of array type then its i-th element ¢’ = gvar,,.(g,7) is also a g-variable.
In these two cases, ¢’ is called a sub g-variable of g.

We inductively define the set of reachable g-variables: a g-variable g is reachable
iff (i) g is a global or local g-variable, (ii) another reachable pointer g-variable points
to g, or (iii) g is a sub g-variable of a reachable g-variable.

Expression Evaluation and Transition Function

The value of expressions e-remember that C'0 expressions are side effect free—and
g-variables g in configuration c is computed via va(c, ) and va(c, g), respectively. It
is represented as a sequence of memory cells. The transition function dcg computes
for a given CO configuration ¢ the next configuration ¢’. If a runtime error (e.g.,
division by zero) occurs, the functions returns the special error state L which it will
never leave. We define C'0 computations by repeated application of the transition
function: we start in an initial configuration ¢® and define inductively ¢/t = §gg(c?).

For later reference, we highlight some parts of the definition of the new program
rest ¢.pr. Let the old program rest start with statement s, i.e., c.pr = s;r. In
most cases s is simply executed and the new program rest is set to ¢.pr = r. In
three cases the length of the program rest can grow. (i) If s = while(e,s’) and
va(c,e) = true then the new program rest is ¢.pr = s';s;r. (i) If s = if (e, s1, 52)
then the new program rest is ¢.pr = sy;7 or .pr = so;r. (iii) If s is a function call
to some function f with body b then the new program rest is .pr = b;r.

An Invariant on Program Rests
We prove an invariant about program rests of the C'0 small-step semantics which
will be used in the correctness proof for the compiling specification in Section 3:
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each statement s in the program rest of a computation for some program p, except
for return statements, is always followed by some statically determined successor
statement succ(p, s).

To formalize this invariant we need additional definitions. Observe, that we
model partial functions in Isabelle with an option type; here, we hide this formalism
and represent undefined values by the special symbol L.

We denote by s2l :: stmt — stmt list a function which flattens a statement tree
spanned by skip and compound statements into a list of statements as follows:

[] if s = skip
s2l(s) = 4 s2l(s1) o s2l(s2) if s = comp(s1,s2) -
[s] otherwise

Let p be a C0 program and fb the function body which contains statement s in
the function table of p. We define the parent statement of s in program p in the
following way.

L if s € s21(fb), i.e., if s is a top-level statement
pa(p,s) =< s if Is’ € p. s’ = while(e,lb) A s € s2I(Ib)
s if 3" ep. s’ =if(e,s1,52) A (s € s2l(s1) Vs € s2l(s2))

By induction we define the i-th parent statement by pa®(p, s) = s and pa®*!(p,s) =
pa’(p, pa(p,s)). We define the environment of statements s, i.e., the list of state-
ments in the basic block which s belongs to.

s2l(s1
s21(s2
s2L(1b
s2l(fb

if pa(p,s) = if (e, s1,52) N's € s2l(s1)
if pa(p, s) = if (e, s1,82) A s € s2l(s2)
if pa(p,s) = while(e, Ib)

otherwise, i.e., if s is a top-level statement

env(p, s) =

~— ~— o —

For a statement s we define its direct successor succq(p, s) to be the next statement
in the environment of s. The direct successor is undefined if s is the last statement
in env(p, s). Finally, if s is not the last statement of a function body (in this case
it would be a return statement), we recursively define its successor succ(p, s).

suceq(p, S) if succq(p,s) # L
succ(p, s) = 4 pa(p, s) if succq(p, s) = L and pa(p,s) is a while loop

succ(p, pa(p,s)) otherwise

In the following, we will always argue in the context of a fixed C0O program; thus,
we will mostly omit the first parameter p of the above definitions.

Theorem 2.1 (Invariant on Program Rests) If s € s2l(c'.pr) for some step
number i of a CO computation and s is not a return statement then the next state-
ment in s2l(c'.pr) is the successor statement of s, i.e., s is always followed by its
successor statement.
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Proof. This theorem depends follows from the fact that the program rest of C0
programs only changes in a certain way. We prove it by induction on the step
number <.

For all statement trees which are literally copied from the function table, the
invariant holds by definition of succ(s). This proves the induction base, where the
program rest consists only of the body of the main function. For the induction step
let the program rest be ¢’.pr = s;r. We do a case distinction on the statement s,
which will be executed in the next step.

If s is an assignment, a while with false condition, a return, or a new statement,
s is simply consumed (c'T!.pr = r) and the invariant obviously holds.

If s = while(e,Ib) and va(c',e) = true we have c¢'tl.pr = Ib; while(e, Ib);r.
Because b is part of the function table, the invariant holds for this part of the
new program rest. The other part of the program rest remains unchanged. The
crucial point is to prove that the while statement is the correct successor for the
last statement s’ of the loop body, formally: succ(s’) = while(e, lb). This follows
from the second case of the definition of succ(s).

If s = if(e,s1,52) the new program rest is ¢'tl.pr = sy;7r or ¢tlpr = so;7,
depending on the value of e. Let for both cases s’ denote the last statement in
the corresponding branch s; or so. We have to show that s is followed by succ(s’)
in the new program rest. By the third case of the definition of succ, we know
that succ(s’) = succ(s). Therefore, we can conclude with help of the induction
hypothesis that s is followed by the same statement which followed the conditional
s in the original program rest (in all cases this is the first statement in statement
list 7).

If s is a function call of some function f with body fb the new program rest is
¢t pr = fb;r. For r, the invariant still holds by induction hypothesis; for fb, it
holds by definition of succ because of fb being a sub tree of the function table. The
interesting case is again the crossing from fb to r. However, in this special case
there is nothing to show because the last statement in the function body is a return
and the invariant does not state anything for return statements. O

3 Correctness of the Compiling Specification

The code generation algorithm of the C0O compiler is quite simple. It starts by it-
erating over all functions in the function table and generates code for their bodies.
The code generation for statements and expressions—in the context of a certain
function—is done by a simple recursive algorithm which follows the structure of the
corresponding data types. We denote code generation of the compiling specification
for statements s and expressions e in this paper by codes(s) and codes(e); anal-
ogously, we denote the code generated by the implementation by code;i(s). With
cad(s) we denote the start address of the code which has been generated for state-
ment s and with ead(s) the address of the first instruction behind this code. As an
example we present the code generation template for loops in Figure 5.
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[
codes(e) | beqz | nop | codes(Ib) |j | nop
|

Fig. 5. Code Generation Template for Loops: codes(while(e, Ib))

3.1  Simulation Relation

We define a simulation relation between configurations ¢ of the C'0 machine and
configurations d of the VAMP assembler machine. The latter are composed of two
program counters d.pc and d.dpc implementing the delayed branch mechanism (see
[7,32]), a word addressed memory d.m, and a general purpose register file d.gpr.

The set of valid g-variables of a C0 machine changes with new statements,
function calls, and returns, and garbage collectors may change the allocated base
address of heap g-variables. Thus, the simulation relation is parametrized with
the current allocation function alloc which maps g-variables to their allocated base
address in the VAMP assembler machine.

The simulation relation consis(c, alloc,d) states that the VAMP configuration
d encodes the C0O configuration ¢ via the allocation function alloc. It comprises
control consistency consisc(c,d) and data consistency consisq(c, alloc,d). Control
consistency states that the VAMP’s program counters point to the code of the first
statement in the current program rest: d.dpc = cad(hd(c.pr)) and d.pc = d.dpc + 4.
Data consistency is a conjunction of the following predicates.

Code consistency consiscode(¢, d) requires that the compiled code of the C0O pro-
gram is stored at address 0 of the VAMP machine; this forbids self-modification.

Value consistency consisy(c, alloc, d) requires for all reachable g-variables g of ba-
sic type that C0 and VAMP machine store the same value: d.m(alloc(g)) = va(c,g).
For reachable pointer g-variables p which point to some g-variable g we require that
the value stored at the allocated address of p in the VAMP machine is the allo-
cated base address of g, i.e., d.m(alloc(p)) = alloc(g). This defines a subgraph
isomorphism between the reachable portions of the heaps of the C'0 machine and
the VAMP machine.

Stack consistency consiss(c,d) is a predicate on the implementation of the run
time stack and the content of some special registers. Informally, it states that the
first three words of each frame in the VAMP machine store the return address, i.e.,
where the code for final return statement jumps to, the destination address for the
function’s result, and a pointer to the previous frame. Additionally, we require that
the return addresses in the VAMP agree with the control flow in the program rest
of the C'0 machine. Formally: that for all i + j = |c.mem.lm| the return address
stored in the j-th stack frame matches the address of the statement which follows
the i-th return statement in the program rest.

3.2  Simulation Theorem

Essentially, the main theorem about the compiling specification states that for all
steps i of the C0 machine, there exists a corresponding step number s(¢) such that
after s(i) steps the assembler machine is consistent with the C0 machine after ¢ steps
(cf. Figure 6). In reality, the theorem requires several additional preconditions.
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Fig. 6. Small-step Compiler Simulation Theorem

Theorem 3.1 (Simulation Theorem) Let p be a CO program, c® the correspond-
ing initial configuration of the CO machine, and d some well-formed initial assembler
configuration which contains the compiled code codey(p) at address 0. Then, it holds
for all steps i of the CO machine executing program p that there exists an assembler
step number s(i) and an allocation function alloc’ such that the CO machine after i
steps is consistent with the assembler machine after s(i) steps.

However, this is only true of the following requirements are fulfilled.”

* The program p has to be translatable for our compiler: p € xltbl, .. Basically,
this requires that the compiled code is not too big for the target machine, that
jump distances fit into the immediate operands of the corresponding VAMP
instructions, and that expression evaluation does not require too much registers
to store intermediate results.

o We must not reach an error state up to step i of the CO computation: c* # L.

e There must not be a stack overflow up to step i of the CO computation: ¥Vj <

i: _‘O'Uﬂstack(ca ) .

Formally, the theorem is stated as

Vi p € altblypog A€ # LAV < it 00flyyup(&)

— 3s(i), alloc® : consis(c*, alloc’, d*).

Proof. We prove this theorem by induction on i. For the induction start ¢ = 0 we
mainly have to show that the initialization part of codes(p) works correctly. The
induction step from ¢ to ¢+ 1 is proved by a case distinction over the first statement
s in the program rest ¢’.pr = s;r. We cannot present all cases here but concentrate
on one interesting detail of the proof which comes from the fact that we prove a
small-step simulation theorem.

Assume, that the program rest of the next configuration ¢t! starts with some
statement s’. For control consistency, we have to show that the program counters
eventually point to cad(s’). For the three cases in which the program rest grows
(cf. Section 2.1), this proof is relatively easy because the correctness arguments are
local regarding the statement s to be executed in step ¢. For return statements the
proof follows immediately from stack consistency, which guarantees that the return
addresses on the stack are correct.

For the remaining cases, s is completely consumed in the next step and we have
s’ = r. Thus, we have to show that we eventually reach the start of codes(r) where
r—the new head of the program rest—is by Theorem 2.1 the successor statement

7 Due to space restrictions we do not formally define the requirements in this paper. For details see [23].
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of s. However, it is not guaranteed that codes(r) directly follows codeg(s) in the
compiled program; instead some control code might be placed between codeg(s) and
codeg(r) (cf. Figure 7).

For example, consider s being the last statement in the if-branch s; of the
conditional statement. There, codes(s) is followed by a jump instruction which
skips the else-branch s, and this jump does not belong to codes(s1) although it
is indispensable to ensure control consistency after execution of s;. In this case,
the proof of control consistency is not local w.r.t. s but depends on the code for
the conditional statement; even more, the jump instruction behind the code for the
loop body also needs to be considered. However, in configuration ¢’ the conditional
statement is no longer present in the program rest and we cannot easily argue about
the correctness of the jump instruction. Instead we outsource the correctness proof
of the control code into the following lemma. O

The first requirement of the previous theorem, i.e., that the program is translat-
able, is formulated in the executable subset of Isabelle’s specification language and
can be easily checked once and for all for a given C'O program using Isabelle’s ML
code generator. The other two requirements argue about runtime properties of the
program; in the Verisoft scenario, they follow from the functional correctness proof
of the program to be compiled.

Lemma 3.2 (Control Code Correctness) Let the program counter of assembler
configuration d* point directly behind the last instruction of codey(s), where s is not
a return statement. Then, it holds that after a certain number t of assembler steps
we reach a configuration where the program counter points to the first instruction
of the successor statement of s and the memory has not been changed.

d'.dpc = ead(s) A d'.pc = d'.dpc + 4
— Tt : d".dpc = cad(suce(s)) Adpe = d"dpe + 4 A dTEm = d'om

Proof. We prove this theorem by induction—following structurally the definition
of succ(s). If s is not the last statement in a loop body or in the branch of some
conditional, then there is no control code behind codes(s) and we are done.

If s is the last statement in the body of some loop while(e,lb), we know from
the definition of succ that while(e, () itself is the successor of s. By a proof, which
is local w.r.t. the while loop, we can show that the distance of the jump instruction
behind the loop body is correct and we finally have d**t.dpc = cad(while(e, b)) =
cad(succ(s)).

The most complicated case is when s is the last statement in a branch of some
conditional statement. First, we show—using a simple auxiliary lemma—that the
control code behind the conditional branch correctly jumps behind the code of the
conditional statement, i.e., that we reach cad(pa(s)). Then, we apply the induction
hypothesis to show that we finally reach cad(succ(pa(s))) = cad(succ(s)). O
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Fig. 7. Fragmented code generation for codes(while(e’, if (e, s1,52)); 1)

[ p: CO source code ]

[ compiling specification ] [ compiler implementation ]
!
[ codes(p) ];[ code; (p) ]

Fig. 8. Correctness of the Compiler Implementation

4 Implementation Correctness

For pervasive verification, it is not sufficient to have a verified compiling specifica-
tion. Additionally, we need a verified compiler implementation in C0O which allows
us (after boot strapping, cf. Section 4.4) to execute a verified compiler binary on the
target platform. In addition to Theorem 3.1, it suffices to show that the compiler
implementation produces the same code as the compiling specification (cf. Figure 8).

We have restricted the verification of the compiler implementation in Verisoft
to the implementation of the code generation algorithm which consists of roughly
1.500 lines of C'0 code in about 60 procedures. Due to limited project resources,
parsing and I/O operations have not been verified. The verified compiler core is
embedded into an unverified front-end written in C/C++, which parses a C'0 input
program, checks its syntactical correctness, and produces a syntax tree, which is
then being fed into the compiler core. The verified core translates the C'0 syntax
tree into a list of VAMP assembler instructions, which is output by an unverified
I/O routine.

The compiling specification works in one pass: offsets for relative jumps are
determined on the fly via functions which compute solely the size of the generated
code. In contrast, the compiler implementation in Section 4 uses two-pass compi-
lation. Jump distances for relative jumps are left out in the first pass and filled in
with correct values in a second pass when the position of all jump destinations is
known.

4.1 Verification Environment

The compiler implementation has been verified in the CO0 verification environ-
ment [40] which is based on a Hoare logic with an automatic verification condi-
tion generator (VCG) and allows to prove both partial and total correctness. The
VCG automatically applies Hoare rules to a Hoare triple {P}c{@} by computing
the weakest precondition WP for ¢, ), and user-provided invariants for loops. Af-
ter the program c is completely eliminated, the goal P — WP is to be shown
interactively in Isabelle.

The heap model features split heaps for every type (following ideas from [10]),

32



LEINENBACH AND PETROVA

which gives separation of heap structures of different types for free. Additionally,
the verification environment embeds C0 expressions shallowly into HOL to increase
productivity. Due to the shallow embedding, the range of elementary types is—
in contrast to the C'0 small-step semantics—not bounded. Thus, expressions have
to be annotated with so-called guards to allow the transfer of properties from the
Hoare logic layer to the lower layers. Validity of such guards, which are generated
automatically, implies the absence of run-time errors caused by over- or underflow.

4.2 Correctness Theorem

We formulate pre- and postconditions of the Hoare triples using so-called abstrac-
tion relations, which state the correspondence between the current state variables
and abstract HOL types [28]. Abstraction relations have to be defined for all rel-
evant data structures of the compiler implementation. Absence of pointers in the
specification language results in very different representation of objects and, hence,
makes abstraction relations and verification more complex.

As we do not prove the correctness of the front-end, we assume that the ini-
tial state o of the compiler core contains a syntax tree of the input program and,
analogously, the final state 7 encodes the compiled instruction sequence. Formally,
this is stated by the two top-level abstraction relations COprog(c,p) which states
that o encodes the CO program p and ASM ¢oqe(7,1) which states that 7 encodes a
list I of VAMP instructions. Using these abstraction relations we can formulate the
top-level correctness theorem for the compiler implementation.

Theorem 4.1 Let p be a CO program, cimpl the CO function which implements the
code generation, and o the initial state. Then, after executing cimpl, the final state
T encodes exactly that list of VAMP instructions which is specified by the compiling
specification via codes(p). Formally, this is stated by the following Hoare triple.

{C0prog(o,p)} Call cimpl(); {ASM coge(T, codes(p))}

4.8 Verification Issues

We highlight some of the key verification issues for the compiler implementation
(besides code size). One of these follows from the implementation and specification
being written in an imperative and a functional programming language, respec-
tively. Thus, the correct implementation of recursive functions by while loops is
an issue. Additionally, the recursion directions often differ; for example, in the
implementation lists are traversed from head to tail and the specification exploits
natural recursion with the last list element as induction base. Another example is
the code generation for complex literals, where mutually recursive functions in the
specification are implemented by a combination of recursive functions and loops.
In some cases, a single function in the specification is implemented by a combi-
nation of several CO functions. One interesting example is the equivalence of the
two-pass translation in the compiler implementation with the single-pass recursive
function in the specification. Such cases require the introduction of additional inter-
mediate states and predicates which allow to connect the different implementation
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functions until we can finally prove their equivalence with the single specification
function.

4.4  Boot Strapping

To solve the bootstrap problem [16], i.e., to obtain a trustworthy binary of the
C0 compiler, it is not sufficient to verify the code generation algorithm or the C0
implementation of the compiler. In Verisoft, we follow two different ways how to get
a trustworthy executable from the compiler implementation. First, B. Finkbeiner’s
group is currently applying translation validation techniques [39] to show that a
binary compiler which has been generated by an untrusted bootstrap compiler is a
correct translation of the compiler implementation from Section 4. Second, we have
used Isabelle’s built-in ML code generation feature [3,4] to compile the (verified parts
of the) implementation from Section 4 using the functional compiling specification
from Section 3 (see also [42]).

Of course, both approaches extend the trusted code base: the first by the trans-
lation validation tool, the second by Isabelle’s code generation module. However, we
can simply apply both methods and compare the resulting binaries. The probability
that both produce the same error is negligible.

5 Conclusion and Future Work

We have sketched in this paper the correctness proof of a simple, non-optimizing C0
compiler. The correctness proof has been formalized in the theorem prover Isabelle /
HOL and is split into a simulation theorem for the compiling specification and a
proof for the total correctness (including termination and validity of guards) of the
compiler implementation consisting of 1.500 lines of C0 code.® The formal proofs
and definitions consist of roughly 85.000 lines of Isabelle code. This number covers
the C0 small-step semantics (15.000 lines, including type correctness proofs and
Theorem 2.1), the correctness proof for the compiler implementation (40.000 lines),
and the simulation proof for the compiling specification (30.000 lines).

The compiler has been verified in the context of pervasive system verification
in Verisoft. We had to deal with resource limitations on the target machine (e.g.,
restricted memory size) and other additional requirements; especially arguments
about small-steps semantics have become mandatory. Thus, the top-level correct-
ness theorem had to be extended with additional requirements on the C'0 compu-
tations (e.g., limits on recursion depth), which guarantee that properties proved at
the source language layer also hold for the compiled code.

We have also presented a solution to the boot strap problem. The compiling
specification is in the executable subset of Isabelle’s specification language. Thus,
a trustworthy compiler binary can be generated by executing the specification.

The C0 implementation of a copying garbage collector has already been verified
in Verisoft. However, the integration of this result into the compiler simulation
theorem remains as future work.

8 The formal proofs for the work presented in this paper can be downloaded from the Verisoft repository
at http://www.verisoft.de/VerisoftRepository.html.
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Abstract

Structured types, such as C’s arrays and structs, present additional challenges in pointer program verifi-
cation. The conventional proof abstractions, multiple independent typed heaps and separation logic, which
in previous work have been built on a low-level memory model for C and shown to be sound, are not
directly applicable in verifications. This is due to the non-monotonic nature of pointer and lvalue validity
in the presence of the unary &-operator. For example, type-safe updates through pointers to fields of a
struct break the independence of updates across typed heaps or A*-conjuncts. In this paper we present
a generalisation of our earlier formal memory model that captured the low-level features of C’s pointers
and memory and formed the basis for an expressive implementation of separation logic, with new features
providing explicit support for C’s structured types. We implement this framework in the theorem prover
Isabelle/HOL and all proofs are machine checked.

Keywords: Separation Logic, C, Interactive Theorem Proving

1 Introduction

Programs featuring pointers are more difficult to verify than programs without
indirection, largely as a result of the aliasing problem [1]. For example, consider a
program with two pointer variables float * p and int * ¢ and the following triple:

{ True |} xp = 3.14; xg = 42; { xp = ? |}

We are unable to ascertain the value pointed to by p as it may refer to the same lo-
cation as ¢q. With type-safe languages, this form of aliasing, which we call inter-type
aliasing, can be ignored in proofs if the abstraction of multiple-typed heaps is used,
where we have a semantic model with a heap function variable for each language
type, e.g. float-heap :: float ptr — float, int-heap :: int ptr — int. Unfortunately in C
we do not have this luxury as language features such as pointer arithmetic and cast-
ing break any illusion of type-safety, and we are forced to adopt the programmer’s
model of the heap as a function addr = byte, in particular when we wish to verify
systems code exploiting compiler and architecture dependent language features.

1 National ICT Australia is funded through the Australian Government’s Backing Australia’s Ability ini-
tiative, in part through the Australian Research Council.
This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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A key observation is that while C permits code that violates memory and type
safety, most code does remain within a type-safe fragment, and in earlier work
we reconciled the multiple-typed heaps proof abstraction and this low-level view of
memory, providing a rewriting approach to lifting proof states from byte granularity
maps to typed heaps [13]. This avoided inter-type aliasing considerations where
possible and gave a unified framework for proofs that needed to consider code that
violated type-safety. The framework included a C parsing tool that emitted a mixed
deep-shallow embedding in Schirmer’s Hoare logic verification environment [11].

There still remains the problem of intra-type aliasing however, where pointers
of the same type may alias one another. Again, it is possible to provide explicit
conditions on states stating the presence or absence of aliasing, but this becomes
rather cumbersome for inductively-defined data structures [1,10]. In particular,
the frame problem limits the scalability of verifications. A potential solution is
the separation logic of O’Hearn, Reynolds and others [5,10], providing a language
for specifications and inference rules that both concisely allows for the expression
of aliasing conditions in assertions and ensures modularity of specifications. In
other previous work [14], we provided a shallow embedding of separation logic in
Isabelle/HOL, building on the multiple-typed heaps development, resulting in a
framework capable of accommodating different proof techniques to address aliasing.

In this paper, we extend this framework to further support C’s structured types:

e We provide details of a deep embedding of structure type information capable
of handling C’s size, alignment, and padding restrictions as well as semantics for
heap dereferencing for structured types.

e Earlier rewrites and proof rules for multiple-typed heaps and separation logic
are generalised in such a way that they benefit from mechanisation and are still
usable in verifications with little new overhead.

e Aspects of structured types that were previously handled in our semantics through
shallow translation by trusted ML code are able to be promoted to the HOL level.

2 C structs

In our C-HOL type encoding, each C type was given a unique type in the theorem
prover. All such types belonged to an axiomatic type class a::c-type in Isabelle,
which introduced constants that connected the low-level byte representation and
the HOL values:
to-bytes :: a::c-type = byte list from-bytes :: byte list — a::c-type
typ-tag :: a::c-type itself = typ-tag typ-info :: a::e-type itself = typ-info

The functions to-bytes and from-bytes converted between Isabelle values and lists
of bytes suitable for writing to or reading from the raw heap state. The function
typ-tag associated a unique type tag with each «::c-type, providing a means of treat-
ing language types as first-class values in HOL. Finally, typ-info allowed size and
alignment information for the type to be calculated.

A distinct Isabelle pointer type for each Isabelle type, used to model C pointer
types, was defined with:

datatype a ptr = Ptr addr
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Fig. 1. Heap update dependencies.

The phantom « on the left-hand side was used to associate the pointer type infor-
mation with pointer values in Isabelle’s type system.

Primitive types such as char and long * could be defined in a library for each
architecture/compiler in the expected way. struct types could be modelled at the
HOL level with Isabelle record types. Trusted ML code in the C parser provided
the following for each structured type used in a program:

e A corresponding record declaration

¢ Definitions of functions appearing in a::c-type, requiring full structure information
to appear shallowly at the HOL level.

e Lvalue calculations, requiring the full structure information inside the ML parser,
as well as offset /size/alignment calculations.

Example 2.1 As a running example, consider the following struct declarations:

struct x { struct a {
float y; int b;

char z; struct x c;

The following triple demonstrates the most significant limitation with the earlier

memory model:
{xp=(y=21z2z="m' )} poy=12{*xp=721]

The problem here is that even though the update and dereference are type-safe,
and we do not need to consider aliasing, the proof rules we had developed so far
considered this to be type-unsafe, as any region of memory could only have a single
type, and p and &(p—y) share a common address despite having different but
related types. There is a similar problem for the effect of updates through struct
references on enclosed field pointer values.

Fig. 1 demonstrates how this problem manifests itself in the multiple-typed
heaps abstraction. It is no longer the case that updates to heaps can be treated
independently, i.e.:

e Updating a field type’s heap may affect typed heaps of enclosing structs.
e Updating a struct affects typed heaps of field types (fields-of-fields, etc.).

e Update effects are no longer simple function update, they involve potentially
multiple field updates and accesses.

The solution we propose in this paper is to treat structured type information
as a first-class value in HOL and develop generalised definitions, rewrites and rules
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making use of this. We treat structured types as first-class C types in the following
to provide the benefits of abstraction and typing in proofs, even though at a semantic
level they can be considered in terms of their members. Arrays in the heap decay to
the corresponding pointer arithmetic, and inside structured values are also modelled
using the definitions in §4.1. unions are treated differently, decaying to casts and
byte lists as value representations.

3 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical nota-
tion. This section introduces further non-standard notation and in particular a few
basic data types along with their primitive operations.

The space of total functions is denoted by =. Type variables are written «, 3,
etc. The notation ¢ :: 7 means that HOL term ¢ has HOL type 7. The option type

datatype « option = None | Some «

adjoins a new element L to a type a. We use « option to model partial functions,
writing |a] instead of Some a and o — [ instead of & = [ option. The Some
constructor has an underspecified inverse called the, satisfying the |z | = z. Function
update is written f(z := y) where f :: « = (3, z :: awand y :: § and f(z — y) stands
for f (z := Some y). Domain restriction is f[4 where f::a — B and (f[4) x = (if
z € Athen fzelse L).

Finite integers are represented by the type o word where a determines the word
length. For succinctness, we use abbreviations like word8 and word32. The functions
unat and of-nat convert to and from natural numbers (with u for unsigned).

Hoare triples are written {P[} ¢ {Q}} where P and @ are assertions and ¢ a
program. In assertions, we use the syntax "z to refer to the program variable z in
the current state, while z means z in state . Program states can be bound in
assertions by {o. P}.

Isabelle supports axiomatic type classes [16] similar to, but more restrictive than
Haskell’s. The notation a::ring restricts the type variable o to those types that
support the axioms of class ring. Type classes can be reasoned about abstractly,
with recourse just to the defining axioms. Further, a type 7 can be shown to
belong to a type class given a proof that the class’s axioms hold in 7. All abstract
consequences of the class’s axioms then follow for 7.

For every Isabelle/HOL type a we can derive a type « itself, consisting of a
single element denoted by TYPE(«). This provides a convenient way to restrict the
type of a term when working with polymorphic definitions.

4 Memory model

4.1  Type descriptions

The solution proposed in §2 requires that type meta-data be available at the HOL
level. This needs to include information about the type structure, size, and align-
ment. In addition, a fine grained description of the value representation encoding
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and decoding functions, such that it is possible to extract the functions for specific
fields as well as the structure as a whole, is desirable.

At the HOL level, structure objects are represented using potentially nested
Isabelle/HOL records. Each field has access and update functions defined by the
record package, e.g. for struct a represented as HOL record type a-struct, the
functions b::a-struct = int and b-update:(int = int) = a-struct = a-struct are
supplied — we write v(|b := z|) for b-update (K z) v. Where possible, it is helpful to
use these record functions when reasoning about field accesses and updates, rather
than the more detailed, lower-level view of fields as a subsequence of the byte-level
value representation. To facilitate this, functions derived from the record functions
are included in the type meta-data.

Definition 4.1 We can capture abstract record access and update functions for
fields as field descriptions:
record « field-desc =  field-access :: @ = byte list = byte list
field-update :: byte list = a = o

These functions provide a connection between the structure’s value as a typed HOL
object and the value of a field in the structure as a byte list. field-access takes an
additional byte list parameter, utilised in the semantics to provide the existing state
of the byte sequence representing the field being described. This allows padding
fields the ability to “pass through” the previous state during an update?. E.g. The
field description for field b in struct a would be:

(field-access = to-bytes o b, field-update = Abs s. if |bs| = size-of TYPE(int)
then s(b := from-bytes bs|) else s|)

Definition 4.2 The type meta-data is captured in a type description with the
following mutually-inductive definitions:
datatype « typ-desc = TypDesc a typ-struct typ-name
«a typ-struct = TypScalar nat nat «
| TypAggregate (« typ-desc X field-name) list

A type description is a tree, with structures as internal nodes, branches labeled with
field names and leaves corresponding to fields with primitive types. At leaves, size,
alignment and an « is provided. A type description for struct ais given in Fig. 2.

There is not a one-to-one correspondence between fields in this structure and
those in a C struct, as fields in this definition are also intended to explicitly repre-
sent the padding inserted by the compiler to ensure alignment restrictions are met.
Type descriptions are specialised in two ways:

« typ-info =  « field-desc typ-desc
typ-uinfo = (byte list = byte list) typ-desc

The type information provides the information required to describe the encoding
and decoding of the representation. Type information ¢ can be “exported”, with
a function export-uinfo, to remove the a dependency with export-uinfo ¢, where
leaf field descriptions are collapsed to byte list normalisation functions, i.e. an «
field-desc d at a leaf with size n is replaced with \bs. field-access d (field-update d
bs arbitrary) (replicate n 0).

2 A more conservative, standard compliant approach, would be to use non-determinism or an oracle here.

41



TucH

TypDesc (TypAs gregg...) "struct "

- e

/ I

TypDesc (TypScalar 4 2 b_field_desc) "int" TypDesc (TypAggregate ...) "struct x"

-«
TypDesc (TypScalar 2 1 y_field_desc) "float" . "Ipad"

z

TypDesc (TypScalar 1 0 pad_desc) "lpad"
TypDesc (TypScalar 1 0 z_field_desc) "char"

Fig. 2. Type description for struct a.

Normalisation is motivated by the observation that padding fields are ignored
when reading structured values from their byte representation. Also, there may
exist more than one byte representation for a value in C, even for primitive types.
It provides us with a means to quantify over and compare C types.

The type information for a C type « is given by TYPE(«), and we write
TYPE(«), for export-uinfo TYPE(«);.

Definition 4.3 A field name used to access and update structure fields with the C
. and — operators can be viewed as a field-name list of .-separated fields leading to
a sub-structure, which we refer to as a qualified field name. A qualified field name
may lead to a field with a primitive or structure type, e.g. [] is the structure itself.
Arrays members are named by index, e.g. ["--array-37").

Table 1 provides a number of functions defined over type descriptions that we
make use of in this paper. Here we summarise and provide examples — all func-
tions are backed by primitive recursive definitions in Isabelle/HOL. tr>f performs
“lookup”, following a path f from the root of ¢ and returning a sub-tree and offset
if it exists. A related concept is td-set, where all sub-trees are returned. E.g.

TYPE(a-struct),>[""c"] = |(TYPE(z-struct),, 4)]
TYPE(a-struct),t>[""c"”, ""b"] = L
td-set TYPE(z-struct), = {(TYPE(z-struct),, 0), (TYPE(float),, 0), (TYPE(char),, 2),

(pad-export 1, 3)}
size-td and align-td are found by summing and taking the maximum of the leaf
node sizes and alignments respectively. The latter is justified by the C standard’s
requirement that fields of aligned structures are themselves aligned. field-access-ti
and field-update-ti compose their respective primitive leaf functions sequentially to
provide the expected encoding and decoding functions for the aggregate type. E.g.

field-access-ti TYPE(a-struct)r = Av bs. to-bytes (b v) (take (size-of TYPE(int)) bs) @ to-bytes (c v)
(take (size-of TYPE(z-struct)) (drop (size-of TYPE(int)) bs))

Definition 4.4 The address corresponding to an lvalue designated by a structure
field access or update can be found with:
&(p::a ptr —f) = ptr-val p + of-nat (snd (the (TYPE(a),>f)))

Lvalues appear in the semantics and proof obligations for statements like p->f = v;.

Definition 4.5 Finally, the connection between the HOL typed value, type infor-
mation, size, alignment and underlying byte representation can be made through
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- D> - i« typ-desc = qualified-field-name — o typ-desc X nat

The sub-tree and offset from the base of the structure that a valid qualified field name leads to.
td-set i« typ-desc = (a typ-desc X nat) set

The set of all sub-trees and their offset from the base of a structure.

size-td i o typ-desc = nat

Type size, e.g. size-td TYPE(a-struct)r = 8.

align-td © « typ-desc = nat

Type alignment exponent, e.g. align-td TYPE(a-struct), = 2.
field-access-ti  :: « typ-info = (a = byte list = byte list)
Derived field access for the entire structure represented by the type information.

field-update-ti :: « typ-info = (byte list = a = «)
Derived field update for the entire structure represented by the type information.

export-uinfo i« typ-info = typ-uinfo

Export type information.

Table 1
Type description functions.

the following function definitions:

to-bytes (v::a) field-access-ti TYPE(a)r v from-bytes bs field-update-ti TYPE(«)- bs arbitrary
size-of TYPE(a) = size-td TYPE(a)~ align-of TYPE(a) = 2 " align-td TYPE(«a)~

4.2 Type constraints

In this section we describe the fundamental properties that need to hold for each
Isabelle/HOL type we use to model a C type. These ensure that the functions in
Defn. 4.5 and the rest of §4.1 behave as expected by the C standard and in the
proofs of the update rules. They are also available to the user of the framework.

Definition 4.6 The a::mem-type axiomatic type class requires the following size
and alignment related properties to hold on a C type « for instantiation:

align-of TYPE(«) dvd size-of TYPE(«) size-of TYPE(«a) < |addr| align-of TYPE(«) dvd |addr|
These conditions follow mostly from requirements in the C standard, with the ex-
ception of the final alignment constraint which we add to make pointer arithmetic
better behaved, and which holds on all the C implementations we are aware of. The
constant |addr| represents the size of the address space, e.g. 232,
The result of an entire structure update is independent of the original value:

|bs| = size-of TYPE(at) — field-update-ti TYPE(a), bs v = field-update-ti TYPE(c)- bs w

Three well-formedness conditions on the type information ensure sensible values for
field names, node sizes and field descriptions:

wf-desc TYPE(«a) wf-size-desc TYPE(«a)~ wf-field-desc TYPE(«)-

These conditions are now detailed in Defn. 4.7, Defn. 4.8 and Defn. 4.10.

Definition 4.7 We write wf-desc ¢ when a type description ¢ has no node with two
or more branches labelled with the same field name.

Definition 4.8 We write wf-size-desc ¢ when every node of the type description ¢
has a non-zero size.

Definition 4.9 Type information ¢ is consistent if the following properties hold:
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Vv bs bs’. |bs| = |bs’| — field-update-ti ¢ bs (field-update-ti ¢ bs’ v) = field-update-ti ¢ bs v
Vv bs. |bs| = n — field-update-ti ¢ (field-access-ti t v bs) v = v
Vbs. |bs| = n — (Vbs'. |bs'| = n — (Vv v'. field-access-ti ¢ (field-update-ti ¢ bs v) bs’ =
field-access-ti t (field-update-ti ¢ bs v’) bs’))
Vv bs. |bs| = n — |field-access-ti t v bs| = n
where n = size-td . The properties are similar to those already provided by Is-

abelle’s record package at the HOL level and can be established automatically.

Definition 4.10 Type information is well-formed w.r.t. field descriptions if all leaf
fields are consistent, and for every pair of distinct leaf fields, s and ¢, the following
properties hold:

Vv bs bs'. field-update-ti s bs (field-update-ti ¢ bs’ v) = field-update-ti ¢t bs’ (field-update-ti s bs v)

Vv bs bs’. |bs| = size-td t —> |bs’| = size-td s — field-access-ti s (field-update-ti ¢ bs v) bs’ =

field-access-ti s v bs’
Again, these are standard commutativity and non-interference properties that we
have at the HOL level and wish to preserve in field descriptions.

Theorem 4.11 The a::mem-type axioms imply the following properties:
|bs| = size-of TYPE(a) |bs| = size-of TYPE(«)
from-bytes (to-bytes v bs) = v |to-bytes v bs| = size-of TYPE(«)

0 < size-of TYPE(«)

4.8  Type combinators

The constraints of the previous section require both the construction of suitable
type information and a corresponding a::mem-type instantiation proof for each type
appearing in programs we wish to verify. This can be done entirely at the ML level,
by synthesising both the intended HOL term for the type information directly, and
a proof on the unfolded definition, but this is fragile and does not scale well.

An improved approach to type information construction is to do so using combi-
nators that allow the structure to be built up field-wise and for which generic proof
rules can be given. We use this approach and combinators and corresponding proof
rules have been derived, but we elide for brevity.

4.4 Semantics

The C translation has a shallow HOL embedding as its target for expressions. Tuch
et al [14] provide details of how side-effects and other aspects of the C semantics
are translated, here we provide simply the definitions for the terms used to model
heap accesses and updates.

Definition 4.12 Heap dereferences in expressions, e.g. xp + 1 are given a semantics
by first lifting the raw heap state with the polymorphic lift function, e.g. lift s p +
1 where s is the current state.

heap-list :: (addr = byte) = nat = addr = byte list

[
h p-heap-list h n (p + 1)

heap-list h 0 p

heap-list h (Suc n) p

lift :: (addr = byte) = a::c-type ptr = «
lift h = Ap. from-bytes (heap-list h (size-of TYPE(«)) (ptr-val p))

heap-update providing semantics for update dereferences:
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heap_mem

byte list
204 ﬁ heap_update_list I 204 ﬁ to_bytes int
136 136
42 42
98 98

size_of TYPE(int)

Fig. 3. int heap representation.

addr >
HONENEEREEEN
Iﬁ—l

struct a

Fig. 4. Previous heap type description with a valid struct a. pointer

heap-update-list :: addr = byte list = (addr = byte) = (addr = byte)

h

heap-update-list (p + 1) zs (h(p := z))

heap-update-list (ptr-val p) (to-bytes v (heap-list h (size-of TYPE(«))
(ptr-val p))) h

heap-update-list p [ h
heap-update-list p (z-xzs) h

heap-update p (v:ar) h

For example, xp = xq + 5 translates to the state transformer \s. heap-update p
(lift s ¢ + 5) s. Fig. 3 illustrates the above functions’ value transformations.

4.5 Heap type description

Inside the type-safe fragment of C, where the majority of code remains, there is
an implicit mapping between memory locations and types, and heap dereferences
respect this mapping. In earlier work [14], we introduced this mapping as an addi-
tional state component, and referred to it as the heap type description:

heap-typ-desc = addr — typ-tag option

The heap type description is a history variable, and as such does not influence the
semantics of our programs. Since in C this mapping cannot be extracted from the
source code, the program verifier adds proof annotations that update the heap type
description. We wrote d,g ¢ p to mean that the pointer p is valid in heap type
description d with guard g. The guard g restricts the validity assertion based on
the language’s pointer dereferencing rules. This is depicted in Fig. 4.

The problem with this notion of the heap type description is that only a single
pointer may be valid at any location. With structured types, we would like that at
the base address a pointer for the structure type and that of the first field’s type be
valid. In general, for valid qualified field names f, we desire a validity monotonicity
property, i.e. d,g = p = d,g |+ Ptr &(p—f).

To achieve this, we introduce a new definition for the heap type description:

typ-slice = nat — typ-winfo X bool
heap-typ-desc = addr = bool X typ-slice
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Each location maps to a tuple, with the first component a bool indicating whether
there is a value located at the address®. The second component is a typ-slice,
providing an indexed map to the typ-uinfos that may reside at a particular address.
The index is calculated from the depth of the tree at an offset. The bool value
indicates whether the location is the base or some other part of a value’s footprint 4 .

An example of the new heap type description is provided in Fig. 5. Each point
is a typ-uinfo x bool pair, with the colour determined by the first component and
shape by the second. Here an a-struct footprint extends on the horizontal axis
above the footprints of its members. The vertical axis indicates a position in the
typ-slice at the address. The second half of the a-struct is higher than the first,
as the tree is deeper due to the z-struct changing the depth past this offset. An
observation about the intuition behind pointer validity that can be taken from this
figure is that it is independent of the presence or absence of type information from
enclosing structured types in the history variable.

struct a

struct x
(\ :l/ O Encoding base
C D Rest of footprint

| addr'

char

nat

Fig. 5. New heap type description with a valid struct a pointer.

Definition 4.13 Pointer validity is defined for the heap type description as:
valid-footprint d z t = let n = size-td ¢
in0 < nA
(Vy<n. list-map (typ-slice t y) T, snd (d (z + of-nat y)) A
fst (d (z + of-nat y)))

d,g =t (p::a ptr) = valid-footprint d (ptr-val p) TYPE(a), A g p

where list-map::« list = (nat — «) converts a list to the expected map and typ-slice
takes a vertical slice of the intended heap footprint from the exported type infor-
mation at a given offset, e.g.:

typ-slice TYPE(a-struct), 4 = [(TYPE(float),, True), (TYPE(a-struct),, True), (TYPE(a-struct),
False)]

The use of the map subset operator C,,, provides monotonicity.

As before, we have a retyping function ptr-retyp that updates the heap type
description to make a given pointer valid. The definitions, properties and rules for
this function are omitted for brevity.

5 Typed heaps
5.1  Lifting
The following two-stage lifting process provides an abstract heap view for proofs.

3 This approach is taken in preference to a partial function to aid in partitioning state in §6.

4 This is for same reason as in the previous approach to the heap type description, allowing consideration
of the potential overlap of values of the same type to be eliminated for valid pointers.
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SindexTyp 2

SindexTyp 1

SindexTyp O

SlndexVal olol| 3|97
P addr

Fig. 6. Example heap-state.

heap_mem LI I T I T T TTITTI T TT]

heap_typ_desc T

T H—b
I— addr
a_struct ptr— a-struct
LTI TT I T T ITITIT]]
x_struct ptr— x-struct

oat ptr— float
tfttypheap > [T T T T T T T ITTTTITIIT]
SIndexTyp 2 int ptr— int
SindexTyp 1 |
SindexTyp 0 | L char pir— char
SindexVal addr | > | | | |

Fig. 7. Two-stage lifting.

Definition 5.1 The first stage, lift-state, results in an intermediate heap-state:

datatype s-heap-indez =  SlndexVal | SindexTyp nat
datatype s-heap-value =  SValue byte | STyp typ-uinfo x bool
s-addr = addr X s-heap-index

heap-state = s-addr — s-heap-value

An example of this state is provided in Fig. 6, with a z-struct footprint. The
explanation for this model is provided in §6.1.

The function lift-state filters out locations that are False or L in the heap type
description, depending on the index, removing values that should not affect the
final lifted typed heaps. Equality between lifted heaps is then modulo the heap
type description locations of interest for valid pointers.

lift-state = A(h, d) (z, y).

case y of SindexVal = if fst (d z) then [SValue (h z)| else L
| SIndexTyp n = option-case L. (Some o STyp) (snd (d z) n)

Lifted validity and heap-list are expressed on heap-states with d,g =5 p and heap-list-s
respectively in the obvious way.

Definition 5.2 The second lifting stage results in typed lifted heaps again. The
lift-typ-heap function restricts the heap domain so that the only locations affecting
the resultant a ptr — « heap are valid pointer values. Equality is now modulo
pointer validity.

lift-typ-heap g s = (Some o from-bytes o heap-list-s s (size-of TYPE(«)) o ptr—val)[{p | 5,9 =s p}
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The two stages, shown in Fig. 7, are combined with lift;:
lift; g = lift-typ-heap g o lift-state

Like lift, lift; is polymorphic and returns an « typed heap. The program embedding
continues to use the functions lift and heap-update, while pre/post conditions and
invariants use the stronger lift; to make more precise statements.

5.2 Update dependency order

Definition 5.3 A partial order can be defined on type descriptions that expresses
the update dependency between heaps, formalising the relation described in §2:

s <t=3dn. (s, n) € td-set ¢
This can be lifted to a predicate on a::c-type itself and (::c-type itself's:

s <7 t = export-uinfo TYPE(a)r < export-uinfo TYPE(3)-

Example 5.4 Using the running example, TYPE(a-struct) <, TYPE(a-struct) and
TYPE(int) <; TYPE(a-struct). An update to an a-struct will always affect the lifted
int heap, but an update of a z-struct will only sometimes affect the a-struct heap.

5.8 Rewrites

In this section we develop rewrites that allow the effects of updates on lifted typed
heaps to be evaluated. First we present some auxiliary definitions and the key
theorems, Thm. 5.7 and Thm. 5.9. These theorems have the form of conditional
rewrites, but require some additional support to be efficiently applicable, so are
followed by this detail.

Definition 5.5 A list of names of all fields matching an exported type information
can be obtained with field-names :: « typ-info = typ-uinfo = qualified-field-name
list. E.g. field-names TYPE(a-struct), TYPE(float), = [["c¢", "y"]].

Definition 5.6 From td-set, a predicate may be derived that checks whether a
given pointer p::« ptr is to a field of a structured type with base ¢::8 ptr:

field-of p ¢ = (TYPE(«)., unat (ptr-val p — ptr-val q)) € td-set TYPE(3), 0
From >, functions may be derived that provide the first and second components of
the result for a valid qualified field name:

field-typ TYPE(«) f = fst (the (TYPE(a)->>f)) field-offset TYPE(a) f = snd (the (TYPE(a),>f))

Theorem 5.7 The lifted 3 heap following an update of a valid o ptr p, where «
s a sub-type of [ is given by:
dyg' e p TYPE(e) <, TYPE(B)
lift; g (heap-update p v h, d) = super-field-update p v (lift; g (h, d))

where

super-field-update p v h = Aq. if field-of p ¢
then case h gof L = L
| lw| = |update-value (field-names TYPE(3)r TYPE(a),) v w

(unat (ptr-val p — ptr-val q))]|
else h g
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Locations that do not enclose or are not valid 3 pointers are unaffected. The update

is given by update-value:
update-value [| (vi:er) (w::0) = w

if x = field-offset TYPE(3) f then field-update-ti (field-typ TYPE(S) f)
(to-bytesg v) w else update-value fs v w z

update-value (f-fs) v w z

This traverses the relevant fields of the enclosing structured type, looking for a field
offset that matches the difference between the enclosing pointer base and p. If a
match is found, update-value performs the update with the field’s updator. We write
to-bytesy and field-access-tip when the supplied byte list is all zero.

While Thm. 5.7 gives a conditional rewrite that allows an update to be lifted to
the typed heap level of §5.1, making use of the updated typed heap could involve
unfolding this complex definition in general. However, additional rewrites can be
given for well-behaved updates.

Theorem 5.8 For a valid qualified field name, a super-field-update for a pointer
&(p—f) can be reduced to the field update obtained from the type information:

TYPE(B)->f = [(s, n)] TYPE(«), = export-uinfo s lift; g sp = |w]
super-field-update (Ptr &(p—f)) v (liftr g s) = lift; g s(p — field-update-ti s (to-bytesg v) w)

The > side-condition can be resolved without having to unfold the type information
using rewrites installed during construction with combinators at the ML level. The
field-update-ti is also rewritten to a record field updator. E.g.:

lift; g s p = |w| = super-field-update (Ptr &(p—[""next’])) v (lifty g s) = lifty g s(p — w(next := v)))
A rewrite can also be given for the two remaining cases, where TYPE((3) <.
TYPE(«) or TYPE(a) L TYPE(f).
Theorem 5.9 The lifted B heap following an update of a valid a ptr p, where «
is mot a strict sub-type of B is given by:

d,g' =t p - TYPE(a) <- TYPE(B)
lift; g (heap-update p v h, d) = sub-field-update (field-names TYPE(a))r TYPE(B).) p v (liftr g (h, d))

where

s ptr — B
(let s’ = sub-field-update fs p v s in s'(Ptr &(p—f) +— from-bytes
(field-access-tig (field-typ TYPE(«) f) v)))!,

sub-field-update [] p (v::c) s
sub-field-update (f-fs) p v s

dom s

5.4 Non-interference

Theorem 5.10 The rewrites for an update to a lifted typed heap through a valid
pointer of the same type, or a disjoint type are the same as before [14]:

d,g =t p d.g' e p TYPE(a), Lt TYPE(B)w
lift; g (heap-update p v h, d) = lift; g (h, d)(p — v) lift; g (heap-update p v h, d) = lift; g (h, d)

Bornat [1] describes multiple independent heaps based on distinct field names.
Updates through a pointer dereference to a specific field only affect that heap.
This does not work directly in the presence of the &(p—f) operator and address
arithmetic. However, the following can be shown:
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Theorem 5.11 When the base pointers are of the same type 3, and neither of the
field names are a prefiz of the other, updates through an o pointer derived from one
field do not affect the value in the v lifted heap at the other:

dg'Etp  dgaleq  TYPEB)>f = [(s, m)] TYPE(B)->f" = [(t, n)]
size-td s = size-of TYPE(«) size-td t = size-of TYPE(y) -f<f -f<f

lift; g (heap-update (Ptr &(p—f)) v h, d) (Ptr &(q—f")) = lift- g (h, d) (Ptr &(g—f)))

6 Separation logic

In this section we describe how the shallow embedding of separation logic [5,10] in
Tuch et al [14] can be extended to structured types. The focus is on the singleton
heap assertion p +, v as most of the other definitions and properties are standard.

6.1 Domain

We model separation assertions as predicates on heap-states, applied in asser-
tions of the verification environment to the result of the first lifting stage of §5.1.
For example, a loop invariant with the separation assertion P and heap mem-
ory and type description state in the variables h and d respectively is written
{ P (lift-state ("h,"d)) |}, which we abbreviate as { P*? }.

The rationale for this choice of domain is that it allows for more expressive
separation assertions than are possible with simpler models. From the earlier in-
termediate state, addr — typ-tag option x byte for unstructured types, a naive
extension might be addr — typ-uinfo list x byte. Unfortunately, this does not al-
low for two assertions separated by A* to refer to distinct type levels at the same
address, necessary to provide flexible rules for retyping and unfolding, e.g. ignoring
padding, we would expect that (p — (y = 3, 2 = ' |)) = (Ptr (&(p—["y"])) —
3) A* (Ptr (&(p—["2"])) — 'r') A* typ-outline p, where typ-outline p contains the
outer level type information for the enclosing structure. Adding a type level index
to the domain of the heap-state provides this facility.

6.2 Shallow embedding

Definition 6.1 The s-footprint::c::c-type ptr = s-addr set gives the set of addresses
inside a pointer’s heap-state footprint:
s-footprint p = {(ptr-val p + of-nat z,

y) | ¢ < size-td TYPE(a), A
(y = SindexVal vV (3n. y = SindexTyp n A n < |typ-slice TYPE(«), z|))}

Definition 6.2 p ~—, v asserts that the heap contains exactly one mapping match-
ing the guard ¢, at the location given by pointer p to value v:
p g v = As. lift-typ-heap g s p = |v] A dom s = s-footprint p A wf-heap-val s

wf-heap-val asserts that the type, SValue or STyp, of a value in the heap-state, if
present, matches the type of the index, SIndexVal or SindexTyp respectively.

Definition 6.3 The standard definitions [10] for connectives can then be used, for
the empty heap predicate, separation conjunction and implication these are:
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m| = MAs. s = empty

so L s1 = dom sp N dom s; =0

so ++ s1 = Az.case sy zof L = sgz | |y] = |yl

P A* Q = MXs. Jdsp s1.80 L s1 As=s51 ++ s0o AN Psop A Qs1
P—*Q = Xs.Vs.sLs"ANPs' — Q (s ++ s

Since this is a shallow embedding, standard HOL connectives and quantifiers can
be freely mixed with the separation connectives, e.g. As. P s A (@ A* R) s.

The standard commutative, associative, and distributive properties apply to the
connectives, and we have formalised pure, intuitionistic, domain, and strictly exact
assertions and properties [10]. The frame rule also still applies in this development.

6.3 Lifting proof obligations

Our verification condition generator applies weakest precondition rules to transform
Hoare triples to HOL goals that can then be solved by applying theorem prover
tactics. In §5.3, rewrites were given that could lift the raw heap component of
these proof obligations, and in this section we provide rules that allow the low-level
applications of lift and heap-update to be expressed in terms of separation assertions.
This is desirable as reasoning can then use the derived rules for these assertions at
the separation logic level.

Theorem 6.4 The following rule connects lift and separation mapping assertions:
(p —g v) (lift-state (h, d))
lift hp =0

Heap update dereferences produce proof goals of the form:
P (lift-state (h, d)) = Q (lift-state (heap-update pg v (heap-update pi v1
(heap-update p... wv... (heap-update p, vn h))),d))

Theorem 6.5 To reduce heap-updates to the pre-state we can use:

(p g w A" R) (lift-state (h, d)) TYPE(B)->f = [(s, n)] export-uinfo s = TYPE(a),
(p g field-update-ti s (to-bytesy v) w A* R) (lift-state (heap-update (Ptr &(p—f)) v h, d))

Thm. 6.5 can be applied in goals in similar situations to Thm. 5.8.
Theorem 6.6 The earlier heap-update rules [14] still apply:

(g Fs p A" (p =g v —" P)) (lift-state (h, d)) (9 Fs p A* R) (lift-state (h, d))
P (lift-state (heap-update p v h, d)) (p —g¢ v A" R) (lift-state (heap-update p v h, d))

6.4 Unfolding

Additional rules can be given that allow one to dive inside a singleton heap assertion
for a structured type value. This may be needed in extracting points-to information
to aid in discharging guard proof obligations or side-conditions of some of the rules
such as Thm. 6.4 and is useful in allowing the granularity of an assertion to be
changed.

Theorem 6.7 A points-to mapping assertion for a valid qualified field name can
be derived from a singleton heap assertion with.:
(p —qg v)s TYPE(B)->f = [(t, n)] export-uinfo ¢ = TYPE(a), guard-mono g g
(Ptr &(p—f) —4 from-bytes (field-access-tig ¢ v)) s
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struct node { struct node *reverse (struct node *ptr)
int item;

struct node *next; struct node *last = NULL;
5
while (ptr)
{
struct node *temp = ptr->next;

ptr->next = last;
last = ptr;
ptr = temp;

}

return last;

}

Fig. 8. In-place list reversal C source code.

We have also developed a rewrite approach that unfolds fields for structured

values — one can “zoom” in and out of structured values with this.

7 Example: In-place list reversal

Fig. 8 provides an example type-safe C program that performs in-place list reversal
on a singly-linked list using a struct type to represent nodes.

This is a standard example in the separation logic and pointer program ver-
ification literature [10,7,14] and the pre/post specification and loop invariant are
provided in Thm. 7.2.

Definition 7.1 The specification and invariant make reference to a list abstrac-
tion predicate, which lifts from a pointer-linked data structure in the heap to the
corresponding algebraic data-type for a node list in Isabelle/HOL:

As.i=NULL A DO s
As. i # NULL A (3j. item j = 2 A (i —4 j A" list zs (next 7)) s)

list []
list (z-xs) i

Theorem 7.2 The reverse function implements the following specification.:

V zs. {(list zs “ptr)SeP|
“reverse-ret === PROC reverse(’ ptr)
{(list (rev 2s) “reverse-ret)S€P]

Proof.
After running the verification condition generation, we are left with the 3 result-
ing proof obligations arising from the while Hoare logic rule, with the invariant:

{3 xs ys. (list zs “ptr A* list ys “last)SP A rev zs = rev s @ ys}}

The Pre = Inv and Inv = Post conditions are trivial. Loop invariant preser-
vation proof requires we show:

1. Azs a b last ptr ys list j.
[ptr # NULL; rev zs = rev list @ item j-ys;
(ptr —gq j A" list list (next j) A* list ys last) (lift-state (a, b))]
= (ptr 4 j(next := last]) A*
list ys last A* list list (lift a (Ptr &(ptr—[""next’’))))
(lift-state (heap-update (Ptr &(ptr—[''next’’])) last a, b))

This follows from Thm. 6.5. The first side-condition may be discharged with
Thm. 6.4 and Thm. 6.7, eliminating the lift. The other side-conditions are dis-
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charged by rewrites installed during C translation for evaluating .

An interesting point in the proof is when we have to show:
1. A\zs a b last ptr ys list j.
[ptr # NULL; rev zs = rev list @ item j-ys;
(ptr g j A* list list (next j) A* list ys last) (lift-state (a, b))]
= j(next := last]) = j(next := field-update-ti TYPE(node ptr), (to-bytesy last) (next 7))
Here, applying the reverse definition of from-bytes and the a::mem-type axioms lifts
the RHS to the HOL record level to simplify for the goal.

Compared to our earlier in-place list reversal example [14], the proof script was
about the same structure and size, 67 lines. In our experience, lifts and heap-updates
can be reduced as above for type-safe C, freeing the user from this level of detail.
However, a completeness result is not possible in this shallow treatment.

8 Related work

The idea to use separate heaps for separate pointer types and structure fields in
Hoare logic goes back to Burstall [2]. On the abstract level, our multiple typed heaps
formalisation is most closely related to Bornat [1] and Mehta and Nipkow’s [7] work
in Isabelle, although we exploit Isabelle’s type inference in a different way. We
ground this abstract and efficient reasoning in a detailed C semantics that is di-
rectly applicable to concrete programs, and extend support to C’s structured types.
Moy [8] has also developed a memory model for C structured types and a type hier-
archy. This differs from ours as it is based on physical sub-typing [12] and the focus
of the work is on translating well-behaved unions and casts to sub-typing instances.
The Caduceus tool [3] supports Hoare logic verification of C programs, including
the type-safe part of pointer arithmetic at this level. We increase the applicability
of program verification drastically by supporting the unsafe part as well. Separa-
tion logic [5,10] has been mechanised in theorem proving systems previously [15,6].
Again, we provide soundness for program verification by grounding these abstract,
idealised models in a concrete semantics. We are able to support abstract separation
logic notation and unsafe, low-level pointer manipulations at the same time.

On the semantics front Norrish [9] presents a very thorough and detailed memory
model of C and our formalisation has similarities to exploratory work on C++ [4].
Our model unifies these low-level semantics with the proof abstractions of the pre-
vious paragraph.

9 Conclusion

In this paper we continued earlier work on pointer program verification in higher-
order logic for C programs by providing extensions and generalisations resulting
in a framework capable of fully exploiting C’s structured types. We presented a
development that deeply embeds type structure information in the theorem prover
and generic rules to describe type-safe updates in two common interactive proof
abstractions — multiple-typed heaps and separation logic. With the former, we
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extended the earlier notion of heap independence to take into account a partial
ordering of heap update dependency, and with the latter based the development on
a heap state that allows for expressive assertions. Type-unsafe operations continue
to be supported albeit at a proof cost.

Future work includes providing support for C’s union types when they are well
behaved, e.g. tagged unions, struct pointer casting in the case of physical sub-
typing, development of Isabelle tactics for separation logic proofs and integration
with automated tools and decision procedures.
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Abstract

We present an extension to classical separation logic which allows reasoning about virtual memory. Our logic
is formalised in the Isabelle/HOL theorem prover in a manner allowing classical separation logic notation
to be used at an abstract level. We demonstrate that in the common cases, such as user applications, our
logic reduces to classical separation logic. At the same time we can express properties about page tables,
direct physical memory access, virtual memory access, and shared memory in detail.

Keywords: Separation Logic, Virtual Memory, Interactive Theorem Proving

1 Introduction

Separation logic [14] has been used for verification of shared mutable data structures
at the application level, such as those involved in C programs [18]. While effective,
these techniques assume a view of memory as a function from addresses to values.
For operating system verification, the situation is more complex. On hardware
incorporating the virtual memory abstraction, two different virtual addresses may
point to the same physical address. In the majority of operating system code this
is not a problem, but the application view is insufficient for verifying the parts
involved with the virtual mappings themselves, such as shared memory [16].

The virtual memory abstraction offers flexible, dynamic allocation of physical
memory to running processes. It allows each process its own view of physical mem-
ory, called a virtual address space, via a set of virtual to physical address mappings.
The mappings are stored in memory in a structure called the page table.

Applications usually deal only with their own data, but an operating system
additionally manages the application’s page table as well as its own. A memory
write in this situation can result in the view of memory changing. Most of the time,
it does not; in cases when it does, only part of the address space changes. Inferring

1 National ICT Australia is funded through the Australian Government’s Backing Australia’s Ability ini-
tiative, in part through the Australian Research Council.
This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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separation of what may have changed from what has not allows effective reasoning
about such memory updates.

The virtual memory mechanism itself has been a target of verification [9], how-
ever apart from some work in progress [17] we have not encountered any work
dealing with proofs about programs that make essential use of the virtual memory
subsystem.

Our contribution in this work is a logic allowing effective reasoning about both
the virtual and physical layers of memory. Additionally:

e The abstract layer of our separation logic is similar to traditional separation logic
and in fact collapses to traditional separation logic for pure application reasoning,
where the active page table is not mapped into virtual memory.

e Separating conjunction extends to multiply-mapped memory addresses.

e The low-level details of page table implementation are independent of the logic.
We present an instantiation to a simple one-level page table to demonstrate the
concept.

e All of the work presented in this paper is formalised in the Isabelle/HOL theorem
prover [13].

Like [18], we use a shallow embedding of separation logic, meaning the constructs
of assertions are translated to Isabelle/HOL, rather than being considered distinct
types in the logic.

As this is a work in progress, we are using a simplified model: we use a sim-
ple machine abstraction and do not take into account memory permissions beyond
whether a virtual address is mapped/unmapped. As such permissions are merely
extra properties of virtual addresses, they can be easily integrated into our logic.
Other work [18] has shown how to integrate actual machine encodings with separa-
tion logic. We believe our logic can be likewise connected.

While the normal way to present separation logics [14] is to describe a program-
ming language, assertion language and resulting rules, we focus on the assertion
language and properties holding on heap updates only. We do this because, like
Tuch et al. [18], we aim to place our logic on top of a classical verification condition
generator such as that of Schirmer [15]. The generator outputs higher-order logic
statements involving the shallow embedding of our logic’s assertions. Thus, the pro-
gramming language is given, and the usual separation logic rules instead become
rules about the semantic effect of the program on the heap.

2 Intuition

Separation logic is traditionally based on a model of memory as a partial function
from addresses to values, called a heap. When reasoning about shared mutable data
structures [14], such as the representation of memory in a language with pointers,
separation logic offers a concise way of defining the disjointness of predicates in
memory. The primary mechanism for doing this is the separating conjunction. As
shown in Fig. 1, it works by dividing up the heap into two disjoint regions on which
each side of the conjunction must hold respectively. For instance, it allows us to
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P [ [[)AQ(IIITTTITTTT]T)
PA~Q ([ ([T [])

Fig. 1. Separation conjunction.

state two structures do not share memory.

As mentioned in the introduction, virtual memory is a hardware-enforced ab-
straction allowing each executing process its own view of memory, into which areas
of physical memory can be dynamically inserted. It adds a further level of indi-
rection: virtual addresses potentially map to physical addresses. Memory access
is ordinarily done through virtual addresses only, although hardware devices may
modify physical memory directly. Direct memory access can be approximated by
using a one-to-one virtual-to-physical map.

To save space, virtual to physical mappings are stored in the page table with a
granularity of pages whose size is usually dictated by the hardware. The page table
resides in physical memory at a location called its root. The full set of virtual-to-
physical mappings for a process can thus be lifted from physical memory if the root
and type of page table are known.

Each access to a virtual address may result in a page fault in cases when the
hardware fails to look up an address in the page table, for instance when that page
resides on the disk, or has not yet been allocated. The page fault handler decides
how to handle such cases. While our logic is aimed at dealing with situations useful
in the verification of page fault handlers, we do not present page fault handler
verification itself in this paper.

We will henceforth refer to physical memory as the heap in the spirit of tradi-
tional separation logic, and to the virtual-to-physical map as the virtual map.

Our logic is independent of the implementation of the page table. As an example,
in this work we use a simple implementation: the one-level page table.

The addition of virtual memory to separation logic raises the issue of what
exactly it means for two predicates to be separate, as well as what kind of state space
we are to divide into sub-states in order to be able to express their disjointness. We
want the ability to make statements on three levels: virtual to physical, physical to
values and virtual to values. We also wish to preserve the usefulness of separating
assertions in this context, as well as staying close to traditional separation logic
notation.

Although the virtual map can be lifted from the heap via the page table, the heap
alone is insufficient to make separation statements on all three levels. We observe
this in the statement: under separating conjunction, virtual address vp maps to
value z and the page table resides somewhere in physical memory. If we split the
heap into page table and non-page table subheaps, there is no way to obtain vp’s
mapping from the non-page table subheap. It also requires carrying around the
page table root as part of the state, causing divergence from traditional notation.

Instead, we propose a state consisting of two maps: the physical heap and the
virtual map. Initially, we establish a valid state in which the virtual map is lifted
out of the page table in the heap. Separation conjunction then splits both maps.
Physical-to-value assertions work on the heap, virtual-to-physical on the virtual
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map, and virtual-to-value on the composition of the two, which we will call the
address space. This has two advantages:

¢ The page table and heap lifting is independent of our logic.

¢ Most operations on a single map make sense on a pair of maps, allowing us to
use notation identical to standard separation logic and abstract away low-level
details.

We begin with explaining basic notation in Sect. 3. In Sect. 4 we discuss the
virtual memory abstraction and our specific instantiation of it. In Sect. 5 we intro-
duce our logic, followed by examining its properties in Sect. 6. Finally, we discuss
related work in Sect. 7 before concluding.

3 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical nota-
tion. This section introduces further non-standard notation and in particular a few
basic data types along with their primitive operations.

The space of total functions is denoted by =. Type variables are written ’a, 'b,
etc. The notation ¢ :: 7 means that HOL term ¢ has HOL type 7.

Pairs come with the two projection functions fst :: ‘a x ‘b = ’a and snd :: "a
x 'b = 'b. Sets (type ’a set) follow the usual mathematical convention. Intervals
are written as follows: {m..<n} means {i | m < i < n}.

The option type

datatype ’a option = None | Some ’“a

adjoins a new element None to a type ‘a. We use “a option to model partial functions,
writing | a] instead of Some a and ’a — 'b instead of ‘a = 'b option. The Some
constructor has an underspecified inverse called the, satisfying the || = z. Function
update is written f(z := y) where f :: ‘a = 'b, z :: 'a and y :: ‘b and f(z — y)
stands for f (z := Some y). Domain restriction is f|4 where f::’a — 'b and (f]4)
z = (if x € A then f z else None).

Finite integers are represented by the type ’a word where ’a determines the word
length in bits.

Implication is denoted by = and [ A1; ...; A, | = A abbreviates 47 =
(..= (4, = A4)...).

4 The Virtual Memory Environment

In this section, we describe the memory model our logic is currently based within:
the pointer and page table abstractions, as well as their particular instantiations to
our simple machine and one-level page table.

4.1 Pointer Abstraction and a Simple Machine

On all hardware platforms we are aware of, virtual and physical pointers are the
length of the machine word, thus the same type. We use a generic pointer model
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to prevent confusion between them, while still allowing functions working on both.
This allows us to restrict parameters to a particular kind of pointer where necessary
and overload functionality where not. We begin by wrapping each in a datatype
datatype ’a pptr-t = PPtr ’a
datatype ’a vptr-t = VPtr ’a
which we enclose in a type class ptrs encompassing both types. We define a value
extraction function ptr-val satisfying

ptr-val (PPtr z) = z
ptr-val (VPtr z) = z

In order to disambiguate between pointer types in this work, we use vp for the
virtual and p for physical pointers.

Using the above, we define an instantiation of a highly simplified machine: each
32-bit pointer points to a 32-bit word in memory for a total of 232 words in an address
space. Note that traditional implementations use 8-bit values. Our three machine
types are: wptr, pptr and wval, representing virtual pointers, physical pointers and
values respectively. On this machine, we define the types of the three memory views
described in Sect. 2 to be:

vmap = vptr — ppir
heap = pptr — val

addr-space = vptr — wal

They represent the virtual map, heap and address space types respectively.

4.2 The Page Table Abstraction

We define our page table abstraction using Isabelle’s modular reasoning construct
called a locale [1]. Tt allows us to define the interface we require of a page ta-
ble implementation independent of the hardware configuration: the functions each
instantiation must provide as well as constraints they must satisfy.

The primary role of a page table is lookups in the virtual map it represents. In
order to obtain this map, we require a lifting function ptable-lift. Given a heap and
a page table root location, it obtains the virtual map.

ptable-lift::('pptr — ’val) = ’pptr = 'vptr — ’pptr
Not all page table roots are valid, due to the finiteness of the heap as well as other
constraints such as alignment. valid-root defines what is and constitutes a valid
location for the page table:

valid-root:: ‘pptr = bool
Finally, in order to reason about when the page table is modified, we require infor-

mation on the page table area, i.e. given a heap and a root pointer, which heap
addresses constitute the table:

ptable-area::(’pptr — ‘val) = ’pptr = ’‘pptr set

Note that while the types in a locale are fixed throughout it, they are abstract.
The paddr, vaddr and wval we instantiated our simple machine to can instantiate
‘paddr, "vaddr and 'val as their names suggest, but the page table interface specifi-
cation is completely generic.

Definition 4.1 We require two properties on these functions. Firstly, the relation-
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ship between lifting the page table to a virtual map and the page table area: the
map must be lifted only out of the page table area. Secondly, that page table area
must remain unchanged so long as heap updates don’t touch it:

valid-root 7 = ptable-lift h r = ptable-lift (h] r

ptable-area h 7)
[valid-root r; p ¢ ptable-area h r] = ptable-area (h(p — v)) r = ptable-area h r

Independent of the page table instantiation, theorem 4.2 follows.

Theorem 4.2 Updating the heap outside the page table area has no effect on the
resulting virtual map:
[valid-root r; p ¢ ptable-area h r] = ptable-lift (h(p — v)) r = ptable-lift h 7

Definition 4.3 Using the supplied functions, we additionally define the concept of
the page table not being mapped in the address space it defines:

ptable-not-mapped h root = let vmap = ptable-lift h root in Vv p. vmap v = |p] — p ¢ ptable-area h root

As mentioned in Sect. 2, we use a simple one-level page table as an example
instantiation. It is a contiguous physical memory structure consisting of an array
of machine word pointers, where word 0 defines the physical location of page 0 in
the address space, word 1 that of page 1 and so forth. While inefficient in terms of
storage, its simplicity and contiguity allows for fast experimentation with particular
memory layouts. The table is based on an arbitrarily chosen page size of 4096, i.e.
20 bits for the page number and 12 for the offset. Page table lookup works as
expected: we extract the page number from the virtual address, go to that offset in
the page table and obtain a physical frame number which replaces the top 20 bits
of the address:

levlpt-pagesize = ol2
levlpt-size = 232 div levlpt-pagesize
get-page w = ptr-val w >> 12

ptr-remap wvp page page AND NOT 4095 OR vp AND 4095
case h r + get-page w of None = None

ptable-lift 2 r w | laddr| = if addr !! O then |PPtr (ptr-remap (ptr-val w) addr)] else None

ptable-area h r {r..<r + levlpt-size}

AND, OR and NOT are bitwise operations on words. The operator >> is bitwise
right-shift on words. The term z !! n stands for bit n in word z. We use bit 0 to

denote whether a mapping is valid. This page table satisfies the properties required
in Def. 4.1.

5 Extending Separation Logic

Having specified the nature of our memory environment, we will now describe
our logic, its properties and relationship to classical separation logic as defined
by Reynolds [14]. We will begin by comparing the state structure of the two logics,
then follow with introducing all of the traditional separation logic constructs for
our new setting, as well as a few constructs specific to our logic.

As mentioned in Sect. 2, our logic is based on a two-map state consisting of a
heap and a virtual map. As a two-map is just a pair of maps, most map operations
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still make sense. The operations on maps separation logic requires are map override,
domain of, disjunction, subset, domain restriction and the empty map:

m1 ++ mo Az. case ma x of None = m1 z | |y] = |y]
dom m {a | m a # None}
mi1 L mo dom mi1 N dom mo = 0

m1 Cm mo Y a€dom mi. m1 a = ma a

ml g

Az. if z € A then m z else None

Overriding (++) takes the value of an entry in the first map when it is not defined
in the second. The domain of a map (dom) is the set of all defined values. Map
disjointness (L) implies their domains are disjoint. A map is a subset of another
(C,pn) if all entries in the smaller map have the same values in the larger one. Finally,
restricting a map () is the same as restricting its domain.

We expand these to two-maps, using almost identical notation:

(a, b) ++ (¢, d) (@ ++ ¢, b ++ d)

tdom (a, b) = (dom a, dom b)
(a,b) L(c,;d) = alcnAnbld
(a, ) Ce (¢, d) = aCmcANbCm d
(a, D)l(c, d) = (ale, blg)

empty

(empty, empty)

We will now introduce the standard separation logic constructs into our new
setting.

We begin with the definition of separating conjunction, which our two-map
abstraction allows us to express in an identical fashion to the traditional notation:

P A* Q= Xs. ds0 s1. 50 L st As=3s50++ s1 ANPsoA Qs

Note that sy and s; are now pairs of maps, not a heap as in traditional separation
logic.

Separation logic also defines a useful concept for dealing with heap updates:
separating implication. We say that P separately implies ) on a heap s when for
any disjoint extension of s on which P holds, @ holds for s overridden with that
extension. We can thus specify that modifying a heap in some way will establish
a property. Once more, our version looks identical to the traditional one (— is
implication):

P—*Q=Xs.Vs.s Ls"ANPs' — Q (s ++ s

In order to make statements about the heap, traditional separation logic also
provides several heap assertions: a concrete maps-to, as well as a maps-to-something:
pr—v=As.sp=|v] ANdom s = {p}
pr——=2Xs.Jv. (p— v) s
p— v =p+> v A* sep-true
p——=2Xs.Jv. (p = v) s
The first two are domain exact [14], meaning they apply to a specific heap and

are false for any extension of it. sep-true and sep-false are assertions defined to be
respectively true and false for any heap:

sep-true = As. True

sep-false = As. False
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Fig. 2. Maps-to assertions on the heap, virtual map and address space.

The above assertions are standard separation logic assertions expressed on heaps.
We will now proceed to describing their equivalents in our logic, expressed on a
two-map state consisting of a heap and a virtual map.

Excepting the first domain exact assertion, which is the basis for all the others,
we use identical notation to standard separation logic for heap and virtual map
assertions, utilising Isabelle’s function overloading ability.

In order to maintain the domain exact property of the first maps-to assertion,
we proceed as follows. Heap assertions (leftmost on Fig. 2) are identical to normal
separation logic, with the additional constraint that they only talk about the heap:

p — v = A(h, vmap). h p = |v] A dom h = {p} A vmap = empty

Virtual map assertions (middle on Fig. 2) work similarly, but only on the virtual
map. Unlike the other maps-to assertions, virtual addresses do not map to values.
Hence, we use —,, to denote them:

up +—y p = A(h, vmap). vmap vp = |p] A dom vmap = {vp} A h = empty

Finally, address space assertions (rightmost on Fig. 2) involve both the heap and
virtual map. In order to be domain exact, the maps-to assertion uses exactly one
member of each, satisfying:

vp — v = A(h, vmap). Ip. vmap vp = |p] A hp = |v| A dom vmap = {vp} A dom h = {p}

With our new definitions, separating conjunction works as expected on predi-
cates involving only one of the maps. However, address space predicates require
entries from both maps. Thusly, under separating conjunction, if a virtual pointer
vp +— v via some physical pointer p, then vp and p can not map to any other values
than p and v, respectively:

(vp — v A* vp' +— v') (h, vmap) (vp = v A* p ') (h, vmap)
wp # vp' A vmap vp # vmap vp’ vmap vp # |p|

In other words, mappings of virtual pointers to values will not share physical mem-
ory with each other, nor with mappings of physical pointers to values. Heap predi-
cates and virtual map predicates are always disjoint, as they refer to two different
maps.

Since virtual pointers can alias (map to the same physical address), we define
an additional assertion to denote this case:

up1 ~ vpz = A(h, vmap). vmap vp1 = vmap vp2

We also found that being able to express that a set of pointers is mapped to
some values, e.g. ptable-area r s — — proved very convenient. Again utilising
overloading, we define it as:
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pure P=Vss'. Ps=Ps'

[(P A* Q) s; pure P;pure Q] = Ps A Qs

[PsA Qs;pure PV pure Q] = (P A* Q) s

pure P = (As. Ps AN Qs) N"* R=(Xs. Ps A (Q A" R) s)
(P —* Q) s; pure Pl = Ps — Qs

[Ps — Qs; pure P; pure Q] = (P —* Q) s

Fig. 3. Pure assertions of our logic

S = —

S — —

= As. foldop A* (A\z. z+— —) O Ss
= Xs. VpeS. (p— —) s
The first of these simply states that all members of the set S map to some value,
iteratively joined by A*.

The final traditional separation logic construct is empty heap assertion heap: 0.
Our logic has three, depending on which of the maps we want to be empty:

Op = A(h, vmap). h = empty

Oy = M(h, vmap). vmap = empty
] = Op [A] Oy

PN Q@ = Xx. Pz ANQuz

Where |A] is the lifted A operator.

We have now introduced adapted versions of all the separation logic connectives
as well as those unique to our logic. This done, we can begin reasoning about its
properties.

6 State Updates

In this section, we present various properties of our logic, describe how state updates
work and their relationship to standard separation logic.

The basic mechanics of separation logic are intuitive about simple statements, as
can be seen in these simple examples: no address may have two values; two different
allocated physical addresses may have any value:

p +— v1 A* p +— vg = sep-false
[h = [p1 = v1, p2 — va]; p1 # p2] = (p1 = vi A" p2 > v2) (h, empty)

We can lift these examples to the address space level, where two distinct virtual
pointers can only be separated if they map to values via different physical addresses:

[s = ([p1 = w1, p2 — v2], [vp1 = p1, vp2 — p2]); vp1 # vp2; p1 # p2]
= (vp1 — v1 A* vp2 — v2) s

[s = ([pr = v1, p2 = v2], [vp1 — p1, vp2 — p2]); vp1 # vp2; p1 = p2]
= = (vp1 — v1 A* vpy — v2) s
Connectives in our logic conform to the associative, commutative and distribu-
tive properties of classical separation logic [14], with identical notation. We have
also formalised the pure (Fig. 3) and intuitionistic (Fig. 4) assertions of separation
logic (as they apply to our logic) and proved their properties [14], once more with
no departure from standard notation.
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intuitionistic P =Vss’. PsAs Cy s’ — P s’

pure P — intuitionistic P

[intuitionistic P; intuitionistic Q] = intuitionistic (As. P s A @ s)
[intuitionistic P; intuitionistic Q] == intuitionistic (As. P s V @ s)
(Az. intuitionistic (P z)) = intuitionistic (As. Vz. P z s)

(Az. intuitionistic (P z)) = intuitionistic (As. 3z. P z s)
intuitionistic (sep-true A* P)

intuitionistic (sep-true —* P)

intuitionistic P = intuitionistic (P A* Q)

intuitionistic = intuitionistic (P —* Q)

[(P A* sep-true) s; intuitionistic P] = P s

[P s; intuitionistic P] = (sep-true —* P) s

Fig. 4. Intuitionistic assertions of our logic

The properties and simple examples above define a logic about heaps. In order to
begin reasoning about programs, we need to consider their role as state transformers
and hence examine the mechanics of heap updates and their effects.

In our machine instantiation, updating the heap alone is simply updating the
map, though on more realistic instantiations it will become more complex:

heap-update pptr val h = h(pptr — val)

In a virtual memory environment updating the heap can potentially involve chang-
ing the page table and thus the virtual map. Hence, when performing a state update
at a physical address, we re-lift the page table from the updated heap:

heap-update-p pptr val root = A(h, vmap). let b’ = heap-update pptr val h in (h', ptable-lift b’ root)

As mentioned in Sect. 2, direct access to the heap is usually limited to system
devices. Applications modify the heap through virtual addresses. The extra step
involved over a direct heap update is the lookup of the virtual address. The page
table is re-lifted as with heap-update-p:

heap-update-v vp val root (h, vmap) = case vmap vp of None = arbitrary
| lp] = let b’/ = heap-update p val h in (h’, ptable-lift A’ root)

Following Tuch et al. [18], heap updates on the physical layer always succeed.
The behaviour of trying to access virtual addresses is more complex. At the hard-
ware level, accessing an unmapped address will cause a page fault interrupt, which
will redirect control to a page fault handler. The handler’s implementation may
then allocate pages, map pages, load them from disk, etc. If the fault is resolved
successfully, control is returned to the faulting process and the access is attempted
again. Hence, there are two cases: either the page is mapped or it is not. In
the former, heap-update-v will perform the update just as the hardware would. In
the latter, the term heap-update-v will not occur in the verification condition, as
transferring control to the page fault handler will only change the necessary regis-
ters, not the heap. This means the arbitrary part of heap-update-v will not occur in
verification conditions in either case.

At the application level, processes typically run in a simulated memory environ-
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ment which abstracts away the inner workings of the memory subsystem. Hence,
verification of application code under the assumption of page fault handler correct-
ness can proceed by assuming that all memory implicitly required by the application
(e.g. code, stack) is resident and mapped. Page fault handler correctness in this
case is a simulation theorem showing that any execution with page faults can be
simulated by one in the virtual application setting without faults.

At the operating system level, the virtual memory mechanism is visible. Fur-
thermore, at least some system data structures, particularly in the kernel, need to
be permanently resident in memory. To make this property part of the semantics,
we can add guards to these critical kernel heap accesses, requiring the address to
be mapped. For using the guard technique, see Tuch et al. [18].

Having defined heap updates, we now proceed to reasoning about their proper-
ties. Reynolds [14] defines two properties of state mutation, expressible in a shallow
embedding (on a one-heap state) as:

(p=>—A"P)h (p=—-AN"(pov—"P)h
(p — v A® P) (heap-update p v h) P (heap-update p v h)

The former states that a property not dependent on the area of the heap being
modified holds after the update. The latter is a weakest-precondition rule useful
for backwards reasoning. It states that if P holds for a heap with the entry p
set to v, then P will hold after the update, as that is precisely what heap-update
does. Henceforth, we will refer to these as the global and weakest-precondition rules
respectively.

As mentioned in Sect. 1, most operating system code falls into the “safe” cat-
egory of using a one-to-one virtual map. Most application code likewise does not
involve memory sharing or physical regions multiply mapped into virtual ones. In
the following properties, we will present how our logic reduces down to statements
identical to normal separation logic.

In all properties about updates in this section, we assume that r represents a
valid root and s a state where the virtual map is the result of lifting the page table:

valid-root r

ptable-lift (fst s) » = snd s

Note that for physical addresses p — — implies p is allocated, while for virtual
addresses vp — — implies that vp is mapped and the physical address it is mapped
to is allocated.

The easiest to adapt is the physical update version of the global update rule.

Theorem 6.1 For any physical pointer p that is not part of the page table, the
classical global update rule holds:

p ¢ ptable-area (fst s) r (pr——A"P)s
(p — v A® P) (heap-update-p p v 7 s)

As the page table is not modified, no mappings change, so the the virtual map
lifted from the updated heap is identical to the original map. Apart from the
requirement on p, our notation looks exactly like that of classical separation logic.
We can rephrase the requirement on p in theorem 6.1 as a requirement on the page
table area being allocated:
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(p — — A" ptable-area (fst s) 7 — — A P) s
(p — v A" ptable-area (fst s) 7 — — A* P) (heap-update-p p v r s)

A similar transformation can also be done to the following update theorems, but
we omit this form due to space considerations.

The weakest-precondition rule is more interesting, although it is derivable from
the global update rule, due to its usefulness in backwards reasoning:

Theorem 6.2 For any physical pointer p that is not part of the page table, the
classical weakest-precondition update rule holds:
p ¢ ptable-area (fst s) r (pr— =N (pr—v—"P))s

P (heap-update-p p v r s)

Once more the page table is not modified, meaning only one value in physical
memory changes. If the old state overridden by the new value satisfies P, then P
will hold after the update.

In the interest of brevity, we omit the simpler global update rule for virtual
pointers, focusing on the weakest-precondition rule instead. The primary difference
from theorem 6.2 is in the constraint of not residing in the page table being applied
to the physical address the virtual pointer is mapped to:

Theorem 6.3 For any virtual pointer vp, mapped to a physical address that is not
part of the page table, the classical weakest-precondition update rule holds:
the (snd s vp) ¢ ptable-area (fst s) r (vp— — A" (vp— v —" P)) s

P (heap-update-v vp v T s)

At the end of the operation, the address space is unchanged except for all the
virtual pointers mapped to the physical address at which the heap was changed (via
heap-update-v). As we described in Sect. 5 however, vp cannot alias with any other
virtual pointer under separation conjunction, thus the modification of the heap will
only be visible through one virtual address: vp.

Furthermore, if the page table is not mapped into the address space, as is typical
for applications, heap-update-v cannot modify the page table at all:

Theorem 6.4 The weakest-precondition rule holds for any virtual pointer vp if the
page table is not mapped into the address space:

ptable-not-mapped (fst s) r (vp = — A* (vp =~ v —* P)) s

P (heap-update-v vp v T s)

As access to page tables is typically restricted to the operating system, this
result demonstrates that for the application domain the update rules are identical
to that of classical separation logic under the assumptions of a valid unchanging
page table root and a valid state. For applications the page table root usually does
not change, and the valid state condition can be checked automatically. Hence, for
the application domain our logic reduces to classical separation logic.

Another observation is that applications cannot observe modifications to the
heap at locations not mapped into their address space:

Theorem 6.5 Under the assumption of the page table not being mapped into the
current address space, for any physical address p not in the page table area and not
mapped into the address space, updating the heap at p is not visible at the virtual
memory level:
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p ¢ ptable-area h r v = ptable-lift h r
p & ran v ptable-not-mapped h r (new-h, new-vmap) = heap-update-p p val r (h, v)

(new-vmap oo new-h) vp = (v oo h) wvp
where oo is the map composition operator:

foo g = Az. case fx of None = None | |y|] = gy

The vast majority of code, both in applications and operating systems will fall
into one of the above categories. However, the applicability of our logic does not
end at situations where page tables are not touched. We identify three categories of
page table updates, based on the modification of the virtual map: map (add entry),
remap (modify entry) and unmap (remove entry). This is a work in progress: we
have thus far formalised remap and are at present formalising map and unmap
semantics. We will conclude this section with a discussion of remap.

As we are mostly interested in safety invariant preservation, we are concerned
about what does not change during state updates. Even when updating the page
table, most of the virtual map does not change.

Definition 6.6 The set of virtual addresses whose mappings are not affected during
an update of the heap:

ptable-affected f h root = let vmap = ptable-lift h root in dom vmap — vmap Nm, ptable-lift (f k) root

where mi1 Ny, mo = {z € dom mi. m1 ¢ = ma z}

During a remap operation, the domain of the virtual map remains the same, but
its range might change. Thus, properties not invalidated by the heap modification
and the change of virtual map must still hold.

Theorem 6.7 Updating the heap via some virtual pointer vp preserves a property
P if: the domain of the virtual map is not affected, vp’s mapping is not affected
and P is not invalidated by the new value at vp nor the new contents of the affected
virtual map area.

pdate = heap-update-v vp v r dom (snd (update s)) = dom (ptable-lift (fst s) )
(vp — — A™ ptable-affected update r s —, — A* (vp — v A* ptable-affected update r s —, — —* P)) s

P (heap-update-v vp v r )

7 Related work

The primary focus of this work is enhancement of separation logic, originally con-
ceived by O’Hearn, Reynolds et al. [8,14]. Separation logic has previously been for-
malised in mechanised theorem proving systems [8,20]. We enhance these abstract
models with the ability to reason about properties in a virtual memory environment.

Our exploration of virtual memory semantics is driven by the long-term goal
of our research group: a verified operating system microkernel [5] based on L4.
Earlier attempts such as UCLA Secure Linux [19], PSOS [11] and KIT [2] lacked
the theorem proving technology required to deal with the complexities of a modern
microkernel. Like our group, the VeriSoft project [6] is attempting to verify a
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microkernel (VAMOS), but their focus is verifying an entire system stack, including
compiler and applications. Our focus is on creating an efficient, verified microkernel.

Kernel verification efforts acknowledge the existence of virtual memory; previous
work has involved verifying the virtual memory subsystem [9,4,7]. Reasoning about
programs running under virtual memory, however, especially the operating systems
which control it, remains mostly unexplored. The challenges of reasoning about
virtual memory are explored in the development of the Robin micro hypervisor [17].
Like our work, the developers of Robin aim to use a single semantics to describe
all forms of memory access which simplifies significantly in the well-behaved case.
They focus on reasoning about “plain memory” in which no virtual aliasing occurs
and split it into read-only and read-write regions, to permit reading the page table
while in plain memory. They do not use separation logic notation. Our work is more
abstract. We do not explicitly define “plain memory”. Rather the concept emerges
from the requirements and state. Hence, we believe our work to be a superset of
the Robin approach.

Separation logic has been successfully applied to the verification of context
switching code [10,12]. Tuch et al. demonstrated the extension of separation logic
to reasoning about C programs involving pointer manipulation [18]. Presently, our
work uses a simplified machine model with only one type and does not involve Hoare
logic. We believe our framework supports addition of these extensions.

8 Discussion

Although our logic is similar to separation logic and collapses down to separation
logic for pure application reasoning, it does not itself constitute a full separation
logic. This is due to the fact that writes to the page table are not local actions [3].
In particular, the definitions of virtual-to-physical and virtual-to-value maps-to re-
lations does not include the chunk of memory which contains the virtual mapping
itself. As a result, we do not expect the frame rule [14] to hold for state updates
involving page table modification.

The issue at the heart of this design decision is the granularity of virtual memory
mappings, which causes attempts at pointing to the exact area of memory responsi-
ble for mappings to become problematic. For instance, on a 32-bit machine with a
page size of 4096 bytes, a single-level page table and a page table entry size of four
bytes, addresses 0 and 1 both receive their mappings from the same four-byte entry
in the page table. To then say that address 0 maps to a value and separately address
1 maps to some value clearly causes a collision on those four bytes. FEach entry thus
maps 4096 addresses. This is one of the simplest setups; lifting this example to a
two-level page table, the first-level entries map 1024 second-level entries, which in
turn map 4096 addresses. Additionally, modern hardware commonly uses variable
page sizes (superpages).

Our two-map method of reasoning about virtual memory thus sacrifices sepa-
ration properties during page table modification in exchange for a simpler model,
as well as easy abstraction over different hardware instantiations and multiple page
table implementations.

The alternative to our two-map method would be to use a form of sub-byte
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addressing, assigning multiple owners to slices of the bytes in each page-table en-
try. While potentially preserving all properties of separation logic, we believe this
approach would make the memory model significantly more complex.

9 Conclusion and Future Work

We have presented an extension of separation logic which allows reasoning about
virtual memory and processes running within it. Our logic allows for a convenient
representation of predicates on memory at three levels: the virtual map, the physical
heap and the virtual address space. The notation abstracts away details to the
point of appearing very similar to classical separation logic. Our logic preserves
the pure and intuitionistic properties of separation logic, again without exposing
the underlying abstraction. Our work has been formalised in the Isabelle/HOL
theorem prover.

We have shown that if the page table is not involved in an update or does not
map itself, our logic reduces to normal separation logic.

Our work is highly modular. While we chose a simplified machine and page
table implementation to aid with fast experimentation, the logic does not depend
on the implementation of either. Although our framework does not presently have
read /write access rights, it can be easily extended to encompass them. We aim to
add this functionality in the near future.

As this is a work in progress, many applications and properties of our logic re-
main to be explored. The next step is more experimentation in the form of case
studies on behaviours of programs in the presence of page table manipulation, pos-
sibly refining the model presented here into a complete separation logic as discussed
in the previous section. Beyond that, we see the main direction for future work as
extending our logic to handle C program verification in the style of Tuch, Klein,
and Norrish [18].
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Abstract

This paper presents our solutions to some problems we encountered in an ongoing attempt to verify the
micro-hypervisor currently developed within the Robin project. The problems that we discuss are (1) effi-
cient automatic reasoning for type-correct programs in virtual memory, and (2) modeling memory-mapped
devices with alignment requirements. The discussed solutions are integrated in our verification environment
for operating-system kernels in the interactive theorem prover PVS. This verification environment will ul-
timately be used for the verification of the Robin micro-hypervisor. As a proof of concept we include an
example verification of a very simple piece of code in our environment.

Keywords: operating-system kernel, micro-hypervisor, virtual memory, memory-mapped devices, formal
verification

1 Introduction

The programming environment of operating-system kernels differs in essential ways
from that of application programs. The most prominent differences are direct hard-
ware access and privileged processor instructions. In addition, certain situations
that are absurd from an application-programming point of view are possible (and
sometimes even very common) in kernel programming. For instance, many kernels
see some piece of main memory at different virtual addresses. (Other important
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ways in which kernel programming differs are the use of casts and pointer arith-
metic, however, those are outside the main scope of this paper.)

The additional hardware features that are exploited in a kernel programming
environment are usually subject to very specific programming rules, which are de-
scribed in the hardware architecture’s technical documentation. Typically the rules
are not enforced and, when not obeyed, one might get bugs that are hard to repro-
duce. As a consequence certain kinds of bugs can only occur in kernels (or similar
kinds of low-level systems).

In the following we use the term kernel-programming features to refer to the
additional phenomena of kernel programming just described. A verification envi-
ronment for kernel code must of course model the kernel-programming features in
order to give a semantics to the code. Less immediate but equally important is,
however, that the verification environment is faithful with respect to the possible
bugs associated with kernel-programming features. With faithful we mean here
that any such bug must with certainty lead to a verification failure. The subtle
differences between valid and erroneous code make the design of the verification
environment very challenging.

In this paper we discuss our approach to model certain kernel-programming
features that are used in the Robin micro-hypervisor. The solutions presented here
are already implemented in our verification environment. The presentation includes
a discussion of the kinds of programming errors that our models are able and are
not able to catch. We focus on the memory peculiarities in this paper and present
the following two points:

¢ A model of virtual memory that captures virtual-memory aliases, permits the
verification of page-table modifications and efficient reasoning about well-behaved
code (Section 3).

e A general model for memory-mapped devices and the phenomena of reserved bits
in certain hardware registers (Section 4).

In addition, Section 2 gives a general overview of our verification environment, and
Section 5 contains a verification example.

2 Overview of the Robin Verification Environment

This section provides some details about our verifi-
cation environment for the Robin micro-hypervisor,
see Figure 1 for illustration. More technical informa-
tion can be obtained from [8], while the context of
the Robin project is described in [6]. Our approach
relies on source-code verification in the interactive
theorem prover PVS [5]. The input language of PV'S Semanticsof
is higher-order logic enriched with predicate subtyp- Hardware mOd’L datatypes
ing and some other forms of dependent types. For
the verification we model parts of the IA32 hard-
ware and the semantics of C++ data types inside PVS. These two models provide
the basic operations for a model of the micro-hypervisor. Then we use the prover
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hardware data type
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Fig. 2. Approach for source code verification

component of PVS to establish theorems about the model. Technically we show

(I)data_typem @ pordware - Sp(hyperViSOI'),

where ¢ is one property from the hypervisor specification, such as termination
without runtime type errors. Our verification results will describe properties of the
source code. A formal lifting of the results to object code (which would eliminate
the correctness of the compiler from our assumptions) is planned for the future.

Figure 2 depicts the data flow of our verification approach. A semantics compiler
translates the C++ source code into its semantics in higher-order logic in PVS.
The semantics compiler is currently developed on the basis of the Elsa/Olmar C++
front-end [7] and will be described elsewhere. The basic building blocks of the C++
semantics are provided by the hardware model and the data-type semantics.

The operations in the hardware model as well as the data-type semantics and the
semantics of C++ fragments are uniformly modeled as state transformers. State
transformers come in two flavors: statement state transformers (for C++ state-
ments) and expression state transformers (for C++ expressions and everything else).
An expression state transformer is a function of type

State — ExprResult[State, Data].

Here State is the type of all possible states of the hardware model, and Data is a
type parameter for the result of the state transformer (if it terminates successfully).
Both types are theory parameters in our PVS formalization, making them effec-
tively polymorphic. In the verification of concrete C+4 programs however, Data is
instantiated with a fixed type for each state transformer. The State parameter is
either instantiated as well (if we verify against a concrete hardware model), or left
polymorphic if we verify against the plain-memory specification (see Section 3) in
general. The type ExprResult is defined as follows:

ExprResult[State, Data : Type| : Datatype
BEGIN
OK(state: State, data: Data) : OK?
Exception(ex_type : Exception_type, state : State) : Exception?
Fatal : Fatal?
Hang : Hang?
END ExprResult
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This piece of PVS code defines ExprResult as a disjoint union with four variants
tagged OK, Exception, Fatal and Hang. The identifiers with question marks are rec-
ognizer predicates for the corresponding variants (e.g., OK? is true on OK(---) and
false on the other three variants). The identifiers state, data, ex_type are (partial)
accessor functions (e.g., state(OK(s, —)) = s).

A state-transformer result of the form OK(s, d) models successful termination
with successor state s and result d. Hang stands for non-termination, for instance
because of a while loop or a page fault that keeps occurring at the same instruction.
Fatal is reserved for unrecoverable errors, which we want to rule out by verification.
A result of the form Exception models hardware exceptions and interrupts that will
be handled by the micro-kernel. ®

Statement state transformers have the form [State — StmtResult[State, Datal]
with a very similar type StmtResult. The main difference between ExprResult and
StmtResult is that StmtResult contains abnormalities like Break and Return to model
the corresponding C++ control-flow statements, very similar to [3]. Further, OK
does not carry a data element. The parameter of type Data is used inside Return to
model the return type of C++ functions.

State transformers can be composed in the obvious way. For two state trans-
formers f and g their composition f ## g is a state transformer that performs the
effect of g on the successor state of f if f returns OK. Otherwise g is discarded and
the result of f is the result of the composition. If f is an expression transformer,
the data in any OK result is discarded.

The first base component of our verification environment, the hardware model,
formalizes an abstract model of the IA32 hardware in PVS. It provides physical
memory, virtual memory with address translation via page tables, and much more.
The hardware model does not blindly implement the behavior of the real hardware.
Instead certain subtle programming errors that would cause the real CPU to do
nonsense yield unprovable proof obligations in the hardware model. For instance,
the attempt to interpret a string as a page-table entry yields a proof obligation
that remains unprovable unless a suitable data-type conversion is formalized as an
axiom. (Of course such an axiom is not justified.) This kind of error checking even
works for hardware-initiated page-table traversals during address translation.

The memory formalization in the hardware model is split into different layers
of memory models, for instance for physical and virtual memory. These different
memory models share a common interface. Every memory model defines a type
State of possible states and the following record of operations.

Memory struct : Type = [#
memory.read : [Address — [State — ExprResult[State, Byte]]],
memory._write : [Address, Byte — [State — ExprResult[State, Unit]]],

o #]

The two operations respectively read and write one byte at the given address. Note
that reading in memory can change the memory (for instance set the accessed bits
in the page table). The memory structure contains two additional operations for

5 Exception does not model C++ exceptions. We consider C+4 exceptions too heavyweight to be used in
an operating-system kernel. Therefore they are outside the fragment of C++ treated in this paper.

74



TEWS, VOLP AND WEBER

modeling memory-mapped devices and reserved bits, see Section 4.

In order to get a uniform treatment of memory-mapped devices and the special
effects of feature flags in CPU control registers, we decided to have a uniform address
space for both memory and registers. The type Address is therefore defined as a
record consisting of a Register_ld and an offset:

Address : Type = [# type-of : Register_ld, offset : nat #]

Real memory appears as a (rather big) special register with Register_ld Mem. For
memory the offset is the real address. For hardware registers the offset will most
often be 0, however, for processor architectures featuring partial register access,
the offset might be positive (e.g., for accessing AH one would use offset 1 in EAX).
The sizes and possible offsets of hardware registers are enforced with suitable side
effects, see Section 4.

On top of the memory structure we define the following two functions for ac-
cessing contiguous blocks of memory for every memory model in the obvious way.

memory_write_list :
[Memory_struct — [Address, list[Byte] — [State — ExprResult[State, Unit]]]]

memory_read_list :
[Memory_struct — [Address, nat — [State — ExprResult[State, list[Byte]]]]]

Our second base component, the semantics of data types, provides a suitable
semantics for all C++ types and all necessary hardware data types (such as page-
table entries). It exploits under-specification to make the detection of erroneous
type casts and wrong implicit type conversions possible (like, for instance, reading
data from a union with the wrong type) [2]. The data-type semantics is indepen-
dent of any memory model. It provides operations to convert data from and to
their object representation, which is of type list[Byte]. Writing and reading the
object representation into and out of memory is done with the above functions
memory_write_list and memory_read_list.

In our design, the three base components—hardware model, data types, and
C++ semantics—are relatively independent of each other. It is therefore possible

¢ to add new operations to the hardware model,

¢ to use different versions of the hardware model for different parts of the hypervi-
sor; the boot code of the hypervisor can, for instance, be verified against physical
memory,

e to add additional axioms to the data types, e.g. to model compiler-specific as-
sumptions about the size of some data types or the precise behavior of some type
casts, and

¢ to adopt the semantics of new C++ features or compiler-specific C++ constructs.

Our hardware model and the C++4 semantics are necessarily incomplete. Many
of the omissions however do not lead to global assumptions on the validity of our
verification. The hardware model, for instance, does not contain virtual 8086 mode,
but the validity of our verification does not hinge on the absence of instructions that
enable virtual 8086 mode. Instead the VM flag, which controls this mode, is protected
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with a suitable side effect (see Section 4). Any attempt to enable virtual 8086 mode
will yield a Fatal result. Hence a proof of normal termination suffices to show that
virtual 8086 mode is never enabled. Similarly, the use of missing features in the
C++ semantics will trigger an assertion in the semantics compiler.

For a number of features currently not present in our verification environment,
we plan inclusion in the future. These features are (1) the Translation Lookaside
Buffer (TLB)®, (2) cache policy checking for devices, (3) segment offsets and seg-
ment size checking, (4) linking object code and instruction fetch to the abstract
C++ semantics. Because of their absence we are currently unable to detect certain
kinds of errors, namely

e TLB errors, e.g. inconsistencies between the TLB and the page tables, or implicit
assumptions about the TLB size and structure,

e segment violations (the Robin micro-hypervisor uses a flat memory model where
no segment violations can occur, however, currently we do not check that the
segment descriptors are filled with the proper values),

e cache policy errors for memory-mapped devices, and delayed side effects for
cachable memory-mapped devices, ©

e discrepancies between our C+4 semantics and the compiled object code, which
(apart from compiler bugs) could occur for the following reasons: volatile-related
errors in the source code ® , certain compiler optimizations (e.g. delayed write-back
to memory), or self-modifying code (however, no self-modifying code is contained
in our current verification target).

Once these missing features have been added, our verification will build on the
following general assumptions:

e The software to be verified will be executed on a single-processor system.

¢ Caches for real memory are working completely transparent and can be ignored.
This should be guaranteed by the hardware on single-processor systems.

e The involved software tools—the C++ compiler used to compile the Robin micro-
hypervisor, our semantics compiler (including the Elsa C++ parser and type
checker), and PVS—produce correct results.

3 The Plain-Memory Abstraction

The memory in an TA32 system is a sophisticated device: segments and page tables
specify access rights, a given piece of memory might be visible in different virtual-
address ranges, the address translation in the CPU from virtual to physical addresses
might differ from what is specified in the page table because of bogus TLB entries,

6 The TLB is a special CPU-internal cache for virtual-to-physical address translations.

7 The source code that we currently target does not involve any devices. In general, cache policy checking
for memory-mapped devices is trivial to add with our mechanism for side effects (see Section 4). To model
cache effects on cachable devices, the model of the device should include the relevant cache effects.

8 A C++ compiler is permitted to perform arbitrary optimizations with respect to non-volatile data. Mem-
ory accesses to such data are not part of the observable behavior of a C++ program, which makes a correct
semantics difficult. At the moment our C++ semantics treats all data as volatile. A verification based on
the current semantics will therefore not catch missing volatile annotations or missing memory fences.
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and much more. We cannot ignore all these effects, not even for most innocent
kernel code, because of the errors that they might cause.

As a consequence we designed the plain-memory abstraction for the verification
of those parts of the kernel that require only the standard C++ memory model. It
deals with the following issues.

e Writing or reading a single byte in memory can have devastating effects if one hits
a memory-mapped device, a page table or simply an unmapped address. For cor-
rectness, the verification must therefore be carried out against a faithful model of
IA32 memory. Plain memory provides a (comparatively) simple abstraction that
can be used for those parts of the sources that only need well-behaved memory
without special effects.

e The TA32 hardware provides several memory configurations: real-address mode,
protected mode with and without paging. Our hardware model multiplies the
number of different memories because we prefer to model different memory fea-
tures (such as the TLB or execution of the page-fault handler) in different mem-
ory models. Most of the code does not depend on a concrete memory model and
should consequently be verified against a suitable set of memory models. Plain
memory permits precisely this because every memory model of interest will give
rise to a model of plain memory.

Technically plain memory is a specification that provides byte-wise read and
write access to memory, where special properties are guaranteed for read-blessed
and read/write-blessed address regions. (There are additional operations to access
side effects of memory-mapped devices and to enforce reserved bits. We ignore
these things here, see Section 4 for details.) The general idea is simple. Memory
at blessed addresses is sane: read access does not change anything in the blessed
address range, and write access only changes the bytes written (in the expected
way). Moreover, these special properties are maintained as long as only blessed
addresses are accessed. No guarantees are made however for a memory access
outside the blessed address regions. We have shown in PVS that these properties
are satisfied by normal virtual memory (that is outside memory-mapped devices)
under the following preconditions:

e All blessed addresses are mapped in the page table, and no two different
read/write-blessed addresses are mapped to the same physical address. (Different
read-blessed addresses might refer to the same physical address, and there might
also exist other mappings for addresses outside the blessed address regions.)

e The page tables can only be read-blessed if the accessed and dirty bits are set.
(This condition can be relaxed for page-table entries of read-blessed or unblessed
memory. )

We want the plain-memory specification to be usable with all concrete memory
models (including physical real-address memory). Therefore the specification must
describe all properties only with the observations that can be made by reading and
writing single bytes. In PVS the specification is split into a record of functions
(capturing the plain-memory signature) and a predicate for the required properties.
With this technique the axioms of the plain-memory specification do not show up as

7



TEWS, VOLP AND WEBER

axioms in the PVS formalization, hence they do not affect consistency. Instead, any
use of a plain-memory property in a proof will spawn a subgoal requiring the proof
of the plain-memory axioms. The plain-memory signature is defined as follows:

Plain_Memory : Type = [#

mem : Memory _struct[State], % see page 74
states : PRED[State], % states fulfilling the plain memory properties
ro_addr : PRED[Address], % read—blessed addresses
rw_addr : PRED[Address] % write—blessed addresses
#

The properties of plain memory are specified as follows.

plain_memory?(pm) : bool =
unchanged_memory_invariant?(pm‘mem, pm'states,
union( all permitted state transformers except write access to pm‘rw_addr ),
union(pm‘ro_addr, pm‘rw_addr)) A
unchanged_memory_invariant?(pm‘mem, pm'states,
memory_write_transformers(pm‘mem, pm‘rw_addr),
pm‘ro_addr) A
unchanged_memory_write_invariant?(pm‘mem, pm'states, pm‘rw_addr) A
changed_memory_invariant?(pm‘mem, pm'states, pm‘rw_addr) A
transformers_ok?(pm'states,
union( all permitted state transformers )) A
side_effect_content_unchanged(union(pm‘ro_addr, pm‘rw_addr), pm'‘states,
memory_read_side_effect(pm‘mem)) A
side_effect_content_unchanged(pm‘rw_addr, pm‘states,
memory_write_side_effect(pm‘mem))

We have omitted the involved expression for the union of all permitted state trans-
formers. This set contains all read accesses to read- and read/write-blessed ad-
dresses, all write accesses to read/write-blessed addresses, and all corresponding
side effects.

The first clause states that read accesses to blessed addresses and all possible
side effects do not change the contents of any of the blessed addresses. The second
clause expresses the same for write accesses and the read-blessed addresses. The
third clause requires that a write access to one address leaves all other read/write-
blessed addresses intact. The fourth clause states that write accesses actually change
the written address in the right way. The utility predicates used in the first four
clauses additionally require that the set of states forms an invariant with respect
to the respective set of state transformers. This makes the plain-memory property
an invariant: permitted state transformers must stay in the set of plain-memory
states, in which all the nice properties hold. The fifth clause makes all memory
accesses terminate with OK (which prohibits e.g. unhandled page-faults). The last
two clauses require that side effects do not change the data read or written.

The plain-memory specification entails that only explicit writes change a memory
cell. This property enables us to prove the following lemma.

plain_memory_read_write_other_res : Lemma
plain_memory?(pm) A
pm'states(s) A
in_blessed_memory?(dt1, addrl, pm‘rw_addr) A
in_blessed_memory?(dt2, addr2, union(pm‘ro_addr, pm‘rw_addr)) A
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blocks_disjoint?(addrl, size(uidt(dtl)), addr2, size(uidt(dt2))) A
valid_in_mem(pm,dt2)(addr2)(s)
—
data( (write_data(pm,dtl)(addrl, datal) ##
read_data(pm,dt2)(addr2))(s) )

data( read_data(pm,dt2)(addr2)(s) )

It expresses that for two variables of type dtl and dt2 that lie disjoint in blessed
memory, writing the first one does not change the contents of the second. This
lemma is used in a rewrite engine that enables PVS to symbolically compute the
value of a variable by going back to the last write access to that variable.

Our hardware model contains physical memory (RAM) as a base of all memory
models. Physical memory provides one byte of storage for every address up to a
certain maximum. Accesses above the maximum yield Fatal as result. Unsurpris-
ingly we can prove that all states of physical memory form a plain memory, with
all addresses below the maximum read/write-blessed.

Our model of linear memory contains page-table based address translation, but
no TLB or page-fault handler yet. The linear memory is stacked on top of a plain
memory using the general memory-structure interface (see Section 4.2 for more
on the stacking of memory models). This plain memory is typically instantiated
with physical memory (possibly containing devices). We have shown in PVS that
the plain-memory properties are obtained for linear memory under the following
preconditions:

¢ The code segment register (CS), determining the code privilege level, the page-
table base register, and the page tables themselves remain unchanged (with the
exception of access bits).

¢ Any translation for read or execute accesses succeeds for the entire blessed range
of virtual addresses. Translations for writes succeed for the writable subset.

e Blessed writable virtual addresses map to blessed writable physical addresses,
blessed read-only addresses map to blessed readable or writable physical ad-
dresses.

¢ Page tables reside in a memory area that is disjoint from the targets of the above
mappings.

e There is no blessed shared-memory alias to a writable virtual address. (Virtual
read-only regions may be shared arbitrarily.)

One point to highlight is that we only have to require those page-table entries
to remain unchanged that are used in the translation of the virtual blessed address
range. This allows us to modify unrelated page-table entries without loosing the
blessing properties. We achieve this by requiring

disjoint?(virt_to_phys_range(s, union(pm‘ro_addr, pm‘rw_addr)),
address_in_pt_range?(s, union(pm‘ro_addr, pm‘rw_addr))),

where virt_to_phys_range translates all addresses in the virtual blessed address range,
and address_in_pt_range? returns the corresponding physical addresses containing the
page-table entries for this range.
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4 Memory-Mapped Devices and Reserved Bits

Although most device drivers reside outside the micro-hypervisor, some devices
(e.g. the interrupt controller) must remain under kernel control to prevent malicious
code from monopolizing the system. To program these devices, the micro-hypervisor
code accesses certain device registers. Unlike normal RAM, these registers show
very special behavior when accessed. Special-purpose processor registers (such as
the TA32 control registers [[A32-3a-2.5] ? ) are similar to device registers in that read
or write accesses to them may cause special effects. For our verification attempt,
the following special effects are important.

Reserved bits The value of reserved bits must not be modified, or otherwise the
processor behavior is undefined. For example, bits 0-2 and bits 5-11 of the IA32
page-table base register (CR3) are reserved [IA32-3a-2.5].

Access type restrictions Some device registers are read-only respectively write-
only accessible, or they allow no instructions to be fetched. ROM is a prominent
example of a read-only accessible device.

Alignment restrictions Some devices require that registers are accessed only
at certain offsets relative to the register base address. Furthermore, each access
must read or write a certain amount of data at once. For example, the registers
of the TA32 advanced programmable interrupt controller (APIC) are aligned on
16-byte boundaries. They must be accessed with 4-byte wide and 4-byte aligned
reads and writes [IA32-3a-8.4.1].

Side effects Reading or writing causes side effects on some devices. For exam-
ple, writing to the TA32 APIC end of interrupt register signals completion of
the interrupt-handling procedure [IA32-3a-8.8.5]. This may cause the immediate
delivery of the next pending interrupt.

More abstractly, we can summarize these behaviors as follows: reading and
writing certain registers and certain locations in memory may result in modifications
to the system state, to the memory (or register) contents, and to the value read or
written. Furthermore, the behavior of an operation may be undefined; in this case
the verification should fail.

4.1  Modeling Devices and Reserved Bits

Instead of modeling memory and additional devices as parallel abstract ma-
chines, we prefer the following approach. We extend the Memory_struct of
each memory model with two side-effect transformers memory_read_side_effect and
memory_write_side_effect of the following type:

Address, list[Byte], bool — [State — ExprResult[State, list[Byte]]].

Unlike memory_read and memory_write, these side-effect transformers take the entire
list of bytes read from (or written to) the given address. This is necessary to enforce
alignment restrictions, which require knowledge about the amount of data that is

9 The notation [[A32-3a-2.5] refers to Volume 3a, Section 2.5 of the Intel 64 and IA-32 Architectures
Software Developer’s Manual [4].
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read (respectively written) at once. The third parameter is an indicator whether
the access crossed a page boundary in a higher virtual memory layer. We elaborate
on the use of this parameter in Section 4.2.

In the following we use a simple memory-mapped random number genera-
tor (RNG) to illustrate how one can model side effects and access restrictions. The
RNG device provides one read-only memory-mapped register, rnd_val, that con-
tains an unspecified (supposedly “random”) value. The internal state of the device
(which is kept in addition to the memory state) contains two natural numbers seed
and access_count. The value of access_count is incremented as a side effect with each
memory access. The seed is left unspecified.

To obtain the random value we apply a completely unspecified function random
to the seed and the current access_count. Because access_count is strictly increasing,
we get potentially different values for every access to rnd_val. Under-specified and
non-deterministic behavior of more complicated devices can be modeled in a similar
fashion.

4.1.1  Access Type and Alignment Restrictions

Modeling devices with access-type and alignment restrictions is straightforward by
checking these restrictions for overlapping accesses. As an example, we impose that
rnd_val must be accessed with machine-word granularity (as unsigned int).

unaligned_access(a : Address, bl : list[Byte], cp : bool) :
[Random_device_memory — ExprResult[Random_device_memory, list[Byte]]] =
If disjoint?(address_block(a, length(bl)), address_block(rnd_val, size(uidt(dt_uint)))) V
(= cp Alength(bl) = size(uidt(dt_uint)) Aa = rnd_val)
Then ok_result(bl)
Else fatal_result Endif

Here size(uidt(dt_uint)) comes from the C++ data-type model and gives the number
of bytes of an unsigned int (which is usually 4 on the TA32 architecture, although
this may vary with the C++ implementation). To require the read-only behavior
of rnd_val we use the following after the above alignment check has been passed:

write_rnd_dev(a : Address, bl : list[Byte], cp : bool) :
[Random_device_memory — ExprResult[Random_device_memory, list[Byte]]] =
If a = rnd_val
Then fatal_result
Else ok_result(bl) Endif

The memory_read_side_effect and memory_write_side_effect transformers of the
RNG device are set to compositions of the above two transformers and other checks,
which we discuss below.

4.1.2  Reserved Bits

Reserved-bit restrictions come in two flavors, depending on whether the value of
reserved bits is specified. For example, the TA32 processor manuals [IA32-3a-2.5]
specify bits 11-31 of the CR4 register as reserved. The value of these bits must be 0.
As long as the value of reserved bits is specified, we merely have to check that the
value in the byte list passed to the memory_write_side_effect transformer is according
to the specification. Registers whose reserved bits all have specified values can then
be modified simply by writing to these registers.
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Other special-purpose processor registers and device registers leave the value of
certain reserved bits undefined. In this case we match against an unspecified value
in the memory_write_side_effect transformer. Because the initial register contents
are not specified, we can establish that reserved bits are unaltered by a write access
only when the written data originates from a previous read of this register.

Reserved bits can also be used to restrict the processor modes in which the
micro-hypervisor may execute. For example, we fix the mode bits in the TA32
control registers CRO and CR4 to the setting for 32-bit paged, protected mode. This
prevents the kernel from switching back to real mode. Consequently it suffices to
model only those parts of real mode that are required for the verification of the
kernel’s boot-strapping code.

4.1.8  Side Effects

Side effects on reads (respectively on writes) cause additional parts of the system
state to be updated. Here, one can either update the memory state itself, or add
an additional device state. For the random number generator, we decided to use
the latter approach. As described earlier, our RNG device implements a side effect
to count all memory accesses in its internal state.

access_count(a : Address, bl : list[Byte], cp : bool)(s) :
ExprResult[Random_device_memory, list[Byte]] =
OK(increase_access_count(s)(length(bl)), bl)

Another side-effect transformer generates the “random” (i.e. unspecified) value
when the rnd_val register is read.

random : [nat, nat — { | : list[Byte] | length(l) = size(uidt(dt_uint)) }]

read_rnd_val(a : Address, bl : list[Byte], cp : bool) :
[Random_device_memory — ExprResult[Random_device_memory, list[Byte]]] =
If a = rnd_val
Then A(s : Random_device_memory) :
ok_result(random(seed(s), access_count(s))(s)
Else ok_result(bl) Endif

4.2 Stacking Memory Layers

For greater modularity we split different hardware features into separate memory
models where possible. For instance, segment based and page-table based address
translation (which are both part of the virtual memory in the IA32 architecture) can
nevertheless be split into two independent memory models. To obtain the overall
effect we stack different memory models, exploiting the general memory_struct inter-
face. Every memory layer performs its functionality before invoking the underlying
layer via the abstract interface. The bottom layer is a model of physical memory
that contains a byte array to store the memory contents.

A good example of the stacking of memory layers is provided by linear memory,
which adds page-table based address translation to an underlying physical memory.
In order to keep the stacking flexible, the linear memory is not based on our model
of physical memory directly, but is instead parameterized with an arbitrary plain-
memory model pm. (This model can be instantiated with physical memory, and with
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Fig. 3. Splitting of side effects when stacking virtual memory on top of device memory.

any other memory model that satisfies the plain-memory properties.) The linear
memory layer defines page-table based lookup and address translation as described
for 32-bit page tables in [[A32-3a-3.7]. Finally it defines functions for filling the
memory_struct of the linear memory model. The function for memory_read is given
by
linear_read(a : Address) : [Linear_memory — ExprResult[Linear_memory, Byte]] =
If in_memory(max_linear)(a) Then
If Mem?(type_of(a)) Then
linear_resolve(a, Read) ## A(pa : Address) : memory_read(pm‘mem)(pa)
Else
memory_read(pm‘mem)(a)
Endif
Else fatal_result Endif

The state-space type Linear_memory is equal to the state space of the plain-memory
parameter pm. The function linear_read first checks if the access is within the mem-
ory or register bounds. For a real memory access, the virtual address a is then
translated into a physical address pa, which is used to access the underlying mem-
ory of pm. Any abnormal result of the address translation (because of page faults
or data-type errors in a page table) is propagated to the outside via the composi-
tion of state transformers, ##. Register accesses are passed to pm without address
translation, of course.

Our random number generator from the previous section was also implemented
as an independent memory layer, which adds the functionality of the RNG device
to the underlying memory layer.

However, when combining virtual memory with memory-mapped devices, one
must deal with new problems. The virtual memory performs address translation and
may thereby split an access to a contiguous block of memory into several accesses
to noncontiguous blocks. By coincidence the splitting might result in an access
to a memory-mapped device that seemingly satisfies all alignment and granularity
requirements of the device. For instance, in Figure 3 the very last piece of the
virtual address block is mapped precisely to the first APIC register. We view such
an access as an error, because it is only part of a larger memory access. Moreover,
the TA32 architecture gives no guarantees that in the case depicted in Figure 3 the
access to the APIC is performed with 4-byte granularity [[A32-3a-7.1.1], as required
by the APIC.

To detect this kind of error, we introduce a crossed-page indicator cp as argument
to our side-effect transformers. Initially being false, this indicator is set to true
when the address translation splits a contiguous memory access. The side effect
transformer unaligned_access (see page 81) of our RNG device always checks the
cp flag and delivers an error if it is true.
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5 Example Verification

To illustrate how kernel-code verification works in our environment, we have proved
two partial correctness properties of a simple linear search (in an array of N unsigned
integers) in PVS. The C++ implementation of the search algorithm uses pointers
and pointer arithmetic:

unsigned int a[N], value;
unsigned int «first = &a[0];
unsigned int xlast = &a[N];
unsigned int xcurrent;

current = first;

while(current < last) {
if (xcurrent == value) break;
current4-+;

}

More precisely, we have shown that the current pointer refers to an array element
containing the search value if the value is contained in the array, and to the element
one beyond the array bounds (last) if no such element is present. The verification of
these properties proceeds according to the approach that was outlined in Figure 2
on page 73. First, (1) the C++ sources for the search program are translated into
their semantics in PVS. Second, (2) the correctness properties are formulated as pre-
and postconditions, and then verified against the plain-memory specification. Our
verification thus shows that, under suitable assumptions, the example program runs
correctly both in physical and virtual memory. Finally, to avoid vacuous results,
(3) the plain-memory preconditions were validated for concrete stacks of memory
models (e.g. linear memory on top of the RNG device on top of physical memory).

Because we have established parts (2) and (3) separately, changing the under-
lying hardware/memory model only requires that one repeats the validation of the
plain-memory assumptions (part (3)) for the new memory model.

5.1 C++ to Semantics Translation

The semantics compiler translates the above C++ code into its PVS semantics.
Expression-to-statement and lvalue-to-rvalue conversions are made explicit. We
only show the translation of the second part (lines 6-10) of the above code snippet.

e2s[State, Address, Semantics_void]
(assign(pm, dt_pointer)(id(current), 12r(pm, dt_pointer)(id(first)))) ##
while(12r(pm, dt_pointer)(id(current)) < 12r(pm, dt_pointer)(id(last)),
if_else(
12r(pm, dt_uint)(deref(pm)(12r(pm, dt_pointer)(id(current)))) == literal(value),
break,

skip) ##

e2s[State, Semantics_pointer, Semantics_void](postinc(pm)(id(current)))),

Here first, last and current are addresses of disjointly allocated pointer variables.
Currently we require disjointness of these variables in a precondition, but once the
formalization of memory allocation is complete, disjointness will be derived from
the allocator model.
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5.2  Verification Against the Plain-Memory Abstraction

Verification is currently done by automatic loop unrolling and simplification ac-
cording to the plain-memory rewriting rules. For this, the necessary preconditions
in_blessed_memory and valid_in_mem for not previously written variables have been
added to the precondition. in_blessed_memory states that the variable is correctly
allocated in blessed memory, valid_in_mem that the memory contains a valid bit rep-
resentation for the variable. Typically the latter is established by a previous write
to this variable.

In our C++ semantics, all expressions and most statements are ex-
pressed using a combination of only four different state transformers:
read_data, write_data, ok_result(data) (which returns OK(s, data)), and fatal_result
(which produces Fatal). It is therefore possible to simplify expressions by first
expanding them to sequences of these transformers, and then simplifying these
sequences using the plain-memory rewriting rules (e.g. the rule in Section 3).

Similarly, we evaluate statements up to the point where only expressions remain
in the code sequence. For example, under the precondition OK?((expr ## b_ex)(s))
the sequence

(e2s(expr) #+ if_else(b_ex, stmt_if, stmt_else))(s)

1s rewritten into

(e2s(expr ## b_ex) ## If data(expr #+# b_ex)(s) Then stmt_if Else stmt_else Endif)(s)

This simplifies with an appropriate rewriting rule for e2s to either
expr ## b_ex ## stmt_if or to expr ## b_ex ## stmt_else, depending on the
value of data((expr ## b_ex)(s)). Likewise, we rewrite the statements stmt_if and
stmt_else to expression sequences containing only read_data, write_data, and the
above result transformers. Because of this transformation it suffices to define and
prove the plain-memory rewriting rules only for data reads and writes. All other
rules of the rewriting system operate independently from the data-type or memory
model.

5.3  FEstablishing Plain Memory

For each memory model we established the plain-memory property for a certain
range of addresses. As stated above, for physical memory this is the entire address
range. Stacked models contain preconditions which require the blessed address
range to be contained in the blessed range of the underlying memory model. It
is therefore sufficient to show that the addresses used in the code to be verified
all reside in blessed memory. Accesses outside the blessed-memory address range
automatically violate the plain-memory assumption and cannot be simplified with
the plain-memory rewriting rules. In such a case the plain-memory property must
be reestablished before one can proceed with the automatic simplification.
For our verification example, one needs the following preconditions:

e The variables are allocated so that they do not overlap with the registers of the
random device.

e The variables are allocated so that they do not overlap with a page-table entry
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used to access some of the variables.

¢ All page-table entries of these variables are writable (because reference bits may
be written back to memory).

e The memory of current is not virtually aliased with any of the other variables
used in the search program.

Note that it is possible to have virtual aliases in the array or for the first and last
pointers, as these are read only.

6 Conclusions

In this paper we have presented two details of our approach to model the memory
of an TA32 system. The first detail is a specification of well-behaved plain mem-
ory. This specification allows us to maintain an abstract level of reasoning with
reasonable efficiency on top of a complex model of paged virtual memory. The sec-
ond detail is our modeling of memory-mapped devices and reserved bit restrictions.
We use side-effect state transformers that are performed before and after memory
access to uniformly model both, reserved bits and memory-mapped devices. As
demonstrations we have included the formalization of a (memory-mapped) random
number generator, and an example verification of a simple C++ code fragment.

Related Work.  There have been extensive attempts to reconcile the untyped
memory model of C with a typed view, see e.g. [10]. At the other end of the spec-
trum, complete micro-processors have been formally verified at the gate level [1].
Our current work is located in-between those efforts. We take a correct 1A32 pro-
cessor for granted. Our aim then is to establish that the view on memory provided
by the Robin micro-hypervisor, despite various peculiarities present in the architec-
ture’s hardware (virtual vs. physical memory, memory-mapped devices, etc.), is a
model of C++ memory, which is well-behaved in the sense that one does not need
to worry about low-level features like virtual address aliasing anymore. Perhaps
most closely related is the verification of page table algorithms in [9], which still
uses a rather abstract memory model however.

Acknowledgments We would like to thank the anonymous referees for their
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Abstract

This paper describes the basic concepts of error diagnostics and an associated rule system whose application
helps to identify potential hardware/software locations of errors which caused a failure observed while
executing tests of embedded systems. Further on, an overview over the “Avionics Smoke Detection System”
is given, where the main algorithms have been applied. The methods, techniques and tools described here
rely on the preceding investigations performed with respect to signal flow and the observation of causal
chains in distributed test benches during test suite executions. These results have been elaborated in the
KATO project within the German aerospace research programme LUFO III.
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1 Introduction

This document describes the results achieved by the University of Bremen, TZI,
for KATO-TP13 work packages “Specification of conditions for error diagnostics”
and “Implementation of an error diagnostic prototype’. With almost ten years of
experience in the area of test and verification of avionics controllers all kinds of
faults, errors and anomalies have been observed and detected by our workgroup.
The obvious next step is to classify the encountered faults. Based on the fault models
commonly used in semiconductor fault diagnostics[1][6] we applied these models and
methods and provide a complete strategy for locating faults in distributed embedded
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systems within their environments. The methods, techniques and tools illustrated
here rely on preceding investigations, which have been documented in [7].

Due to legal constraints we cannot present “real” source code, but instead we
illustrate our methods for error diagnostics with a slightly simplified and abstracted
example of a real system. The System Under Test (SUT) and its testing environment
are depicted in Fig. 1 and introduced in the paragraphs below.
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| | [s02 | | |
c [ cMP1 AFDX

2 |l [[sD3 | I |

1IR3l g

______________________________ =]
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| & o cups 222 SDCU Comppermpsl ff 3 ||

| g | =05 Compalarm [4] A |
£ — TR
3
T

| g | |
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Fig. 1. Testing scenario

A simplified version of an aircraft smoke detection system is used as the SUT. Its
model, which is assumed to be correct, and the corresponding faulty implementation
are described in Section 2. The central control unit (smoke/fire detection control
unit (SDCU)) contains an error similar to one of those errors found during “real”
controller testing.

The SDCU is connected to the cockpit via a bus system called Avionics Full
Duplex Switched Ethernet (AFDX), which is commonly used in modern aircraft.
This bus is used to send the alarm states of the compartments to the cockpit. These
messages are pictured as arrows, leading from the SDCU to the cockpit.

However, to emphasize the fault, the reporting message is made visible in the
test scenario overview. The faulty part is marked by a red arrow.

To keep the overview short and simple, the flow of the messages from the SDCU
to the sensors — and vice versa — are not shown. They are routed within the two
CAN buses A and B.

The implementation is embedded into a testing and simulation environment,
using Verified’s RT-Tester tool[12]. The resulting testing environment and the test
suite executed therein are described in Section 3. In Section 4, the application of the
diagnostic tool kit described in the preceding chapters is illustrated for the purpose
of identifying the causes and locations of the test failures observed.
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2 SDF SUT Model and Implementation

The system consists of (see Fig. 1 above) the following items:

¢ The smoke detectors (SD) measure humidity, smoke and temperature at des-
ignated locations in the aircraft and transmit smoke/fire alarms and other status
information on a CAN bus system.

e The smoke detection control unit (SDCU) collects sensor data from vari-
ous busses and distributes alarms and other messages to the cockpit (and other
systems).

¢ The communication media consist of
- CAN busses for SD «+» SDCU communication,
- AFDX bus for SDCU «+ Cockpit communication,
- discrete I/0 lines for cockpit indications.

Observe that real smoke detection systems use several additional communication
interfaces, in particular, aural and visual indication to the aircraft cabin. For the
purpose of illustrating our concepts for error diagnostics, however, these interfaces
and their associated additional functionality are not relevant. The central SUT
component is the SDCU controller. One of the most important SDCU methods
is processMessages (). Here, the decisions whether to raise compartment smoke
alarms are made. In the correctly modelled system the alarm status of compartment
¢ depends on the conjunction of local alarm states. For compartment Compl the
states of the sensors SD1 to SD4 are evaluated. Two sensors are used for the
compartments Comp2 to Comp4 respectively. This leads to the following alarm
equations:

e Compl:
compAlarm[l] = (sensorSDSAlarm[1] A\ sensorSDS Alarm|2])V
(sensorSDSAlarm|3] A sensorSDS Alarm[4])

e Comp?2 ...Comp4:
compAlarm|c] = sensorSDSAlarm[2c + 1] A sensorSDS Alarm|2c + 2],
ce{2...4}

However, the SUT implementation contains an error: For compartment Comp2,
the alarm decision depends on sensorSDSAlarm[5] A sensorSDSAlarm[13] in-
stead of sensorSDSAlarm[5] A sensorSDSAlarm[6]. In the diagnostic procedure
described below, this failure will be referred to as Failure.

3 SDF Testing Environment

In this document we focus on system integration testing, so the tests will typically
be

e Black-box tests on controller level: Since controllers have been tested by their
suppliers during the mandatory HW /SW integration test suite, the system tests
will deal with controllers as black-boxes.

e Black-box tests on peripheral device level (same reason as for controllers).

90



EFKEMANN AND HARTMANN

¢ Grey-box tests with respect to inter-controller communications: During system
integration testing, network monitors are typically available to record at least a
portion of the data exchange between communicating controllers. For example,
AFDX monitors and ARINC 429 monitors can be used to record snapshots or
specific types of data packages. Some communications, however, often cannot
be observed, such as, for example, the data exchange between redundant fault-
tolerant controllers.

¢ Grey-box tests with respect to controller < device communication: Just like
inter-controller communications, the data exchange between controllers and their
directly connected peripherals can be — at least partially — observed using bus
monitors (e.g. monitors for CAN busses, ARINC 429 busses), or measurement
equipment (e.g. for discrete and analogue 1/0 interfaces).

The RT-Tester tool can be used for all kinds of tests — from unit level tests to
hardware/software integration tests (described in [5]). However, in this document
we focus on system integration tests, and all mentioned tests were executed using
this tool.

4 Diagnostic Procedure

4.1 Step 1: Initial Black-Box Test Results

A diagnostic procedure is always triggered by a discrepancy observed during a test
suite. The failure — contained in the SDCU itself — is detected during a functional
test of compartment smoke alarms in compartment Comp2.

The initial values for the compartments are shown in the first test log. The
values for humidity and smoke are recorded as percent values. The temperature is
given in degrees Celsius.

TM 00027023005 AM 4 0 : ( 25 ) ENVIRONMENT:
COMP: 1 2 3 4
: HUMIDITY: 5 5 5 5
SMOKE: 2 2 2 2
TEMP: 20 20 20 20

The test environment simulates a relevant smoke and slight temperature increase
for Comp2, which is recorded in the test execution protocol as

TM 00029035001 AM 4 0 : ( 27 ) ENVIRONMENT:
COMP: 1 2 3 4
: HUMIDITY: 5 5 5 5
SMOKE: 90 90 90 2
TEMP: 30 30 30 20

The threshold values for alarms are at 80% for smoke and 65° for temperature.
Therefore an alarm must be reported for three different compartments: Compl,
Comp2 and Comp3. However, no alarm is reported for the compartment Comp2:
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TM 00034035267 AM 4 0 : ( 32 ) SDCU:
coMP: 1 2 3 4
ALARM: 1 0 1 O

This test step shows that after 5 seconds (timestamp unit: microseconds), there
is still no smoke alarm for compartment Comp2, leading to test failure.

4.2 Step 2: Interface Analysis — Generation of the Causal Graph — Version 1

The causal graph shows all components and interfaces that may possibly influence
the values passed along interface compAlarm[2]. For the version 1 representation
of the graph all components which are physically connected are considered, because
bridging faults? in components may result in arbitrary data flows, as long as a
physical connection is available. As soon as certain types of internal component
faults can be excluded, the causal graph may be narrowed, leading to new versions.
Conversely, a more detailed analysis of a potentially faulty component may require
to analyse its internal data flow. This leads to a refinement of the causal graph
version n, where a component node C' in version n is replaced by a detailed data flow
network representing communications within C' and leading to a new version n+1 of
the graph. The initial version of the causal graph for the failure detected on interface
compAlarm[2] is shown in Fig. 2. The graph contains cycles, because messages
are transported from smoke/fire detectors to the SDCU and vice versa, and the
messages from SDCU to SDs can also influence the state on interface compAlarm[2]:
For example, if the SDCU would fail to poll sensors SD5 and SD6, then no alarm
messages would be sent from SD5 and SD6 to the SDCU.

compAlarm [2]

liz |4 lis i6 i7| |15 lite li1z lits lito
sD1 sD3 SD5 | | sp7 sb9 | sD2 SD4 SD6 sb8 | SD10
A g 4o 410 A1l 124 4 20 421 Ai22 4 23 Ai24

Fig. 2. Causal graph, version 1, for Failure

4.8 Step 3: Interface Analysis — Generation of the Fault Tree

The fault tree[8][11, pp. 43ff] constructed in Step 3 depicts the possible error hy-
potheses, together with the boundary conditions which must hold in order to make
a hypothetical error cause the observed failure on the interface between SUT and
testing environment. The error classification used for each component follows the
fault models introduced in [7, pp. 13ff] and the fault tree construction technique
described in [7, pp. 6ff]. In the diagnostic procedure described here we omit the

4 For integrated circuits this is discussed in [10, pp. 335ff]
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possibility of an external intruder (see [7]) because we are dealing with a closed
system whose components are well-known.

Failure compAlarm[2] = 0

SDCU Failure Faulty values on il Faulty values on i13
CAN A Sensor Failure CAN B Sensor Failure
Failure SDS05 Alarm Failure Failure SDS06 Alarm Failure
SDCU processing SDCU output SDCU processing SDCU output
failure on il failure on i2 failure on i13 failure on i14

Fig. 3. Fault tree associated with interface analysis for Failure

Following the paths in the causal graph of Fig 2, we can immediately derive
the first levels of the fault tree, as depicted in Fig. 3: The failure on output inter-
face compAlarm[2] might be directly caused by an internal SDCU failure or by an
erroneous input on the interfaces il, i13 between SDCU and the CAN bus. SDCU-
internal failures may either cause faulty transformations from il- and il3-inputs to
compAlarm[2] outputs or by output faults on interfaces i2 and i14, which may in
turn cause unexpected smoke detector behaviour, so that the alarm messages of
the crucial detectors SD5, SD6 are either not sent at all or not accepted by the
SDCU. Faulty input values to a correctly operating SDCU may either be caused
by a failure of the CAN bus or by sensor failures. Since compartment alarms indi-
cated on output compAlarm [c], c € {1...4} require that both® associated sensors
SD(2¢+1), SD(2c¢+2) signal an alarm, the crucial sensors for the observed failure
on compAlarm[2] are SD5 and SD6.

Refining the possibilities of SDCU processing failures on interface il and 113 leads
to fault sub-tree 4: Not showing fault-types which are a priori highly improbable
leaves us with 5 potential types of fault (as classified in [3, chap. 7]):

(i) Bridging faults would arise if — due to internal interface errors of the
SDCU — the compAlarm[2] output could be influenced by the values of other
inputs which should be disregarded in a correctly operating SUT: If the
SDCU used the wrong sensors (SD1,2,3,4,7,8,9,10) to determine the output
on compAlarm[2] and these sensors were not in alarm state, then no compart-
ment alarm would be raised on compAlarm[2].

(ii) Signal deletion errors would arise if the il or i13 input would not be
relayed internally to the SDCU sub-component responsible for raising the

5 . . .
2 Compl is an exception: there are four sensors installed
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sbcu

processing failure on i1

sbcu sbcy
action failure signal deletion error

Path delay error # ¢ ¢
Faulty or missing action Sbcu
I I stuck-at-0-fault

for SDS05 alarm

sbcy
bridging fault

sbcu
missing transaction
failure

sbcu
stuck-at-0-fault

sbcu sbcu sbcu
Comp1 - Comp2 Comp3 - Comp2 Comp4 - Comp2
bridging fault bridging fault bridging fault

1

| I I 1 socu

SDS01 not SDS02 not SDS03 not SDS04 not SDS07 not SDS08 not SDS09 not SDS10 not stuck-at-0-fault
in alarm state in alarm state in alarm state in alarm state in alarm state in alarm state in alarm state in alarm state for SDS06 alarm

Fig. 4. Fault sub-tree associated with potential SDCU processing failures on interface il which might cause
Failure

compAlarm[2] compartment alarm.

(iii) Stuck-at-0 faults occur if the guard condition for raising compAlarm[2] to 1
were faulty, so that it always evaluates to false.

(iv) An action failure would arise if the assignment of the new value 1 to
compAlarm[2] were faulty.

(v) A missing transition failure would arise if inputs from sensors SD5 and SD6
on interface i1, i13 would simply not trigger any action at all.

Observe that the fault tree can be set up incrementally, so that extensions of
leaves are only performed after other branches of the tree have been pursued which
did not help to uncover the failure under investigation. We will therefore analyse
the potential SDCU failures further, before refining the other branches of the initial
fault tree 3.

4.4 Step 4: Falsification of Fault Hypotheses

After the fault tree associated with the interface analysis has been elaborated, the
fault hypotheses implied by nodes of the tree can be falsified one by one, until the
cause for the observed failure has been identified. Falsification can be performed by

(i) analysing additional data recorded during the test,

(ii) performing additional system integration tests designed to verify /falsify a spe-
cific fault hypothesis,

(iii) performing additional lower-level tests (e. g. HW/SW integration tests or unit
tests), in order to observe additional interfaces which were not visible on system
integration test level,

(iv) code execution or interpretation using concrete values,
(v) abstract code interpretation using interval values (like described in [2],

(vi) informal or formal code analysis (inspection, formal verification etc.).

Obviously, method 1 is the most preferable one since it neither requires addi-
tional tests nor source code availability. Following the fault model from [7], it will
now be analysed how specific tests can be used to falsify fault hypotheses associated
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with a given type of error.

4.4.1 Fualsification tests for bridging faults.

Bridging faults imply that unintended inputs z;,7 = 0,1, 2, ... to the erroneous com-
ponent influence a certain output y in an illegal way. A falsification test therefore
consists of systematically changing the inputs z; and observing whether a certain
combination can illegally stimulate output changes on y. For the potential bridging
faults of the SDCU as depicted in Fig. 4 the interpretation is as follows, as can be
seen from the fault tree:

e If the observed error is due to a bridging fault from Comp1 sensor values to Comp2
sensor values, then it can only arise if sensors SD1,2,3,4 are not in ALARM state:
Otherwise we would observe a correct output compAlarm[2]=1, though illegally
caused by the wrong sensors SD1,2,3,4.

e Similarly, if the observed error is due to a bridging fault from Comp3 sensor

values to Comp?2 sensor values, then it can only arise if sensors SD7,8 are not in
ALARM state.

e Analogously, if the observed error is due to a bridging fault from Comp4 sensor

values to Comp2 sensor values, then it can only arise if sensors SD9,10 are not in
ALARM state.

Analysing the test execution log, we see that when the output failure
compAlarm[2]=0 is observed, sensors SD1,2,3,4 are already in state ALARM, and
the Compl alarm has been indicated correctly. As a consequence, there can be no
bridging fault from Comp1 sensor values to Comp2 sensor values. Also, the sensors
SD6,7 are in state ALARM and the compartment alarm for Comp3 is displayed:
there can be no bridging fault from Comp3 to Comp2 either. The simulated envi-
ronment for all compartments show that the thresholds for smoke are exceeded in
the compartments Compl, Comp2 and Comp3 (see log at timestamp 00029035001
us, p- 91). The log at timestamp 00034035267 us (see p. 92) shows that no alarm
was detected for Comp2.

TM 00029024572 AM 4 0 : ( 27 ) SENSORS SDS:

: SENSOR ID: 1 2 3 4 5 6 7 8 9 10
ALARM: 1 1 1 1 1 1 1 1 O O
DEFECT: 0 0 0 0 O O O O O O
FAILURE: 0 0 0 0 0O O O O O O
STANDBY: 0O 0 0 0 0 0 O O 1 1

Unfortunately, the sensors SD9,10 were still in state STANDBY when the fail-
ure occurred, so the test run could not exclude the bridging fault from Comp4
sensor values to Comp2 sensor values: We need an additional test where the sen-
sors SD9,10 are permanently in state ALARM. If this does not lead to an output
compAlarm[2]=1, this also excludes the second potential bridging fault.
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Test: Bridging
In this test, the environment for compartment Comp4 is set in a way that the

installed sensors will report an alarm. This can be read from the execution log at
timestamp 00029028720 us.

TM 00029028720 AM 4 0 : ( 27 ) ENVIRONMENT:
COMP: 1 2 3 4
: HUMIDITY: 5 5 5 5
SMOKE: 90 90 90 90
TEMP: 30 30 30 30

The Sensors SD9,10 are set to state alarm, which is reported at timstamp
00029029193 ps.

TM 00029029193 AM 4 0 : ( 27 ) SENSORS SDS:

: SENSOR ID: 1 2 3 4 5 6 7 8 9 10
ALARM: 1 1 1 1 1 1 1 1 1 1
DEFECT: 0 0 0 0 O O O O O O
FAILURE: 0 0 0 0 0O O O O O O
STANDBY: 0 0 0 0 0 0O O O O O

As expected, the SDCU sets the alarm for compartment Comp4.
TM 00029029894 AM 4 0 : ( 27 ) SDCU:

cCoMP: 1 2 3 4
ALARM: 1 0 1 1

As shown in this test, the occurrence of a bridging fault can be excluded.

4.4.2  Falsification tests for signal deletion errors.
Systematic tests for falsification of signal deletion errors can be designed and exe-
cuted if the SUT has the following proven property:

If signal value vg is correctly transmitted over interface i, then value v; must be
correctly transmitted, too.

Such a hypothesis is fulfilled ¢, for example, if i is a shared variable interface and
all messages placed into ¢ have the same length and a checksum, allowing to detect
corrupted (in particular, truncated) messages.

If the hypothesis holds, an additional test stimulating vy can be executed. If
it passed then this implies that v; was not lost within the SUT. In our case, the
hypothesis is fulfilled by the SUT implementation. Therefore an additional test can
be created where another state value of sensors SD5,6 is stimulated, for instance
with a FAILURE state. When the sensors transmit the state failed, the SDCU is
expected to mark the sensors as failed. If this occurs, we have proven that sensor

6 Tt is not fulfilled, for example, if signal value vg is a low bit in a 32-bit command word w and vy is a high
bit in w, so that, after illegally masking the higher bits of w, vg is still correctly visible, but v; has been
illegally set to O.

96



EFKEMANN AND HARTMANN

state changes of SD5,6 are not lost within the SDCU. Since the SUT implementation
really shows the expected messages, a signal deletion error can be excluded.

Test: Signal-deletion

In this test, the sensors SD5,6 constantly send the state failure to the SDCU.
The internal state of the sensors is not modified, just the value in the request frame
is adjusted. As it is recorded at TM 00029031597 us, the sensors are marked failed.
Therefore the occurrence of a signal deletion fault can be excluded.

TM 00029031597 AM 4 0 : ( 27 ) SDCU:
: SENSOR ID: 1

ALARM: 1

FAILURE: O

STANDBY: O

COMP: 1
ALARM: 1

4.4.83 Falsification tests for path delay errors.

A path delay error occurs when the specified transition is not completely lost, but
occurs too late and/or needs an additional stimulus to be triggered. This type
of error would be revealed by waiting for a sufficiently long time for the expected
output to occur (of course, an upper bound must be known to perform this test),
and toggling the inputs in a way that should stimulate a sequence of output value
changes instead of only one change. In our case, the additional test would consist
of exercising an input sequence on the Comp2 temperature and smoke status which
would result in a sequence of ALARM — STANDBY — ALARM — STANDBY —
...state changes of sensors SD5,6.

Test: Path-delay

In this test, the environment for compartment Comp2 is modified in a way
that the sensors will send a sequence of ALARM — STANDBY — ALARM —
STANDBY — ...to the SDCU. As can be seen from the test log, the environment
alternates the values for smoke and temperature and the corresponding sensors

change their state accordingly. The environment is set to “no fire”, so are the
sensors SD5,6:

TM 00010026978 AM 4 0 : ( 18 ) ENVIRONMENT:

: COMP: 1 2 3 4
: HUMIDITY: 5 5 5 5
SMOKE: 90 2 90 2
TEMP: 30 20 30 20

TM 00010027377 AM 4 0 : ( 18 ) SENSORS SDS:

: SENSOR ID: 1 2 3 4 5 6 7 8 9 10
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ALARM: 1 1 1 1 0 O 1 1 O O
DEFECT: 0 0 0 0 O O O O O O
FAILURE: 0 0 0 0 0 O O O O O
STANDBY: 0 0 0 0 1 1 O O 1 1

TM 00010027856 AM 4 0 : ( 18 ) SDCU:
coMpP: 1 2 3 4
ALARM: 1 0 1

In the next test step, the environment is set to “fire” and the sensors change
their states accordingly:

TM 00010526998 AM 4 0 : ( 19 ) ENVIRONMENT:
: COMP: 1 2 3 4
: HUMIDITY: 5 5 5 5
SMOKE: 90 90 90 2
TEMP: 30 30 30 20

TM 00010527398 AM 4 0 : ( 19 ) SENSORS SDS:

: SENSOR ID: 1 2 3 4 5 6 7 8 9 10
ALARM: 1 1 1 1 1 1 1 1 0 O
DEFECT: 0 0 0 0 O O O O O O
FAILURE: 0 0 0 0 0 O O O O O
STANDBY: 0O 0 0 0 0 0 O O 1 1
TM 00010527908 AM 4 0 : ( 19 ) SDCU:
coMp: 1 2 3 4
ALARM: 1 0 1 O

Again, the environment is set to “no alarm”. The sensors are set to state standby.

T™M 00011027004 AM 4 0 : ( 20 ) ENVIRONMENT:
COMP: 1 2 3 4
: HUMIDITY: 5 5 5 5
SMOKE: 90 2 90 2
TEMP: 30 20 30 20

T™M 00011027416 AM 4 0 : ( 20 ) SENSORS SDS:

: SENSOR ID: 1 2 3 4 5 6 7 8 9 10
ALARM: 1 1 1 1 0 O 1 1 O O
DEFECT: 0 0 0 0 O O O O O O
FAILURE: 0 0 0 0 0O O O O O O
STANDBY: 0 0 0 0 1 1 O O 1 1
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T™M 00011027874 AM 4 0 : ( 20 ) SDCU:
coMpP: 1 2 3 4
ALARM: 1 0 1

Also it can be noticed that the SDCU is not changing the state for Comp?2.
Therefore the occurrence of a path delay error can be excluded.

4.4.4  Falsification tests for missing transition errors.

An omitted transition means that the SUT illegally remains in a given state, though
a new trigger event occurred. This situation can be uncovered by black-box tests,
using the characterisation traces of the state machine defining the transition (see [4]
for details): The test execution is extended by additional input sequences, so that
the associated SUT reactions reveal whether the required transition has been per-
formed or not.

For our system, a command to dump the internal BITE (Built-In Test Equip-
ment) memory can be used as such an additional input sequence ”: Every alarm is
not only indicated on the compAlarm[c] interfaces, but also recorded in the internal
BITE memory whose contents can be accessed using commands sent to the SDCU
via AFDX.

4.4.5 Falsification tests for Stuck-at-0/1 errors.

For suspected stuck-at-0/1 errors®, a test is designed in such a way that a change in
the output interface y where the failure was observed only depends on a single input
x. Then x is changed in such way that it should trigger corresponding y changes.
If these occur, a “stuck-at situation” cannot be present.

Test: Stuck-at-zero

In our case, we perform a test where SD5 stays continuously in state ALARM,
while the state of SD6 is toggled between STANDBY and ALARM. Then, in a
correctly operating SUT, an output compAlarm[2] =1 should occur if and only if SD6
is in state ALARM. In the following test log, it can be seen that no compartment
alarm for Comp?2 is raised because only sensor SD5 is in state ALARM whereas
sensor SD6 remains in state STANDBY. This is the expected behaviour.

TM 00021029341 AM 4 0 : ( 20 ) SDCU:
: SENSOR ID: 1

ALARM: 1

FAILURE: O

STANDBY: O
COMP: 1
ALARM: 1

7 Not shown here due to space constraints.
8 For integrated circuits this is discussed in [10, pp. 335ff]
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TM 00022029307 AM 4 0 : ( 21 ) SDCU:

: SENSOR ID: 1 2 3 4 5 6 7 8 9 10
ALARM: 1 1 1 1 1 0 1 1 O O
FAILURE: 0 0 0 0 0 O O O O O
STANDBY: 0 0 0 0 0 1 O O 1 1
coMP: 1 2 3 4
ALARM: 1 0 1 O

In the next steps, both sensors are in state ALARM, which can be seen in the
test execution log. But still no alarm for compartment Comp?2 is signalled.

TM 00023029318 AM 4 0 : ( 22 ) SDCU:
: SENSOR ID: 1

ALARM: 1

FAILURE: O

STANDBY: O

COMP: 1
ALARM: 1

TM 00024029314 AM 4 0 : ( 23 ) SDCU:
: SENSOR ID: 1

ALARM: 1

FAILURE: O

STANDBY: O
COMP: 1
ALARM: 1

As a consequence, this test could not falsify the stuck-at-0 fault.

4.4.6  Repeated Application of Steps 3 and 4.

If all fault hypotheses in the fault tree elaborated in Step 3 have been falsified, but
the tree has not been completely refined, then we return to Step 3 to further extend
selected leaves of the fault-tree. After that, Step 4 is repeated.

If the tree was completely refined and no error was found during the execution
of these steps, there is a good chance that one of the additional tests failed to cover
the problem. In this case there are only two ways of detecting the error: either to
start at the end of the trees and do “backtracking” or to start at the beginning,
performing validations for each additional test. The choice of further actions then
depends on the specific problem and will not be elaborated here.

4.5 Step 5: Error Identification

In our case, all fault hypotheses but the potential stuck-at-0 fault can be falsi-
fied by means of additional tests. The internal structure of the SDCU must be
taken into account, so that the global input variables sensorSDSAlarm[] of the

100



EFKEMANN AND HARTMANN

processMessages () method become visible. An additional unit test of this method
reveals the presence of a stuck-at-0 fault within this method.

In order to aid with error diagnosis on source-code level a software tool has
been developed: Using the interval analysis techniques described in [7, pp. 9]
(based on [9]), the Interactive Interval Analyser can easily help to identify the
error. The Interval Analyser works on compiler-generated control flow graph (CFG)
information. The user can select a CFG (which corresponds to a function) from
the compilation unit. Subsequently a window containing the function’s inputs and
outputs is displayed: The inputs are global variables as well as function parameters,
while the outputs are again global variables and the function’s return value.

The user may now change the intervals assigned to the inputs and the Analyser
will interactively show the impact of the changes on the outputs (Fig. 5).

Interval Analyser - SDCU.cpp.cfgconf - [processMessages] =B
= File Windows Help =18l x
CFG Input Intervals Output Intervals
" init
p— Globals Globals
= processMessages
2, recvSDDMessage compAlarml 0 compAlarm1 1 1
T recvSDSMessage compAlarm2 0 compAlarm2 0 0
“areportAlarm compAlarm3 0 compAlarm3 0 1
compAlarm4 0 compAlarm4 0 0
sensorSDSAlarm01 1 1 sensorSDSAlarm01 1 1
sensorSDSAlarm02 1 1 sensorSDSAlarm02 1 1
sensorSDSAlarm03 o] 0 sensorSDSAlarm03 0 0
sensorSDSAlarm04 0 0 sensorSDSAlarm04 0 0
sensorSDSAlarm05 1 1 sensorSDSAlarm05 1 1
sensorSDSAlarm06 1 1 sensorSDSAlarm06 1 1
sensorSDSAlarm07 0 1 sensorSDSAlarm07 0 1
sensorSDSAlarm08 0 1 sensorSDSAlarm08 0 1
sensorSDSAlarm09 1 1 sensorSDSAlarm09 1 1
sensorSDSAlarm10 o] 0 sensorSDSAlarm10 0 0
Normal operation @ 4

Fig. 5. Interval Analyser

The Analyser can also be used in combination with Verified’s RT-Tester User
Interface (RTTUI). It is then possible to observe the code coverage achieved with
the current input intervals. The RTTUI will display the CFG file? and colourise all
blocks that have been reached during the last execution. This feature can be used for
error diagnosis: Setting both inputs sensorSDSAlarm[5] and sensorSDSAlarm[6]
to the interval [1,1] does not lead to coverage of block 8 (where compAlarm[2]
would have been set to 1), as shown in Fig. 6.

The last step is to match the corresponding lines of code to the block 8 of the

CFG. This leads to the position where the error is located within the source code:
if ( sensorSDSAlarm[5] && sensorSDSAlarm([13] ) {

compAlarm[2] = 1;
}

This reveals the observed error: for compartment Comp2, the alarm
decision depends on sensorSDSAlarm[5] A sensorSDSAlarm[13] instead of

9 Displaying the original C/C++ source code is currently not possible. This feature is planned for a later
version.
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sensorSDS Alarm[5] A sensorSDS Alarm|[6].

5 Conclusion

Our experience has shown that it is possible to locate any kind of fault when follow-
ing the presented procedures (and refinements). Being state of the art for semicon-
ductor error diagnostics, to our knowledge the presented strategy for fault detection
is not yet commonly used within the area of distributed embedded systems. Through
the tight integration of the procedures with the tool chain a reliable and efficient
way of testing is introduced. The tool chain, consisting of the RT-Tester, its user
interface (RTTUI) and the Interval Analyser, can be supplemented by tools !© like
Relex FTA or Isograph FaultTree+ for fault tree analysis.
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We present a construction technique for abstract interpretations which is generic in the choice of data ab-
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1 Introduction

1.1 Objectives and Overview

Concrete and abstract interpretation are core mechanisms for automated static
analysis, test case/test data generation and property checking of software: The
concrete interpretation helps to explore program (component) behaviour with con-
crete data values without having to compile, link and execute the program on the
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Fig. 1. Building blocks of tools for test automation, static analysis and property verification.

target platform. The abstract interpretation reduces the complexity of verification
goals or, more general, reachability problems, by abstracting from details which are
unnecessary for the goal under consideration.

Consider the building blocks typically present in tools supporting test automa-
tion, static analysis and /or property checking as shown in Fig. 1: The program code
to be analysed or a specification model are transformed into a uniform intermedi-
ate model representation (IMR) which is independent of the concrete SUT code or
specification syntax. This reduces the dependencies between concrete syntax and
analysis algorithms. Most of the problems arising in automated test case/test data
generation, static analysis and property verification can be paraphrased as reacha-
bility problems, as has been pointed out in [10]. Therefore a path selector performs
a choice of potential paths through the model to be checked with respect to feasi-
bility: The goal is solved if concrete input data can be found so that the software
component under analysis executes along one of the suggested paths. While the
general reachability problem is undecidable, concrete goals can often be realised in
a highly efficient way. To this end, the constraint generator constructs a collection
of constraints to be met in order to provoke an execution along the selected paths.
The construction requires a symbolic interpreter, a tool component for collecting
the guard conditions along the selected paths. With a sufficient collection of con-
straints at hand, the constraint solver tries to construct concrete data solving the
constraints or to prove their infeasibility.

The choice of the abstract interpretation technique considerably influences the
efficiency of automated solvers used for these purposes: For proving that a constraint
collection can never be satisfied it is often more efficient to show this for an ab-
stracted program version, so that this also implies infeasibility for the concrete pro-
gram. Conversely, some abstractions are especially useful for under-approximating
the solution set of the constraints given, so that any data vector of this approxima-
tion represents a solution.

In this paper we focus on interpreters for C/C++ programs. For this task it
is necessary to capture all “side effects” of aliasing, pointer arithmetic, type casts
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and unions possibly occurring in C/C++ software, so that no hidden effects of in-
structions on the valuation of symbols not occurring in the statement are missed
during the interpretation process. We first present operational rules for a concrete
semantics covering these aspects (Section 3). Next we observe that for a given col-
lection of constraints, the efficiency of the solver strongly depends on the choice of
abstraction. As a consequence it is desirable to switch abstractions for one and the
same data type during the interpretation while still ensuring the correctness of the
interpretation results. This objective is met by means of a symbolic interpreter for
C/C++ programs (Section 4): This tool component handles program transitions
in a symbolic way, while recording a history of symbolic memory valuations. The
valuations are represented by memory addresses (these are necessary in order to
cope with the aliasing problems), value expressions and application conditions: A
memory item is only valid if a valuation of inputs can be found so that the appli-
cation condition becomes true. Finally we describe how abstract interpreters can
be constructed by instantiating the symbolic interpreter with lattices to be used
for abstracting the data types involved (Section 5). As a consequence, the basic
interpretation algorithm can be completely re-used for each choice of abstraction
lattice, only functions for the valuation of expressions in the context of the selected
lattices have to be added. In Section 6 an example is given which illustrates the
mechanics and the effects of symbolic and abstract interpretation.

1.2  Background and Related Work

The full consideration of C/C++ aliasing situations with pointers, casts and unions
is achieved at the price of lesser performance. In [4,2], for example, it is pointed
out how more restrictive programming styles, particularly the avoidance of pointer
arithmetics, can result in highly effective static analyses with very low rates of
false alarms. Conversely it is pointed out in [14] that efficient checks of pointer
arithmetics can be realised if only some aspects of correctness (absence of out-
of-bounds array access) are investigated. As another alternative, efficient static
analysis results for large general C-programs can be achieved if a higher number of
false alarms (or alternatively, a suppression of potential failures) is acceptable [5], so
that paths leading to potential failures can be identified more often on a syntactic
basis without having to fall back on constraint solving methods.

On the level of binary program code verification impressive results have been
achieved for certain real-world controller platforms, using explicit representation
models [12]. These are, however, not transferable to the framework underlying our
work, since the necessity to handle floating point and wide integer types (64 or 128
bit) forbids the explicit enumeration of potential input values and program variable
states.

All techniques described in this paper are implemented in the RT-Tester tool
developed by the authors and their research group at the University of Bremen in
cooperation with Verified Systems International GmbH [15]. In [10] we have moti-
vated in more detail why testing, static analysis and property checking of software
code should be considered as an integrated verification task, so integrated tool sup-
port for these complementary aspects of software verification is highly desirable.
The approach pursued with the RT-Tester tool differs from the strategies of other
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authors [4,2,14]: We advocate an approach where test and verification activities
focus on small program units (a few functions or methods) and should be guided
by the expertise of the development or verification specialists. Therefore the RT-
Tester tool provides mechanisms for specifying preconditions about the expected or
admissible input data for the unit under inspection as well as for semi-automated
stub (“mock-object”) generation showing user-defined behaviour whenever invoked
by the unit to be analysed. As a consequence, programmed units can be verified
immediately and interactive support for bug-localisation and further investigation
of potential failures is provided. The SMT constraint solver used in the tool is based
on ideas described in [11,1,6].

2 Theoretical Foundations

Recall that a binary relation C on a set L is called a (partial) order if C is reflexive,
transitive and anti-symmetric. An element y € L is called an upper bound of X C L
if x C y holds for all z € X. The lower bound of a set is defined dually. An upper
bound 3" of X is called a least upper bound of X and denoted by LX if ¢/ C y
holds for all upper bounds y of X. Dually, the greatest lower bound MX of a set X
is defined.

An ordered set (L,C) is called a complete lattice, if MX and UX exist for all
subsets X C L. Lattice L has a largest element (or top) denoted by T =qef UL
and a smallest element (or bottom) denoted by | =g ML. Least upper bounds
and greatest lower bounds induce binary operations L, : L x L — L by defining
x Uy =qef U{x,y} (the join of x and y) and x My =qef M{x,y} (the meet of x and
y), respectively. If the join and meet are well-defined for an ordered set (L,C) but
LIX,MX do not exist for all X C L then (L,C) is called an (incomplete) lattice.

From the collection of canonic ways to construct new lattices from existing ones
(L,C), (L1,E1), (L2, Ca), we need (1) cross products (L1 x Lo, C') where the partial
order is defined by (x1,22) T’ (y1,92) if and only if z1 T1 y1 A 29 Co 92 and (2)
partial function spaces (V 4 L,C') where f C' g for f,g € V 4 L if and only if
dom f Cdom g A (Vx € dom f: f(x) C g(x)).

Mappings ¢ : (L1,E1) — (Lg,C5) between ordered sets are called monotone if
x £y y implies ¢(x) Cy ¢(y) for all z,y € L. Mappings ¢ : (L1,C1) — (L2, Co)
between lattices are called homomorphisms if they respect meets and joins, that is,
d(xUry) = é(z) U o(y) and p(x My y) = ¢(x) M2 ¢(y) for all x,y € (L1,C1). Since
x Cq y implies z L} y = y and x Ny y = x, homomorphisms are monotone.

A Galois connection (GC) between lattices (L1,Cq), (Lg, Co) is a tuple of map-
pings > : (L1,51) — (Lo,C2) (called right) and _< : (La,Co) — (L1,C4) (called
left) such that a® Co b < a Ty Y for all @ € Ly,b € Ly. This defining property
implies that Galois connections are monotone in both directions.

Given any transition system T'S = (S, Sy, —) with state space S, initial states
in Sp € S and transition relation —C S x S, the most fine-grained state space
abstraction possible is represented by the power set lattice Lp(S) = (P(S), C) with
join operation U and meet N. We introduce an abstract interpretation semantics on
Lp(S) by turning it into a state transition system T'Sp = (Lp(S),{So},—p) by
lifting the original transition relation to sets: Using Plotkin-style notation, this can
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be specified as
Viel,s;,s,eS:s;— s,
{8@|i€]}—>p{8§|i€]}
Compared to the original transition system 7S, this abstract interpretation

—p introduces no loss of information, since its restriction to pairs of singleton sets
is equivalent to the original transition relation:

Vs1,82 € S:81 — s9< {s1} —p {s2}

It is, however, an abstraction, since for transitions between states with cardinality
higher than one, say {si, s2,...} —p {s],5),...}, only the possible resulting states
are listed (s/, s, ...) but the information whether, for example, s; — s} or 57 —
sh is no longer available.

Now, given any other transition system 7'Sy, = (L, Ly, — 1) based on a lattice
(L,C) we can check whether T'Sy, is a valid abstract interpretation of 7°S by the
aid of T'Sp and Galois connections:

Definition 2.1 Transition system 7Sy, = (L, Lo, —1), based on a lattice (L,C),
is a valid abstract interpretation of T'S = (5, Sy, —) if (i) there exists a Galois

<
connection (P(S),C) = (L,C), (ii) the transition relation —, is a valid abstract

relation the sense thatDVa,a’, beL:(a—pd ANbCa=3IW eL:b—p VAL
a'), (iii) the transition relation —, satisfies V(p,p’) €—p: Ja’ € L : p» —
a' Ap'¥ C a and (iv) the transition relation —, satisfies ¥(a,a') €e—: I €
P(S):aY —pp Ap Cd'~.

The following theorem provides a “recipe” for constructing valid abstract inter-
pretations, as soon as a GC according to Definition 2.1, (i) has been established:

<
Theorem 2.2 Given lattice (L,C) and Galois connection (P(S),C) = (L,C), de-
>

fine transition system TSy, = (L, Lo, —1) by (i) Lo = {So}", (ii) P —pp o

p>—rp’”

(i) ‘f%;,ﬁl Then TS, is a valid abstract interpretation of T'S in the sense of

Definition 2.1.

For more details about lattices and GC and the proof of Theorem 2.2 the reader
is referred to [3,9].

3 Control Flow Graphs and GIMPLE, Concrete Se-
mantics

3.1 GIMPLE Programs

We use the gee compiler to transform a given C/C++ program into GIMPLE code.
As described in [7,8], this semantically equivalent representation of a program con-
stitutes an intermediate transformation result from source to assembler, where all
expressions appearing in statements contain at most one operator and (with the
exception of function invocations) at most two operands. Operands may only be
variable names or nested structure and array accesses (henceforth called selectors)
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as well as constant values. By introducing auxiliary variables, all original statements
will be transformed to adhere to this requirement. Statements may therefore only be
assignments from expressions to variables (or atomic selectors in the above sense).
Casting and referencing/dereferencing of variables (or selectors) form expressions
in themselves, and may therefore not be used as operands, but instead need to be
executed as separate assignments to auxiliary variables. GIMPLE programs contain
no loop constructs. Instead, all loops from the original source are transformed into
conditional jumps to preceeding labelled statements. GIMPLE therefore contains
only two different types of branching statements:

<if-else-stmt> ::

<switch-stmt>

<cases>
<default>

if ( <condition> ) goto <label>; else goto <label>;
switch ( <variable> ) { <cases> <default>_opt }
<cases>_opt case <value>: goto <label>;

default: goto <label>;

For the description of concrete GIMPLE semantics we encode each GIMPLE
function as a control flow graphs (CFGs). Each function/method of a C/C++
program is associated with a CFG. Each CFG G has a distinguished initial node
I(G) corresponding to function entry and a terminal node O(G) corresponding to
function return. Each CFG node is labelled with a single GIMPLE statement,
each edge with a GIMPLE branching condition. For sequences of non-branching
statements, the edges are labelled with true. Branching statements are represented
as edges labelled with the applicable branching conditions, each edge pointing to
the target node referenced in the goto <label> statement in the GIMPLE code.

The concrete operational semantics of a GIMPLE program P, represented by
a collection of control flow graphs as described above, will now be explained by
associating a transition system with P.

3.2 GIMPLEFE state space

For representing the semantics of GIMPLE programs P, we use the following class
of transition systems T'S¢ = (S¢g, So, —¢). The program state space is defined as

S = N(P) x (Seg x Ny /4 Symbols) x (Seg x Ng 4 BYTE™)

with typical element (n,v,u) € Sg. Set N(P) comprises all nodes in the CFGs
associated with any function of P. The second and third component of this Carte-
sian product represent function spaces for address mappings and memory state: For
modelling the association between variables, their aliases and their associated mem-
ory portions, we introduce (1) a partial function v : Seg x Ny 4 Symbols mapping
existing virtual addresses on the segment of type Seg = {stack, heap, global, code}
to a symbol (variable or function) associated with this address and (2) a partial
function p : Seg x Ng 4 BYTE™ associating with each existing virtual address a
sequence of bytes, representing the current memory valuation of the given address.

The set Symbols only contains the basic symbol names, that is, the name a of an
array, but not the array element a[4] and the name of a structured variable x but
not the name of x.y.z[5] of a structure component. Component and array element
identifiers are called selectors and comprised in a (possibly infinite) set Selectors
which is a superset of Symbols, since each basic name is a selector, too.

The initial state of S¢ is So = {(I(f), 0, po)}, where I(f) is the initial node of
the CFG associated with the GIMPLE function of interest, v contains all addresses
of global variables and actual parameters used in the invocation of f() and pg
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contains the memory portions associated with these actual parameters and of all
global variables, initialised according to the precondition on which the execution of
f() should be based.

3.8  Auziliary functions

For recording state changes in Sg and determining the current state of variable
valuations some auxiliary functions are needed.

Given an arbitrary selector, function ( : Selectors — Symbols returns its base
symbol, e.g. for B(x.y.z[5]) = x. This will be required to retrieve base addresses
for selectors by means of v.

Since virtual addresses are unique across memory segments, a function 7 :
Symbols 4 Ny mapping identifiers to their respective address is well-defined when
taking scoping into account. For a given symbol that is defined both within the
stack and global segments, © will return the virtual address corresponding to the
symbol definition within the stack.

U can be extended to map from selectors to virtual base addresses to yield
v~ : Selectors + Ng with v~ (sel) =gt 0(B(sel)).

Given an arbitrary selector, function w : Selectors — Ny returns the bit offset of
the selector’s memory location from its base address. The offset is measured in bits
so that also operations on bitfields can be captured. This information is obviously
platform-specific: w is constructed from the size and alignment information provided
by the gcc compiler on the specific platform it is used. As with v~, the appropriate
memory segment for multiply defined base symbols is determined by first assessing
symbol definitions within the stack segment.

Function 7 : Selectors /4 Types returns the type for any given selector. The
type information is then gained from the internal type data gathered by the gcc
compiler. Again, scoping is taken into account.

Function 7 may be extended to determine the type of a given expression form-
ing 7" : Expr 4 Types by taking (return) types of used operands and opera-
tors into account. If a given selector corresponds to a pointer type, then function
7 : Selectors / Types may be used to obtain its target type.

Function o : T'ypes — Ny is used to determine a given type’s size in bits.

The state space only records the current memory state as sequences of bytes.
Function ¢ : BYTE* x Types 4 D is used to interpret a given sequence of bytes as
a specific type. Here, D denotes the union of all atomic domains. It is only defined
for byte sequences long enough to hold a value of given type. Conversely, we define
= D x Types / BYTE* to be the byte representation for a given value with
known type. For these functions, the size of atomic types, encoding methods and
the little or big endianess of the platform has to be determined. This information
is retrieved from the gcc type- and debugging information.

For reading data from memory, we initially define €* : S x Ng x Ng /A BYTE*.
Function application €*((v, u), a, s) reads a bit sequence of a given length s beginning
from a specified address a within the memory, and returns its contents as byte
sequence. For this, we find the segment and base address (seg, apgse) within dom(v),
for which byte sequence ji(seg, apese) encloses address a. If specified size s exceeds
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byte sequence p(seg, apgse) beginning from a, €* has to take direct successor byte
sequences within seg into account to be defined. If size s is not a multiple of 8, the
resulting byte sequence will be constructed by adding additional high order 0 bits

until its bitsize reaches the next higher multiple of 8.

Using €, we now construct a function to read raw byte data from memory using
selectors. We define €¢° : Sg x Selectors : BYTE* as

€*((v, ), sel) =qef € (v, 1), v~ (sel) + w(sel), o(7(sel)))

We now define a function €® : Sg x Expr /4 BYTE*, which evaluates a given
GIMPLE expression according to the current memory valuation. As GIMPLE ex-
pressions contain at most one operator, we can do this by distinguishing different
expression types. For expressions consisting of constant values or selectors, €¢ cor-
responds to applications of ¢~ or € respectively. Other types of expressions may be
evaluated using one of the following definitions of €®:

Let O € {4, —,x,/, %, A\, V,>,<,>,<,=,#} be a binary arithmetic or boolean

operator, and let exp =g4or exp1 O exps be an application to two operand expressions.
We define

Ee((yv /J')’ emp) =def
¢ (e ((v, 1), exp1), 7" (exp1)) B e(e®((v, ), expa), 7™ (exp2)), 7" (exp))

Concurrently, for an unary arithmetic or boolean operator & € {+,—,!} and ex-
pression exp =qer < exp; we define

(v, 1), exp) =qef ¢~ (O 1(e?((v, p), exp1), 7 (exp1)), 7" (exp))

For a bitwise operator o € {&,|, XOR} and expression exp =qot exp; o exps, the
operation is performed on raw byte data, and we define

(v, ), exp) =gef € (v, p), exp1) o €((v, p), expa)
For bitwise unary operator ~ and according expression exp =qef ~ expi, we define
Ee((y7 )u‘)’ 6"Ep) =def ™ 66((”7 )u‘)’ ewp1)

For a shift operator A € {<,>} and expression exp =qef exp; A expsy, the opera-
tion is performed as follows (note that exps must correspond to an integral type):

€ ((v, 1), exp) =gef € (v, p), exp1) A L(e®((v, ), exp2), T(exp2))

Dereferencing of a selector, exp =gef *sel, may be evaluated using

(v, ), exp) =qef € (v, 1), Le> (v, p), sel), No), o(7(sel)))
Conversely, referencing of a selector, exp =qor &sel, is defined as

(v, ), ewp) =qep ¢~ (v (sel) + w(sel), No)

For a cast expression exp =gef (t)(expr) with target type ¢, we define

€ ((v, ), exp) =gef ¢~ ((t)c t(e((v; 1), exp1), 7% (ep1)), 1)
where cast operator ()c uses C cast operator semantics for atomic types ¢ and

T*(expy).
For purposes of legibility, we henceforth denote ¢¢ by ¢ unless noted otherwise.
For specifying the effect of write operations on the memory, we use function

¢ : (No x No) x S x BYTE* 4 (Seg x Ng /4 BYTE")

To begin with, function application ¢((aigt, 0tgt), (v, it), valpyse) determines the tar-
get memory segment for target base address asy; and offset o44;. It then returns
a new memory valuation y’, which differs from g only in the new valuation of the
target segment, starting at target base address asy but unchanged before offset 0;4;.
Starting at the offset, the memory is changed according to the byte sequence valpye .
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3.4 Transition relation: operational rules.

The operational rules specifying the transition relation —gC Sg X Sg on the
GIMPLE state space are based on the control flow graph representation of each
GIMPLE function. In Plotkin-style notation, each rule is of the form

ni i"CFG nz, L(E((V7 H)yg)ﬂ”t) ;A 0
(nlvynu‘) -G (7127”/7#/)

Informally speaking, a transition (ni,v, u) —¢ (n2,v/, ') is possible if (1) there
exists an edge from n; to mg in the respective CFG, (2) the guard condition g
associated with this edge evaluates to true (for C-like languages this means that
it evaluates to an integral value not equal to zero) in the current valuation (v, u).
For each type of statement encoded in the nodes n; it remains to define the effect
of this statement on (v, i), resulting in the new valuation state (v, 1’). Below we
give some examples of detailed rule specifications.

(1) The effect of a stack variable definition, n; =g typex x;, is to allocate the

required space on stack. The values, however, are still undefined. As a consequence
the effect on the memory valuation can be specified by

v =v @ |(stack,a’) — z]

where @’ is a fresh address not occurring in dom v (in fact, we use the proper offset
of z from the base of the stack frame for building a’). The effect on the memory is

p' = p @ [(stack,a’) = (7,...,7) ]
———

sizeof (typex)

where “?” denotes that the byte values are still undefined.

(2) The effect of an assignment to a selector, ni =gef sel = expr;, is to change
the memory at the base address plus offset, as defined by the selector according to
the expression valuation. As the left-hand and right-hand sides of the assignment
need not necessarily be typed identically, we first construct the artificial cast ex-
pression expr’ = (1(sel))(expr). As we have now ensured expr’ to be of the type
corresponding to sel, we go on and assign

vVi=v, = qb((yi (Sd)’w(sel))v (V7 /J')’ 6((”7 ,LL), epr,))

(3) The effect of an assignment to a de-referenced selector, ny =get *sel = expr;,
is to change the memory at the address pointed to by sel according to the expression
valuation and the pointer target type of the selector. We therefore need to calculate
the target address a4 of the write operation first. This is done by evaluating a;,, =

t(e¥((v, p), sel),Ng). Again using an artificial cast expression expr’ = (7(sel))(expr),
we can now construct a new state space by assigning

vi=v, 1 = ¢((atrg, 0), (v; p), €((v; ), expr’))

(4) The effect of copying memory, n; =qef memcpy(trg,src,s);, is to copy s
successive bytes starting with address src to the memory indicated by trg. This
may be accomplished by defining

asre = t(e((v, p), src),Nog)
atrg = t(e((v, p), trg), No)

to be the addresses specified in src and trg respectively. We can now construct
po = ¢((atrg, 0), (v, ), €* (v, 1), asre, 8))
i = $((atrg, 5 % 1), (), (04 1), asre + 5 41,8))
it = B{(atrg. 5 % (5 — 1), (v po—2), €@ (v jra2). are + 8 (s — 2),8)
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and finally
v =v
W= ps—1
(5) The effect of a function invocation, ny =gef sel = £(x1,...,xn);, for a func-

tion with prototypet f£(t1 z1,...,tk zk) is calculated according to the following
operational rule:

n1 ~Lcrg n2, We((v, 1), 9),int) # 0, (I(Gy),v1, 1) —2% (O(Gy),va, p2)
(nlvynu‘) -G (7127”/7#/)

In this rule, vy, 1 are extensions of v, u which comprise the initial settings of the
formal parameters and the return value:

v1 = v|(stack,a) — zReturn, (stack,a1) — z1,..., (stack, ar) — zj]

Here a,aq,...,a; are fresh address values and xReturn is an auxiliary name for
the stack location storing the return value. The initial valuation of xReturn is
undefined, but the z; carry the valuation of their actual parameters x;:

H1 = pg
i = ¢((vy (21),0), (v1, 4), (v, 1}), (£1)(21)))

i = Sy (20),0), (v, w1, e(vr, iy ™), (8) (@)

/"/If = ¢((V1_ (Zk)7 0)7 (V17 le+l)7 5((V17/"111€+1)7 (tk)(zk)))
py Tt = pl(stack,a) — (7,...,7)]
——

sizeof(t)

*

Now the precondition (I(Gy),vi,pu1) —¢ (O(Gy),va, p2) in the operational rule
above requires that a sequence of transitions through the CFG of f should exist,
starting with valuation vy, uq, so that the final valuation before function return,
Vo, pi2, defines the target state (ng, v/, p’) via

= o((vy (sel),w(sel)), (va, p2), €((v2, p2), (7(sel))(xReturn)))

Finally, the local variable addresses and associated memory valuations of f are
removed from v/, y//.

4 Symbolic Interpretation of GIMPLE-Programs

For symbolic interpretation the state space is defined as
Ss=N(P)xNgx M
M = dataSegment X heapSegment X stackSegment
dataSegment = M-Item™*
heapSegment = M-Item™*
stackSegment = stackFrame*
stackFrame = M-Item*
M-Ttem = Ng x (Ng U{o0}) x BaseAddress x
Types x Offset x Length x Value x Constraint
BaseAddress = String
Offset = Length = Value = Constraint = Expr(Symbolsg)
Symbolsg = Symbols x Ng

Each symbolic state consists of a triple (node, n, mem) where node is a node in the
GIMPLE control flow graph representing the current “program counter state” of
the symbolic execution, n serves as an instruction counter and mem is the current
history state of symbolic memory valuations, called memory items m € mem. The
collection of memory items generated so far is structured according their allocation
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in the data segment, heap or stack, respectively. The stack is further sub-divided
into frames, so that the validity of stack variables during their associated function
executions can be clearly specified.

The components of a memory item are accessed using m.vg, m.vy, m.a, m.t,
m.o, m.l, m.val, m.c for the respective projections. Component m.a represents the
base address of a memory item, typically denoted by &z if the memory location
corresponds to a variable x or by a fictitious address symbol representing the start
address of a dynamic memory allocation. Component m.o denotes the offset from
the base address, where the value specified in m.val is written to. For writing one
value m.val, the memory portion starting at m.a + m.o is used, and the length of
this portion is determined by the type information m.t. If the length specification
m.l is a multiple of sizeof (t) this specifies that m.l/sizeof (t) copies of m.val are
written into the respective memory segment, starting at m.a+m.o. Component m.c
represents a symbolic validity constraint for the existence of the item. For concrete
or abstract interpretations this means that the memory item is only feasible if m.c
— after having been properly resolved — evaluates to true.

For the symbolic specification of offsets, lengths, values and constraints GIMPLE
expressions over symbols from Symbolsg are used: Such an expression addresses each
identifier as a pair (x,n) where x € Symbol is an ordinary GIMPLE symbol and
n is a version information. Components m.vy, m.v; represent validity information:
When resolving a symbol (z,n) € Symbolsg occurring in offset, length, value or
constraint expressions of some memory item m/’, only the items m with m.vg < n <

m.vy are considered.

In symbolic interpretation expressions are never resolved to concrete or ab-
stracted variable values, instead, a resolution stops if the expression only contains
literals (including base addresses which are considered as string literals), operators
and symbols from a given set V' and with a specific version range no <n < nj. A
typical resolution variant is to take V' as the set of base addresses, function call pa-
rameters and global input variables, and specify n = 0, meaning “resolve expression
until it only contains literals, operators and input variables in their initial version”.
The constraints of the memory items involved are part of the resolution result p, so
in general p is of the form

p=if c11 A... Acig, then ey elseif co1 A ... Acop, then ey ...else ey

with expressions e; € Expr(V), that is, without version information. Examples for

handling memory items in Sg are given in Section 6.
Symbolic interpretation is performed according to rules of the pattern

ni i"CFG n2
(n1,n,mem) —¢g (n2,n 4+ 1,mem’)’

so a transition can be performed on symbolic level whenever a corresponding edge
exists in the control flow graph?®. To illustrate the effect of symbolic transitions
on the state space Sg we present three transition rules explaining stack variable
definition, assignment to a variable (selector) and assignment to a de-referenced
pointer.

5 Tt may turn out, however, on abstract or concrete interpretation level, that such a transition is infeasible
in the sense that no valuation of inputs exists where the constraints of all memory items involved evaluate
to true.
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*

function up—(sel : Selectors; expr : Expr; n:No; h: M-Item*; g: Expr) : M-Ttem
m’ = (n+ 1, 00,&pB(sel), T(stack, sel),wa(sel), 8 - sizeof (sel), (expr,n), (g,n));
up= = up(m’,n, h);

end

Fig. 2. Effect of normal assignments on history of memory items.

(1) A stack variable definition , n1 =gt typex x; only affects the current stack

frame. Value expression T marks that the value is still undefined.
mem’ = (mem.data, mem.heap, front(mem.stack) ~ (last(mem.stack) ~ (m))
m = (n+ 1,00, &z, typex, 0,8 - sizeof (typex), T, (g,n))

(2) The effect of an assignment to a stack variable, n] =q¢f sel = expr; affects

the current stack frame only:
mem’ = (mem.data, mem.heap, front(mem.stack) —~ (h'))
h' = up—(sel, expr,n,last(mem.stack), g)

Function up—() (Fig. 2) specifies (1) how a new memory item m’ is created for the
stack frame history, carrying the right-hand side expression as its value and the
CFG guard condition as validity constraint and (2) which memory items m have
to be invalidated due to the new assignment, possibly leading to the creation of
“replacements” for these m involving new constraints. The details of this invali-
dation/creation process are specified in function up() (Fig. 3): All memory items
m matching with the new item m’ with respect to base address and validity infor-
mation have to be invalidated. It may be the case, however, that m’ ¢
only a portion of m. As a consequence, it has to be specified that the “remains” of
m not affected by the assignment m’ are still valid. Therefore a new memory item
my is created and its constraint specifies that outside the range of m/, the old m
valuation still exists. Observe that the constraint of m; always evaluates to false
if m and m’ are of the same type and have the same offset. This indicates that mq
is infeasible, so m is completely overwritten.

overwrites”

The effect of assignments to variables in the data segments are specified analo-
gously; they affect the mem.data-portion of the memory state.

(3) An assignment to a de-referenced pointer, ni =gef *p = expr; may affect
the data segment, heap or stack, depending on the potential target addresses p
points to. The details are specified by function up—, (Fig. 4).

mem’ = up=, (p, expr,n, mem, g)

At first, a list ml of all possible pointer targets is generated, using auxiliary
function () (Fig.5): Depending on the valuation of different constraints associated
with different memory items, p may point to one or more locations in stack, data
segment or heap. For each of these possible situations, ml contains the new memory
item for the respective pointer target. The effect of each new item on the invalidation
of existing items and creation of new ones is performed again as specified by up()
and explained above.

5 Abstract Interpretation of GIMPLE-Programs

Based on the symbolic interpreter introduced in the preceding section it is now
possible to construct a variety of abstract interpreters according to the following
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function up(m’ : M-Item; n : No; h: M-Item*) : M-Item*
w= () wi= ()
for m = last(h) downto head(h) do

if (m.w1 = oo Am’.a = m.a) then

my := (n+ 1, 00, m.a, m.t, 0,1, m.val,
m.cAm'.cAO<IAmo<oAo<INI<mIA(+I<m'.ovm'.o+m'l<o));
m.vy 1= n;

u = (m1) —~ u;
endif
w = (m) —~ w;
enddo
up :=w —~u ~ (m');
end

Fig. 3. Effect of new memory item on history h € M*.

function up—, (p : Symbols; expr : Expr; n: No; mem : M; g: Expr): M
hq := mem.data; hp, := mem.heap; hs := last(mem.stack);
ml := ~(p, expr,n, mem, g);
forall m’ in ml do
if (o(m’) = data) then hy := up(m’,n, hy)
elseif (o(m’) = heap) then hy := up(m/,n, hy,)
else hs :=up(m’,n, hs);
enddo
upp_ := (hq, hp, front(mem.stack) —~ (hs));
end

Fig. 4. Effect of assignments to de-referenced pointers on history of memory items.

function v(p : Symbols; expr : Expr; n: No; mem : M; g: Expr) : M-Item*
ml = ();
if o(p) = data then h := mem.data else h := last(mem.stack);
forall my in h do
if mp.a = &p Amp.vg <n < my.v1 then
pl := &(myp.val, mem);
forall ¢ in pl do
a := base address from expression pl;
o := offset expression from expression pl;
¢ := conjunction over all conditions of memory items occurring in pl;
m/ = (n+1,00,a,7(p), 0,8 - sizeof (F(p)), (expr,n),c A (g,n));
ml :=ml ~ (m');
enddo
endif
enddo
v :=ml;
end

Fig. 5. Function ~ finds list of memory items potentially affected by assignment to de-referenced pointer.

rules: (1) For every datatype ¢ in the concrete program component chose a suit-
<

able abstraction lattice (L(t),C), so that a Galois connection (P(t),C) = (L(t),C)
>

exists. (2) Lift each operation < defined on ¢t to L(t) by means of the canonic
construction Oy : L(t) x L(t) — L(t); p1Orpz =det (01 0pp2Y)”. In this
definition, ¢p denotes the canonic lifting of ¢ to the powerset lattice over t:
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function &((expr,n) : Expr x No; mem : M) : M-Item — Expr*
el := (expr);
e := head(el);
while e is not resolved to base address plus M-Item-expression for offset do
x := next unresolved identifier from e;
h :=if o(x) = stack then last(mem.stack) else mem.data;
for m := last(h) downto head(h) do
if m.a = &B(x) Am.vg < n < m.v; then
el :=e¢;
In e;: exchange each occurrence of x by m;
el :=el ~ (e1);
endif
enddo
el := tail(el);
e := head(el);
enddo
& =el;

end

Fig. 6. Function & finds list of base addresses potentially associated with a pointer.

a1Opagy =get {T10x2 | ®; € a4,i = 1,2} (3) Having defined all abstraction lat-
tices L(t), lift all Boolean operators
A:txt —Bto[A]: L(t) x L(t') — L(B) by

T if{z1lza | ®1 € p1Y, 22 € po7} = {false, true}
p1[Alpe = false if {z1Az2 | 21 € p1 9,22 € p2¥} = {false}
true if {z1Aw2 | 21 € p19, 22 € p29} = {true}

(4) Lift the symbolic state space Sg = N(P) x Ng x M defined above to its lattice
representation S;, = N (P)xNox L(M), where L(M ) is the interpretation of memory
items over the respective abstraction lattices chosen for offsets, length, values and
constraints. (5) The transition rules for the abstract interpretation semantics over
S, are of the form

ni —Sopa na, (n1,n,mem) —¢g (n2,n 4+ 1,mem’), L(mem) =L, (g # false)

(n1,n, L(mem)) — 1, (n2,n + 1, L(mem/))
where L(mem) denotes the lattice interpretation of memory items. Informally
speaking, an abstract transition between CFG nodes n; and no with changes in
abstract memory valuations from L(mem) to L(mem’) is possible in Sy, if (a) there
exists a corresponding edge in the CFG, (b) the lattice valuation of the guard con-
dition g is true or T and (c) the collection of memory items changes from mem to
mem’ in the symbolic interpretation.

6 Application Example

The following example illustrates some of the advantages obtained by the higher
flexibility resulting from the interplay between symbolic and abstract interpretation.
Consider the GIMPLE function® shown in Fig. 7 and an associated invocation
x = f(ig, z0); Applying the symbolic interpretation rules described in Section 4 for
the two possible paths through the function results in the symbolic state of the stack

6 Observe that in contrast to C/C+4+, GIMPLE always uses byte values in pointer arithmetic. As a conse-
quence, we find assignment q = p + 4%i; in line 4, whereas we would write g = p + i; in the corresponding
C/C++ program.
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frame as shown in the list of memory items on the right-hand side of Fig. 7, valid
at function return in line 11. Consider the following verification goals: (Goal 1):
f() only assigns to valid de-referenced pointers., (Goal 2): f() never returns an
undefined value.

Line No. Resulting M-Item

0. (1, 00, &i, int, 0, 32, (io, 0), true)
. . 0. (1, 00, &z, float, 0, 32, (z0,0), true)
? flg‘i‘gaﬁ(int 1’ .float z) { 0. (1,6, &xReturn, float, 0,32, L, true)
2 float aPEiO]?’ 1. (2,3, &p, floatx, 0,32, L, true)
3 p = &a; 1. (2,4, &q, floatx, 0,32, L, true)
4 q = p + 4%i; 2. (3,5, &a, float, 0,320, L, true)
5 if (0<z) { 3. (4, 00, &p, floatx, 0,32, &a, true)
g l*q z 10 = 4. (57007&Q7float*707327(p+4'i74)7(0Si < 1074))
8 el 6. (6,00, &a, float, (32 -i,5),32,(10 - 2,5), (0 < z,5))
9 = 6. (6,00, &a, float,0,l, L,(0 < 2A0 <IANO<oAo+1<
0 return alil; 320N (0+1<32-iVv32-i+32<0),5))
1} 8. (6,00, &a, float, (32 - ,5),32,0, (2 <0,5))
ANO<oNno+1<

8. (6, 00, &a, float,0,l,L,(z < O0OAO < l
320A (0+1<32-iV32-i+32<0),5))
10. (7, 00, &z Return, float, 0, 32, (a[i], 6), true)

Fig. 7. GIMPLE Code sample and associated symbolic interpretation result.

Alternative 1: Interpretation with is-defined and interval lattices.

Chose lattice Lp = ({L,A, THLC) with L © A C T as an appropriate ab-
straction for checking well-definedness of float z; float a[10]; (A stands for
is-defined, 1 for is-undefined). For checking pointer addresses we abstract inte-
gers to intervals over Z: L; = (I(Z),C). With these lattices, we now perform the
corresponding abstract interpretation on the history of memory items in Fig. 7,
each time resolving the associated to symbols down to constants, base addresses
or input variables ig, z9 as explained in Section 4. Additionally we assume that a
precondition iy € [3,5] has been asserted. Then the abstract interpretation results
in
. (1,00, &i, L1, 0,32,[3,5], true)

. (1,00,&2,Lp,0,32, A, true) (z is well-defined, since it is initialised with input zg)

. (1,6, &z Return, Lp, 0,32, L, true)

.(2,3,&p, L1,0,32,[—00, +00], true)

. (2,4,&q, L1,0,32,[—00,+0], true)

. (3,5,&a, Lp,0,320, L, true)

. (4,00,&p, L;,0,32, [&a, &a], true) (symbolic single-point interval [&a, &al)

. (5,00,&q,Ly1,0,32,&a + 4 - [3,5],true) (([0,0][<][3,5][<][10,10]) is true in Ly

. (6,00,&a,Lp,32-[3,5],32,A, T) (0< A evaluates to T, 10 - A evaluates to A over Lp)
. (6,00,&a,Lp,0,l, L0 <IANO<0oAo+1<320A (0+1<32-[3,5]V32-[3,5] +32 < 0))
. (6,00,&a,Lp,32[3,5],32,A, 1) ({0}” = A)

. (6,00,&a,Lp,0,l, L0 <IAO<0oAo+1<320A (0+1<32-[3,5]V32-[3,5] +32 < 0))
10. (7, 00, &z Return, Lp, 0, 32, (a[[3,5]],6), true) (not yet resolved — see next paragraph)

0 00 O DD e W NN = = O O O

Now we apply the resolution rules to 10: First it is noted that a([[3,5]],6)
matches all memory items of the form

m = (vo,v1,&a,Lp,32-[3,5],32,val,c), vo <6A6 < vy
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As a consequence the valuation candidates are those from lines 6. and 8. above. We
only have to investigate the feasibility of memory items with undefined valuation
1, so it remains to show that

0<INO<oNo+1<320N(0+1<32-[3,5]Vv32-[3,5]+32<0)ANo=32-[3,5] Al=232
has no solution; this proof obligation is simplified to showing that no solution of
[3,5] + 1 < [3,5] v [3,5] + 1 < [3,5]

exists. Unfortunately this predicate evaluates to T in L; because we can select
(different) numbers from [3, 5] in each of its occurrences so that the predicate eval-
uates either to true or to false. As a consequence it is necessary to perform 2
partitioning steps of the ig interval valuation [3, 5] into [3, 3] [4,4], [5, 5], in order to
prove that this predicate is always false.

Alternative 2: Interpretation with is-defined and predicate lattice.

As we have seen in the discussion of alternative 1 above, the interval lattice is
suitable for proving well-definedness of pointer de-referencings but is quite inefficient
to prove the crucial step for well-definedness of the return value. We can fix this by
taking the solution of verification goal 1 as constructed above, but using another
lattice to represent pointer and integer expressions for discharging goal 2: Let Lp
the lattice of predicates over programming variables, together with their comparison

operators . Use Lp as above. Abstract interpretation now results in
. (1,00,&i,Lp,0,32,i =ig, true)

. (1,00,&2,Lp,0,32, A, true)

. (1,6, &z Return, Lp, 0,32, L, true)

. (2,3,&p, Lp,0,32, 1 true)

. (2,4,&q, Lp,0,32, L, true)

. (3,5,&a, Lp,0,320, L, true)

. (4,00,&p, Lp,0,32,p = &a, true)

. (5,00,&q,Lp,0,32,q = &a + 4 - ig, true)

. (6,00, &a, Lp,32 - i9, 32, A, T)

. (6,00, &a, Lp, 32 -i9, 32, A, T)

. (6,00,&a,Lp, 0,1, L,0<IN0O<0AN0+1<320A(a+1<32-49V32-ip+32 < 0))
10. (7, 00, &xReturn, L, 0, 32, (alio], 6), true) (not yet resolved — see next paragraph)
Now, for the resolution of (a[ig], 6), all memory items of the form

m = (vo,v1,&a, Lp,32 - i9,32,val,c), vo <6A6 < v

VO WNHHEFEOOO

match, and the condition for returning an undefined value is
0<INO<oAN0+1<320A(0+1<32-i9V32-ig+32<0)A0=232-ig Al=32

which — applying the rules on term replacement and arithmetics in Lp — boils down
to 19 + 1 < ig which is obviously false.

7 Conclusion

We have described techniques for concrete and abstract interpretation of C/C++
programs represented in GIMPLE, which basically produces a control flow graph
model for each C/C++ function or method. The results are implemented in a tool
and they are currently applied for integrated module testing and static analysis
of safety-critical embedded systems software in the railway and avionic domains.
Applications in the field of automotive control are currently prepared; they focus,

7 More formally, the quantifier-free Presburger formulae over program variables are suitable for our purpose
because efficient solvers exist for problems of this type [13].
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however, on model-based test case generation. Due to the intermediate model rep-
resentation of the tool which uses the same class of hierarchic transition systems
for code (control flow graph) and model (e. g. UML 2.0 Statechart) representation,
the test case generation mechanisms are the same for code-based and model-based
testing. Currently a correctness proof for the abstract interpretation semantics
constructed according to the rules given in Section 5 is elaborated: We show that
application of these rules always result in a valid abstract interpretation semantics
according to Definition 2.1.
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Abstract

This paper presents an approach to the efficient abstraction of interrupt handling in microcontroller systems.
Such systems usually operate in uncertain environments, giving rise to a high degree of nondeterminism in
the corresponding formal models, which in turn aggravates the state explosion problem. Careful handling of
nondeterminism is therefore crucial for obtaining efficient model checking tools. Here, we support this goal
by developing a formal computation model and an abstraction method, called interrupt nondeterminism,
which instantiates nondeterministic values only if and when this is required by the application code. It is
shown how this symbolic technique can be integrated into our explicit CTL model checking tool [mc|square
by introducing lazy states. A lazy state consists of explicit and symbolic parts and therefore, represents
several concrete states. With regard to interrupt handling, we also give a bisimulation relation between the
concrete and the abstract state space, thus establishing the correctness of our technique. Furthermore, a
Casehst(ildy is presented in which three different programs are used to demonstrate the effectiveness of our
method.

Keywords: Model checking, state space abstraction, bisimulation, interrupt handling

1 Introduction

Model checking is recognized by industry as a promising future tool for the analysis
of embedded software (e.g., software for microcontrollers). Early model checkers as
SMV [4], Spin [8] and Uppaal [9] work on models described in their proprietary spec-
ification languages. Re-modeling existing systems in these proprietary formalisms
is a huge effort. For existing systems, model checking of higher level programming
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languages (e.g., C, C++ or Java) is the more efficient approach, but when it comes
to embedded software, many problems arise when model checking C programs.

Microcontroller programs written in C usually contain direct hardware accesses
or embedded assembly statements. These constructs are not handled by existing C
code model checkers (see [16]). Moreover, C code is first compiled into assembly
code before it is deployed to the hardware. Hence, the C code is only an intermediate
representation. The compiler could introduce errors that cannot be found in the
original source code. In assembly code all errors introduced during the complete
development process are present. Moreover, in contrast to C code, assembly code
has a clean, formal and well documented semantics. Hence, model checking of
assembly code (machine code) gets into focus of research, see [1,12,13,17,20].

However, when model checking assembly code state spaces tend to be bigger
and the analysis is no longer hardware independent. In order to tackle these prob-
lems, we have developed [mc|square?, which is a discrete, (mostly) explicit state,
on-the-fly, Computation Tree Logic (CTL) [4] model checker. It is capable of model
checking assembly code written for certain microcontrollers (ATMEL ATmega and
Infineon XC167). We did not restrict the set of supported constructs. Hence,
[mc]square can handle arbitrary assembly programs for those microcontrollers, sup-
porting both low-level features such as direct or indirect memory access and source-
level constructs such as recursion or functions. To address the disadvantage of
being hardware-dependent, we developed an extensible architecture, which is de-
scribed in [18]. To deal with the state explosion problem, we implemented different
abstraction techniques in [mc]square. In this paper, we will show how prioritized
interrupt levels can be used to abstract away from the concrete state of the interrupt
bits of a microcontroller.

The basic idea of the abstraction technique is that in certain states of the proces-
sor, certain bits are irrelevant for the execution. These bits can be safely abstracted
away by setting them to a don’t care value, or better said to a nondeterministic
value, which we will denote by *. This introduces so-called lazy states. A lazy
state is a state that contains explicit and symbolic parts. As a consequence, a lazy
state no longer represents a single state, but a set of states. Therefore, [mc|square
combines explicit and symbolic techniques. This idea is used for several abstraction
techniques within [mc]square, e.g., also for delayed nondeterminism (see [15]). In
this paper, we focus on abstracting away from the specific values of the interrupt
bits.

This paper is structured as follows: We start with the presentation of related
work. Then, a basic introduction to [mc|square is given. Section 4 details nonde-
terminism for interrupts. The subsequent section presents our formal approach to
modeling microcontrollers. As an example, the model of the ATMEL ATmegal6
microcontroller is detailed. It is shown that nondeterminism of interrupts induces
a simulation relation between the concrete trace of the system and the abstracted,
nondeterministic traces, thus yielding an over-approximation of the real system be-
havior. However, while over-approximating the concrete behavior, it is true that
for every trace in the abstract space, there is a concrete system which will exhibit

4 http://www-il1l.informatik.rwth-aachen.de/mc_square.html
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this behavior. As interrupts depend on the behavior of an external environment
which is not under the control of the processor, this means that all errors found in
the over-approximation can in fact also be traced back to the real implementation.
After that, a case study is summarized which demonstrates the effect of interrupt
nondeterminism on the state space size. In the end a conclusion is drawn and some
potential directions for future improvements are shown.

2 Related Work

Motivated by the observation that usually memory is the limiting factor in the ap-
plication of model checking, many approaches have been developed to combat the
state explosion problem (see [4] for an overview). The abstraction technique pre-
sented in this paper, Interrupt NonDeterminism, is dynamically applied at runtime.
To the best of our knowledge, no comparable approach has been developed so far
to control the effect of interrupts in modeling embedded systems.

There is, however, a verification method for concurrent systems called narrowing
which is based on a similar idea, and which is described in [14]. Here, the states and
transitions of the system are symbolically represented by terms and rewriting steps,
respectively. Terms can contain variables to abstract from details of the system
state which currently are not “interesting”, but which can later be expanded by
substitution steps if necessary. Thus, in some sense, variables correspond to the
nondeterministic values in our approach.

Another direction of work which is worth mentioning is the concept of lazy eval-
uation in functional programming languages [10], which computes a function argu-
ment only if it is accessed in the function body. Moreover the paper [3] studies the
implementation of nondeterministic choice in this setting and refers to the problem
of copying nondeterministic values, which is also the reason for over-approximation
in our model.

Symbolic simulation is another technique that is similar to the technique applied
in [mc|square. Here, symbolic values are used in place of explicit values. In our
approach parts of the states used can be symbolic, but whenever the simulator
or the model checker needs to access symbolic parts of a state, these parts are
instantiated, and hence, become explicit. All parts of a state that are not accessed
remain symbolic. In [2], a symbolic simulator is used to verify hardware systems.
Whenever an X (denoted by * in our approach) is accessed and a value is needed, new
symbolic variables are added and simulation has to be repeated. In our approach
a dynamic refinement is conducted. There are some approaches combining explicit
and symbolic executions (cf. [6,22]), but these approaches employ explicit execution
and symbolic execution in parallel.

Other model checkers that handle machine languages or languages that are
similar to machine languages are Java PathFinder (JPF) [24], StEAM [11], and
Estes [13], all being explicit model checkers as is [mc|square. JPF accepts Java
bytecode and employs collapsing techniques for efficiently storing states. Our ex-
periments have shown that such methods do not pay off in the case of [mc]square
since its states have a less complex structure. Another difference is that JPF has to
deal with concurrent processes and therefore employs abstraction techniques such as
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Figure 1. Process used in [mc|square

partial order reduction, which cannot be done in [mc|square. Moreover the memory
model used within JPF makes it possible to apply symmetry reduction techniques.
Again, this is not possible in [mc]square because the order of data within memory
is important. StEAM model checks bytecode for the Internet C Virtual Machine.
In this approach an existing Virtual Machine (VM) is monitored and model check-
ing is conducted on the states created by this VM. Estes model checks assembly
code for a certain processor. Similar to StEAM, it uses an existing VM (the GNU
debugger) to create the state space. In our approach, we concentrate on the cre-
ation of the state space, that is, we concentrate on the domain-specific abstractions
implemented within the simulator. We do not want to use existing simulators as
we think that significant savings can be achieved by a tailored implementation. In
contrast to Estes we abstract from time because the state explosion observed when
temporal aspects are taken into account, i.e., real-time model checking (cf. [9]) is
performed, is too big.

3 Introduction to [mc]square

This section gives an introduction to [mc]square, which is a discrete, (mostly) ex-
plicit state, on-the-fly, CTL model checker. “Mostly explicit” means that [mc]-
square uses explicit model checking algorithms, but combines them with symbolic
techniques. We call the new states that combine explicit and symbolic parts lazy
states. Whenever a symbolic part of a lazy state is accessed, the nondeterminism
is resolved automatically. [mc]square works on assembly code written for certain
microcontrollers (ATMEL ATmega and Infineon XC167). More information about
[mc]square can be found in [17,18].

The process that is applied in [mc|square is depicted by Fig. 1. First, the
user inputs the program as an Executable and Linking Format (ELF) file and the
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specification as a CTL formula. If the C code is available, the user can also provide
the corresponding file. The formula is parsed and transformed into a formula object,
which is utilized by the static analyzer and the model checker component. The ELF
file is preprocessed and converted into an human readable assembly program.

Then, the static analyzer component starts inspecting the assembly program.
During this analysis, it uses information from the formula object (registers, variables
and memory locations used within the atomic propositions) to preserve validity of
the results. In the first step of the static analysis, a Control Flow Graph (CFG) of
the assembly program is created. This CFG is inter alia used by the counterexample
generator to present counterexamples or witnesses. In the end, the static analyzer
adds annotations to the assembly program which are used by the simulator to reduce
the size of the state space.

After that, model checking starts. First, the model checker requests the initial
state from the state space generator. It checks this state for certain parts of the
formula, and depending on the result of this check, it requests successor states of
this state. Then, it again checks these states for specific parts of the formula. This
process continues until a goal state is reached (proving or disproving the validity
of the formula) or the complete state space is built. The model checking algorithm
used is taken from [7]. A first version of this algorithm was presented in [23].

Whenever successors of a state are requested that are not created yet, the state
space generator uses the simulator to on-the-fly create the needed states. To do
so, it passes the current state to the simulator and calls a step() method. The
simulator creates all possible successors of this state including, e.g., occurrences of
interrupts, different input values from the environment etc. If, e.g., an instruction
IN R18 PINA reads input from the environment into register R18, then all possible
values might occur, which results in 256 successors states (all values between 0
and 255). Also, if a specific interrupt is enabled in a state of the system, then
the interrupt might potentially occur, and thus both successor states — one taking
the interrupt, one with the usual program execution step — must be considered by
[mc]square.

As the last step of analysis, the counterexample generator derives a counterex-
ample or a witness depending on the formula checked and the result of the model
checking process. This counterexample/witness is then presented in the assembly
code, in the C code, as a state space graph, or in the CFG of the assembly code.
Hence, the user can choose the representation that suits his requirements best to
find the error. As some abstraction techniques used in [mc|square only preserve
ACTL?, the user can use this representation to check whether a witness of an
non-ACTL formula is a feasible one.

During state space building [mc]square uses different abstraction techniques to
minimize the size of the state space. It is important to notice that all these abstrac-
tions lead to a safe over-approximation of the concrete state space, establishing a
simulation relation between the concrete and the abstract states (and thus preserv-
ing the validity of ACTL formulae). One of these abstraction techniques is interrupt
nondeterminism, which is detailed in this paper.

5 the universal fragment of CTL; see [5]
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| [0 [i1 [2 [ 3]
source active + |+ |+ | +
interrupt enabled | + | + | - +
interrupt flag N ORI *

Table 1

Four interrupts exemplifying nondeterministic interrupts.

IERERERER | ETERER

0 0 0 0 — no interrupt 1 oK * | — interrupt 0
0 0 — interrupt 3 0 1 * * | — interrupt 1
0 0 1 0 — no interrupt 0 0 * 1 — interrupt 3
0 0 1 1 — interrupt 3 0 0 * 0 | — no interrupt
0 1 0 0 — interrupt 1
1 1 1 0 — interrupt 0

1 1 1 — interrupt 0

Table 2
Deterministic and nondeterministic evaluation of interrupts.

4 Interrupt Nondeterminism

Interrupt nondeterminism abstracts away from interrupts which are below the cur-
rent interrupt level to reduce the state space for interrupt handling. Whenever an
interrupt at level ¢ is taken, all interrupt flags for levels below £ can be set to the
nondeterministic value x. When not using the abstraction, there are 2° different
possible combinations where s is the number of active interrupt sources. Abstrac-
tion reduces this number to a — 1 where a < s is the number of enabled interrupts,
which yields a drastical saving in terms of successor states.

However, even when interrupts are disabled or masked, it still is possible to check
their values, or enable them again. In this cases, the analysis again must consider
the actual values of the interrupt bits. Thus, we need to consider that interrupt bits
are tested or set, and then make their value explicit again. This step is called the
instantiation of a bit, and can occur in two ways: if the bit is tested, the simulation
needs to take both cases into account: that its value is 0 or 1. Two successor states
must be created, one for each possibility — or even more, if several bits are tested
in parallel. If the bit is set to a specific value, then the bit is just set to this value
in the successor state.

In Tab. 1 an example configuration of four interrupts is shown. The sources of
all four interrupts are active, but only three of these interrupts are enabled. In a
concrete simulation, all 16 value combinations shown in the left part of Tab. 2 are
written to the interrupts flag registers. In contrast, only 4 combinations are written
to the interrupt flag registers when using interrupt nondeterminism. These four
combinations are shown in the right part of Tab. 2.

Note that if an interrupt bit occurs in the formula tested by the model checker,
then that bit must be excluded from interrupt nondeterminism. This is a simple
implementation issue not detailed in this paper.

Here, we described handling of interrupts using a static interrupt priority table
for the ATMEL ATmega microcontrollers. Nondeterministic interrupts also work
using a dynamic interrupt priority table because at the time of interrupt handling,
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the priorities are fixed as the interrupt table can only be changed by instructions.
Moreover whenever interrupts are handled, no instruction is executed at that mo-
ment.

5 The Formal Model

Delayed nondeterminism (DND) has been presented in [15] first, where it is proved
that DND preserves a simulation relation. Here, we show that the restriction of this
technique to interrupt handling, interrupt nondeterminism, even preserves bisimu-
lation. Thus it is not only sound with respect to “path-universal” logics such as
ACTL but yields a correct abstraction with respect to the full CTL logic.

5.1 Basics of the Model

Our formal proof for the correctness of the nondeterministic approximation of inter-
rupt handling uses a formal model defining the behavior of our system by a semantic
function. The intuition behind the formal model is described in the section.

The model works on the following basic data types:

e the basic data in the model are bits B := {0, 1} and bytes C := B8,

¢ to model nondeterminism, we use the “don’t care” bit *, and extend the set of
bits by this value: B, := B U {x}, and similarly C, := Bi.

The microcontroller consists of a control and a data space:

¢ The data space is modeled by an ordered set of addresses A, and an association
of (nondeterministic) byte values to these addresses v : A — C,. Here we assume
w.lo.g. that each address comprises m bytes, that is, A = {0,...,2%" —1}. The
set of all data spaces is denoted by V.

¢ As we often need to select specific bits from bytes, we use Ay := A x {0,...,7}
as the address space for bits, and then interpret v as v : Ap; — B, where
v(a) =v(a,7)...v(a,0).

e The control (code) space is modeled by a set of locations @, which is a linearly
ordered set, and a mapping of the locations to instructions Ins. More details on
instructions can be found below.

The above model is a straightforward implementation of a Harvard Computer,
where we allow certain bits to be nondeterministic in the model, i.e., in a specific
snapshot we do not know the status of certain bits.

We will now define a transition relation, which describes the behavior of this
machine. The basic idea is that the machine cycles through instructions, and that
each instruction defines the read- and write accesses to the memory as well as the
control location of the next instruction (which is the following location in the normal
case, but a different one in case of jumps).

The machine we describe is used to control some environment. The communica-
tion with the environment happens via ports, which are lines sending bits into the
environment or receiving bits from the environment. We assume the usual memory-
mapped I/0, so the ports are special addresses within the memory of the machine.
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The setting of the input ports is described by an environment specification env,
which is a sequence of guarded assignments to the ports. The guarded assignments
are executed each time before an instruction is carried out.

Further, the machine has a set of interrupt routines. The interrupt routines are
described by the interrupt handler IH, which is a sequence of guarded assignments,
where each guarded assignment has a continuation, i.e. a location to which the ma-
chine will jump when the interrupt routines are triggered. The guarded assignments
describe the interrupt logic of the machine: the guard specifies when the interrupt is
taken (e.g. when a certain interrupt is enabled and the interrupt flag is set) and the
assignments model the interrupt logic, e.g. storing of the current program counter
on the system stack happens here. Further, the interrupt routines are prioritized,
i.e. they are executed in a specific order from highest to lowest priority, and the
routine with the highest priority and an enabled guard is executed first.

The interrupt handler is executed after the environment specification and before
the respective instruction. This way, a synchronized, clock-cycle triggered execution
of the machine is guaranteed.

We now define the syntax and semantics of assignments, guards and expressions.
An assignment takes the form x < e, where = is an address expression and e is a
value expression. Let Z bet the set of all assignments.

For address expressions, we have x = a | a|l + d | a[b] where a € A, b €
{0,...,7}, and d € Z. The first case is a direct byte access, the second is an indirect
byte access with displacement d, the third is accessing the bth bit at address a. Let
X be the set of all address expressions.

A value expression is either an address expression, or an operation on value
expressions e ::= op(eq,...,e,). Possible domains are B and C both for argument
and result. Let E be the set of all value expressions.

A guard is a test on the equality of two value expressions, boolean combina-
tions thereof or negation: g ::=e1 == ea|g1 A g2 |91 V g2 | 791, where e; are value
expressions and the g; are guards. Let G be the set of all guards.

5.2 Semantics in the Deterministic Case

We can now give a semantics for the behavior of the microcontroller for the deter-
ministic case.

The semantics [e] : V' — CUB of a value expression is defined by [a](v) := v(a),
[al 4+ d](v) := v(a’ + d) where o’ denotes the address which is referred to by the m
bytes stored at a: @’ :=v(a)-25("D 4. tw(a+m—1) € A, [a[b)]](v) := v(a,b),
and [op(eq,...,en)](v) = op([er](v), ..., [en] (v)).

Let v{a/e} be the valuation v' where v'(a) = e and v'(a’) = v(a’) else. Then
assignments have the semantics [z « €] : V. — V where [a < e](v) = v{a/[e](v)},
[al+d «— e](v) = v{d'+d/[e](v)} where again a’ := v(a)-28(" D +.. +v(a+m—1),
and [a[b] < e](v) = v{(a,b)/[e](v)} (assuming type correctness).

Guards have type [¢g] : V — B, and are defined as [e; == es](v) = 0 if [e1](v)
not equal [es](v), and [e; == es](v) = 1 else. The boolean operators work as usual:
[91 7 gal(®) = [91](0) A [g2] (0) ete.

On sets, we use the usual operations * and + meaning all finite sequences resp.
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all non-empty finite sequences. Let GA := G x Z* be the set of guarded assignments,
and GAC := GA x @ the set of guarded assignments with a continuation.

A guarded assignment is enabled when its guard is 1. The semantics of an
enabled guard assignment is the execution of the assignment, otherwise the guard
assignment does not change the microcontroller’s memory. Formally,

v if [g](v) = 0

”““@MZ{Wﬂwiwmmzl

The Environment handler env € GA™ has the form g1 : asni; ... ; g, : asn,. Its
semantics is the consecutive execution of the enabled assignments:

lg1 : asny; ... ;9 asng](v) = [gn : asng]([g1 : asny; oo 5 gn—1 : asn,—1](v)), n > 2

A guarded assignment with continuation induces a mapping [.] : Q xV — @ xV,

defined as )
[[g casn q/]](q U) —_ (q,v) lf [[g]](’[)) =0
(¢, [asn](v)) if [g](v) =1
The interrupt handler IH € GAC™ has the form IH = g1 : asni,q1 > ... > gn:

asng, gn. We say that an interrupt is triggered if its guard is enabled. The function
trigger : GACT — N defines which interrupt is taken:

0 if Vi.[g;](v) = 0,

trigger(IH) = {j if [g;](v) = 1,Vi < j.[g:](v) = 0

and then [IH](v) = [g; : asnj, q;](q, v) if trigger(IH) = j.
The instruction handler Ins € Q x GAC™ has the form ¢ = g1 : asni, g1 >
. > gn:asng,qn, and will also execute the first enabled assignment:

lq::g1:asn1,q1 > ... > gn:asngq](v):=
[g1 : asni,qn > ... > gpn:asng, q,](g,v)

The microcontroller M C' is then the tuple (A, Q, Ins,env, IH, qo,v9) with start
state gop € @) and initial memory vy € V. It defines a transition relation on @ x V
by (¢,v) — (¢',v") with v; = [env](v),

" q:{ﬁﬂwwn if trigger(v1) > 0
’ [Ins](q,v1) if trigger(vy) =0

and initial state (qo,vp). We will call this behavior of M C the concrete behavior.

5.8  Nondeterministic Interrupts

When modeling all possible behaviors of an environment, we would need to take
into account all possible settings of the interrupt bits at any time. However, when
an interrupt of level £ is taken, the lower prioritized interrupts are not important
anymore. Thus we can reduce the number of states in the model checker by replacing
all interrupt bits with a lower priority by the nondeterministic bit *.
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To formalize this, we now introduce the nondeterministic transition relation
—nd- This will be done by lifting the deterministic transition relation to nondeter-
ministic evaluations v : A — C,.

We start with introducing nondeterminism into our model, using the function
ndet : (Ay; — By) x 24t — (Ay;; — B,), which increases the level of nondetermin-

ism:
b) if (a,b) &€ M
ndet(M,v) := w where w(a,b) := v(a,b) if (a,b) &
x if (a,b) € M
Assume we have interrupt levels 1,...,n. Then we have also a set of interrupt

bits IBy,...,IB, € Apy. Let IL(¢) := {IBy,...,IB;_1}. Let IH be some interrupt
handler with [IH](¢,v) = (g,v’) in the deterministic case. Then [IH],4(q,v) =
(¢’ ,ndet(IL(£),v") in the nondeterministic case, if trigger(IH) = ¢ > 0, and thus
interrupt nondeterminism is introduced into the model at this point.

The next step is to lift the semantics of expressions, assignments and guards to
nondeterministic valuations, where all bits which are important for the evaluation
are still deterministic. To formalize this notion, we defined the set of bits which are

read in an expression, assignment, resp. guard. Let tested : AUE U Z UG — 24vit
be defined as

tested(a) := {(a,0),...,(a,7)}
tested(a] + d) := tested(a ) U tested(v(a))
tested(a[b]) := {(a,b)}
tested(op(er, ..., ey)) := tested(e;) U ... U tested(ey)
tested(a — e) := tested(e)
tested(e; == ey) := tested(e;) U tested(e2)
tested(e1 A eg) := tested(eq) U tested(eq)
tested(eq V ez) := tested(e;) U tested(ez)
tested(—e) := tested(e)

Obviously, only the bits in tested(e) are needed to evaluate the expression e
for some valuation v. So for valuations v which are deterministic in tested(e), the
above definitions can be re-used without changes. Let —, be the transition relation
induced by this.

Now for a valuation which is nondeterministic in bits needed for evaluation, we
will simply instantiate the necessary bits to all possible values. This is formalized by
the function: det : 24bit x (Ay; — B,) — 2(Avit—B+) " which is capable of decreasing
the nondeterminism of a valuation:

det(M,w) :={v € Apy — By | V(a,b) € M.v(a,b) # * and
V(a,b) € Apip-w(a,b) #+ = v(a,b) =w(a,b)}.

Further, nb(w) is the set of nondeterministic bits in w, i.e.

nb(w) := {(a,b) |w(a,b) = *}.
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Now a semantic function ¢ with [e] (v) = v’ can be extended to a nondetermin-
istic valuation w by setting [e]q(w) := {[e](v) |v € det(M,w)}, M = tested(e) N
nb(w), and similarly [e],q(q, w) := {[e](g,v)|v € det(M,w)}. Note that our se-
mantics now yields a set of valuations as result.

The nondeterministic transition function can then be defined as (¢, w) —pq
(¢',w') iff (¢, w') € [MClna(q, w).

Note that we can lift the definition of tested to the transition relation by the
following rules, yielding a notion of tested for our transition relation.

e For consecutive execution of statements, the tested sets need to be joined,

e for statements with priority, only take into account the statements until the first
executed.

So whenever we have a deterministic transition (q,v) — (¢’,v’), there is a set
M C Ay of the bits referred to by the transition. For all N C Ay;\ M, the valuation
w := ndet(N, v) has all the necessary information for the deterministic relation, and
thus we can also apply the definition, yielding a transition (q,w) —, (¢’,?). As this
transition results from reading and writing the same bits as for (¢,v) — (¢’,v’), there
must be N/ C N and ¢ = ndet(N’,v’). It must not be N = N’, as nondeterministic
bits can be assigned a value by the transition.

5.4 Modeling the ATMEL ATmegal6

Now we will show how to use the general framework to model the ATMEL AT-
megal6 microcontroller. The ATMEL ATmegal6 has a 16K flash memory for pro-
gram code, which corresponds to the location set ). All special purpose register
of the ATMEL are embedded into the data space, which has an address length of
m := 2. As we focus on interrupt handling here, we will briefly describe the inter-
rupt handling of the ATMEL and identify the special purpose registers within A
that are essential for the interrupt handling.

The ATMEL has 21 different interrupts, each on an interrupt level of its own.
The interrupts range over a non-maskable reset, externally generated interrupts,
timer interrupts and internally generated interrupts caused, e.g., by completion of
specific operations.

Each interrupt apart from the non-maskable reset can only occur when at least
three conditions are met:

e interrupts are globally enabled, i.e., the global interrupt enable flag I in the status
register SREG must be set,

¢ the enable interrupt bit of the specific interrupt must be set,

e the interrupt flag of the specific interrupt must be set.

The enable interrupt bit and the interrupt flag are found in different registers
depending on the type of the interrupt. For timer interrupts, they are stored in the
TIMSK and TIFR registers, for external interrupts in the GICR and the GIFR registers,
and similar for the rest of the interrupts.

In order to model check real systems, where we have no control over the environ-
ment of our microcontroller, we must assume that input ports can have any value,
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and that interrupts might occur at any time.

This is done by introducing nondeterminism for certain bits in our storage,
namely for the input port bits of our system and the interrupt flags. The environ-
ment env is used to set these bits to * before an instruction is carried out. Due
to space limitations, we cannot give the full definition of the environment for the
ATMEL, but we will illustrate it by an example with one of the built-in timers and
with one of the external interrupts.

For the example, we use the function nd : B, — B, defined as nd(0) := *,nd(1) =
1,nd(x) = . If an interrupt flag is already set, then this function leaves it set. If
the interrupt flag is not set, or nondeterministic, then it could be set in this step,
and thus must be made nondeterministic.

A timer interrupt for Timer 0 can only occur if the clock for Timer 0 is selected.
The mode of the timer is set via the C302/CS01/CS00 bits of the TCCRO register.

The external interrupt 2 can only occur if a certain port is selected as the source
for this interrupt. The port’s setting is controlled via bit DDB in the port register
DDRB. Thus we have:

TCCRO[CS02] == 1 V TCCRO[CS01] == 1 V TCCRO[CS00] ==
TIFR[TOVO] < nd(TIFR[TOVO]);
DDRB[DDB2] == 0 : GIFR[INTF2] — nd(GIFR[INTF2]);...

As said before, the interrupt only occurs if the global interrupt enable bit in the
status register, the bit in the interrupt mask and the interrupt flag are set. The
following interrupt handler checks this first for the timer interrupt, then for the
external interrupt.

SREG[I] = 1 A TIMSK[TOIEO] = 1 A TIFR[TOVO] =1: 18] >
SREG[I] = 1 A GICR[INT2] =1 A GIFR[INTF2] =1:36] > ...

As can be seen, interrupt vectors are stored at memory locations 18 and 36 respec-
tively, and the interrupt at 18 has priority over the other one.

5.5  The Bisimulation Proof

In order to reduce the effort in model checking which comes from introducing non-
determinism, we will show that for the interrupts, it is safe to make all interrupt bits
below the current interrupt level nondeterministic. Assuming three interrupt levels
stored in the lower three bits of the interrupt register, this means we can identify
all states where these bits have the values 100,110, 101, 111, which is a reduction of
a factor 4 for the interrupt handling. In the general, we gain a factor or 2" for n
interrupt levels, so for the ATMEL we gain a factor of up to 220,

To show this, we look at a fixed microcontroller M C' = (A, @Q, Ins, env, IH, g, v0).
The interrupt handler and the environment handler are defined as sketched above,
thus implementing the interrupt handling model of the ATMEL. The instruction
space can hold an arbitrary program.

This MC induces a deterministic transition system — and a nondeterministic
transition system —,,4 . Intuition tells us that the deterministic transition system
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is the real behavior of the microprocessor when running the loaded program, and
if the environment behaves as modeled. The nondeterministic transition system in
contrast models how the simulation of the processor is implemented in [mc|square.

To show that the nondeterministic transition system is bisimilar to the determin-
istic one, formally we show that there is a bisimulation relation o : (QxV)x(QxVy,q)
such that whenever sos,q and s — ', then there is s/ ;, such that s,q —nq s, and
s'os! ;. and vice versa.

The relation for which we show the result is just relating states which are more
nondeterministic, i.e. for which there is a set M C Ay such that w = ndet(M,v).
For those we claim that (g, v)o(q,w) is a bisimulation between (¢, v) and (g, w).

So assume we have (g,v) — (¢’,v’). Further let M such that w = ndet(M,v). If
there is no interrupt involved, then we have (¢, w) —,q (¢',w’) for some M, N with
w = ndet(M,v),w’ = ndet(N,v"). By definition of o, we have (¢’,v")o(q,w’).

If an interrupt at level £ occurs, then we have (q,w) —,q4 (¢/,w’) for some M, N
with w = ndet(M,v),w’ = ndet(IL(¢),ndet(N,v")). Again, obviously we also have
(¢, v")o(q',w'"). A similar proof can be given for the reverse direction.

6 Case Study

This case study was first described in [15]. Here, we summarize the important
details and reconsider the results under the aspect of DND for interrupts. In [15]
only DND for values was considered. DND for interrupts was activated in all runs.

The case study was conducted on a laptop equipped with a Intel Core Duo CPU
at 2.33 GHz, 4 GB main memory, and a hard disk with a capacity of 100 GB.
[mc]square is completely written in Java, and hence, every operating system can
be used. All programs used in this case study were developed by students during
lab courses, exercises, diploma theses, or their working time. None of these pro-
grams was intentionally written to be model checked. All programs were run on
the ATMEL ATmegal6 microcontroller. Details about this case study can be found
in [15].

As DND for interrupts cannot be deactivated in [mc|square because its operation
is essential for the model checking of programs using interrupts, we can only show
the differences obtained by DND of values. These three programs all use interrupts.
Without using DND for interrupts the number of states would be considerably
higher and model checking of these programs would not be possible.

Table 3 presents the outcome of this case study for the three programs. The
first column shows the name of the program. In the second column it is indicated
which abstraction techniques were used (here: DND for interrupts only, DND for
interrupts and for values, and all abstraction techniques). The option all abstraction
techniques includes DND, path reduction, and dead variable reduction. The column
# states stored represents the number of different states stored in the state space.
In contrast, the column # states created shows the number of all states created
during building of the state space, including revisits. Size [MB] gives the size of the
state space in main memory, and Time [s] shows the total time needed for building
the state space including all preparatory steps (e.g., preprocessing, parsing, and
static analyses) and model checking the formula AG true. We chose this formula

132



HERBERICH, NOLL, SCHLICH, AND WEISE

Program | Options | # states | # states | Size | Time
used stored created | [MB] [s]
DND IR | 801,616 854,203 240 23.19
plant DND 188,404 195,955 57 4.39
all 11,524 222,636 3.5 3.02
DND IR 35,613 38,198 10 0.78
traffic light DND 10,004 10,520 2.73 0.24
all 523 13,069 0.21 0.17
DND IR | 10,100,400 | 11,196,174 | 2,049 | 416.98
window lift DND 323,450 444,191 96 9.09
all 10,699 463,129 3.26 7.43
Table 3

Effect of delayed nondeterminism on the state space size.

because it builds the complete state space, and it does not influence the abstraction
techniques. In case a formula is chosen that makes an assumption about a certain
memory location (e.g., register, I/O register, or variable), the abstraction techniques
would no longer work on this memory location. As the formulas are different for
each program, the influence on each program would be different. Therefore, a fair
comparison of the state space sizes and the effect of the abstraction techniques
would not be possible.

We can give some comments about the size of the state space when not using
DND of interrupts. When using DND for interrupts, only enabled interrupts are
fired by writing only possible value combinations into the flag registers. When not
using DND for interrupts, all interrupts would be fired that have an active interrupt
source by writing all value combinations into the flag registers.

The plant program consists of 225 lines of assembly code and uses two interrupts
and one timer. The traffic light consists of 155 lines of assembly code and uses the
same number of timers and interrupts as the plant program. The window lift has
289 lines of assembly code and uses again two interrupts and one timer. As all
program use the same number of timers and interrupts, we only detail one of them.

The plant program uses one timer interrupt and one external interrupt. When
using DND for interrupts, at most three combinations are written to the flag reg-
isters: timer interrupt occurred, external interrupt occurred, and no interrupt oc-
curred. This is only done when the corresponding interrupts are enabled. When not
using DND for interrupts more combination are written. In this case all interrupts
are fired that have an active interrupt source. The interrupt source for the timer
used in the plant program is actually the source for two different timer interrupts.
The second timer interrupt is not used in this program but without using DND
for interrupts, it would be fired. As all value combinations are written into the
flag registers, at least nine combinations would be written. These nine combination
would be created in every line of the program where the sources of the interrupts are
active. The sources are active in almost all parts of the program including interrupt
routines (in interrupt routines, other interrupts are usually deactivated). If nonde-
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terminism of values is involved (e.g., input from the environment) additionally, the
number of resulting states from these values would be multiplied with the number
of interrupt value combinations. The same notes apply for the program traffic light
and window lift.

DND has a major influence on the size of the state spaces. The influence of DND
for values can be seen in Tab. 3 and is described in [15]. The influence of DND for
interrupts cannot be seen in the table. Before we implemented DND for interrupts,
we could hardly check a program using more than one interrupt. Now, we can
usually check programs with up to five interrupts. DND for interrupts typically has
a bigger influence on the size of the state space than DND for values has. In the
previous paragraph, we gave an impression about the sizes of state spaces of these
three programs when not using DND. [21] presents a case study where we model
checked microcontroller programs, which were used to do a speed measuring for a
model car. These programs used up to 5 interrupts and had up to 5000 lines of
assembly code. Without using DND, [mc]square was not able to model check these
programs. Using DND it was possible to model check them.

7 Conclusion & Future Work

In this paper delayed nondeterminism for interrupts, which is an abstraction tech-
nique implemented in [mc|square, was detailed and it was proven that DND for
interrupts preserves a bisimulation relation. This is an important result as DND for
interrupts cannot be deactivated by the user because this abstraction technique is
too essential for [mc|square. Without this abstraction techniques, even small pro-
grams using more than one interrupt could not be model checked. As [mc]square is
a CTL model checker, bisimulation is needed to preserve the validity of formulas.
The DND of values preserves a simulation relation (see [15]) and hence, the validity
of ACTL formulas is preserved. Nevertheless, DND of values can be deactivated by
the user if the over-approximation is too coarse.

DND is an abstraction technique that introduces lazy states into [mc|square. A
lazy state is a state that is mostly explicit but has symbolic parts. These symbolic
parts remain symbolic until they are required in a computation. The moment they
are required, they are lazily instantiated. Thereby, the approach used in [mc]square
is no longer completely explicit but partly explicit and partly symbolic. DND has a
significant influence on the size of state spaces. Without this abstraction technique,
[mc|square could not model check most programs it can check using DND. As seen
in Sect. 6 DND can be used together with other abstraction techniques implemented
in [mc|square.

In the future, we want to investigate if we can establish a bisimulation relation
for DND for values. The copying of values destroys the bisimulation relation. If we
introduce instances of nondeterminism and copy these instances, instantiation such
an instance would have an effect on all the instances and preserve the bisimulation.
However, we have to observe the effects on the size of the state space and the number
of different nondeterminism instances. Another thing that we want to implement
is a model checking algorithm for a three-valued logic. This would make it possible
to make propositions about registers used within the DND abstraction technique.
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Summarizing, we think that this is a promising approach to analyze software
for embedded systems. [mc|square can already handle programs of interesting size.
Delayed nondeterminism is an abstraction technique that helps to tackle the state
explosion problem. It can be combined with other techniques implemented in [mc]-
square (e.g., path reduction and dead variable reduction). This technique can also
be used for model checking software for many other microcontrollers. As we have
experienced with delayed nondeterminism or path reduction (cf. [19]), there are
abstraction techniques which perform better when model checking assembly code.
Hence, we will focus future research on domain specific abstraction techniques.
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Abstract

CVM (communicating virtual machines) is a computational model for concurrent user processes interacting
with a generic microkernel—supporting virtual memory—and devices. In this paper, we introduce the
computational models needed to define CVM. Furthermore, we describe how CVM can be implemented
by means of a concrete kernel, thus providing a trustworthy platform for microkernel programmers. Last
but not least, we give an overview on the model formalization and implementation correctness proof, which
has been conducted in the interactive theorem prover Isabelle for the most part. An endeavor like this is
tedious and of a considerable complexity. Thus, we do not try to present all details, but provide references
to publications covering specific aspects.
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1 Introduction

Operating systems are crucial components in nearly every computer system. They
provide plenties of services and functionalities, e.g. managing inter-process commu-
nication, device access, and memory management. Obviously, they play a key role
in the reliability of such systems and in fact, a considerable share of hacker attacks
target operating system vulnerabilities. Thus, proving a computer system to be safe
and secure requires to prove its operating system to be safe and secure.

At first sight, this appears to be a mission impossible because of the sheer size
of operating system implementations. For example, the Linux 2.6.0 kernel released
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with the authors.
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in late 2003 has nearly 6 million lines of code. Yet, the idea of having a small and
reliable kernel is not new and has led to the development of so-called 2nd generation
microkernels like L4 [16]. Microkernels offer elementary, but sufficient functionality,
and can therefore be of relatively small size. For instance by using them as a trusted
platform, we can run two operating systems on top of it, one small and reliable for
critical applications, and a conventional one for all other tasks [24].

In this paper, we describe how a whole framework, featuring virtual memory
support, memory management, system calls, user defined interrupts, etc.—thus
providing a trustworthy platform for microkernel programmers—can be proven cor-
rect. We introduce a computational model called CVM (communicating virtual
machines), that formalizes concurrent user processes interacting with a generic
(abstract) microkernel and devices. To establish interaction, the abstract kernel
features special functions called CVM primitives, which are invoked by the user
processes and alter process or device configurations, e.g. by copying data from one
process to another. By linking a CVM implementation to an abstract kernel, we
obtain a concrete kernel (‘personality’).

For each layer in the computer system—hardware, devices, user processes, and
abstract kernel-—we define a formal model. Implementation correctness is defined
by several simulation relations between these layers. The proofs are conducted in
the interactive theorem prover Isabelle/HOL [22] and have already been completed
to a large extent.

CVM is used in the Verisoft project [29] in two personalities: (i) VAMOS is a
microkernel used in an academic stack, where on top of it a simple operating system
(SOS) is running, and (ii) OLOS, an OSEKtime-like operating system, is used in a
distributed automotive real-time system establishing eCall functionality [13].

The remainder of this paper is structured as follows. In Sect 2 we list some
related work. Sect. 3 introduces some notation needed in Sect. 4 to define our
models formally. We present a generic framework for devices in Sect. 4.1. In partic-
ular, we show how physical machines and external devices can be coupled formally
(Sect. 4.2). User processes are modeled by assembler machines running on virtual
memory (Sect. 4.3), while computations of the abstract kernel are defined by C0
semantics (Sect. 4.4). In Sect. 5 we sketch the construction of the concrete kernel
containing the CVM implementation. The simulation relations that establish CVM
implementation correctness are described in Sect. 6. The status quo of the formal
verification is presented in detail in Sect. 7. We conclude in Sect. 8.

2 Related Work

First attempts to use theorem provers to specify and even prove correct operating
systems were made as early as the seventies in PSOS [20] and UCLA Secure Unix
[32]. However a missing—or to a large extend underdeveloped—tool environment
made mechanized verification futile. With the CLI stack [4], a new pioneering ap-
proach for pervasive system verification was undertaken. Most notably, the simple
kernel KIT was developed and its machine code implementation was proven to be
correct. Compared to modern kernels KIT was very limited, in particular, it lacked
interaction with devices. The project L4.verified [9] focuses on the verification of an
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efficient microkernel, rather than on formal pervasiveness, as no compiler correct-
ness or accurate device interaction is considered. The microkernel is implemented in
a larger subset of C, including pointer arithmetic and an explicit low-level memory
model [31]. However with inline assembler code we gain an even more expressive
semantics as machine registers become visible if necessary. So far, only exemplary
portions of kernel code were reported to be verified, the virtual memory subsystem
uses no demand paging [30]. For code verification L4.verified relies on the Verisoft’s
Hoare environment [26]. In the FLINT project, an assembly code verification frame-
work is developed and code for context switching on a x86 architecture was formally
proven [21]. Although a verification logic for assembler code is presented, no integra-
tion of results into high-level programming languages is undertaken. The VFiasco
project [12] aims at the verification of the microkernel Fiasco implemented in a
subset of C++. Code verification is performed in a embedding of C++ in PVS and
there is no attempt to map the results down to the machine level.

3 Notation

We use f: A — B to denote a partial mapping f from sets A to B, whileg: A — B
stands for a total mapping. We denote the concatenation of bit strings a € {0,1}"
and b € {0,1}" by aob. For bits x € {0,1} and positive natural numbers n € N*,
we define inductively ! = z and 2" = 2" ' oz, e.g. 0% = 00000 and 12 = 11. For
xz € {0,1}", z[i],0 < i < n denotes the bit at position ¢ of the bit string. N; with
i € NT denotes the natural interval [0,7 — 1]. For finite sequences seq : N — T,
we use shorthand notation seq = hd; tl where hd denotes the head of the sequence,
i.e. the element seq[0], and ¢l the remaining elements.

4 Computational Models

We have developed a generalized framework to model different devices in a uniform
way (Sec. 4.1). Physical machines (Sec. 4.2) are used to specify the underlying
microprocessor hardware. User process computations are modeled by assembler se-
mantics (Sec. 4.3), abstract kernel computations by C0 semantics (Sec. 4.4). Finally,
we combine the above computational models to specify CVM (Sect. 4.5).

4.1 Devices

We use devices in two ways in CVM. First, the page fault handler described in
Sect. 5.3 uses a hard disk as swap device. Second, we offer a range of typical
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devices accessible by user processes through special kernel calls. Currently, we
support models for five different device types: (i) a hard disk, e.g. used as the swap
device for memory virtualization [11], (ii) a timer, which can be used for scheduling
user processes, (iii) a network interface, (iv) an UART serial interface, which can be
used to set up a terminal [1], and (v) an automotive bus controller, which is used in
Verisoft’s Automotive subproject [14,13]. Device communication happens on many
different layers throughout our stack. Nevertheless, in order to establish a uniform
way of interacting with devices, we have developed a generic device framework
featuring standardized transition functions for all layers.

For each device type, we define a specific device configuration, e.g. ¢pq for
hard disks. The set of all specific device configurations (including a generic error
state L) is denoted by Conf 4., Furthermore, we define the set of device IDs by
DID = N whereas dmax is fixed and determines the maximal number of

dmaz+1°
devices. Formally, the generalized device configuration is defined by the mapping

Conf gevs : DID — Conf

Devices are memory-mapped and can communicate in two directions, namely
with the processor and with the environment (e.g. with a user or a screen). Thus, we
define two transition functions, one for internal and one for external communication.
The generalized internal transition function is parameterized over inputs from the
processor (Mifi). One element of the processor input is defined by a tuple mifi =
(id, rd, wr, ad, count, data), whereas (i) id € DID denotes the device ID, (ii) rd €
{0,1} denotes the read flag, (iii) wr € {0,1} denotes the write flag, (iv) ad gives the
device port where to read from or where to write to, and (v) data finally specifies
the data to be written if wr = 1.

sdevs*

Furthermore, internal steps do not only yield a successor device configuration,
but also output to the processor (Mifo C N) and, potentially, to the environment,
which is specific for each device type: Fifo = {FEifoyq, Fifo,c,---}. Now we can
formally define the generalized internal transition function dgint : Conf geus X Mifi —
Conf 4evs X Mifo x Eifo.

Input from the environment is also device type specific; We specify the gen-
eralized set of environment input by FEifi = {Fifi,g, Eifipe,---1- Again, de-
vices may generate output. The external transition function is given by dgext :
Conf govs X DID x Eifi — Conf 4.5 X Eifo.

Of course this way of dealing with devices is not the only possible on; modern
architectures mostly rely on devices with direct-memory access (DMA). Yet, this
makes modeling much more difficult and would require considerable changes on the
hardware implementation. First, either the processor would not be the sole bus
master any longer, but I/O MMUs would have to guard the bus, or one would have
to trust devices not to access sensitive data; second, DMA regions would have to
be excluded from caching. Since these regions are set up dynamically, this would
require hardware support for explicit cache flushing.

4.2 Physical machines and instruction set architecture

The lowest layer in our stack is given by the architecture of the underlying VAMP
microprocessor [6]. The VAMP provides a single-level address translation mecha-
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nism [8,10] and supports memory-mapped devices [1,11].

In order to realize memory virtualization, the VAMP runs in two modes: user
mode and system mode. In user mode, all addresses are virtual and have to be
translated first before accessing memory [7]. However, in system mode, we deal
with physical addresses that can be used without translation. In our scenario, the
microkernel runs in system mode while the user processes run in user mode.

The processor and the devices may either progress individually or communicate
with each other. Communication is established either by the processor executing a
memory operation to a special memory region assigned to devices (see Fig. 3) or by
the device causing an external interrupt.

Physical machines are the hardware model for a system programmer. Due to
space limitations, we will only introduce the relevant parts here.

A physical machine configuration cppys comprises the registers, the program
counters, and the memory content. The register file is split into two parts: (i) gpr :
{0,1}5 — {0,1}32, the general purpose register file, and (ii) spr : {0,1}% — {0,1}32,
the special purpose register file. For shorthand notation, we use symbolic names
for special purpose registers, e.g. Edata for spr(00101). In order to implement
the delayed branch mechanism as described in [17], we specify a program counter
pc € {0,1}32 and a delayed program counter dpc € {0,1}32. Finally, there is a
word-addressed physical memory pm : {0,1}30 — {0,1}?2. We formally denote a
physical machine configuration by the tuple cpnys = (gpr, spr, pep, dpe, pm).

An instruction set architecture (ISA) is given by a transition function dpnys,
that maps a configuration cppys and external event signals eev € {0, 1}dmaez to g
next configuration c;)hys = Ophys (Cphys, eev). Due to space limitations, we will not
give a full formal definition of the ISA transition function, but only an idea of it.

The transition function depends on the special purpose register mode, where
mode = 0 denotes system mode and mode = 1 denotes user mode. For system
mode, the transition function is simply defined by the instruction to which cpyys.dpe
points (see [5,17]). In user mode, memory accesses are subject to address transla-
tion: they either cause a page fault or are redirected to the translated physical
address pma(cphys, va) for a given virtual address va. For details on VAMP address
translation see [8].

In order to define dphys(Cphys, eev) more formally, we need some helper func-
tions: (i) I(cphys) = Cphys-PM(Cphys-dpc) denotes the instruction to be executed in
configuration cppys, (ii) predicates ?lw(cphys) and ?sw(cphys) distinguish I(cpnys)
being a ’load word’ or a ’store word’ instruction, (iii) RS1(cphys), RS2(cphys)s
and RD(cphys) are returning the general purpose register operands of I(cphys),
(iv) imm(cphys) returns the immediate constant of I(cpnys), and (v) ea(cphys) =
Cphys-9PT (RS1(Cphys)) + imm(cphys) specifies the effective address of I(cphys), i.e. its
memory operand.

Note, that for CVM, only the kernel running in system mode interacts directly
with devices, thus address translation does not affect. Devices are memory mapped,
i.e. a part of the memory is shared by both the processor and the devices (cf. Fig. 3).
We denote the set of addresses in this part of the memory by DIO. Let the pred-
icate 7int(i) denote, if the device with ID ¢ is in an interrupt state. We can now
define the external event signals as eev =?int(dmax)o?int(dmax —1)o...o%7int(1).
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Let us introduce an input alphabet I = (DID x Eifi) U {0} and an output al-
phabet O = Fifo U {¢}. Formally the combined transition function of physical
machines and devices d,g4(Cphys, Cdevs; i) = (cijhys,cﬁievs, out) is defined for in € I
and out € O as follows. For external device input (in # 0), we execute the exter-
nal device transition function, thus cghys = Cphys and (¢, 0ut) = Odext (Cdevs, i12).
For processor steps (in = 0), we distinguish between steps with device inter-
action, i.e. ea(cpnys) € DIO, and without device interaction: (i) in the former
case, we execute both the processor and the internal device transition function:
cghys = Ophys(Cphys, €ev) and (¢, mifo, out) = ddint (Cdevs, Mifi). If 2w (cphys), we
set Cpys-gPT (RD(Cphys)) = mifo, otherwise we discard mifo. (ii) In the latter case,
we execute the transition function of the processor: C;hys = 5phys(cphys,eev) and
(Chovs> OUL) = (Cdevs, €). Here, mifi is obtained by a helper function dec(ea(cphys)) =
(i,ad) returning the device id i and port ad for a given effective address, such that
mifi = (i, ad, ?lw(Cphys ), 75w (Cphys ), Cohys-gpr (RD (Cphys)))-

The n-step transition function 5g&d takes initial configurations cpnys and cqevs,
and a input sequence ins of length m, with elements m; € I and m > n. While exe-
cuting single steps, 5;‘& 4 generates an output sequence outs of length m and elements

in Q. We define 5g&d recursively: (i) 52&d(cphys,cdevs,ins) = (Cphys> Cdevs; €), and

(ii) 5;Lb(cphys, Cdevs, INS) = 5p&d(c;)hys, Chovss ins(i+ 1)) with 5;&d(cphys, Cdevs, INS) =

/ /
(cphys, Chovs> OULS)

4.8 Assembler Semantics

User processes are applications running on top of the microkernel. Given that we
also want to consider malevolent (hacker) applications, we restrain from any pro-
gramming restrictions imposed by C and model all processes as assembler machines.
More precisely, since the microkernel is providing memory virtualization and these
applications run on a uniform virtual memory, we will use virtual assembler ma-
chines. A virtual machine configuration casy is closely related to the physical
machine configuration describing the hardware. It still comprises the register files
and the program counters. We consider register numbers as naturals and their
contents as integers. Furthermore, only a subset of the special purpose registers
available in the real hardware is visible here and the instruction set is limited.

We formally define the register files (similar to Sect. 4.2) as (partial) mappings,
i.e. gpr : N3go — Z and spr : N3go — Z, and the two program counters dpc, pcp € N.
The memory is given by mm : N — Z, such that the overall assembler configuration
is specified by the tuple casm = (gpr, spr, pep, dpe, mm).

The transition function, which maps a given assembler configuration cagy either
to its successor configuration or to an error state L: dasnm : Conf aqy — Conf aqyU
{L}, is defined over the current instruction to which (dpc.mm(c.dpc)) points. For
example, the error state can be reached if the user process tries to access a restricted
special purpose register.

Let 0Rqy @ Confagy — Confagy U {L} denote the function that applies the
transition function n € N times. We define inductively (i) 5OASM(CASM) = casm and
(i) o%5h(casm) = dasm(Chgn) if Shgni(casm) = gy and dygyy # L, else L.

142



IN DER RIEDEN, TSYBAN

4.4 CO Small Step Semantics

C0 is the C-like imperative programming language developed and widely used in
Verisoft. It features sufficient functionality to implement system software and ap-
plications, yet having a concise formal semantics which allows for the—more or
less—efficient verification of code with several thousands lines, e.g. a non-optimizing
compiler and a simple email client [23,3].

A (0 program is identified by its functions—including information about their
list of parameters and local variables—, the type name environment and the list
of global variables. C0 supports four elementary types (Bool, Integer, Unsigned
and Char) and allows for non-elementary, recursive data types: Arr(l,t) denotes
the array with [ elements of type ¢ and, for types ¢; and component names n;,
Struct([(ng, to), ..., (n;,t;—1)]) denotes a structure type with [ components. C0
pointers are denoted by Ptr(tn) where tn stands for a type name defined in the
type name environment tenv, a mapping tenv : T — ty mapping type names
to types. The procedure table contains the information about all functions of a
C0O program. Formally, it is a partial mapping ptable : ¥ — fdesc of function
names to their corresponding descriptors, containing information on function body,
parameters, local variables and return type. The global variables are defined by a
sequence of variable names and their associated types: st : N — YT x ty, called
symbol table. We will not discuss in detail C0 statements (Stmt) and expressions
(Ezpr). The definitions of both are straightforward and are presented exhaustively
in [15].

A C0 configuration ccp = (mem,pr) consists of the memory configuration
mem—storing information about the (possibly dynamically allocated) program vari-
ables and their values—and the program rest pr. Variables are represented in a gen-
eralized way as so-called g-vars, defined inductively as: a global variable of name z
as guargm (), a local variable of name x in the i-th stack frame as gvaryy, (i, z), and
a nameless heap variable with index i as gvarp,,(i). If s is a g-var of structural type,
then its component with name cn is also a g-var: gvar(s,cn). Similar, for a g-var a
of array type, its i-th element is also a g-var: gvar(a,i). A memory configuration
is given by a triple consisting of (i) a global memory frame mem.gm : mframe,
(ii) a local memory stack mem.lm : N — mframe x gvar?, and (iii) a heap mem-
ory frame mem.hm : mframe. Each frame contains a symbol table and a content
ct : N — mcell, mapping addresses to typed memory cells. Memory cells can store
the value of an elementary type variable, whereas pointers are represented by a g-var
or the null pointer value Null; values of aggregate variables are stored in consecutive
memory cells. The second component of a C0 configuration is the program rest, a
sequence of statements still to be executed: pr = sq,...,s, with s; € Stmt.

Given a type name environment te and a procedure table pt, the transition
function maps the current C0O configuration either to its successor configuration or
to an error state L: d¢yp : tenv x ptable x Conf oy — Conf o9 U{L}. dcp is defined
inductively over the program rest (see [15] for a detailed definition).

We define 74, , which executes the transition function n times, by induction on n:

2 local memory frames have an additional g-var defining the memory location where the function return
value is to be stored

143



IN DER RIEDEN, TSYBAN

reset

?Prim JISR —JISR

user step

primitive

? Return/
cup #

=?Prim A
-7 Return

Fig. 2. CVM Control Flow
(i) 5%0 (te,pt,ccp) = cop (ii) 5%1 (te,pt,cco) = dco(te,pt, clpy), if 5%0 (te,pt,ccp) =
Cop and ¢y # L, else L.

4.5 CVM Semantics

Communicating virtual machines (CVM) are a computational model for a fixed
number of processes. The processes can interact with each other and with a fixed
number of devices, whereas all communication is handled by a generic abstract mi-
crokernel offering various specific kernel calls (CVM primitives). So far, there is no
support for shared memory, neither between devices and processes nor between pro-
cesses themselves. We use assembler semantics as introduced in Sect. 4.3 to model
user process computations and the C0O semantics from Sect. 4.4 for the computa-
tions of the abstract kernel. Device behavior is defined by the semantics described
in Sect. 4.1.

A CVM configuration coyy = (kernel, proc, devs, sr, cup) comprises the follow-
ing five components: (i) Let PID = N;mm 41 denote the set of user process IDs
with a fixed pmax. Then, a user processes configuration procs is formally a map-
ping of process IDs to assembler configurations: procs : PID — Conf 4qs. (ii) The
kernel part is specified by a type name environment, a procedure table, and a C0
configuration: kernel = (tenv, pt, conf). (iii) The device configuration is given by
a generalized device configuration devs. (iv) cup € PID U {0} specifies the current
process ID or, in case of cup = 0, the kernel. (v) sr € {0, 1}dmm_1, the interrupt
mask for the devices. If sr[i] = 0, then interrupts of the device with ID did = i + 2
are masked > .

In each CVM step, either the kernel, or one user process, or one device pro-
gresses. One step in a CVM computation is defined by the transition function
devm = Conf oy x I — (Conf oy U {L}) x O, where L denotes the error state.
In the following definitions, we only mention components that are changing in one
step of the computation.

Given a CVM configuration coyy and a parameter in: if in # 0, we execute the
external transition function of the device part of the CVM configuration ccyy.devs
as described in Sect. 4.1: gext (covm.devs, in) = (cqyyg-devs, out).

For in = 0, execution depends on the value of coym.cup: if coym.cup =i > 0,
the user process coym.proes(i) makes a step, otherwise the kernel progresses.

Let the predicate JISR(casmM, Cdevs) € {0,1} denote, that an interrupt occurred
in the current user process configuration casy and device configuration cgeys W.r.t.

3 Note, that the hard disk used for swapping (device ID didg,g = 1) is not visible in the CVM specification.
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the interrupt mask ccyy.sr. Then we compute the (masked) exception cause
mca(casm) € N and a potential parameter edata(casy) € N (e.g. in case of a
trap exception). Details on JISR, mca, and edata can be found in [8,17]. For
—JISR(covm.-procs(covm.cup), covm.-devs), we execute the transition function dagm
as described in Sect. 4.3: cyy-procs(cova.cup) = dasm(covm.procs(cevm.cup)).
Otherwise, a visible interrupt has occurred and kernel execution starts at the
entry point given by the CO0 function kdispatch with parameters mca and
edata. We set coym.cup = 0 and the kernel’s program rest to the function call
coym-kernel.conf .pr = SCall(kret, kdispatch, mca(caswm ), edata(casm)) where kret
denotes the return variable and SCall is the C0 function call statement.

After booting and after an interrupt, kernel execution starts by calling the func-
tion kdispatch. Note, that while the kernel runs, interrupts are disabled, i.e. our ker-
nel is non-interruptible ('non-preemptive’). If coym.cup = 0 and the kernel program
rest does not start with a function call to a CVM primitive , we simply execute the
C0 transition function as described in Sect. 4.4: ¢ \p-kernel = dco(covm.-kernel).
Otherwise, we have coym.kernel.conf.pr = ESCall(v, prim, expry, . .., expry);r for
a CVM primitive prim, an integer return variable v and unsigned expressions
erpry, ..., expr, € Expr. Here, ESCall is the C0 statement for external func-
tion calls, i.e. functions with declarations but without a body (Sect. 5 explains
how to get a fully implemented kernel). Each primitive prim is specified by
a function primg, which takes n natural arguments and a CVM configuration
ccvm, returning an updated CVM configuration ¢y, or the error state L. Let
eval, be the evaluation function for righthand side C0 expressions as defined in
[15]. Then, we compute for 1 < i < n: wal; = eval,(ccym.kernel,e;) and set
(o) = prims(cova, valy, . . . valy).

For example, CVM provides primitives (i) Reset and Clone for process initial-
ization, (ii) Alloc and Free for increasing and decreasing memory of an user process,
(iii) Copy to copy data from one process to another, (iv) GetGPR and SetGPR to
read and write registers of user processes, (v) GetWord and SetWord to read from
and write to a user process memory address, (vi) InWord and OutWord for device
communication, and (vii) SetMask for setting the CVM interrupt mask. For a full
list of primitives see [27].

Due to lack of space, we exemplify by the specification of SetGPR: Given a con-
figuration with kernel program rest ESCall(v, SetGPR, expry, expra, ..., exprs);r.
We set SetGPRs(covm,pid,i,y) = coyy With (1) coyyg-proc(pid).gpr(i) =
y, (i) coyy-kernel.conf.pr = v, and (iii) cpyy-kernel.conf.mem =
mem_update (ccyy-kernel.conf.mem, v, 0) with the C0 memory update function
as defined in [15].

Note, that since the whole stack runs on one single processor, it is legal to assume
that either the kernel or an user process perform a step. This is not that obvious
for the devices. Remember that devices are memory-mapped and access to these
memory regions happens only within the dedicated primitives of the kernel. These
primitives are written in assembler, hence steps in the kernel and on the physical
machine have the same granularity: one instruction. Additionally, the actual syn-
chronization with the device can be mapped down to one single instruction, namely
a load word or store word instruction. All other steps during kernel execution are
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independent from the device computation. This means, all interleavings possible
between physical machine steps and devices—as seen in Sect. 4.2—are also possible
on between the kernel and the devices.

5 CVM Implementation

In this section, we will give an overview on the CVM implementation details and
how to merge such an implementation with the abstract kernel in order to obtain a
compilable and thus executable kernel.

5.1 Data Structures

To simulate virtual machines and multi-processing, the CVM implementation has to
maintain certain data structures: (i) in the kernel global memory (kernel data), we
store an array of process control blocks pcbli],i € PID for all user processes. One
process control block has components pcbi].r for each register and the program
counters of cphys, (ii) the global memory variable cup keeps track of the current user
process as specified in coynm.cup and similarly, sr for coym.sr, (iii) in the global
memory variable kheap, we store the end address of the kernel heap, (iv) the array
ptspace on the kernel heap holds the page tables of all user processes, and (v) data
structures of the page-fault handler (see Sect.5.3) necessary for the management of
physical and swap memory.

5.2 Entering and Leaving System Mode

Whenever we enter system mode, i.e. the kernel starts to execute, we initialize its
program rest with ccya.kernel.conf.prog = init. In all cases but reset, init will
take the current process and store its registers into the corresponding control block
peb[cup]. Then, the kernel is initialized and the CVM dispatcher cvomdispatch is
called with parameters pcb[cup|.eca, pcb[cup].edata, and pcblcupl.edpe. As men-
tioned in Sect.4.5, interrupts are to be invisible in system mode. We achieve this by
zeroing the status register cpnys.SR. In case of a page fault, the page fault handler
is invoked by cvmdispatch. Otherwise we continue with a call to the abstract kernel
dispatcher kdispatch with parameters peb[cupl.eca and peblcup].edata.

To leave system mode and with ¢ € PID being the user process to be started, we
set cup = i and restore the process from its control block pcb[i]. Finally, we leave
kernel execution with a return from exception instruction (rfe).
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Note, that a scheduler is not part of the concrete kernel, i.e. the abstract kernel
has to take care of handling timer interrupts. Thus, we are not giving any guarantees

5.8 Page Foult Handler

For pcb|cup|.eca = 8, the user process with ID cup has caused a page fault on
fetch interrupt (pff), i.e. the process’ delayed pc points to an address not present in
physical memory. Thus, the page fault handler is called with parameters cup and
pcblcupl.edpe. For peb|cup|.eca = 16, we are dealing with a page fault on load/store
(pfls), i.e. a memory operation was accessing an address not present in physical
memory. In this case, cumdispatch invokes the page fault handler with parameters
cup and peb|cupl.edata. For details on the paging algorithm used in Verisoft see [2].

5.4 CVM Primitives

The implementation of the various primitives is straightforward. Some of them
are only updating the process control blocks of tasks and are therefore imple-
mented in pure C0O. Other primitives—e.g. those copying memory from one process
to another—are manipulating data structures not visible in C0. In these cases,
hardware-specific assembler code portions are inevitable. We inline them directly
into the C0 code with a special ASM statement.

5.5 Abstract Linker and Concrete Kernel

As we have seen in the sections before, it takes several things to build a concrete
kernel from an abstract one. We have to provide implementations for these func-
tions, the abstract kernel only declares (i.e. the CVM primitives), and we have to
add functions that are not visible in the abstract kernel (i.e. cumdispatch). Ad-
ditionally, we have to add some extra global variables not needed in the abstract
kernel.

Starting with two programs A = (tea,pta, gst4) and B = (teg,ptp, gstg), we
build the linked program link(A, B) = (teyq, ptia, gst;q) as follows: (i) We merge
the two type name environments by simply adding one to the other. (ii) For any
external procedure p in pta, i.e. with an empty body, we look for a corresponding
procedure in ptp with implementation and remove p from pt 4 if one exists. Vice
versa, we repeat this for procedures ¢ in ptg. pt;q is then given by the disjoint union
of the procedure tables updated as described afore. (iii) We build the new global
symbol table by appending gstg to gst: gst;; = gst; gstg. (iv) Finally, we scan
all procedure bodies of ptjy for external function calls denoted by the C0 statement
ESCall. For any of these statements we check, if it is now implemented after linking.
If so, we replace the ESCall statement by a SCall statement. Linking does obviously
not work for two arbitrary programs. Due to space limitations, we have omitted
any preconditions here, e.g. the two symbol tables having to be disjoint.

We can now build a compilable concrete kernel by linking the CVM implemen-
tation cum to the abstract kernel implementation ak: ck = link(cvm, ak).
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Fig. 4. Simulation Relations During User and Kernel Execution

6 CVM Implementation Correctness

6.1 User Process Relations

The implementation correctness of the CVM specification user process part coya.up
is defined by three separate relations. ~,, relates the current user process ccym.cup
to the value stored at the appropriate address in cppys. ~sr relates the status register
ccvMm.sr to the value stored at the appropriate address in cppys. Last but not least,
~procs defines the way, the user process configurations ccya.procs(i) are to be stored
In Cphys-

A physical machine with appropriate page fault handlers can simulate virtual
machines. In Verisoft, we consider a simple pager that stores virtual memory in
the swap memory, whereas the physical memory acts as a write back cache. The
swap memory is provided by a designated hard disk with device ID didgg = 1.
For simplicity, we omit here the full hard disk model and consider only its content,
a mapping of addresses to content: sm : N — Z. Besides the architecturally de-
fined physical memory address pma(cphys, va), we define a (software) swap memory
address function sma(cpnys, va) maintained by the page fault handler, which maps
virtual addresses to addresses in cgeys(1).sm.

Let ?walid(cphys,p,va) be a predicate denoting if a virtual address va for a
process p lies in physical memory or not. Then we define a function get_mm,
constructing the virtual memory of a process p from a physical machine configu-
ration cphys as follows: (i) for ?walid(cpnys, p, ad), we set get_mm(cphys,p)(ad) =
Cphys-MM(pma(cphys, ad)) and (ii) (cgevs(1)).sm(sma(cpnys,ad)) else. Furthermore,
we define a function get_gpr constructing the general purpose register file for a
process p and a configuration cppys: (i) if cup = p A cpnys.mode = 1, we set
get_gpr(cpnys, p)(reg) = cphys-gpr(reg), and (ii) peplpl.reg, else, for reg € Ngo.
Correspondingly, we define functions get_dpc, get_pcp, get_spr, and the function
get_vm(cphys, p) that combines the functions afore and returns a whole configura-
tion.

The physical machine simulates a user process i € PID, iff get_vm(cphys,?) =
covm-procs(i). We define ~procs as the conjunction of this equality relation over all

max
Processes: ~procs (COVM-PTocs, Conys) = Nmy™ get_vm(cphys, i) = covm.procs(i).

6.2 Kernel Relations

First, the abstract kernel has to be simulated by the concrete kernel. Second, the
concrete kernel is a C0 program and cannot be executed directly on the hardware.
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Thus, we depend on compiler correctness, i.e. a simulation relation between C0
machines and physical machines.

6.2.1 Abstract Kernel and Concrete Kernel

We define a simulation relation ~p.., that tells us when a concrete kernel configura-
tion cc encodes an abstract kernel configuration ca. As seen in Sect. 5, the concrete
kernel has more variables and more function calls than the abstract one. Thus we
define a mapping of abstract kernel variables gvar® to concrete kernel variables
gvar® as kalloc(g, hpm) := (i) gvarg;, (v) for g = gvargg, (v), (ii) gvarfs (i + j,v)
for g = gvarf® (i,x), and (iii) gvar;S, (hpm(i)) if g = gvarf? (7). Note, that the
constant j denotes the number of extra function calls in the concrete kernel and
hpm : N — N is a mapping of heap indices in the abstract kernel to heap indices in
the concrete kernel.

Now, we set ~pern (ca,cc,técq, Ptea, tece, Ptee, kalloc) iff (i) corresponding vari-
ables ¢g°® and ¢°“ = kalloc(g°®, hpm) have the same values and types, (ii) the re-
cursion depths are equal modulo the constant number j of extra function calls in
ce, (iii) the program rest of the abstract kernel ca.pr is a prefix of the concrete
kernel program rest cc.pr, (iv) the abstract type name environment te., is a subset
of the concrete one te.., and (v) all procedures declared or defined in the abstract
procedure table pt., are also defined in the concrete pt...

During user execution, the local memory stacks of both the abstract kernel and
the concrete kernel are empty, as is the program rest of both kernels. This means,
that ~pern would be unprovable. Thus, we define a weaker form ~7 which omits

kern’
any properties on local variables, the recursion depth, and the program rest.

6.2.2 Compiler Correctness

The concrete kernel is written in CO with inline assembler portions, while on the
actual hardware, the translated object-code is executed. Hence, we have to define
in a formal way, what correct translation of CO means. Since our work is part of
the Verisoft project, we are using the Verisoft simple non-optimizing CO Compiler
and the consistency relation it provides. Nevertheless, approaches like translation
validation [25] are also feasible and have been successfully applied in other projects
[19].

Compiler correctness is defined by means of a simulation relation
consis(te, pt, cco, alloc, cagy ) between configurations ccg of C0 machines and con-
figurations cppys of physical machines, which run the compiled code. Additionally,
consis is parameterized with an allocation function alloc (a mapping of g-vars to
memory addresses), a type name environment te, and a procedure table pt. A com-
plete formal definition of consis with a correctness proof for a simple, non-optimizing
compiler, can be found in [15].

Essentially, consis divides into three sub-relations:

() consiscode(te, pt,cco, Cphys), code consistency, requires that the compiled code
is stored at a well-defined address in the machine configuration,

(ii) consis.(te,pt,cco, Cphys), control consistency, requires that the program coun-
ters of the physical machine point to the start address of the code which has
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been generated for the head of the program rest, and

(ili) consisq(te, pt,cco,alloc, cphys), data consistency. Data consistency states that
g-vars are correctly stored in the physical machine and that some auxiliary
information about stack and heap are stored correctly.

Like with ~perpn, consis is too strong during user execution, Since the values
stored in the registers of the physical machine are those of the current user process,
some sub-relations do not hold or have to be modified at least: (i) Control con-
sistency is discarded, because the program counters are related to the current user
process. Since we always enter the kernel at the same entry point (cf. Sect. 4.5),
we do not even store the old values when leaving system mode. (ii) During kernel
execution, the relation between the size of the heap in the C0 configuration and
the one in the physical machine is defined by a designated general purpose register.
Throughout user execution, we use the kernel variable kheap instead. We denote
this—weaker—simulation relation by consis*.

6.3 Device Relation

Since we are using a generalized device framework as introduced in Sect. 4.1, the
devices as seen by the CVM model are nearly the same as those on the physical
machine level, only the hard disk used as swap device (didsng = 1) is not visible in
CVM. Hence, ~g., is merely an equivalence relation between the states of the CVM

devices and those of the physical machine devices: ~geys: gm‘w covm.devs(i) =

Cdevs (2 )

6.4 Correctness Theorem and Proof

We introduce one single simulation relation ~cva (ccvM, Cphys, Cdevs ), for which we
demand, that (i) the relations ~g and ~procs—and in the case of user mode ~¢up—
hold, (ii) there exists a concrete kernel configuration cc, such that ~yen (and ~f
respectively) and consis (and consis® respectively) hold. Furthermore, we denote

initial configurations, i.e. the configurations after a reset, by a superscript 0.

Definition 6.1 [CVM Correctness] For all initial configurations cghys, cgevs,c%VM,
and input sequences inspgq and for all steps ¢, there exists a function f, such
that ciny = Shvar(CQvn f(insped)), and steps ¢, such that (c;hys,cfjevs) =

0 0 - : ‘) t t
5P&d(cphys’ Cdevs> Z’I’L.Sp&d) with ~CVM (CCVM7 Cphys’ Cdevs)'

This correctness statement is proven by induction. The induction base case
(i = 0) is defined by a CVM configuration C%VM, whereas the kernel is running
(cvm.cup = 0) and its program rest starts with kdispatch with parameter eca = 1
(for reset).

7 Status of the Formal Verification

The induction base case is already completely proven in Isabelle. For the induction
step, we distinguish between user steps, abstract kernel steps, primitive steps and
context switching. We have already obtained essential results by the formal verifi-
cation of a paging mechanism [2], which represents the main difficulty for user steps.
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To prove ~cywm for user steps by integrating these results appears to be work for
another one or two months. For abstract kernel steps, ~pocs has been shown, and
here also the rest of the proof work is straightforward. Proving CVM primitives to
be correct is tedious work due to the inline assembler portions. Nevertheless, for
three of them we already have formal proofs in Isabelle [27]. Context switching,
i.e. saving a process state to its process control blocks and restoring it, is also fully
formally proven. All together, the CVM specification and the associated proofs
comprise currently about 50,000 lines in Isabelle.

8 Summary and Further Work

We have presented a formal model for CVM and have defined the meaning of im-
plementation correctness in this context. The pervasive formal correctness proof
of the CVM implementation—which has been completed to a large extent—ryields
a trustworthy framework down to the hardware. Microkernel verification can now
focus on verifying an abstract microkernel in a high-level language, avoiding to deal
with tedious low-level argumentation but still with the benefits of pervasive systems
verification.

Future work includes the verification of further CVM primitives, especially those
dealing with devices. In particular, accessing devices in block mode, i.e. reading
and writing big chunks with one kernel call, yields major challenges like handling
interrupts that might occur during such accesses.

The new Hypervisor project in Verisoft XT deals with even more open research
problems. Here, a multi-threaded virtualization layer, the hypervisor, runs multi-
threaded on a multi-processor architecture with a weak memory model and is com-
piled using a highly optimizing compiler. Due to the major differences in design and
complexity of this task, it seems unrealistic to expect anything of CVM to be reused
but the experience and knowledge gained by the people involved in this work.

Yet, the applicability of our approach to smaller kernels has been shown with
Verisoft’s VAMOS. In the new Verisoft XT project, the commercial microkernel
PikeOS [28] is to be verified on code level; unlike CVM, PikeOS might be interrupted
in system mode, for instance a higher priority process might suspend a lower priority
process’ kernel call. This means that the CVM model has to be extended in order to
deal with multiple kernel stacks. The success of this undertaking would prove, that
the CVM approach is of considerable relevance for the huge market of embedded
systems.

In order to achieve this, several obstacles have to be overcome from our ex-
periences: (i) Code verification with an interactive theorem prover—though using
a verification environment—is not applicable in a commercial setting due to the
tremendous amounts of time it takes even for highly trained people. So far, au-
tomated tools are only useful for a restricted class of interesting properties. The
degree of automation in software verification has to get close to that in hardware
design. (ii) We are using a specially built and verified compiler in our work. Com-
mercial, highly optimizing compilers are not verified and won’t be for a couple of
years. Different approaches of relating high-level code to object code like translation
validation for optimizing compilers [19] or proof carrying code [18] are promising.
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Abstract

Primitives are basic means provided by a microkernel to implementors of operating system services. Inten-
sively used within every OS and commonly implemented in a mixture of high-level and assembly program-
ming languages, primitives are meaningful and challenging candidates for formal verification. We report
on the accomplished correctness proof of academic microkernel primitives. We describe how a novel ap-
proach to verification of programs written in C with inline assembler is successfully applied to a piece of
realistic system software. Necessary and sufficient criteria covering functional correctness and requirements
for the integration into a formal model of memory virtualization are determined and formally proven. The
presented results are important milestones on the way to a pervasively verified operating system.

Keywords: Formal Verification, Theorem Proving, Operating System, Microkernel, Inline Assembler.

1 Introduction

Correctness guarantees for computer systems is a hot research topic. Since there are
a lot of examples when the correctness of separate computer components has been
successfully established, the formal verification of an entire industrial-size system is
being brought to the forefront. In [8] Moore, the head of the famous CLI project,
proposes the grand challenge of whole computer system pervasive verification.
Verisoft ? is a research project inspired by the problem of a complete computer
system correctness. The project aims at the development of the pervasive verifica-
tion technology [10] and demonstrating it by applying to an exemplary computer
system. A prototypic system comprises (i) a pipelined microprocessor with mem-
ory management units, (ii) a number of devices, in particular, a hard disk, (iii) a
microkernel, (iv) a simple operating system, and (v) an exemplary user applica-
tion. Pervasive formal verification of the whole system is attempted. The process
is supported by a variety of computer aided verification tools, both interactive and
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automated, in order to minimize the possibility of errors induced by verification
engineers.

This work relates to the problem of operating system microkernel correctness.
A microkernel is the minimal kernel which, basically, provides no operating system
services at all, but only the mechanisms necessary to implement such services. The
mechanisms include process and memory management, address spaces, low-level
IPC, and I/0O. Usually, they are implemented in the form of primitives, microkernel
routines which provide this functionality to the upper layers. Since every service of
an operating system makes use of primitives, the correctness of the latter becomes
of special importance.

In the current paper we discuss the correctness issues of primitives of an academic
operating system microkernel. We describe how the methodology for the system
software verification developed in the frame of Verisoft is successfully applied to
primitives implemented in C with inline assembler. We outline the correctness
criteria of microkernel primitives. Stating the correctness theorems we show what
it means that a primitive fulfills these correctness criteria. We sketch a general idea
how such theorems are proven. In a case study we elaborate on particular for the
example details of specifications and proofs.

The contribution of this paper is that (i) all necessary and sufficient correctness
criteria of primitives of a microkernel for a pervasively verified system are deter-
mined and formally proven, (ii) a novel, convenient for formal use, approach to
verification of C with inline assembler programs is presented, and (iii) an important
part of a realistic microkernel is proven correct showing that seamless formal veri-
fication of crucial parts of operating systems is feasible. All material presented in
the paper is supported by formal theories in a computer aided theorem prover.

Related Work

A number of research projects suggest ideas to microkernel verification. Choos-
ing reasoning either in C or assembler semantics, to the best of our knowledge,
nobody exploits their combination. The L4.verified project, targets at constructing
sel4 [4], a formally verified operating system kernel. From the system’s prototype
designed in Haskel both formal model and C implementation are generated. A
richer compared to Verisoft subset of C including pointer arithmetic is used, which,
however, provides less expressive semantics than inline assembler as the latter makes
possible to accesses even registers of a processor. A substantial progress seems to
be achieved in the verification of the model, but only exemplary parts of the source
code are reported verified. The FLINT project exploits an x86 assembly code verifi-
cation environment for certification of context switching routines [9], an important
microkernel part. No results on integration of object code correctness into a high-
level programming language are reported. The recent Robin project aims at the
verification of Nova microhypervisor [12]. Although implementation is in (a subset
of) C++ with inline assembler, the verification is planned to cover only C++ parts.
Currently there is no connection to real object code, which seems to be planned
for the (far) future. It is planned to build a model precise enough to catch virtual
memory aliasing and address space separation errors, however it is unclear whether
these properties will be shown to be respected by the hypervisor’s implementation.
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Outline

In Sect. 2 we discuss implementation issues and formal model of a microkernel.
We briefly formalize all concepts necessary to present the microkernel correctness
criteria which have to be satisfied by its primitives. Next, in Sect. 3, we elaborate
on our verification methodology and sketch the semantics of C programs with inline
assembler parts. In Sect. 4 we proceed with the correctness theorem for a primitive.
The presented approach is supported by the case study in Sect. 5 for which the
primitive that copies data between processes is selected. We conclude in Sect. 6.

Notation

We denote the set of boolean values by B and the set of natural numbers in-
cluding zero by N. We denote the set of natural numbers less then = by N,. We
denote the list of n elements of type T" by T". The elements of a list = are accessed
by x[i], its length is denoted by |z|. The operator (z) yields for a bit string x € B"
the natural number represented by x. We allow to interchange a bitvector x with
its value (x). The set of all possible configurations of a concept z is defined by C;.

2 An Academic Operating System Microkernel

We consider an exemplary academic microkernel which provides mechanisms for the
(i) process and memory management, (ii) address spaces, (iii) IPC, and (iv) device
communication.

2.1 Implementation Issues

The microkernel implements the Communicating Virtual Machines (CVM) [3]
model which defines the parallel execution of concurrent user processes interact-
ing with a kernel. According to the model the microkernel is split into two logical
parts: (i) the abstract kernel which provides an interface to a user or an operat-
ing system and could be implemented in a pure high-level programming language,
and (ii) the lower layers which implement the desired functionality stated in the
beginning of Sect. 2. The implementation of the low-level functionality necessarily
contains assembler portions because processor registers and user processes could
not be accessed by ordinary C variables. By linking the two kernel parts together
the concrete kernel, a program which can run on a target machine, is obtained.

The kernel lower layers could be split into three logical parts: (i) primitives,
(ii) a page fault handler, and (iii) context switch routines. Within the paper we
discuss the correctness of primitives. They are implemented in the CO program-
ming language [7], a slightly restricted C, with inline assembler parts. In brief, the
limitations of CO compared to standard C are as follows. Prefix and postfix arith-
metic expressions, e.g., i+, are forbidden, as well as function calls as a part of
expressions. Pointers are typed and do not point to local variables or to functions.
Void pointers and pointer arithmetic are not supported. The size of arrays has to
be statically defined.
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Name Description Comment
copy copies data between processes A
phys_copy copies data between virtual and the physical memory A
get_um_word  reads a word from the virtual memory of a process A
set_vm_word  writes a word to the virtual memory of a process A
out_word writes a word to a device AD
in_word reads a word from a device AD
virt_10 copies data between a device and a process AD
phys_io copies data between a device and the physical memory AD
phys_io_range 1/O operations on port ranges AD

reset initializes the memory and the registers of a process
get_vm_gpr reads a register of a process

set_vm_gpr writes a register of a process

alloc gives additional memory to a process

free releases a given amount of the memory of a process
clone clones a process

set_mask mask external interrupts

Table 1
List of primitives of the microkernel

2.2 Primitives

The academic microkernel contains 16 primitives described in Table 1. The comment
A’ denotes that a primitive has an inline assembler portion. The comment "D’
designates that a primitive accesses devices. Thus, the primitives can be divided
into three groups: (i) 7 primitives implemented in pure CO0, (ii) 4 primitives which
have assembler portions, and (iii) 5 primitives which have assembler portions and
access devices. In this paper we give the methodology for verification of code written
in CO with inline assembler. It is applicable to all the primitives. However, we have
verified so far primitives from the second group.

2.3 A Formal Model

The CVM model defines a parallel execution of the kernel and N user processes
on an underlying physical machine with a hard disk. According to CVM, the CO
language semantics is used to model the computation of the kernel, and semantics
of virtual machines models the computation of user processes. In the following, we
outline the necessary concepts of the model: (i) physical and virtual machines [3],
(ii) a hard disk [5], and (iii) CO machines [7]. Having them, we sketch the CVM
semantics and give its correctness criteria. For details cf. [6]. Memories of physical
and virtual machines are conceptually organized in pages of P machine words.
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2.8.1 Physical Machines

Physical machines are the sequential programming model of the VAMP hardware [2]
as seen by a system software programmer. They are parameterized by (i) the
set SAP C B of special purpose register addresses visible to physical machines,
and (ii) the number TPP of total physical memory pages which defines the set
PMA = {a | 0<{a) < TPP- P} C B3 of accessible physical memory addresses.
The machines are 5-tuples pm= (pc, dpc, gpr, spr, m) with the following components:
(i) the normal pm.pc € B32 and the delayed pm.dpc € B32 program counters used to
implement the delayed branch mechanism, (ii) the general purpose pm.gpr € B® —
B32 and the special purpose pm.spr € SAP +— B32 register files, and (iii) the word
addressable physical memory pm.m € PMA — B32,

The computation is possible in two modes: user and system. In user mode a
memory access to a virtual address wva is subject to address translation. It either
redirects to the translated physical memory address or generates a page fault in-
terrupt which signals that the desired page is not in the physical memory. The
decision is made by examining the valid bit v(pm, va) maintained by the memory
management unit of the physical machine. When on, it signals that the page storing
the virtual address va resides in the main memory, elsewise, it is on a hard disk.

The semantics of an uninterrupted execution is defined by the underlying
instruction set architecture (ISA). On an interrupt signal, which could be inter-
nal or external, the machines switches to the system mode and invokes a special
piece of software—an interrupt handler. Within the paper, we are interested in two
particular kinds of interrupts: (i) page faults, and (ii) system call exceptions. A
page fault is treated by the page fault handler, a routine which translates addresses
and loads missing pages from a hard disk into the physical memory. Its implemen-
tation servers several purposes. For instance, it could be used to handle a page fault
and to guarantee that no page fault will occur within a certain period in the future.
The latter property is needed for the primitives, thus, they heavily call the handler
(for details cf. Sect. 2.5). System call exceptions occur due to a special instruction,
called the trap. It is used by an assembler programmer in order to invoke one of the
system calls provided by the operating system microkernel. System calls, viewed
from a simplified perspective, are just the wrappers around the primitives.

2.8.2  Virtual Machines

Virtual machines are the hardware model visible for user processes. They give user
an illusion of an address space exceeding the physical memory. No address transla-
tion is required, hence page faults are invisible. The virtual machine’s parameters
are: (i) the number TVP of total virtual memory pages which defines the set of
accessible virtual memory word addresses VMA={a | 0 < (a) < TVP - P} C B,
and (ii) the set SAV C SAP of special purpose registers addresses visible to virtual
machines. Their configuration, formally, is a 5-tuple vm= (pc, dpc, gpr, spr, m) where
only vm.spr € SAV +— B32 and vm.m € VMA — B3? differ from the physical ma-
chines. Semantics is completely specified by the ISA with the following exception.
Due to safety reasons we split the set SAV into two parts: (i) the set SAV R of
read only register addresses, and (ii) the set SAVy, of addresses of registers that
could be completely accessed by a user. A write attempt to a register vm.spr{z]
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with € SAV i has no effect. The set SAV i contains the register ptl (page table
length). It stores the amount of virtual memory allocated to the process measured
in pages. We abbreviate vm.spr{ptl] = vm.ptl.

2.8.3 Integrating a Hard Disk

We use the formal model of a hard disk based on the ATA/ATAPI protocol.
We denote the configuration of the hard disk by hd. Only the component
hd.sm € Ngzo — Ny32 which models the disk content as a word-addressable memory
is of our interest. A step of the system (pm, hd) comprising the physical machine
and the hard disk is denoted by the function §(pm, hd) = (pm/, hd'). If no write
instruction to the disk is executed only the physical machine is updated according
to its semantics. Otherwise, both pm and hd are changed.

2.8.4 CO0 Machines

A CO machine is a 6 tuple ¢= (pr, tt, ft, rd, Ims, hm). Its components are: (i) the
program rest c.pr, a sequence of statements which still has to be executed, (ii) the
typetable c.tt which collects information about types used in the program, (iii) the
function table c.ft storing information about functions of the program, (iv) the
recursion depth c.7d, (v) the local memory stack c.lms mapping numbers ¢ < c.rd to
memory frames which implement a relatively low-level memory model and comprise
components for the number of variables in a frame, their names, types, and contents,
and (vi) the heap memory c.hm which is a memory frame as well.

The global memory of a CO machine c is ¢.Ims(0). The top local memory frame
is denoted by top(c) = c.lms(c.rd). A memory frame first includes the parameters
of the corresponding function. A variable of a machine ¢ is a pair (m,i), where m
is a memory frame and i is the number of the variable in the frame. By va(c,i)=
(top(c),i) we denote the i-th variable of the current function context.

2.3.5 Communicating Virtual Machines

The CVM configuration is formally a triple cvm = (up, ak, cp) with the following
components: (i) the list of N user processes cvm.up € CN represented by virtual
machines, (i) the abstract kernel cvm.ak € C. modeled by a CO machine, and
(iii) the current process identifier cvm.cp € Ny, where com.cp =0 stands for the
kernel. The CVM semantics distinguishes user and kernel computations. In case
com.cp # 0 the user process pid = cvm.cp is intended to make a step. In case
no interrupt occurs it boils down to the step of the virtual machine com.up[pid|.
Otherwise, the kernel dispatcher is invoked and the kernel computation starts. The
kernel dispatcher handles possible page faults and determines whether a primitive
[ is meant to be executed. In case it is, the parameters of the primitive p, are
extracted by means of the system call mechanism. The specification fq is applied
to the user processes com’.up= fs(com.up, pf). Next, the user computation resumes.

2.4 Correctness Criteria

Microkernel correctness requirements have to relate: (i) the implementation of ker-
nel lower layers, encoded by the C0O machine ¢, (ii) the CVM model com, and (iii) the
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physical machine with the hard disk (pm, hd).

The implementation c is related to the CVM model by means of linking. We use
the formal specification of the linking operator link(cvm.ak, c)=k. It takes two CO
machines encoding the abstract kernel and the implementation of its lower layers,
respectively, and produces the concrete kernel k, also a CO machine. We state that
the concrete kernel k correctly runs on the physical machine pm by means of the
CO compiler consistency relation (cf. Sect. 3.2).

The correctness criteria for the user processes is hidden inside the memory virtu-
alization relation. This simulation relation, called the B-relation, specifies a parallel
execution of the user processes cvm.up on one physical machine pm. In order to
specify the B-relation, let us first give a notion of a process control block (PCB). The
PCBs are CO data structures permanently residing in the memory of the underly-
ing physical machine. They store the information about visible registers of all user
processes. Thus, we are able to reconstruct user virtual machines from the contexts
stored in the PCBs. The function virt(pid, pm, hd) = vm yields the virtual machine
for the process pid by taking the register values from the corresponding PCB fields.
The memory component vm.m of the built virtual machine is constructed out of
the physical memory and the data on the hard disk depending on where a certain
memory page lies. Formally, vm.m[a] = pm.m[pma(pid,a)] if v(pm,a), otherwise
vm.mla] = hd.sm[sma(a, pid)]. The physical memory address is computed by the
function pma(pid,a) while the swap memory address is yielded by the function
sma(a, pid) (for the definitions cf. [1,6]). Then, the B-relation is defined formally as
follows: B(cvm.up, pm,vm)=Vpid € Ny : wvirt(pid, pm, hd) = com.up[pid]. There is
a number of additional correctness demands omitted due to the space limitations.

2.5 A Page Fault Handler

The B-relation can only be maintained with an appropriate page fault handler.
The page fault handler is a routine which serves two purposes. Called for a virtual
address va and a process identifier pid it (i) yields to the caller the translated
physical memory address pma(pid, va), and (ii) guarantees that the page storing
pma(pid, va) resides in the physical memory of the machine running the handler.

Possibly called twice in a primitive in order to translate addresses for different
processes, it must respect the following. An appropriate page fault handler must
not swap out the memory page that was swapped in during a previous call to it. In
order to guarantee this a proper page eviction strategy must be used. We support
two lists, called active and free, for the page management. Together they describe
all pages of physical memory accessible to a user. Items of the free list describe the
pages that immediately could be given to user, i.e., without swapping out a page to
the hard disk. Active list describes physical pages that store a virtual page. When
all physical memory is occupied, a page from the active list is evicted and replaced
by the one loaded from the hard disk according to the FIFO strategy. For formal
details and correctness issues cf. [1].
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3 Verification Approach

There are several possibilities to argue about the correctness of kernel lower lay-
ers, and in particular of primitives. One might have an idea to reason about their
object code in the machine language semantics. Due to the huge size of the target
code—the kernel lower layers translated by the CO compiler are 11K lines long—
this approach seems to be unfeasible for the interactive verification. Running to
extremes, one can try to verify system code on a very high-level of abstraction, e.g.,
by means of a generic verification environment for imperative programs [11], and
then transfer the results down to the necessary level introducing refinement theo-
rems. However, techniques that allow reasoning about mixture of C and assembler
code in such environments were only recently invented (the approach is used in [1]).
They basically aim at big C programs with assembler portions, isolated in separate
functions. Since this is not the case for the primitives—they are relatively small
C functions which can have several inline assembler parts—we decided to do the
formal verification in a mixture of CO small step and inline assembler semantics.

3.1  Verification Environment

We use Isabelle/HOL theorem prover as the basis for the verification environment.
All the concepts and their semantics listed in Sect. 2.3 were formalized in Isabelle
by the colleagues in the Verisoft project. The source code of the primitives is
automatically translated by a tool into the CO small step semantics in Isabelle.

3.2  C with Inline Assembler Semantics

A CO0 configuration c is related to the underlying physical machine pm by the com-
piler simulation relation consis(alloc)(c, pm) parameterized over an allocation func-
tion alloc which maps CO variables to the physical memory cells. Essentially, the
relation is a conjunction of the following facts: (i) value consistency: the respective
variables of ¢ and pm have the same values and the reachable portions of the heaps
in c.hm and pm.m are isomorphic, (ii) control consistency: the delayed program
counter pm.dpc points to the start of the translated code of the first statement of
c.pr and pm.pc = pm.dpc + 4, (iii) code consistency: the compiled code lies at the
correct address in the memory pm.m, and (iv) stack consistency: the heap resp.
stack pointers which reside in the registers pm.gpr[29] resp. pm.gpr{30] point to the
first free address of c.hm resp. to the beginning of top(c). For details cf. [7].

An assembler instruction list il can be integrated by a special statement asm (il)
into the CO code. As long as no such statement occurs the C0O semantics is ap-
plied. The former approach to deal with verification of an assembler statement is to
maintain the compiler consistency relation with execution of every single instruc-
tion from il (cf. Sect. 4.3 of [3]). This method turned out to be inconvenient due to
excessive complexity of formal proofs, therefore a new one was developed and used.

In brief, the novel approach is as follows. On an assembler statement the ex-
ecution is switched to the consistent underlying physical machine and continues
directly there. When the assembler instructions have been executed we switch back
to the CO level. For this we have to update the CO machine possibly affected by the
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Figure 1. Switching C and assembler semantics

assembler instructions. The allocation function alloc makes it possible to determine
which variables of the CO machine have changed. We retrieve their values from the
physical machine and write back to the CO memory configuration.

Let ¢ be the CO configuration with c.pr=asm(il);r, and let pm be the physical
machine consistent to ¢ w.r.t. the allocation function alloc, i.e., consis(alloc)(c, pm).
From the consistency relation we have that the program counters of pm point to the
address of the assembler statement: pm.dpc= ad(asm(il)) and pm.pc=pm.dpc + 4,
where ad(s) yields for a statement s its address in the memory of pm. This allows
us to start reasoning about the correctness of the assembler code il directly in the
semantics of the physical machine. Let pm’ be the physical machines configuration
after executing /. In order to formally specify the effect of an execution of asm(il)
on the CO machine ¢ we define the function upd(c, pm,pm’) = ¢ which analyzes
the difference between pm and pm’ and projects it to the CO level updating the
configuration ¢ to ¢ (cf. Fig. 1). A number of restrictions are imposed on the changes
in the physical machine, which guarantee that the CO machine is not destroyed by
the assembler portion il, namely: (i) the program pointers after the execution of il
point to the end of il: pm'.dpc=pm.dpc + 4 - |il|, (ii) the memory region where the
compiled code is stored stays the same, i.e., we forbid self-modifying code, (iii) the
stack and heap pointers are unchanged: pm/.gpr{x] = pm.gpr{z] for x € {29,30},
(iv) the memory occupied be the local memory frames remains the same except
for top(c), and (v) pointers change is forbidden except setting them to null. We
formally prove that we deal with assembler portions which meet these restrictions.

The program rest is updated straightforwardly—the assembler statement is re-
moved, i.e., ¢.pr=r. The memory update proceeds separately for the global, the
top local, and the heap memories. For each of them the respective memory cells of
the physical machines configurations pm and pm’ are compared. In case a memory
cell at an address a is changed, the value of the variable z, s.t. alloc(d,z) =a is
updated with pm/.ma]. However, the compiler correctness relation does not nec-
essarily hold between the CO configuration ¢ and the physical machine pm/. The
control consistency will be broken if the assembler statement asm (il) is either (i) the
last statement of a loop body, or (ii) the last statement of the ’then’ part of a condi-
tional statement. The translation of these statements to the target code results in a
list of assembler instructions /" which has to be executed by the machine pm/ in or-
der to reach a consistent to ¢ state. Note that il’ contains only control instructions,
and, hence does not affect any CO variable. Executing i’ we transit from pm’ to
pm” updating the program counters and regain consistency consis(alloc)(c', pm”).
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4 Correctness of a Primitive

Since primitives are parts of the microkernel, their correctness is closely related to
the correctness of the whole kernel. Execution of a primitive is one of the induc-
tion cases of the overall kernel correctness theorem [6]. We distinguish two main
theorems for each primitive: (i) the primitives functional correctness, and (ii) the
top-level correctness of a primitive. The latter is used to prove the induction case
of the overall kernel correctness theorem and, therefore, claims correctness criteria
needed for the integration, for instance that the abstract kernel data is not cor-
rupted. The former is used as an auxiliary theorem to prove the latter. It states
the correctness of the input-output relation of a primitive call. Such modularization
increases the robustness of formal theories to the possible code changes, e.g., due
to the errors disclosed during the verification. In this case, one has to adapt the
proofs only of the first theorem which is much simpler than the second one. Next,
we present the general idea behind these theorems and discuss their formal proofs.

4.1 Functional Correctness

The functional correctness justifies the input/output relation of a primitive. We
start in some CO0 state k encoding the concrete kernel and consistent to the under-
lying physical machine pm and claim the requirements pre(k, pm) to a primitive f
caller. We end in the resulting state obtaining the desired values postf(k/ ,pm’) of
CO variables and memory cells of the physical machine. Note that both pre- and
postconditions, in general, speak not only about values of C0O variables, but also
about the memory parts of the underlying machine which are not accessible via
variables but are subject to change by inline assembler code. The straightforward
idea of the functional correctness is reflected in the next theorem.

Theorem 4.1 (Functional Correctness of a Primitive) Let & be the concrete
kernel calling the primitive f with the parameters pg k.pr = f(p);r. Let (pm,hd)
be the configuration of the underlying physical machine with the hard disk, s.t.
it is consistent to the concrete kernel: consis(alloc)(k, pm). Assume that the pre-
condition preg(k, pm) to the primitive is satisfied, then there exist (i) a number of
steps T of the physical machine with the hard disk, s.t. (pm/, hd') =6 (pm, hd), and
(i) a configuration of the concrete kernel ¥ with an appropriate allocation function
alloc’, s.t. they are consistent to the physical machine: consis(alloc’)(K,pm’), and
the desired postcondition postf(k’ , pm’) holds.

In our experience it is inconvenient to prove such theorems directly. We rather
create several separate lemmas of the same form but speaking about the code in
different semantics. For example, if a primitive contains a number of assembler
instructions wrapped both from the beginning and the end in CO code, we create
three lemmas: one for the CO part before assembler, next for the assembler portion,
and, finally, for the remaining CO part. This simple idea is easily scalable to arbi-
trary combinations of C and assembler. We prove such lemmas by applying CO and
inline assembler semantics. The crucial point is the construction of a consistent CO
machine after the assembler part execution. We proceed as described in Sect. 3.2.

The verification proceeds, certainly, with respect to the total correctness criteria,
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Figure 2. Memory structure of the microkernel claimed by the kernel invariant

i.e., we show the termination and the absence of run-time errors. The machinery
for this is hidden inside the CO small step semantics. The set C. of all possible CO
configurations is represented formally in Isabelle by the option type which extends
C. with an additional error state. The semantics is constructed in a way that the
computation ends in a non-error state only in the case that no run-time errors occur.
We formally show that the resulting configuration of a primitive call is not in the
faulting state. We do this in an iterative fashion, i.e., we show that the execution of
every single statement brings some sensible configuration. This could happen only
in case all expressions of the statements are correctly evaluated. The correctness
demands to the expression evaluation forces us to show formally that neither null-
pointer dereference nor out-of-boundary array access happens. This also proves
the termination of single statements. In order to guarantee the termination of a
whole program provided that statements terminate we have to show that neither
infinite loops nor infinite recursive calls occur. Since we do not use recursion in
the kernel implementation, we pay attention only to loops. Their termination is
closely related to the way loops are verified in the CO semantics. The correctness
of a loop is established by an inductive lemma. We formally specify the number of
the loop iterations by a ranking function over the variables modified in the loop.
Since we proceed by induction on the result yielded by the ranking function, the
termination follows. We give details in the example (cf. Sect. 5.3). The absence
of run-time errors in assembler portions boils down to the absence of interrupts
conditions which are required to the proven by the inline assembler semantics. The
termination of assembler loops is proven analogously to CO loops.

4.2 Correctness in the Context of the Kernel

The correctness criteria needed for the integration are, basically, split into two parts.
They are: (i) the kernel correctness requirements stated in Sect. 2.4, and (ii) the
kernel invariant which turns out to be necessary to be proven first. The kernel
invariant inv(cvm, k, pm, hd) is the conjunction of the following statements: (i) the
memory map properties, (ii) the page fault handler invariants, (iii) the validity of
the CO machine encoding the concrete kernel, and (iv) the hard disk properties and
liveness requirements for the system ’hard disk - physical machine’.

4.2.1  Memory Map Properties

The kernel code has a particular alignment in the memory. Its data structures lie
both in the global and the heap memories. For safety reasons we must know these
regions, and know which of their parts could be changed with every step of the
kernel, for instance with the execution of a primitive. Fig. 2 depicts the memory
structure which we describe formally.

164



STAROSTIN AND TSYBAN

4.2.2  Page Fault Handler Invariants

As mentioned in Sect. 2.5, the page fault handler is (heavily) called by the kernel.
The handler maintains a variety of global data structures, in particular lists for
page management. Therefore, we must claim that no functions besides the page
fault handler are allowed to modify its data structures. Due to the complexity
of the page fault handler its verification is attempted by means of the refinement
technique which connects its representation on several semantical layers. In order
to support that approach, we formally preserve: (i) the mapping between the im-
plementation of the kernel lower layers ¢ which contains the handler and the PFH
abstraction, and (ii) the validity properties over the handler abstraction. The page
fault handler properties relevant for the primitives correctness comprise: (i) for dis-
tinct pairs (pidy, va;) # (pidsy, vag) the translated physical addresses are distinct:
pma(pidy, va;) # pma(pidy, vag), (ii) every physical address is associated exactly
with one pair (pid, va), and (iii) all translated addresses lie outside the kernel range:
V(pid, va) : pma(pid,va) ¢ [0 : KERNEL_END).

Next, we present the top-level correctness theorem of a primitive execution. It
turns out that its proof requires several static properties pro(cvm.ak, c¢) over the
abstract kernel and the implementation of the kernel lower layers. They are the
necessary preconditions to a correct linking and state, not exclusively, the following:
(i) the function tables cum.ak.ft and c.ft encode the same function signatures, (ii) all
external function declarations in cvm.ak.ft have an implementation in c.ft and vice
versa, and (iii) the type tables cum.ak.tt and c.tt encode the same types.

Theorem 4.2 (Top-level Correctness of a Primitive) Let k be the concrete
kernel calling the primitive f with the parameters pg k.pr = f(pf);r. Let com
be the configuration of the CVM model, and (pm,hd) be the configuration of the
underlying physical machine with the hard disk. Assume that (i) the concrete
kernel is consistent to the physical machine: consis(alloc)(k, pm), (ii) the relation
B(cvm.up, pm, hd) holds, (iii) the preconditions preg(k, pm) to the primitive are sat-
isfied, (iv) the kernel invariant inv(cvm, k, pm, hd) holds, and (v) the kernel static
properties pro(cvm.ak, ¢) are satisfied, then there exists a number of steps 7' of the
physical machine with the hard disk, s.t. (pm/, hd') =6 (pm, hd) after which (i) the
CVM model executes the primitive and the relation B(fs(cvm.up, py), pm', hd') still
holds, (ii) the concrete kernel executes the primitive and is still consistent to the
physical machine: 3¥, alloc’ : consis(alloc’)(K,pm') A K.pr=r, and (iii) the kernel
invariant is preserved: inv(cvm/, K, pm’, hd').

5 Case Study: Copying Data Between Processes

As an application of the developed approach we show how we establish the correct-
ness of the copy primitive*. It is intended to copy n words from a process pid, at
address a; to a process pid, at address az. In the context of an operating system
it is widely used to implement process management routines, as well as IPC. The
correctness is justified by the instances of Theorems 4.1 and 4.2, where f= copy,

and pf:pcopy:pidlv pidy, ai, az,n.

4 Implementation and Isabelle/HOL theories containing proofs are available from www.verisoft.de.
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Figure 3. Algorithm and structure of auxiliary lemmas for the copy primitive

5.1 Algorithm

Let copy,sm(pay, pay, s) be an assembler fragment that copies s words in the memory
from a physical address pa; to pay. The algorithm behind the copy primitive is as
follows. In a loop until n words are processed, we compute the size s of portions to
be copied respecting the page borders of both processes. The crucial observation is
that both pages, from and to which we copy, must be present in the physical memory.
This is achieved by two consecutive calls to the page fault handler which compute
physical addresses pa; = pma(pid;,a;) and pay, = pma(pidy, az) and guarantee that
both pages containing pa; and pay reside in the main memory. We proceed with
the copying by executing copy,,(pa;, pay, s). The idea is depicted in Fig. 3.

5.2 Specification

The specification of the primitive has to reflect the changes on (i) the user processes
cvm.up of the model, (ii) the concrete kernel k, and (iii) the underlying physical
machine pm. Of course we do not specify just the same conditions in terms of each
modified machine because they are interconnected through the simulation relations.
We define the desired result on a sufficient level of abstraction. Nevertheless, there is
a number of necessary properties, mostly of technical nature, that could be expressed
only in terms of the implementation machines k and pm.

Effects on the Model

Let for a memory m an access to d consecutive cells starting at address a is abbre-
viated as mgla]=m[a+d—1]o...om]a]. The effect of the primitive execution on the
model is given by the function copyg(cvm.up, pid;, pidy, a1, a2,n) = cvm’.up which
updates the memory of the user process pidy, i.e., the virtual machine com.up|pid,].
Formally, com/.upli].myla] = com.up|pid;].my[a1] if i = pidy A a = ag, otherwise
com! .upli].my[a] = com.upl[i].m,|a].

The result of copys is welldefined only if the preconditions
precopys(cvm.up, pidy, pidy, a1,a9,n) are satisfied.  Otherwise, the same trick
as with CO machines is used. The model state space Ceym is extended with a single
error state which signals, in particular, that the preconditions to a primitive are
not justified. The validity requirements over a model run prevent error states.
The predicate pre,,, encodes formally the following: (i) the amount to be
copied is reasonable: n > 0, (ii) we copy between different processes: pid; # pid,,
(iii) since memories of virtual machines are word-addressable, the addresses a;
and ay are divisible by 4, (iv) process identifiers pid; and pidy lie in the interval
[1,N), (v) virtual machines vm; = cum.up[pid;] resp. wvmg = cvm.up[pidy] have
amount of virtual memory storing resp. sufficient to store the desired portion, i.e.,
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az/4+n < vmg.ptl- P, x € {1,2}.

Effects on the Implementation

The intended modifications of the physical machine pm, on top of which the
concrete kernel k runs are defined by the postcondition postcopy(k/ ,pm/). First, it
claims the value of the result variable of the call. Next, it describes the changes in
the physical memory of the updated machine pm/. Recall that a virtual address va of
a process pid is translated to the physical one by means of the function pma(pid, va).
Then, the changes over the physical memory are: pm’.my,[a]=pm.m,[pma(pid,,a)]
if a=pma(pidy, as), otherwise pm’.m,[a] =pm.my,al.

The result is obtained only if the precondition is satisfied. The predicate
PTecopy(k) defines the indispensable demands to the CO implementation. Basically,
it speaks about parameters and results of the call and demands that: (i) the pa-
rameters va(k,i), 0 < i < 5 of the primitive are welltyped, evaluate without errors,
storing valid values, and (ii) the result variable of the call is present in top(k).
We do not have any special demands to the physical machine before the call to
copy. Nevertheless, it is worth to mention the preconditions prewpyasm(pm) to the
assembler portion copy,e,(pai, pay, s) of the function. They are discharged when
we verify the CO prefix of the function and perform the semantics switch. The
requirements comprise, among others, the following conditions: (i) s > 0, (ii) the
addresses are divisible by 4 and bounded by the total amount of physical memory
pa,/4+s < TPP - P, x € {1,2}, and (iii) the memory regions between which we
copy do not overlap: [pa;/4 : pa;/4+ s) 7 [pag/4 : pay/4 + s).

5.3  Proving Correctness

In order to prove Theorem 4.1 we show the following separate lemmas for the
correctness of: (i) the CO code inside the loop up to the first call to the page fault
handler, (ii) the two consecutive calls to the page fault handler, (iii) the inline
assembler portion, (iv) the remaining CO part of the loop body, and (v) the whole
loop, which makes use of the four previous lemmas (cf. Fig. 3). We motivate such
modularization as follows. We create separate lemmas for the items i, iii, and iv
because they describe code portions in alternating semantics. The case ii is treated
specially as it speaks about the properties derived from the page fault handler
specification. They are used for lemma iii, but either invisible or not important in
the other lemmas.

The proof proceeds by applying the respective semantics to the code statement
by statement. In order to prove the loop, i.e., lemma v, we formally specify the
ranking function r(n, a;, ag) =1, s.t. 7(0, a1, az) =0 which counts the number i of the
remaining loop iterations. The lemma has an inductive fashion with the step of the
form P(k, pm,i)== P(K,pm’,i — 1). Hence, its proof justifies the loop termination.

Lemma ii argues that after two consecutive calls to the page fault handler for the
computation of physical memory addresses pa; and pa, both pages containing these
addresses reside in the physical memory. A design requirement not to swap out the
page that was swapped in during the previous run is respected by the page fault
handler. However, this property cannot be stated directly in its specification. It is
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expressed in the specification of two successive calls to the page fault handler. We
deal with the problem as follows. Let page(pa) denote the physical page correspond-
ing to the physical address pa. We have a look at the eviction algorithm stated in
the page fault handlers formal specification and find out the property ev(p) a page
p must obey in order to be evicted during the next call to the handler. The first
call to the handler yields the translated physical memory address pa;. The swapped
in page is then page(pa;). We prove that —ev(page(pa,)) holds after the first call
the page fault handler. Since there is no code between the two handler calls, this
property holds in the precondition to the second call for free.

Lemma iii states that the physical addresses from (pa;) and to (pay) which we
copy are associated with processes pid; resp. pid, and do not belong to the kernel
range. This ensures kernel safety—the assembler portion does not destroy kernel
by modifying its data structures—and security, for instance we do not disclose page
tables by coping them to a user process. Next, lemma states that pa; and pay do
not belong to the hard disk port address range, guaranteeing that no swap data is
disclosed or modified . The proof exploits lemma ii because most of these properties
are inferred from the page fault handler validity (cf. Sect. 4.2.2).

The proof of Theorem 4.2 uses the functional correctness established above. The
essential proof goals are the implication from the postcondition postwpy(k’ ,pm’)
to (i) the B-relation B(fs(cvm.up,py),pm’, hd’), and (i) the kernel invariant
inv(com/, K, pm/, hd'). The proof of the former necessarily exploits the fact that
the B-relation is preserved under the page fault handler. Since the relation is not
affected by the CO parts of the primitive—we do not write to PCBs and cannot
modify the memory region beyond CO variables—it remains to show that the B-
relation is not destroyed by the assembler fragment. Here, since we transfer data
between pages residing in the physical memory formally described in lemma iii and
perform the respective memory updates on the model cvm and on the physical ma-
chine pm as stated in Sect. 5.2, the relation follows. During the kernel invariant
proof we examine postwpy(k’ ,pm’) in order to determine which CO variables and
memory parts are changed by the primitive. From this the invariant is concluded.

6 Summing Up

We have shown how the problem of formal correctness of microkernel primitives
is solved exploiting a novel approach to verification of C with inline assembler
programs. We conclude by giving statistics and directions for further research.

Complexity

The implementation of 16 primitives consumes about 600 lines of code. We
have verified 3 primitives so far—-copy, get_vm_word, and set_vm_word—which are
implemented with 100 lines. The functional correctness of the exemplary primitive
(Theorem 4.1) is established in about 2K proof steps, where proofs in C0 and in
assembler semantics are related as 2:1°. The integration of these results into the

5 Approximately the same proportion holds for the respective parts of the implementation.
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kernel context (Theorem 4.2) requires about 5K commands using general kernel
lemmas of technical nature proven in 5K steps.

Further Work: Gaining from Automated Verification

Although we used mostly interactive verification techniques there is a room
for the automation. One can gain from methods of automated verification while
proving the functional correctness of source code. We used the ML code generation
mechanism for the proof of the microkernel source code wellformdness properties
required by the CO compiler correctness theorem. That saved about 1K proof
commands. Next possible candidate for proof automation are assembler portions.
Due to the relatively simple finite memory model it might be possible to obtain the
values of desired memory cells by means of model checking. In order to ease the CO
part verification, one can think of a Hoare logic environment for the CO small step
semantics which will automatically generate verification conditions to be proven.
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Abstract

This work reports on the author’s experience designing, implementing, and formally verifying a low-level
piece of system software. The timing model and the adaptation of an existing information flow policy to a
monadic framework are reasonably novel. Interactive compilation through equational rewriting worked well
in practice. Finally, the project uncovered some potential areas for improving interactive theorem provers.
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1 Introduction

Since system software underlies practically all applications and robust applications
require robust foundations, the construction of robust system software is impor-
tant. Constructing software out of small components of limited functionality keeps
the complexity of any individual component manageable. The principle of least
privilege dictates that designs reduce the number of components whose correct op-
eration is critical. Formal verification of these few small components is both feasible
and worthwhile. This document discusses the design and verification of one such
component.

The particular system is a multi-level secure remote-mountable file server. Since
the networked file server connects to multiple networks each operating at a single
security level, the server integrates into the existing network infrastructure of orga-
nizations currently using (mostly) separate networks to maintain data separation.

The main theorem proved relates to information flow. Specifically, each network
has an assigned label from a partially ordered set of labels. For each label, all obser-
vations made at an interface with that label depend only on inputs from interfaces
whose labels are less than or equal to the label in question.

This paper also touches on a number of techniques used or hurdles overcome
during the project. It describes the author’s experience embedding a low-level lan-
guage in higher-order logic using monads, reasoning about the embedded programs,
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Fig. 1. Internal Architecture

and connecting those programs to an implementation. The work presents a mod-
ified formalization of non-interference more suited to programs with non-inverted
control flow and weakened to allow for timing variations. Finally, it suggests a few
areas where tool improvements could help future efforts of similar nature.

The rest of this document is organized as follows. Section 2 briefly presents
the internal system architecture. Section 3 provides an overview of the modeling
approach. Section 4 focuses on the model of the environment surrounding the soft-
ware. Section 5 explains the proven properties of the system. Section 6 outlines
the general proof technique. Section 7 describes some manually applied transfor-
mations in order to better match the capabilities of the theorem prover. Section 8
explains the derivation of a low-level model fairly close to the final implementation.
Section 9 discusses the steps taken to produce the implementation from the low-
level model. Section 10 describes property-based and model-based testing of the
implementation. Section 11 discusses various improvements that may be helpful in
the future. Section 12 concludes.

2 Internal Architecture

Figure 1 depicts the internal process architecture of the system. The system services
each network with a front end process that consists of a user-mode network stack
and a network-enabled file system. Each front end interfaces to the persistent data
storage through the block access controller. Since this is the only component in
the system that spans multiple security levels, it is the only user-level component
requiring formal verification. Since the project relies on another organization’s
separation kernel supporting the GWV security policy [8], the remainder of this
paper focuses on the block access controller.

3 Modeling Overview

Low-level system software involves many imperative effects including state updates,
input, and output. Some behaviors of various hardware devices are at best difficult
to formally specify or, even worse, explicitly documented as unspecified. The logic
used for the project, namely Isabelle [11]’s higher-order logic [7], lacks direct support
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for such impure operations. The project bridges this gap via a shallowly-embedded
domain-specific programming language suitable for constructing low-level system
software. Monads provide a convenient formalism for structuring denotational se-
mantics so that one may program directly with the denotations [14]. Indeed the
Haskell programming language pioneered this approach which is now regularly used.
Section 4 further describes the monadic type, including its mutable state, I/O, and
unspecified error state.

Another issue with modeling system software is that higher-order logic functions
are total, while most system software does not terminate. The program transfor-
mations mentioned in section 7 (informally) transform the interactive program into
a terminating reaction function surrounded by a single outermost non-terminating
reaction loop. This terminating reaction function, step, then formally models the
software component as a transition system.

Thus, the block access controller’s step function has approximately the following
interface.

step :: “config = unit m”

That is, the step function consumes a configuration which specifies statically
configured details about the number of interfaces, labels associated with them, and
the partial order between the labels. It then produces a monadic computation with
no useful return value (i.e. of type unit). As in Haskell, even though the main
function has type 10 (), the intermediate computations combined with the monadic
bind operator do produce useful results.

While reasoning directly in higher-order logic works well in many situations,
properties about essentially imperative monadic computations can benefit from a
Hoare-like logic. Since higher-order logic easily embeds other logics, this is a simple
task. The predicate “prePost ¢ p q X" consumes some static configuration informa-
tion (c), a precondition (p) over the pre-state, a post condition (q) over the value
produced by the monadic computation and over the post-state, and the monadic
computation itself (x). The predicate roughly means that every possible run of the
monadic computation starting from a start state satisfying the precondition results
in a well-specified state that satisfies the post condition.

4 Environment Model

One of the challenges in formal verification is modeling the environment in which
the formally modeled component executes. In this case, all interactions between
the program and its environment occur by the program executing primitive non-
proper morphisms of monadic type. The environment consists of hardware devices
and interprocess communication channels. Since both the hardware devices and
other processes operate in an asynchronous concurrent manner, the complexity of
the system could increase dramatically without a carefully chosen model of time.
Figure 2 presents three groups of monadic primitives related to I/O. The first
group of primitives simply report the number of input, output and DMA buffers,
the number of disks, and the capacities of the disks in blocks respectively. ! The

1 The extra type variable ¢ parameterizes the state space. It can be largely ignored, although it helped
eliminate frame conditions by restricting access to the state space within various computations.
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numlvec :: “(nat, o) m”
numOvec :: “(nat, o) m”
numDvec :: “(nat, o) m”

7

numDisk :: “(nat, o) m
diskSize :: “diskIndex = (nat, o) m”

b

ivecRef :: “ivecIndex = nat = (byte, o) m
ovecRef :: “oveclndex = nat = (byte, o) m
ovecSet :: “oveclndex = nat = byte = (unlt o) m”
dvecRef :: “dvecindex = nat = (byte, o) m

dvecSet :: “dveclndex = nat = byte = (unit, o) m”

b

dvecBusy :: “dvecindex = (bool, o) m

numPending :: “diskindex = (nat, o) m”
startDma :: “diskindex = dveclndex = bool = blockld = nBlock = (unit, o) m”

Fig. 2. Monadic Primitives

second group of primitives read a byte from or write a byte to input output and
DMA buffers or check if a DMA buffer is busy. The final two primitives check
the number of DMA requests currently in flight for a given disk or initiate a new
DMA transfer. The next two subsections discuss the shared memory interprocess
communication model and the disk model further.

4.1 Interprocess Communication Model

The block access controller interfaces with other software processes through shared
memory pages. Each shared memory page is either readable and writable by the
block access controller and read-only by the other process or read-only by the block
access controller and may be both read and written by the other process. The model
treats each direction separately.

For input buffers an oracle function determines the value of the input. The
question, however, is choosing the parameter of the input oracle. On what do the
input bytes depend? They actually depend on the other processes, including what
those other processes have read from the block access controller. Modeling all of
those factors in detail would be inconvenient at best. Instead, a byte read is a func-
tion of the memory page being read, the offset within that page, and some notion of
time. What is an appropriate notion of time? In a small step operational semantics,
the number of reductions could model time. This is unnecessary since the amount
by which we increase the time argument between reads is irrelevant as long as it
changes. Using the total number of bytes read from any offset on any memory page
would not work well. If the number of bytes read from a supposedly unobservable
memory page influenced the values of the bytes read from an observable memory
page, then the information flow policy would be false. Is this a legitimate problem,
or a spurious flow of information due to a modeling error? Since each execution
of the step function is short enough to finish within a single time slice and since
none of the processes are scheduled simultaneously, the input values across all input
pages remain stable throughout a reaction. Feeding the reaction number into the
input oracle is a reasonable choice. This assumption that the input buffers remain
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completely invariant during a reaction is a stronger assumption than actually re-
quired. Instead, the model assumes that every time the system reads a byte from an
offset within a given input page it reads a (potentially) fresh value, but that value
is independent of any of the other inputs or the amount of unrelated computation
performed. Thus the part of the state space related to input stores a two dimen-
sional array of natural numbers, i.e. “time array array”. The input oracle has type
“(time = byte) array array”.

Output is somewhat simpler than input. The program can read the memory
it wrote, so the model stores the output bytes on each output page as an array in
the state space. It also, however, stores a history variable that records the trace of
all instructions executed that wrote a byte to an output array. This may not be
necessary; recording the output state at the end of each reaction would suffice. On
the other hand, making a stronger claim that even if an attacker could see the order
in which the block access controller wrote all the bytes to the output page during
a reaction, the attacker could still not glean any information about requests from
unobservable channels.

4.2  Disk Model

The main issue in modeling hard disks is the asynchronous nature of DMA. While
using synchronous disk operations would have greatly simplified the system, the
performance would likely suffer unacceptably. DMA, like shared memory inter-
process communication, must be modeled with care in order to reason about the
interleaved concurrent actions at a granularity coarser than individual memory bus
cycles. The key idea is that as long as nobody is looking, the extent to which the
DMA transfer completed so far remains irrelevant. The two primitive non-proper
morphisms for reading a byte from a DMA buffer and for writing a byte to a DMA
buffer both check if any disk is currently using that buffer for a DMA transfer. If
so, the operation transitions to the unspecified error state.

There is also a distinction between a buffer not being in use vs being known to
not be in use. It is at least ideologically incorrect for a program to initiate a DMA
transfer and then access the DMA buffer without checking for the transfer’s com-
pletion even if the transfer has actually completed. Therefore the program initiated
check for DMA completion also performs the actual transfer upon completion. In
effect, the trickle of concurrent DMA data transfer becomes one large synchronous
and atomic transfer at a later point in the program’s execution.

To support this model of DMA, the model of each disk contains two pieces of
actual state and two fictitious pieces of state used for modeling time. The first
actual piece of state is an array of disk blocks where each block is an array of bytes.
This is the state one normally thinks of as the state of a disk. In addition, each
disk has a queue of pending DMA requests paired with time stamps. Also, for the
sake of modeling timing, the disk maintains the history of all requests sent to the
disk and the total number of times the program has checked for DMA completion.

Initiating a new DMA transfer checks that all the indices are in bounds and that
the buffer is not used by any other active transfers. It then wraps its arguments up
in a pending request structure. Next it passes this structure, the disk number, the
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history of all prior requests to the disk, the current pending requests, and the total
number of completion checks to a disk timing oracle. The timing oracle returns a
completion time. The model adds this time to the maximum completion time for
requests already in progress in order to assure monotonicity, which the advanced
host controller serial ATA interface guarantees about hard disks.

5 Policy

A central goal of the system—and of the block access controller—is the prevention of
information leakage. A significant lemma necessary for reasoning about other prop-
erties is that the system behavior is well specified. The proof regarding information
flow then relies on the facts established during the safety proof.

5.1 Safety Policy

The safety property states the invariance of the goodState predicate with respect
to the step function.

prePost ¢ (goodState c) (Av. goodState c) (repeat n (step c))

The use of prePost also asserts that the result is not the unspecified state. If
running a monadic computation does not result in the unspecified error state, then
none of the intermediate computations did either. This is due to the monadic bind
operation propagating the unspecified state, which is easy to prove. Demonstrating
that none of the shallowly embedded language constructs can catch the abortive
nature of an unspecified computation requires an inspection of all the uses of the
primitive monadic data constructor to check for catch-like non-proper morphisms.
While inconvenient, at least the task remains relatively straightforward.

The goodState predicate contains a number of invariants. Arrays must be the
proper size for the given configuration. Queues of partially processed requests must
have resulted from legitimate requests. As an example, for each in-flight request to
send a data block to an interprocess communication channel the receiving channel
must be authorized to read that data block.

As an aside, the sequential composition rule for Hoare logic (adjusted for a
monadic setting) offers a cleaner alternative to disjunctive invariants. A disjunctive
invariant is typically applied uniformly throughout the program, but the first con-
junct of each disjunct serves as a guard based on an encoding of the control flow as
a data value. They often have a form similar to the following.

P x = atProgramPointA x A Py x V atProgramPointB x A Py x

Instead of encoding the control state of the program as data, the following Hoare-
style rule for reasoning about the monadic bind operation directly supports different
predicates for different control flow points.

lemma prePostBind
: “[prePost c p q x; ¥v. prePost ¢ (q v) r (y v)] = prePost c p r (x >=y)”

This prePostBind rule includes an arbitrary predicate q over the intermediate
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state. Thus, the pre and post conditions p and r might both be goodState while q
may be some other predicate. For example, two queues may normally need to have
equal length, but immediately after updating one queue and before updating the
other to match the lengths differ by one. Thus, the logic handles different invariants
at different points in the control flow without encoding the control flow as a data
value.

Separating the concerns of basic well-defined behavior from information flow
worked well in practice as this kept each proof more manageable. Merely starting
the information flow proof with the assumption that the behavior was well-defined,
however, was inadequate. The facts established during the safety proof at each in-
termediate point in the step function’s execution contained useful properties needed
during the information flow proof. Inserting assertions into the code helped transfer
these facts to the context of the next proof. The operation assert p either leaves
the state unchanged (and returns the unit value) if the predicate p holds for the
program state; otherwise it transitions to the undefined state. Discharging the extra
assertions is trivial since the inserted predicates readily follow from facts available
during the safety proof. The assertions strengthen the safety theorem so it also
implies all the intermediate properties asserted throughout the code. This transfers
the asserted facts to the information flow proof.

5.2 Information Flow Policy

The information flow model of this section is essentially Denning’s lattice-based
model [3], but with the weaker requirement of a partial order rather than a lattice.
Greatest lower bounds are useful for combining users or consumers of data, but the
file system never does this. While least upper bounds are useful for assigning labels
to combinations of data with different labels, the file system never initiates the
combination of data items. Instead it only combines data at the request of a client;
for example, the server generates directory listings which refer to files of different
labels. Although the client’s label may be greater than the least upper bound of
the labels in the directory listing (if such an upper bound exists), the client’s label
suffices.

Goguen and Meseguer’s notion of (transitive) non-interference [6] essentially cap-
tures the desired property and is widely accepted as a reasonable policy. Intuitively
two imaginary copies of the system run in parallel where one copy receives only a
subset of the inputs. The system respects Denning’s notion of information flow if
for each label the outputs of both copies look the same from the viewpoint of an
observer associated with that label when one copy of the system sees only inputs
from labels less than or equal to that of the observer. That is, the output was not
influenced by allegedly unobservable inputs.

The formulation of a policy, however, depends on the representation of the sys-
tem to which the policy applies. While most existing notions of non-interference
assume an external stream of labeled events that repeatedly prod the system into
action, this work’s model of computation more closely matches that of a traditional
program. That is, the program executes without any external prodding and of its
own volition consumes input when it wishes. This meshes well with the interpro-
cess communication mechanisms and scheduler provided by the underlying real-time
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nonInterference :: “config = ¢ machine = (a, o) m = bool”
“nonlinterference c s x
=VobsL w t
.obsL < numLevels c
— W € input-set ¢
— (Ju. outputEq c obsL
(runM x (purge c obsL w) u s)
(runM x w t s))”

theorem stepNonlInterference
: “[goodConfig c; goodState c s]
= nonlnterference c s (repeat n (step c))”

Fig. 3. Notion of Noninterference

kernel. Another difference is that the step function processes multiple requests from
multiple sources with different labels.

These differences in the computational model require adjustments to the policy,
as shown in figure 3. Rather than dropping input actions that must remain unob-
servable, the purge function filters the input oracle so any input bytes read from
unobservable sources are zero. Conveniently, zeroing inputs to steps rather than
skipping steps fits better with the simple scheduling algorithms found in real-time
kernels and also eliminates stuttering from the proofs.

In addition to adjusting the input oracle, the policy also adjusts the disk timing
oracle. The cause for the adjustment is that requests to read data causes a delay in
the processing of other disk requests. While the deployed system may rely on prag-
matic solutions to cover this delay, the model accommodates the issue by weakening
the policy. The purged execution trace may chose any arbitrary disk timing oracle.
Thus, the theorem says that any differences in system behavior could potentially
be caused by the disk drive running at an unusual speed.

The theorem at the bottom of figure 3 states that the monadic computation that
runs the step function an arbitrary n times supports the non-interference property
at the top of the figure for the given initial state. The non-interference property
states that for any observer label obsL and input oracle w and timing oracle t if the
label is valid and the input oracle is valid, then running the monadic computation
from the start state on both the filtered and unfiltered input oracles sends the same
trace of outputs to observers with the given label.

6 Proof Technique

The structure of the information flow proof is fairly typical, although it requires
some adjustment for the monadic framework. This section describes the proof
structure, the similarities to Ohéimb’s variation [13] of the unwinding lemmas, and
some key distinctions.

The predicate outputEq in figure 3 is not inductive. Thus, the first step in the
proof is to strengthen the induction hypothesis. A stronger relation viewEq insists
not only the outputs are equal but the pieces on internal state which may eventually
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indirectly influence the output must also be equal. Proving that viewEq is in fact a
stronger relation than outputEq is traditionally called output consistency. Defining
viewEq as the conjunction of outputEq and a predicate on internal states makes this
proof trivial.

The viewEq relation is an equivalence relation. The fact that it is reflexive starts
the induction over two traces of states by asserting the initial state is viewEq to
itself. Higher-order logic supports Harrison’s technique of proving that for any
equivalence relation R, R x y = (R x = Ry). This changes a custom equivalence
relation into Leibniz equality, which Isabelle’s simplifier can then use to perform
equational rewriting with viewEq and automatically make use of symmetry and
transitivity.

The bulk of the work is proving that stepping both traces one step preserves the
viewEq relation. There are two common cases to consider. Either the monadic action
affects only state that is observable and does not depend on any unobservable state
or the action affects only unobservable state. The first corresponds to Ohéimb’s
weak step consistency while the latter corresponds to local respect. One difference
is that while action-based frameworks case split on the level associated with an
external action, in this system the case split depends on (some argument to the
function that generates) the monadic computation or some piece of the state space
or both.

For the first case where the action modifies observable state, the proof decom-
poses the lemma over the monadic bind operation. The key is that in the observable
case, the values produced by the first computation in each trace are Leibniz equal.
This causes the application of the second argument of the bind operator to produce
equal computations in each trace. This enables the proofs about the two subcompu-
tations of the bind operation to combine into a proof about the whole computation.

For the second case where the updated state is not observable, the proof reduces
the reasoning to focus on only a single trace. The updated state in each trace is
viewEq to the state before taking the step. Thus, the equivalence of the final states
of two traces follows from transitivity and the equivalence of the traces’ starting
states. Instantiating quantifiers is easier when there is only one expression in the
assumptions list of the proper type, so reasoning about each trace independently
improves automation.

7 High-Level Model

The process of designing the high-level model of the step function mentioned in
section 3 is somewhat interesting, but largely out of scope. This section highlights
a few techniques.

The initial design consisted of a direct-style program that reads a request, per-
forms the appropriate blocking I/O operation, waits for the response, and returns
the result. This program suffered from several problems. First, higher-order logic
cannot directly state the desired system property in terms of this interface. Second,
the program processes only one request at a time.

Inverting the control flow [10] through continuation passing style [12] solves both
problems. Each formerly blocking I/O operation instead aborts the current contin-
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uation and invokes a callback when the I/O completes. To handle multiple requests,
a continuation delimiter [4] surrounds the loop body. The delimited continuations
capture and abort only the loop body rather than the entire remaining compu-
tation. Thus, the program immediately continues with the next iteration which
initiates more asynchronous I/O requests. This, in essence, introduces cooperative
threading.

Another benefit of inverting the program is that the I/O moves to the end of
the function rather than the middle. This aligns the boundaries of the step function
with the process’s time slice. Thus, the policy is in terms of observations made
when the program is blocked for I/O and other processes are running rather than
at some arbitrary point.

8 Low-Level Model

From the high-level model of the step function, judicious use of Isabelle’s equational
rewriting produces a lower-level model. While the high-level model is already close
to source code in a language with good support for functional programming, features
such as dynamic memory allocation present challenges for languages typically used
in systems programming.

Transforming the representation of the step function relies on a synonym for
equality “eqP = op =” which delays the instantiation of schematic variables. Specif-
ically, folding the definition of eqP in the lemma “step = ?x” prevents the simplifier
from immediately solving the goal by reflexivity.

A variety of optimizations are readily available “for free” just because the de-
velopment occurs within a theorem prover. Unfolding constant definitions performs
both function inlining and constant propagation optimizations. The only mild issue
with inlining is that some definitions require n-expansion before the simplifier will
use them. Rewriting with the monadic laws are almost free, since the proofs are
unproblematic and should be proven anyway.

Although assertions made facts proven during the safety proof available during
the non-interference proof, they serve no purpose in the implementation. Isabelle
easily removes the assertions via rewriting. Under the assumption that running
an assertion does not result in the unspecified error state, running the assertion
is equivalent to running return (). Isabelle can use this lemma along with lemmas
that assertion removal is compatible with the structure of the program syntax as
elimination rules in order to perform the desired syntax-directed program transfor-
mation.

The high-level representation of the step function contained two sources of dy-
namically allocated intermediate data structures, which Isabelle deforested in dif-
ferent ways. The first was relatively straight forward, while the second involved
more effort.

The first structure represents incoming requests from the interprocess communi-
cation channels. The program bound the result of parsing the request to a variable
and then applied a function to the variable to process the request. The parser con-
sists of several nested conditionals which test for each possible variant of the request
structure. Each leaf of the tree of conditionals constructs the appropriate request
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enqueueCont :: “label = cont = unit m”
dequeueCont :: “label = cont option m”

Fig. 4. Enqueue and Dequeue Operations

variant. The processing function first case splits on the request variant and then
takes appropriate action. Inlining both functions and then distributing the pro-
cessing function across the parser’s conditionals replicates the processing function
n times where n is the number of variants. In this case, however, each replicated
instance of the case split is immediately applied to a (fully saturated) data con-
structor. Each of the n case statements then reduce to a single branch which is on
average 1/n'" the size. Thus, the transformation decreases code size rather than
increasing it and also eliminates the dynamic construction of compound data.

The second dynamically allocated data structures represent work left to be done
after a DMA request completes. A naive implementation of the high-level model
would allocate such a structure and enqueue it just before sending a DMA request to
a disk. The processing of the structure occurs later when the DMA completes; the
structure construction and the structure destruction are in some sense far apart—
even in different reactions.

To deforest the structures, consider the non-proper morphisms that operate on
the state space within the monadic type. Figure 4 shows the approximate type
signatures of the high-level model’s operations for enqueuing and dequeueing these
(defunctionalized partial continuation) structures. This interface to the queue data
structure suffers from a problem similar to that of the generic state monad men-
tioned by Chen and Hudak [1]. Specifically, the state representation inside the
monadic datatype contains references to values passed in from the outside.? Since
the interface to the monadic datatype fails to enforce linearity, the operations do
not model an imperative implementation. Transforming the interface eliminates
this difficulty.

The transformation to the monadic state’s interface involves rewriting the model
with the new queueing operations shown in figure 5. The top portion of the figure
defines new operations in terms of the old ones. The lower portion proves alternate
definition-like equations for the old operations in terms of the new ones. Substitut-
ing the new equations for the old operations throughout the program produces a
new program representation that uses only the new interface. Inlining the original
definitions for the queueing operations into the function bodies of the new opera-
tions updates the interface exposed by the monad.

This new interface to the state’s queues exposes only the components of the
structures, not the structures themselves. There is only ever one reference to each
structure, namely the reference from a node of the queue. The linear nature of
the references ensures the faithfulness of an implementation based on imperative
updates. Thus, the transformation eliminates the need to dynamically allocate new
structures when enqueuing.

While linearity eliminated one source of dynamic memory allocation, the trans-
formation introduced another. The wrapper equations in the lower half of figure 5

2 Returning a reference to a value also poses problems.
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enqueueContRead :: “label = oveclndex = dveclndex = label = nat = unit m”
“enqueueContRead qlabel ovecl dvecl responselLabel responseOffset
= enqueueCont glabel (ContRead ovecl dvecl responselLabel responseOffset)”

enqueueContWrite :: “label = nat = unit m”
“enqueueContWrite label responseOffset
= enqueueCont label (ContWrite label responseOffset)”

queuePeekCont :: “label = cont option m”
“queuePeekCont |
= do tag « queuePeekContTag |
;if readTag = tag
then do ov + queuePeekContReadOutBuf |
:dv < queuePeekContReadDvec |
;reql «— queuePeekContReadReqlevel |
;i — queuePeekContReadReqSlot |
;return (Some (ContRead ov dv reql i))
else if writeTag = tag
then do reqL <« queuePeekContWriteReqLevel |
;i — queuePeekContWriteReqgSlot |
;return (Some (ContWrite reql i))
else return None”

lemma dequeueCont-def2
: “dequeueCont |
= do k «— queuePeekCont |
;:dequeueDropCont |
;return k7

Fig. 5. Modified Enqueue and Dequeue Operations

all allocate data structures. The location of the allocation, however, moved to a
different portion of the code and occurs in a different reaction. In fact, by mov-
ing allocation sites from enqueuing to dequeuing, the allocations are right where
the processing—and hence destructuring—of the data occurs. Isabelle’s equational
rewriting can now easily deforest the data structures.

9 Implementation

While proving that a model of a system enforces a desired policy eliminates certain
design flaws, it does not guarantee that a deployed implementation behaves accord-
ingly. For this, the implementation must correspond to the model of the program
and the library code must properly implement the primitive monadic effects. This
section describes the connection between the model and the source code. Section 10
discusses the primitives.

Isabelle’s meta language serves as a foundation for code generation. The meta
language—which is normally used to write tactics—can inspect the abstract syn-
tax trees representing the higher-order logic formulae and is also a general purpose
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int main()
{initState();

for (:;){
#include “step.c”

H

Fig. 6. Implementation Main

programming language. Since the low-level model of section 8 already looks like
imperative-style source code, the code generator simply traverses the abstract syn-
tax tree via pattern matching and recursion. At then end of the traversal the code
generator simply writes the resultant string to a file, which an existing C compiler
compiles. While C is not ideal for building reliable software, constructing a verified
or verifying compiler all the way to machine language was outside the scope of the
project. This may cause difficulties for an evaluation, since some organizations (such
as the United States Federal Aviation Administration) who perform evaluations of
C code require that the code to be tested using multiple compilers and that the
developers disassemble the object code and explain how it relates to the compiler’s
input.

The generated implementation corresponds directly to the low-level model of
the step function. Even with the library that implements the monadic primitives,
this is not a complete implementation. A small amount of code must setup the
initial state and a loop must repeatedly call the generated step function. Figure 6
is essentially the main program.

10 Testing

What is the relation between proof and testing? Some people question the value
of formal methods, while others assume that proving software correct “once and
for all” eliminates the need for testing the software on specific inputs. This section
mentions the relation between testing and mathematical proof, two rationale for
testing, and the specific testing methods employed by the project.

Mathematical proof is based on deductive reasoning—deducing more complex
facts from presumably simpler ones. While deductive proofs provide value by both
reducing the complexity of and clarifying the assumptions, assumptions remain.
For the development presented so far, the most significant remaining assumption is
that the abstract machine model of the non-proper morphisms matches the behavior
implemented by the hand-written C code, the C compiler, the separation kernel, the
microprocessor (hardware and microcode), and the peripherals. This layer requires
validation testing to ensure it matches the model.

Since testing is typically less expensive than formal proof, testing establishes
an acceptable level of assurance for less critical properties. For example, if the
system suddenly became as unresponsive as a brick then it would still succeed in its
primary mission of not leaking information.® This behavior, however, would likely
cause consternation for the users. Thus, the tests cover several basic correctness

3 The relative importance of these properties reflects the biases of the author’s particular clients.
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properties. The correctness tests are unlikely to pass if the abstract machine is
broken; hence they cover validation testing also.

Haskell’s QuickCheck [2] tests extra assertions about the implementation. Al-
though the tool is designed to test Haskell programs, the test suite uses Haskell’s
foreign function interface to make interprocess communication requests that in-
teract with the block access controller implementation. By stating the property
in Haskell that writing an arbitrary block of arbitrary bytes and then reading it
produces the same block of bytes, QuickCheck automatically generates many ran-
domized requests and tests the implementation. Quickcheck also tests the property
that concurrently writing blocks with identical arbitrary bytes and reading blocks
from a different interface with a greater label results in reading blocks with identical
bytes.

In addition to this property-based testing, the test suite also performs model-
based testing. For this effort another model written in Haskell captures just the
functional behavior of the system. This model simply represents the disk as a
finite map of blocks of bytes, with read and write requests immediately performing
the corresponding actions (i.e. no delay due to DMA). A QuickCheck assertion
states that arbitrary sequences of arbitrary read and write requests processed by
the implementation produce the same results as processing those same requests in
the Haskell model.

11 Future Work

The experience with this project was overall quite positive, but room for improve-
ment remains. The integration between the testing and verification tools could have
been tighter. Model to implementation correspondence issues remain. Finally, this
section suggests a research challenge in modeling reactive systems.

While the primary model is in Isabelle, the testing model is in Haskell. This in-
volved recreating another (simpler) model in Haskell by hand. Eliminating this step
and testing directly from Isabelle would be preferable, both because of work reduc-
tion and also because it would strengthen the claim that the model was tested. The
Isabelle theorem prover includes a method named quickcheck which, like Haskell’s
QuickCheck, randomly generates test vectors. Isabelle, unlike Haskell implemen-
tations, does not include impure features such as foreign function interfaces which
the implementation testing relies upon. It may be possible to use Haftmann’s code
generator for Isabelle [9] to produce a matching Haskell model from the Isabelle
model, however, this was not available at the time.

The connection between the model and implementation remains less than ideal.
For one, the code generation automatically produces C code that looks syntactically
similar to the low-level model, but this is merely a syntactic translation. All the
claims about issues such as the store being linear remain informal. Producing ma-
chine code for a processor with a publicly available formal model, such as the ARM
processor [5] would improve the correspondence. A verifying or verified compiler for
a low-level language would ease the automation of such a task. Finally, the model
used natural numbers for unsigned integers. This resulted in an numeric overflow
error in earlier implementations. Modeling machine word arithmetic without Is-
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abelle’s recently available machine word arithmetic library appeared prohibitively
painful.

The continuation passing style and defunctionalization transformations should
have been done either by a compiler or at least in a theorem prover rather than by
hand. If Isabelle could express properties about not only top level functions but
also about implicit continuations, the project could have potentially modeled and
reasoned about the program in direct style.

12 Conclusion

In summary, it is feasible to use modern interactive theorem provers such as Isabelle
to formally prove properties about low-level system software. Higher-order logic is
well-suited for embedding both other programming languages via monads as well
as logics customized for reasoning about the language’s constructs. Interactive
compilation through equational rewriting provides a nice mix between the control
of hand optimization and the convenience, maintainability, and reliability of fully
automatic optimization. Our notion of non-interference supports programs with
non-inverted I/O and allows for variations in the timing behavior of peripherals.
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Abstract

Formerly, models have been used mostly in design and documentation. MDA and its surrounding techniques
put them into the center of the software development process as the platform-independent model serves
as foundation for tasks such as platform-dependent code generation or testing. Obviously, unambiguous
models are crucial for the successful accomplishment of these tasks. The UML as the most popular modeling
language is not able to ensure this which delegates the validation of models to further tasks. Our goal is to
improve this situation by making models reliable as it is neither likely that another modeling language will
displace UML in the near future not that a new - improved - UML version will be adopted soon. We reuse
the existing OCL-based static semantics of UML and strengthen them by rectification and extension. As a
result, the structural soundness of class and object diagrams is automatically ascertained and model-based
tasks can be smoothly performed afterwards. Our approach supports the usage of profiles as long as these
specify their static semantics on OCL. We show this by an example taken from the railway control systems
domain. Behavioral soundness is not checked as we believe that it is not desirable to define one concrete
behavioral semantics for UML as different application domains require different semantics at least in details.

Keywords: UML, OCL, MDA, Profiles, Validation

1 Introduction

During the last few years, Model-driven Architecture (MDA) [15] gained more and
more importance in software development. This includes attended techniques such
as Model-driven Development (MDD) or Model-based Testing. The main idea in
MDA is the platform-independent model (PIM) that serves as source for all other
activities, e.g. transformation to platform-specific models (PSM), code generation,
validation, verification, or testing. Hence, the model becomes the center of the
software development process.

One of the reasons for the success of MDA is the increasing popularity of the
Unified Modeling Language (UML) [17,18] that consolidates a variety of model-
ing techniques. The thirteen diagram types and numerous modeling elements of
the current version UML2 provide means to model all kinds of software systems
independent from scale and domain. The UML is accompanied by the Object Con-
straints Language (OCL) [16] that allows to navigate in a model and formulate
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constraints on it and several other helpful mechanisms. One of them - the profile
mechanism - is paid a lot of attention since the standardization of UML2 as it allows
to tailor the UML to a specific domain.

New ideas in software development call for new modeling strategies. This holds
especially for the UML as a successful application with respect to MDA makes new
demands on the language. At the moment, UML is a loose compound of modeling
techniques that lack formal semantics. Static semantics are at least partly formally
defined by OCL constraints. Behavioral semantics and more static semantics are
defined in natural language that is claimed to be precise. Nevertheless, lots of
ambiguities are introduced. To give an example, Fecher et. al. list 29 uncertainties
in the definition of UML statemachines [11].

The imprecise definition of UML is partly intended as the developers did not
want to fix all semantic details to allow the application of UML for all kinds of
software systems. Semantic variation points offer the possibility to adapt the UML
to each domain. This is sensible as each application area has its own needs. Even if
UML as a broad approach is used, developers tend to used domain-specific semantics
to interpret their models. This is one reason for the success of profiles.

A completely different point is static semantics that defines the well-formedness
of a model. Albeit the behavioral interpretation of models differs from domain to
domain, a sound structure is needed as foundation since behavior is always related
to structure in UML. Furthermore, transformations and code generation are tasks
that need an unambiguous structure as source. Currently, the static semantics of
UML that have been formalized are not sufficient to ensure sound models which
delegates the validation of models to the tools that process them. This situation is
in particular disappointing with respect to models that use profiles as each profile
may define additional static semantics that have to be considered.

Approaches to formal semantics for UML tend to focus on behavioral semantics
as e.g. in [11]. Tt is time to turn attention also on the structural well-formedness of
UML models. We tackle this problem with the help of OCL as suggested in [13].
UML provides a set of OCL constraints that form the basis of static semantics.
Unfortunately, many constraints are erroneous as e.g. listed in [2] or only defined
in natural language. The first ones must be corrected, the latter ones formalized.
Furthermore, the lengthy paragraphs intended to describe the behavioral semantics
in natural language have to be carefully analyzed to detect hidden static semantics.
The resulting set of OCL constraints can be automatically validated with the help
of the tool USE [1,23] for class and object diagrams. In this way, we gain a reliable
model that can be used by all further applications that use the model as reliable
input. It is also possible to extend this process to UML profiles if these specify their
static semantics in OCL [4]. We document this approach with an example profile
designed for the development of railway controllers.

The paper is organized as follows: Sec. 2 presents the current degree of formal-
ization of the static semantics of UML. After that, we show in Sec. 3 how these
semantics can be strengthened by analyzing the UML specification and formulating
constraints. Sec. 4 deals with the extension to profiles, while Sec. 5 handles the
automated validation process. We conclude with an outlook to future work and a
discussion in Sec. 6.
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2 Some Notes on Syntax and Semantics of UML

The specification of a (modeling) language is structured in two parts - syntaz and
semantics [8]. Syntax is split into abstract syntax that defines the elements of the
language and concrete syntax that provides a usable notation for users. Semantics
give meaning to a language. On the one hand, these are static semantics that define
the correct composition of syntactic elements to programs or models and behavioral
semantics that define their runtime properties.

This separation of concepts in language design is not mirrored in the UML
specification documents. Abstract syntax is given in diagrams while concrete syntax
is mostly given in textual descriptions combined with figures for each modeling
element. The combination of modeling elements to diagrams is described in separate
sections afterwards. Static semantics are split into OCL constraints, constraints in
natural language, and partly in semantics sections given for each element, mixed
with behavioral semantics. Variation points have been introduced to allow different
interpretations of modeling concepts due to the fact that UML has the ambition to
model all kinds of systems, independent from domain and scale.

Since its first standardization in 1998, the degree of formalization of UML se-
mantics has been fervently discussed. The developers of UML argued - and still
argue - that natural language is sufficient for the description of UML semantics.
A formal specification of the language “would have added significant complexity
without clear benefit” [17]. Tt is also argued that “currently, the semantics are not
considered essential for the development of tools; however, this will probably change
in the future.” [17]. This point of view is underlined by the fact that tool compli-
ance to the UML standard is only defined in ways of abstract and concrete syntax
but not semantics [17,18]. A tool is UML-compliant even if e.g. the interpretation
of state machines is different from the one in the UML specification.

Contrary, critics argue that a certain degree of formality is definitely needed for
several reasons: clarity, expendability, interoperability [10]. It is neither desirable
that different persons interpret the same model differently nor that tools do the
same; especially if verification or code generation is performed. This does not mean
that every detail in UML shall be explicitly specified. More convenient would be
a solid foundation and a well-defined extension mechanism that allows to tailor
the UML to specific domains. Numerous approaches address formal (behavioral)
semantics for UML, e.g. denotational [6], by Z [7], or process algebra [12]. Most of
these have in common that they focus on a subset of UML, often inspired by later
usage in a specific domain like real-time systems [9]. Static semantics seem to be a
poor cousin of behavioral ones as they are not discussed in detail.

Some of this criticism has been regarded in UML2. The extensibility of UML
has been increased and is better specified. Abstract syntax is described quite well in
diagrams, but concrete syntax is still nebulous. It is still unclear, which elements can
be used in which kind of diagram, as only recommendations are given. Furthermore,
semantics are still informal and mostly given in natural language, even if OCL
has been used more frequently than in older language versions. As many OCL
constraints are erroneous [2,22], their expressiveness is dubious. The result is that
the use of modeling elements in diagrams differs from tool to tool just as semantics
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and their interpretation e.g. for code generation.

Profiles add significantly to this problem due to their ability to define more static
semantics. These further constraints on the composition of models belong to the
metamodel level and not to the model level. A tool that intends to guarantee valid
UML models must be able to check both standard and profile-dependent static
semantics. This requires formalization, e.g. with OCL as already done for some
constraints in UML. Currently, only few tools are able to check OCL constraints on
the model level let alone on the metamodel level.

Our goal is to overcome this deficiency by a validation that includes both the
static semantics of UML and those of each profile. This demands an improvement
of the current static semantics of UML and a formalization of static semantics in
OCL for each profile. With respect to UML, we concentrate on the frequently used
modeling elements of class and object diagrams as these are available in all kinds
of tools. The approach can be extended afterwards to more modeling elements.
As already mentioned above, we believe that each domain has its on demands
on behavioral semantics just as the need for different tools for code generation,
transformation, verification, automated test case generation, etc. Model validation
with profile support will reduce the development time for such domain-dependent
tools significantly as the model can be assumed reliable.

3 Well-formedness of UML Models

For UML, an appropriate means to define static semantics is OCL as we can nav-
igate in the model and perform checks automatically, e.g. with the tool USE (see
Sec. 5). In the UML specification documents, each modeling element has a con-
straints section, where OCL is partly used. Unfortunately, these constraints are
often not flawless and definitely not complete. Some static semantics are hidden in
the semantics section of each modeling element that in fact should contain behav-
ioral semantics; some - that are obvious - are not mentioned at all. To improve this
situation, the following steps have to be taken: (a) rectify mistakes in existing con-
straints, (b) formalize constraints in natural language, (c¢) identify static semantics
in descriptions and formalize them, (d) identify missing parts.

Rectification of Erroneous OCL in UML

The reasons of errors in OCL constraints in the UML specification range from
simple syntactic problems to inconsistencies with respect to the abstract syntax
or misused types [2]. To give an example, we look at the classes Association and
Property, defined in the Kernel package of UML [18]. In Fig. 1, a small excerpt of
the UML metamodel that includes these classes is shown. The first problem here is
related to abstract syntax. Recall that if an association end has no name, its name
is the same as the class at this end with the first letter in lower case. This means
that Property has two association ends named association so they are not distinct.
We will use _association as name of the yet unnamed association end at the bottom
of Fig. 1.

Several OCL problems occur with respect to this small UML excerpt, some of these
are listed below:
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Fig. 1. Excerpt from UML metamodel - classes

e As a Classifier, each Association can be specialized. In this case, the number of
ends should be the same. This is formalized as follows:

context Association
inv:
self .parents()->forAll(p |
p.memberEnd.size() = self.memberEnd.size())

Note that parents() returns the set of direct parents of the classifier. This OCL
constraint has to be corrected for two reasons: (a) memberEnd is an ordered
set whose function size() must be called with the ’->" operator; (b) operation
parents() returns a set of type Classifier, therefore a cast must be performed.

context Association
inv:
self .parents()->forAll(p |
p.oclAsType (Association) .memberEnd->size() =
self.memberEnd->size())

e Further, an Association with more than two ends, must own all its ends:

context Association

inv:

if memberEnd->size() > 2 then
ownedEnd->includesAll (memberEnd)

Again, there is an error as each if-statement in OCL has an else branch and ends
with an endif. A correct version would be:

context Association

inv:

memberEnd->size() > 2 implies
ownedEnd->includesAll (memberEnd)

e With respect to class Property, a constraints states that only a navigable property
can be marked as isReadOnly:

context Property

inv:

isReadOnly implies isNavigable()

def:

isNavigable() =
not classifier->isEmpty() or
association.owningAssociation.navigableOwnedEnd->includes(self)
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Obviously, the operation isNavigable() is not correctly defined, as an Association
does not have a property owningAssociation as we can see in Fig. 1. Instead, a
Property can directly refer to this attribute:

context Property

def:

isNavigable() :Boolean =
not classifier->isEmpty() or
owningAssociation.navigableOwnedEnd->includes(self)

Formalization of Constraints in Natural Language

In the same excerpt of the metamodel, we can find an unformalized constraint for
an Association:

* When an association specializes another association, every end of the

specific association corresponds to an end of the general association,
and the specific end reaches the same type or a subtype of the more
general end.

Naturally, there is no reason that this constraint cannot be formalized, as we see
below:

context Association
inv:
self .memberEnd->iterate(
e:Property;
res : Boolean = true |
res = self.parents()->forAll(p |
p.oclAsType(Association) .memberEnd->exists(e2 |
(e = e2 or
e.redefinedProperty->includes(e2))
and
e.type.oclAsType(Classifier) .general->includes(
e2.type.oclAsType(Classifier)))))

Identification of Static Semantics throughout the Specification

An attentive reading of the UML specification brings hidden static semantics to
light. Throughout the document, lots of requirements of models can be found that
may be formalized. One example is the class Classifier. In the semantics section of
this modeling element, we find the following claims:

lue e
= ValueSpecification

owningSlot
0..1

sloy
Slot
owningInstance

-
g . 1
InstanceSpecification l. definingFeature
P StructuralFeature
classifie .
Classifier

Fig. 2. Excerpt from UML metamodel - instances
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* An instance of a specific Classifier is also an (indirect) instance
of each of the general Classifiers.
Obviously, this is not a requirement for a classifier, but for its instance that is
specified by InstanceSpecification as we can see in Fig. 2.

context InstanceSpecification

inv:

classifier->forAll(c | c.parents()->notEmpty() implies
classifier->includesAll(c.parents()))

® Therefore, features specified for instances of the general classifier
are implicitly specified for instances of the specific classifier.
This requirement focuses again on instances and not on classifiers. Instances
may have slots for each structural feature of the classifier it instantiates. As
generalization may be involved, also the structural features of the parent classifiers
are accessible.

context InstanceSpecification
inv:
slot->forAll(s | classifier.attribute->includes(s.definingFeature.
oclAsType (Property)) or
classifier.parents()->exists(p | p.attribute->
includes(s.definingFeature.
oclAsType (Property))))

* Any constraint applying to instances of the general classifier also
apply to instances of the specific classifier.
Here, the constraint applies to Classifier and not its instances. The intention
is that all constraints of classifiers apply also to their subclassifiers. Hence, the
constraint must be linked - implicitly - to all subclassifiers.

context Classifier
inv:
parents()->notEmpty() implies
parents () ->forAll(p | self.constraint->includesAll(p.constraint))

Absent Static Semantics

As we have seen above, we can find a large amount of static semantics throughout
the UML specification - some formalized, some not, some correctly associated to a
modeling element, some not. Other constraints that are maybe too obvious are not
mentioned at all, but should also be given in OCL to allow automated checks for
well-formedness of models.

To give a simple example, each NamedElement can have a name, but must not
as the multiplicity of the attribute name is 0..1. Each Classifier is a Type by in-
heritance just as Class, Association, or DataType who again inherit from Classifier.
A Type should be identifiable by its name as the modeler must have a means to
specify the type of a property. It is therefore reasonable to require that at least
each Class and each DataType must have a name (a property cannot be typed by
an Association):
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context Class
inv:
name->size() = 1

context DataType
inv:
name->size() =1

Another evident fact is that a class can only specialize another class while an
association can only specialize another association. For Class, this fact is already
mirrored in the abstract semantics, but not for Association. The same holds for
AssociationClass. Hence, we require:

context Association
inv:
general->forAll(c | c.oclIsTypeOf (Association))

context AssociationClass
inv:
general->forAll(c | c.oclIsTypeOf (AssociationClass))

Other static semantics are left open intentionally due to the fact that UML can
be used in various domains and in combination with various programming languages
as target. One example is a semantic variation point for Association:

e The interaction of association specialization with association end re-
definition and subsetting is not defined.

It is of course reasonable to define more precise constraints for modeling elements
in specific applications of UML, e.g. in profile definitions as we can see in Sec. 4.
It may be necessary to require that objects must have a name, or that redefining
properties in generalizations must have the same name as the redefined one for code
generation purposes. Nevertheless, such constraints should not be formalized in the
UML metamodel in general as different projects have different requirements.

4 Well-formedness of Profiled Models by Example

Profiles as described in [17,18] are a mechanism to tailor the UML to specific ap-
plication domains by (a) introducing new terminology, (b) introducing new syn-
tax/notation, (c¢) introducing new constraints, (d) introducing new semantics, and
(e) introducing further information like transformation rules. Changing the exist-
ing metamodel itself e.g. by introducing semantics contrary to the existing ones or
removing elements is not allowed. Consequently, each model that uses profiles is a
valid UML model. A UML2 profile consists mainly of stereotypes, i.e. extensions of
already existing UML modeling elements. A UML modeling element is chosen as
basis and add-ons are specified. In the following, we focus on the introduction of
new static semantics with OCL.

Our example is the Railway Control Systems Domain (RCSD) profile [5,20] that
is designed to be used for the development of railway controllers. Its static semantics
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<<metaclass>> 0.1 <<stereotype>>
Class SignalSetting

0.1 <<stereotype>>
PointPosition

0.1 <<stereotype>>
RouteConflict

<<enumeration>>
0.1 RouteConflictKind
<<St§re°type>> noAllocation
oute stopSignal
<<metaclass>> 0.1 <<stereotype>>
InstanceSpecification Routelnstance

Fig. 3. Excerpt from RCSD profile

are completely defined with OCL [3,4]. Several stereotypes are defined that are
elementary for the design of railway systems [19]: track segment, crossing, point,
sensor, signal, and routes. In addition, domain-specific associations and datatypes
are defined that are needed for accurate modeling of the domain. Base classes of
the UML metamodel are Class, Association, and InstanceSpecification. An excerpt
of the profile is shown in Fig. 3.

<<Sensor>> 1
TramSensor sensor
0.1 0..1
e3entry| sensorld:Sensorld {readOnly} [e3exit ignal 0.1
0..1| actualState:SensorStateKind |9 1 signal]0..
e2entry sentTime:Timelnstant e2exit <<Signal>>
0..1| counter:integer 0.1 TramSignal
elentry| delta_l:Duration {readOnly} elexit
0..1| delta_tram:Duration {readOnly} |, | signalld:Signalld {readOnly}
eSenii’y Aot actualState:SignalStateKind
0.1 0.1 requestedState:SignalStateKind
= o requestTime:Timelnstant
Lents 2exit N
eenny o delta_s:Duration {readOnly}
elentry| e2exit direction:RouteKind
<<Segment>>
TramSegment
1f maxNumberOfTrains:Integer=1 {readOnly} |1 _ <<Route>>
entrySeg| jimit:Integer[0..1] {readOnly} exitSeg TramRoute
routeld:Routeld {readOnly}
routeDefinition:Sensorld[0..*] {readOnly, ordered}
1) <<Crossing>> 1
entryCross| TramCrossing exitCross

maxNumberOfTrains:Integer=1 {readOnly}
limit:Integer[0..1] {readOnly}

1
{readOnly} |signalSetting

<<SignalSetting>>
Signals

<<SinglePoint>>
TramPoint

signalld:Signalld {readOnly}
sigState:SignalStateKind {readOnly}
dirState:RouteKind[0..1] {readOnly}

1 1
entryPoint| pointld:Pointld {readOnly} exitPoint
plus:PointStateKind {readOnly}

. 0.* 0.*
glmﬁ‘;g{zﬁﬁﬁgg&ﬁsg dOnly} routeConflict|{readOnly} {readOnly} | pointPos
requestedState:PointStateKind <<RouteConflict>> <<PointPosition>>
requestTime:Timelnstant Conflicts Points
delta_p:Duration {readOnly}
maxNumberOfTrains:Integer=1 {readOnly} routeld:Routeld {readOnly} pointld:Pointld {readOnly}
limit:Integer[0..1] {readOnly} kind:RouteConflictKind {readOnly} pointState:PointStateKind {readOnly}|

Fig. 4. Simple tram system - class diagram

The RCSD profile is intended to improve the collaboration between software
developers and domain experts. A specific railway system, e.g. trams, railways in
Germany, or railways in Great Britain, is modeled in class diagrams as we can see in
Fig. 4. The concrete projection - that is a concrete track layout with routes - is than
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modeled as an object diagram. Here, we provide also a domain-specific notation
as shown in Fig. 5 to improve communication with domain experts.
object diagrams are automatically validated with respect to its static semantics as
described in Sec. 5. Behavioral semantics are based on a state transition system that
serves as foundation for code generation for controllers as well as formal verification

BERKENKOTTER

by bounded model-checking. For details, we refer to [5].
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Fig. 5. Simple tram system - object diagram

OCL can be used in various ways to specify stereotypes precisely:

Constraining property values: A stereotype has all properties of its base class
and can add only attributes. Defining new associations to classes in the reference
metamodel or other stereotypes is not allowed. Therefore, constraining values
of existing attributes and associations is a useful means to give a stereotype the
desired functionality.

Specifying dependencies between values of different properties of one element:
Often, it is necessary to describe dependencies between the values of properties
of a modeling element precisely.

Specifying dependencies between property values of different instances of one ele-
ment: Some properties like identification numbers need specific values for different
instances of one element.

Specifying dependencies between property values of different instances of different
elements: In the same way, several elements may have properties whose values
have some kind of relationship. Here, it is important to chose the context of
the constraint carefully such that the constraint is not unnecessarily complicated
because another modeling element would have been the better choice as basis for
the constraint.
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Constraints on Classifiers

Each Route must have a constant attribute routeld with type Routeld:

context Route

inv:

ownedAttribute->one(a | a.name->includes(’routeld’) and
a.type.name->includes (’RouteId’) and
a.upperBound () ->asSequence )->first()=1 and
a.lowerBound () ->asSequence )->first()=1 and
a.isReadOnly = true)

To understand the structure of such a constraint, a look at the UML metamodel
is helpful. As all network elements are stereotypes of Class from the UML2 Kernel
package (see Fig. 1), we can refer to all properties of Class in our constraints.
Properties on the model level are instances of class Property on the metamodel level,
which are associated to Class by ownedAttribute. As a StructuralFeature, Property
is also a NamedElement, a TypedElement, and a MultiplicityElement, which allows
to restrain name, type, and multiplicity as shown in the constraints above. Such
constraints are extensively used as RCSD diagrams must provide certain information
for code generation purposes.

Constraints on Instances - Properties of One Instance

Another example are Points that are - together with Segments and Crossings -
part of the track layout. Each PointInstance has a plus and minus position that is
modeled as an attribute. One of these has to point STRAIGHT and the other one
LEFT or RIGHT:

context PointInstance
inv:
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first () .oclIsTypeOf (InstanceValue) and
s2.value->first () .oclAsType(InstanceValue) .instance.
name->includes (’STRAIGHT’)) and
slot->select(sl | sl.definingFeature.name->includes(’minus’) or
sl.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and
s2.value->first () .oclIsTypeOf (InstanceValue) and
(s2.value->first() .oclAsType(InstanceValue).instance.
name->includes (’LEFT’) or
s2.value->first () ->oclAsType(InstanceValue) .instance.
name->includes (’RIGHT?)))

Constraints on Instances - Properties of Different Instances of One Classifier

To give an example for this constraint category, each Routelnstance requires a
unique identifier. We must therefore assure that the set of all identifier values of all

196



BERKENKOTTER

route instances contains unique elements:

context Routelnstance
inv:
RouteInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’routeld’))->
iterate(s:Slot;
result:Set(LiteralRouteId) =
oclEmpty(Set(LiteralRoutelId))
result->including(s.value->asSequence->first.
oclAsType(LiteralRouteId)))->isUnique(value)

Constraints on Instances - Properties of Different Instances of Different Classifiers

Each Route is defined by an ordered sequence of sensors identifications. The signal
setting for entering the route and sets of required point positions and of conflicts
with other routes are further necessary information. This implies that the identi-
fication numbers belong to existing instances, e.g. the sensor identifications given
in the definition of a route. Hence, the following constraint must hold for each
Routelnstance with respect to the named SensorInstances:

context Routelnstance
inv:
let i:Set(Integer) =
slot->select(s | s.definingFeature.name->includes
(’routeDefinition’))->asSequence->first().value->
iterate(v:ValueSpecification;
result:Set(Integer)=oclEmpty(Set(Integer)) |
result->including(v.oclAsType(LiteralSensorId) .value))
in
i->forAl1(id | SensorInstance.allInstances->exists(sens |
sens.slot->select(s | s.definingFeature.name->
includes (’sensorId’))->asSequence->first().value->first().
oclAsType(LiteralSensorId) .value = id))

5 Automated Validation with USE

The concrete validation process is performed with the tool USE [1] that expects
a (meta)model in textual notation as input. For syntax, we refer to [22] and [23].
The tool implements the set-theoretic semantics described in [21] in detail. The
key feature for our purposes is the interpreter that evaluates OCL constraints. The
evaluation time is dependent on the number of elements in the model, the number
of instances of the modeling element, the number of constraints and also the kind of
constraints that range from very simple to quite complex as we have seen in Sec. 3
and Sec. 4. In general, we can only say that the complexity is polynomial with
respect to the named inputs.

In our case, the input model is the UML metamodel - respectively a part of it
that is necessary for class and object diagrams as described below. Further, profile
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can be added to the metamodel. On this basis, instance models can be checked
with respect to the invariants in the metamodel. The instance model consists of
both class layer and object layer. A similar application of USE with respect to the
four metamodeling layers of UML is shown in [13]. Here, the application of USE in
metamodeling is shown by a small example.

Our metamodel is constructed from one input file for the UML2 metamodel
and one input file for each applied profile. The result is one large metamodel. The
reasons for this procedure is simple as we want to be able to check models that do not
apply profiles and models that apply one or more profiles. Also, we are interested
if a profile is compliant to UML. So far, no OCL tool is capable of checking the
consistency of a set of OCL constraints. Therefore, we assume a profile compliant
to UML as long as both the constraints in the metamodel and the constraints in
the profile(s) are all valid which is of course no proof. At least, we are able to test
the compliance of profiles and their reference metamodels by example.

Modeling the UML Metamodel and the RCSD Profile with USE

In the metamodel file, a description of classes with attributes and operations, asso-
ciations, and OCL constraints is expected. OCL expressions are either invariants,
definitions of operations, or pre-and postconditions of operations. Only operations
whose return value is directly specified in OCL and not dependent on preconditions
are considered side-effect free and may be used in invariants. For the validation
process all invariants must be fulfilled by the instance model(s).

From the UML metamodel, the packages Kernel, Dependencies, Interfaces, and
BasicBehaviors have been modeled with few changes: (a) The erroneous OCL state-
ments have been corrected and additional constraints added as described in Sec. 3.
(b) Some names - mostly association ends - had to be changed to guarantee unam-
biguous navigation in the model. (¢) USE does not support UnlimitedNatural as
type. This problem has been overcome by using Integer and additional constraints
that restrict corresponding values to N. We do not support nested packages. A
short excerpt of the metamodel in the textual notation of USE is shown below:

class Association < Classifier, Relationship
attributes

isDerived:Boolean
end

association Association2Type between
Association[*]
Typel[l..*] role endType

end

context Association
inv Association_1:
self.parents()->forAll(p |
p.oclAsType (Association) .memberEnd->size()=self.
memberEnd->size())

198



BERKENKOTTER

Profiles are not directly supported by USE. This problem has been overcome
by modeling each stereotype as a subclass from its base class, i.e. a metamodel
extension. Modeling profiles as restricted extensions to metamodels is feasible with
respect to [14]. Here, modifications to metamodels are classified in level one (all
extensions to the reference metamodel allowed), level two (new constructs can be
added to the referenced metamodel, but existing ones cannot be changed), level
three (each new construct must have a parent in the reference metamodel), and
level four (new relationships are only allowed as far as existing ones are specialized.
The lower levels include all restrictions of the levels above. Therefore, profiles can
be considered a level four metamodel extension and modeled as such in USE.? The
profile designer must keep in mind that associations cannot be added and existing
attributes and associations can only be restricted, e.g. my narrowing a multiplicity.

Checking Compliance on Class and Object Level

Evaluating constraints is possible for instances of the given (meta)model. In our
case, this includes the class and object level of UML, as classes and instances are
both defined in the metamodel and can be instantiated. Classes, associations, ob-
jects, links, etc. form one large instance model that is generated from a UML model
created with some kind of CASE tool. The generation of USE code is decoupled
from the CASE tool in use to preserve independence. Tool-specific is only the parser
of the output of the tool. This step can be hopefully omitted in the future as we
expect tools to comply to the XMI standard soon.

The generation of USE code itself is straightforward as the main tasks are cre-
ating instances of the elements in the input model, setting properties, and instanti-
ating associations. The correct implementation of types, inheritance, and interfaces
requires some attention, but is not complicated. Important is the correct order of
instances creation as obviously the more general parts must be created before the
specific parts of the instance model. The complexity - dependent on the number of
classes, attributes, methods, objects, etc. never increases O(n?).

As an example, a tram network description is used on class level. Tram networks
consist of segments, crossings, and single points that are all used unidirectionally.
Furthermore, there are signals, sensors, and routes. This constellation is shown in
Fig. 4. The class diagram is contained in one USE input file. An excerpt from the
corresponding USE instance model on class level is shown in the following:

lcreate TramSensor:Sensor
Iset TramSensor.name := Set{’TramSensor’}

!create sensorld:Property
!set sensorId.name := Set{’sensorId’}

linsert (sensorId, SensorId) into TypedElement2Type
linsert (TramSensor, sensorId) into Class2Property

A concrete network of a tram maintenance site with six routes is shown in Fig. 5.

2 [14] considers profiles as level three which is incorrect as the relationship restriction has to be respected
by profiles.

199



BERKENKOTTER

The explicit route definitions have been omitted for the sake of brevity, but can be
easily extracted from the figure. This diagram has been used for the validation on
the instance level. It consists of 12 segments, 3 crossings, 6 points, 25 sensors, 3
signals, and 6 routes, specified in a second USE input file. In this way, it is possible
to create one input file for each object diagram and validate them separately in
combination with the class diagram file. The object diagram files have the same
appearance as the class diagram ones as we can see in the following excerpt:

!create sl:SegmentlInstance
linsert (sl1, TramSegment) into InstanceSpecification2Classifier

lcreate slexit:Slot

linsert (slexit, e2Exit) into Slot2StructuralFeature
Icreate slexitValue:InstanceValue

linsert (slexit, slexitValue) into Slot2ValueSpecification
linsert (s1, slexit) into InstanceSpecification2Slot

Results

In this example, all invariants have been fulfilled. The correctness of the OCL con-
straints can be easily checked by adding intentional errors like incorrect association
ends or signals with the same identification number. USE facilitates tracing of such
errors by (a) showing which instance of the metamodel has violated an invariant
and by (b) decomposing the invariant in all sub-clauses and giving the respective
evaluation.

Some effort has to be made with respect to the USE model. Once this model
is ready, all UML models can be checked for well-formedness. The same holds for
profiles; the UML metamodel must be extended for each profile to allow validation
of models with USE. As this task is performed once per profile, the effort seems
reasonable. With respect to the RCSD profile, the instance model on class level
has to be modeled once per specific railway system, e.g. once for trams. With this
part of the instance model, all kinds of concrete track layouts can be checked. The
tram example consists of approximately 1500 lines of input data to USE dedicated
to the class level. These are generated from class diagrams by parsing the output of
CASE tools and mapping them to the USE input language. Concrete track layout
are generated - also automatically - from object diagrams. In this way, all kinds
of track layouts for one system can be checked. The example track layout requires
about 5000 lines of USE code.

6 Discussion

The validation of UML models has been proven useful in several ways: (a) it can be
shown that a model complies to the static semantics of UML, (b) it can be shown
by example that a profile complies to the static semantics of UML, and (c) it can
be shown that a profiled model is valid according to the - added - static semantics
of the profile.

As the validation is performed automatically, it is highly useful to ensure the
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soundness of a model before other tasks such as verification, simulation, or code
generation are performed. The validation of the model for each of these tasks can
be omitted as the model is assumed reliable. Another effect of the validation with
USE is the improvement of the OCL constraints themselves. As most case tools
have no OCL support, it is hard to detect if constraints exhibit syntax errors or if
complicated constraints really have the intended meaning.

Some effort has to be made to attain this goal. First, static semantics of UML
have to be improved as they are erroneous and incomplete. Second, static semantics
for a profile must be defined formally. Both UML and a potential profile must
be expressed as a USE model to allow automated validation. As these tasks are
performed once (per profile), the effort seems reasonable. The generation of USE
input code based on CASE tool output is performed automatically.

So far, most work on UML semantics focuses on behavioral semantics - e.g. [6],
[7], [9], or [12] - while static semantics are not discussed in detail. As we can see
from these examples, these behavioral semantics differ from approach to approach;
not at least a result from the different application domains their developers had in
mind. This seems appropriate as each domain has it own needs. In contrast, we
believe that static semantics for UML can be unified and formalized as shown in
this paper to allow automatic validation. The resulting models are reliable and can
be used in further tasks, independent from the application domain.

The validation of OCL constraints of the UML metamodel with USE has been
performed for UML1 and UML2.0 before as shown in [22] and [2]. This has been
extended to UML2.1 in this work. We are not aware that a thorough correction
of existing constraints and formalization of constraints in natural language and
of absent constraints has been performed before for class and object diagrams of
UML2. In [11], similar work is done with respect to the static and behavioral
semantics of statecharts given in natural language in UML2. The usage of OCL in
metamodeling has been suggested in [13], but the application of this concept for
profiles and the automatic validation of profiled models designed with CASE tools
has not been performed before. More details with respect to the example profile
can be found in [4].

The validation of profiles has been shown by an example. An adaption of the
validation process to other profiles can be performed straightforward as the same
kinds of constraints should appear. Validation is sensible for each profile whose
application relies on a solid and unambiguous model. The RCSD profile used as ex-
ample has shown that this is possible for real-world applications and problems. Even
complex constraints can be formalized with OCL. Future work should investigate
the usage of OCL for the formalization of static semantics of other profiles.

Also, the improvement of static semantics of UML should be pushed further
to stabilize the backbone of the language. In this paper, only the basic features of
UML in class and object diagrams have been considered. More work in this direction
seems reasonable as a new UML standard cannot be expected in the next few years
as we know from experience from the standardization of UML2. Furthermore,
results for static semantics are valuable as they can be incorporated in new UML
versions.
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Abstract

Critical systems require assurance that key security, safety or mission requirements are met. Tools are necessary to provide
this assurance. The HiVe Writer supports model-based documentation for complex critical systems. The HiVe Writer forms
the functional foundation for the ambitious HiVE (Hierarchical Verification Environment) project which aims to provide
a unified framework in which entire design projects can be described with the highest level of assurance. The primary
innovation in the HiVe Writer is a centrally-managed design model: any design, explanatory and technical documents
created within the tool are constrained to be consistent with this design model and therefore with each other. This paper gives
a detailed description of the HiVe Writer, showing how it supports model-based editing of structured technical documents
and, in particular, requirements formulation.
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1 Introduction

The Australian Government Department of Defence procures a number of computer-based
systems that are critical in the sense that they have requirements whose violation could
have grave consequences.

* security-critical systems need to satisfy a security policy 4] enforcing anumber of secu-
rity requirements, such as the prevention of unauthorised access to confidential data or
the maintenance of operational integrity.

» safety-critical systems need to satisfy a safety case [7] ensuring that system design elim-
inates or reduces the chance that hazardous system states (that could lead to injury or
death) are reached.

» mission-critical systems must ensure that certain goals, mission or performance require-
ments (critical to success of the mission) are met.

1 The authors wish to thank the Defence Materiel Organisation for sponsorship and funding of The HiVE.
2 Email: Tony.Cant@dsto.defence.gov.au
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The central challenge for critical systemsis to be able both to achieve assurance and to
transfer this assurance to other parties. Assurance is achieved by carrying out a range of
specification and verification activities in the early stages of development that show how
critical system requirements are met. The transfer of assurance involves an appropriate mix
of informal, semiformal and formal arguments that will convince athird party, such as an
evaluator or certifier.

An example of atool supporting informal argumentsis Telelogic's DOORS[2]. DOORS
provides a framework in which users can generate structured documentation consisting of
a series of numbered informal requirements.

Semi-formal arguments are supported by tools such as Telel ogic Rhapsody, which com-
bines regquirements management and design and simulation of UML [10] schematics within
the one tool. The MathWorks Simulink [8] is another example of a semi-formal develop-
ment tool and supports the design and simulation of functional block diagrams.

Formal methods provide well-defined languages such as Z [6] and CSP [5] that allow
precise specifications to be written and subsequent rigorous verification procedures — typ-
ically model checking [3] or theorem proving [11,9] — to be performed.

Regardless of whether informal, semiformal or formal arguments are used, or whether
asingle formalism or multiple formalisms are used, the need for assurance requires docu-
mentation that is well structured and that provides consistency between all arguments. The
authors' contention, based on extensive research and application, is that the following are
the key desiderata for a design tool to support the achievement and transfer of assurance
for critical systems:

Power ful Modelling: The tool should support the design of hierarchical, concurrent and
real-time systems.

Trustworthy Modelling: The tool should support reasoning and proof as well as simula-
tion.

High-Assurance: The tool should support the specification and verification of critical re-
quirements, as well as the ability to flow requirements to system components.

Communication: Thetool should be document-driven, supporting different views for dif-
ferent audiences.

Synergy with other tools. Thetool should alow the interaction with other tools, such as
theorem provers, model checkers and simulation tools.

TheHierarchical Verification Environment (HiVE) project aimsto realise these goals by
providing a unified framework in which entire design projects can be captured. It will en-
courage designers to write design, explanatory and technical documentsin parallel, thereby
helping the user to produce output that will convince others of the correctness of the design.
All documents will be created (and remain) consistent with a centrally-managed document-
driven design model, which will allow consistent presentation of informal, semi-formal,
and formal arguments, and from which various tools involving simulation, model check-
ing and theorem proving can be invoked. The HiVE Writer, discussed in this paper, is the
component specifically concerned with document generation for achieving this.

In Section 2 we introduce the fundamental principles on which the Writer is based, and
give an intuitive description of the mechanisms through which it realises the goals outlined
above. Section 3 sketches the functional decomposition of the Writer's implementation. In
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Section 4, we consider the use of the Writer, from a user interface viewpoint, in a case study
based on the development of the Def (Aust) 5679 Safety Standard [1]. Section 5 presents
some conclusions.

2 TheWriter: a mechanistic underview

The fundamental principles underlying the HiVE Writer are embodied in the dual notions
of model-based editing and literate modelling:

(i) TheWriter builds amodel as an approach to complex documentation tasks. Thishelps
the user to maintain consistency between documents since they all refer to the same
underlying model. For the same reason it helps the user to oversee and implement
change management. Finally, the model itself provides assurance of consistency in
the design process.

(if) The Writer builds literate documentation as an approach to complex modelling tasks.
This helps to promote the user's comprehension of the design and implementation.
Equally importantly, it helps to communicate the requirements, the design, and the
results of assurance activities to other stakeholders in the process.

The HiVE Writer can thus be regarded as an application of lightweight formal methods:
the tool enforces consistency as the model-based documentation is built, but the user is not
required to be an expert in the application of formal methods.

Our approach to implementing a tool that upholds the above principles utilises highly
structured documents that are correlated through a central fact repository. In this section
we briefly elaborate on how this works.

2.1 Sructure algebraically

The document structure is induced from the use of what we call structured text. At the

simplest level, structured text is the language generated by arepository of syntax construc-

tors. The constructors are sorted: i.e., each constructor argument only accepts termsfrom a

particular subset of structured text (labelled by a so-called sort), and the constructor returns

aterm of definite sort. Documents created in the HiVE Writer are written in structured text,

thereby acquiring a hierarchical structure from the sort-directed nesting of constructors.
Figure 1 illustrates the hierarchy exhibited by the mathematical expression

X+y=3A2Xx-y=3.

The structure, in this simple example of a term algebra, branches according to the alge-
braic nature of the operators. the top level is a conjunction of two subexpressions; each
subexpression is an equality; and so on. For example, the top-level conjunction is achieved
through the constructor A, for which a production is indicated via a dummy box inscribed
with the required sort.

The syntax constructors need not just build mathematical terms, but could act on for-
matted text or whatever is desired. One example, featuring in Section4, is a simple re-
quirements language. It isused to enforce a strict documentation standard on requirements
gathering which prevents the user from writing requirements on development artifacts that
cannot be held to account.
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Fig. 1. Structured text.

To remove any prejudice of usage, we introduce the term element to denote the fun-
damental data underlying a “syntax constructor”: i.e., a name, a result sort and the list of
argument sorts known as its arity. For example, the top-level element in Figurel could be
denoted

conjunction :: Term « [Term,Term|

In the HiVE Writer, elements are used at al levels in document production. Technically,
they provide the constructors of a many-sorted algebra. Elements must be defined for all
language elements required to build documents; in particular, those required to declare
other elements. So, asort isan element, as are all the constructors required to build the sort
list for the element arity.

2.2 Present for readability

Truly literate documentation must be attractive for readability. Structured text would not
be suitable for producing literate documents if it did not allow the syntactic freedom to
display documents in their most natural and informative style as appropriate to a given
audience. Indeed, in Figurelthe raw element data does not appear —rather, acorresponding
presentation using appropriate mathematical symbols is given. For example, the element
conjunction ispresented by o A O.

The HiVE Writer requires the user to define a production corresponding to each element,
and it is provided at the point of declaration of the given element. The production has the
form of a sequence of the element’s arguments sandwiched by delimiters. The delimiters
of the production can be arbitrary Unicode modified by the standard text attributes (bold,
italic, color, etc). This provides sufficient freedom for most application domains, and is
particularly straightforward for rendering to the screen. Thus, the document as presented
on the screen is highly readable, and can be faithful to the printed form.

In fact, the user can define more than one production for a given element if desired.
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The different productions are distinguished by assignment to separate presentation styles.
The mandatory production required at element declaration is assigned to the default style.
An ordering on the different styles can be introduced, in which the default style provides
atop. If agiven element does not have a production in a given style, the style ordering is
followed until a production is found. The ability to change presentation at a global level
can be very useful: e.g., the documents can be “toggled” between presenting mathematical
expressions as structured English statements or algebraic terms by the choice of appropriate
presentation style.

We introduce the term presentation to denote the fundamental data required to present
agiven element: i.e., for agiven element name, the production and the style to which it is
assigned.

2.3 Reference for consistency

The consistent correlation between documents is built up through the use of references to
a central fact repository. Thus, the repository stores a table of elements and a table of
presentations. In use — such asin the example of Figurel — the elements are instantiated
by reference to the repository. In a document, a given element reference includes the name
of the desired element and the desired presentation style. The document is then rendered
to the screen with the element reference replaced by the corresponding production of that
style.

Element references provide the skeleton of structured text as described in Section2.1
above. They are actually an instruction for constructing the syntax constructor correspond-
ing to agiven element using data from various tables in the repository. We will also extend
the structured text to incorporate direct reference to entries in repository tables. We men-
tioned just two such tables in the previous paragraph, but in fact many tables are required
to support the basic Writer functionality — and there will be many more as the HiVE is
developed. The different tables store different classes of facts about elements. Note, for
example, that a presentation can be considered to be afact about a given element: the fact
that in the given style the element will be presented by the given production. Theindividual
chunks of data — the style, or the production — will be referred to as fact attributes. Thus,
these direct references will be referred to as attribute references.

We have already introduced facts about elements other than presentations. There is a
table that records the ordering on styles. We also have atable that records asimilar ordering
on sorts — an ordering that introduces subsorting to the language.

2.4 Sructured text in model-based documentation

The overal user goal in the HiVE is to create a project: a collection of related analysis
constructs and documentation for a given activity. The concept of project encompasses a
wide span of activities: from writing a technical paper through to a major system design
and beyond. Documents required in a project will often be prescibed for a given activity,
but may be extended to include any view of the project — say, pedagogical or summary
form, pictorial or slideshow — that the user desires to construct.

The user does not start each project from scratch: a given project is built as an exten-
sion of existing projects, which are said to be included. In particular, the user will have
a collection of analysis tools available, each of which can be controlled through the HiVE
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Writer. That is, each tool will have a plug-in that defines an interface to the Writer and a
corresponding collection of elements, facts and tables needed to model the interactions with
the tool. We call this combination a HiVe module. The developers of a HiVe module must
construct the base element algebra for recording tool interactions and outputs. Modules
may also add additional User Interface structures — such as buttons and menu items — to
allow tool-specific commands to be run from within the HiVe. At the bottom of the project
hierarchy isthe core Writer “module’ that includes the repository structure discussed above
and certain native tool mechanisms discussed below.

The HiVE inextricably mixes domain modelling with document construction. The user
selects the HiVE modules (that is a standard vocabulary) relevant for the given activity
and includes the corresponding projects in the current project. This give them a powerful,
but highly structured framework for expressing their ideas. The user then introduces the
specific elements and facts required to develop amodel of the activity at hand to the desired
level of detail. The grammar of the document language is derived from the total collection
of elements. During final document preparation, the repository provides easy access to al
elements and all facts about those elements defined in the current project as well asthosein
included projects. Thisaddsto thetechnical quality of the product by enforcing consistency
in vocabulary and facts. The user is able to tailor the presentation of the various elements
(and hence facts) to different audiences by defining appropriate productions, thus adding to
communicative effectiveness of the documents produced.

We can now summarise the different ingredients of what is meant by the rubric “ struc-
tured text”.

» Element references that provide the skeleton of structured text.

o Attribute references that allow re-use of pre-defined fragments of structured text.
» The dummy box that indicates a placeholder for structured text entry.

* Literalsthat alow “keyboard” entry of strings, numbers, et cetera.

The on-screen (and on-paper) presentation of structured text is controlled through the set-
ting of standard text attributes such as type face, weight, shape, but also through an ad-
ditional text attribute called presentation style that controls the actual characters used to
represent the various elements. Text attributes may be inherited through the structured text
hierarchy or set locally.

2.5 Supported mechanisms

The HiVE Writer provides native support for building tables. A functional view is givenin
the next section. Here we just point out two mechanisms which derive from the constructs
developed above.

(i) Syntax-direction: The sort-direction explicit in the element algebra can be directly
harnessed for syntax-directed editing capabilities. Observe first how Figurel can
be read “downwards’ as a temporal record of the construction of the mathematical
expression. At each stage the user selects a dummy box and inserts either an element
reference (with further dummy boxes for any arguments), or aphanumeric data from
the keyboard. By including the dummy box as part of structured text we ensure that
each stage in the construction is alega expression.
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The Writer provides a palette of syntax constructors for data-entry of element ref-
erences, and a view of the tables that can be used to enter attribute references. Both
windows provide syntax-direction by reflecting the allowed sort at the insertion point:
datawith the wrong sort are “greyed-out” and cannot be selected.

(if) Intelligent change management: Just one important consequence of the referencing
structure is to provide a straightforward facility for intelligent propagation of changes
throughout the documents of a given project. The change is made once at a central
point — wherever the data is entered into the repository. Since all other instances
throughout the documentation are references to facts in that repository, the change is
immediately propagated. We provide asimple illustration of this point in Section4.

3 TheWriter: an application overview

As discussed, the HiVe Writer supports the preparation of structured technical documents.
Thereto, it has three principal components.

(i) The Document editor which is for producing and updating structured documents.

(ii) The Datastore which is the combination of fact repository and syntax-directed data-
entry mechanism discussed earlier. It providesthe central design model for the project.
All documents created within the project will be consistent with this design model and
therefore with each other.

(iii) The Tool Interface which is an interface, with aflexible plug-in architecture, between
the Datastore and the tools used to process the design constructs.

The user controls tool interactions through a distinguished document, called the Normative
Design Document (NDD). The NDD is strongly coupled to the Datastore: it provides the
declaration point for all entries in the Datastore from the current project. There is exactly
one Datastore, and so exactly one NDD, in any given project.

3.1 Tool control in the NDD

The NDD is a structured document in which the user records the epistemic narrative of
the project development. It is special, however, as we will now explain: it is a (literately
programmed) script through which the user controls al interactions with tools.

The HiVE can potentially interface to a broad range of external tools, such as: theorem
provers and model checkers; algebraic analysis and numerical analysis; system simulation;
programming support; drawing; project management; requirements analysis; and version
control. Moreover, the population of the Datastore tables is considered an interaction with
the core Writer tool. The only assumption of the HiVE is that a supported tool must apply
some function to given input data, and produce diagnostics and output data.

The uniformity of the tool interaction is supported by the concept of commands. Com-
mands are collected in the DataStore as a special sort of element in the algebra of structured
text. Thecommands required for interaction with a particular tool are defined in the module
that supports that tool along with the code necessary to enact the interaction.

Each tool interaction proceeds as follows.

The syntax constructor for the command is inserted in the NDD, and the input argu-
ments filled in, using standard Datastore/keyboard data-entry mechanisms. The input argu-
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8.2.2 The Hazarp Anarysis Reporr shall consist of:
1. A description of the OperatioNaL ContexT for the SysTteMm;
2. A SystEM DESCRIPTION;

3. A list of potential Accments with corresponding AccENT SEVERITIES;

Fig. 2. A snapshot of Def (Aust) 5679.

ments encode the user input required for agiven tool action. Some arguments to acommand
may be reserved for presenting the results of atool interaction and the user is prevented
from editing them. Every tool command (such as a proof step in atheorem prover tool) is
constructed similarly.

The user then instructs the HiVE to process the command. Control is passed to the
relevant module which then enacts the desired transaction with the tool. Results from
the tool transaction may be presented in any output arguments of the command and one
or more facts are entered into the Datastore. Error messages are handled and displayed
appropriately to the user.

If the user is unhappy with the results, the command may be unprocessed to allow
editing of command input and then re-processed. The updated results are then entered into
the Datastore.

The NDD is alinear script, and thus processing a region of commands is smply se-
quencing the intermediate steps. Linearity allows the user to keep contextual focus whilst
controlling several tools. Moreover, the script must be constructed in awell ordered fashion
as determined by the execution logic of the tools it is controlling: for example, a theorem
prover tool will not accept constants that have not been declared at an earlier stage.

Since commands are easily recognised in structured text, the command script can be
embedded in an arbitrary pedagogical development of structured text. Ultimately, the uni-
versality of the command concept |eads to the tight correlation between the Datastore tables
and the NDD: modul o the pedagogical text, the data of the processed NDD command script
is precisely equivalent to the current project’s Datastore entries. Thus, indeed, the NDD is
aliterate exposition of the entire project construction.

4 Example: The Def (Aust) 5679 Safety Standard

To illustrate the HiVE Writer in use we consider the recent revision of the Australian De-
fence Standard Def (Aust) 5679 [7]. This Standard provides detailed requirements and
guidance on the structure of the Safety Case for a safety-critical system. It focuses on
assurance activities: these are system development and analysis activities that provide evi-
dence that the system meets its safety requirements.

Our example is based on Chapter 8 (Hazard Analysis). Hazard Analysis is the first
phase of Safety Case Development. Paragraph 8.2.2, shown before revision in Figure2,
highlights afrequent problem in the drafting of requirement documents: that of ensuring the
assignment of clear lines of responsibility while maximising readability. The requirement,
as stated, places an obligation on a document, the Hazard Analysis Report. Thisis hard to
enforce. On the other hand, clarifying the responsible agent (in this case the Supplier) in
situ would result in an overly complex statement of the requirement.
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8.2.2 The SurrLieR is responsible for compiling the Hazarp Anarysis REporT.
8.2.3 The Hazarp Anarysis Report must include:

1. A description of the OrperationaL Context for the System;
2. A SystEM DESCRIPTION;

3. A list of potential Accments with corresponding ACCIDENT SEVERITIES;

Fig. 3. Therevised Safety Standard document

The solution adopted by the authors of Def (Aust) 5679 is a two stage assignment
of responsibility: firstly, responsibility for a document (or a process) is assigned to an
appropriate agent; then requirements are placed on the document itself. This allows clear
assignment of responsibility while ensuring the requirements are stated in a natural way.
The resulting revision is shown in Figure3.

The following describes a simple HiVe module that we have developed to support this
discipline by enforcing the use of a constrained requirements language.

4.1 The Requirements Module

The Requirements module consists of a plug-in that provides special commands for con-
structing requirements and guidance paragraphs. The requirements command enforces a
discipline so that

» each paragraph constructed in this manner is labelled uniquely; and
* the requirement text can only be formed with provided syntax constructors.

The latter is achieved through the Writer's sort-driven editing via a model for the require-
ments gathering process based on Figure4. The boxes hold the sorts that distinguish the
entities of the process, whilst the diamonds hold the syntax constructors that express the
allowed relationships between entities.

As we will elaborate below, the resultant language cannot express the requirement in
Figure 2, but can express the two-stage assignment of Figure3. The plug-in also provides
more subtle support. The user is protected from badly implementing the two stages: i.e., if
the plug-in processes a“must’ requirement for a given Target then it also checks that a cor-
responding responsible Agent has been assigned — via an ‘is responsible for’ requirement

is ;
Target Agent Brococs
or

Text

Fig. 4. Entity Relationship diagram of the requirements model.
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Fig. 5. A view of the HiVE in action

— before allowing the document to be processed.

4.2 Using the HiVE on Def (Aust) 5679

A typical session for the Def (Aust) 5679 project in the HiVEe Writer is shown in Figureb.
The top left hand window is the Project Navigator which provides an easy mechanism for
moving between the different documents in different open projects. The middle window
is the NDD. It begins by instantiating the particular Agents (Acquirer, Supplier, Auditor
and Evaluator), Processes (Hazard Analysis) and Targets (Hazard Analysis Report) used
by Def (Aust) 5679 Chapter 8. It also contains some informal text flagging the need for
revision of the badly-worded requirement. The top right hand window shows the Hazard
Analysis document at the current stage of revision.

The Search Facts window, bottom right, is a view on the Datastore currently opened
to show the Requirement plug-in elements. Finally, at the bottom left, is a palette derived
by filtering a different Datastore view. It contains all the syntax constructors defined to
date Def (Aust) 5679 in the project. In each project session any number of independent
Datastore views (and syntax palettes) can be open, alowing multiple views into different
aspects of the project data.

4.3 Revising the requirement 8.2.2

The requirement 8.2.2 must be replaced by a two-stage assignment as discussed earlier.
For, suppose we were to attempt to introduce the previous requirement. Thereto, we insert
the requirement command, provide a label (R2) for this command, and insert the ‘shall’
constructor to arrive at the situation shown in Figure6. However, as seen there, an Agent
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Fig. 6. The ‘shall’ constructor requiring an element of sort Agent
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REVISION REQUIRED:
Paragraph 8.2.1 currently reads as:

The HAZARD ANALYSIS REPORT shall consist of:
- a description of the OPERATIONAL CONTEXT of the SYSTEM
- a list of ACCIDENT SCENARIOS

REVISION:
Must clarify the responsible Agent!
This will require two new requirements whose labels are introduced below.

element DefAust5679.ParagraphLabelR2 (R2) = Label + [] -- Requirement paragraph label
requirement : R2 The SUPPLIER is responsible for THE HAZARD ANALYSIS REPORT
element DefAust5679.ParagraphLabelR3 (R3) = Label + [] -- Requirement paragraph label

requirement : R3 THE HAZARD ANALYSIS REPORT must D

4wl

Text

R

Fig. 7. Completing the text of the final requirement in the Standard.

must be supplied in the first argument (currently selected) of the constructor:

* the status bar (bottom left) displays the sort required to fill the selected dummy box;

* the Writer has ‘greyed-out’ in the palettes all syntax constructors that do not result in the
Agent sort.

This feedback allows the user to be contextually aware at al stages in the construction.

The proper application of two-stage assignment needs two requirements to replace the
current one, as seen in Figure 7. Thefirst requirement establishes the responsible Agent us-
ing the ‘is responsible for’ constructor —we choose The Supplier as the responsible Agent
and The Hazard Analysis Report as the corresponding Target. The second requirement es-
tablishes the contents of The Hazard Analysis Report using the ‘must’ constructor. Figurer?
shows the NDD waiting for the text stating the contents. On processing, the requirements
are added to the DataStore, as shown in Figure8. Finally, these requirements are added by
reference the Safety Standard document leaving the result shown in Figure3.
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Fig. 8. The two-stage assignment added to the Datastore.

5 Conclusion

In this paper, we have given an overview of The HiVE Writer and shown how it can be
applied in the case of a very simple example: a Safety Standard. We have shown how
the production of the Safety Standard was supported through the construction of a light-
weight model of the system being described. This model consisted of elements such asthe
SurpLier and the Hazarp AnaLysis Report as well as a structured language for describing
the requirements placed on them by the Safety Standard (see Figure4) The use of this
model, along with the syntax-directed editing capability of The HiVE, ensures that users
are constrained to write only paragraphs that conform with the model.

The Writer is still under development. Informing its development are a number of secu-
rity devices and safety-critical systems. These examples are of great value in determining
the best mode of user interaction with The Writer.

Future work will build upon the Writer: first of all, the Prover will incorporate the
| sabelle theorem prover as a plug-in, extending the Writer by adding the ability to carry out
literate theorem proving in Higher-Order Logic (a powerful and widely used framework
for formal reasoning). The Modeller will enhance the Writer’s functionality to allow for
fragments of design (i.e. dataflow diagrams and state machines) to be stored in the datastore
and referenced in documents. The Modeller will thereby exploit the Prover to support
system modelling and verification.
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