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Abstract. This paper presents a machine-checked high-level security analysis of seL4 — an evolution of the
L4 kernel series targeted to secure, embedded devices. We provide an abstract specification of the seL4 access
control system in terms of a classical take-grant model together with a formal proof of its decidability. Using the
decidability property we show how confined subsystems can be enforced. All proofs and specifications in this
paper are machine-checked and developed in the interactive theorem prover Isabelle/HOL.

1. Introduction

This paper presents a machine-checked high-level security analysis of seL4 [DEK+06, EDE07]. The seL4 micro-
kernel is an evolution of the L4 kernel series [Lie95] targeted to secure, embedded devices.

It does not need to be argued that embedded systems have become an integral part of our lives. They are in-
creasingly deployed in safety- and mission-critical scenarios. At the same time, embedded devices are becoming
multipurpose appliances, exemplified by mobile phones, PDAs, entertainment devices and set-top boxes. They fea-
ture millions of lines of software, installed for various purposes and therefore, with varying degrees of assurance
and diverse resource requirements, developed on a tight budget. They feature untrusted third-party software com-
ponents, applications, and even whole operating systems (such as Linux) that can be installed by the manufacturer,
suppliers and even the end user.

Microkernels are a promising approach with renewed industry interest to improving the security and robustness
of components on these devices. They provide strong isolation guarantees between components — misbehaviour
of a component is confined within the component itself.

The success of this approach depends, to large degree on the microkernel’s ability to enforce isolation between
components. In this paper, we analyse the seL4 kernel primitives and affirm that they are sufficient to enforce
isolation. Moreover, we provide some examples on how these mechanisms can be used in practice. If the restrictions
that guarantee isolation are overly restrictive, then such a kernel will not be pragmatic. Through these examples,
we show that this is not the case in seL4.

All formal definitions, lemmas, theorems, and examples we present are machined-checked using the theorem
prover Isabelle/HOL [NPW02]. To our knowledge this constitutes the first machine-checked specification and the
first machine-checked proof of a take-grant [LS77] model. It is also the first direct application of the take-grant
model to a specific microkernel API.

Beyond this paper, it is our longer term goal to formally connect the security proof presented here with the
actual kernel implementation [EKD+07,EKK06]. Our current work on this formal refinement proof has influenced
some of the design choices in our specification. We briefly sketch our proof plan for refinement in Sect. 5.2.

The remainder of this paper is structured as follows. In Sect. 2 we describe the relevant parts of the seL4
microkernel, in particular its physical memory management system [EDE07] which is directly coupled with the
access control model. Sect. 3 introduces the classical take-grant access control model and how seL4 deviates from
the classical model. In Sect. 4 we define the notation that we use in Sect. 5 to present the abstract specification of
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Fig. 1. Example seL4 system call

the seL4 access control model. Sect. 6 then concerns the formulation and proof of decidability [HRU76] of our
protection system, and in Sect. 7 we prove mandatory isolation between subsystems and provide some example
systems. Sect. 8 discusses related work, and Sect. 9 concludes.

2. The seL4 Microkernel

The seL4 (secure embedded L4) kernel is an evolution of the L4 [Lie96] microkernel; as the name implies it is
targeted to secure embedded devices. It aims to develop an efficient and flexible kernel with assurance of its ability
to enforce security policies such as isolation, spatial partitioning, and a proof of implementation correctness of the
kernel against the abstract model used in the security proof.

seL4 employes a capability [DVH66] based protection system that is inspired by early hardware-based capabil-
ity machines such as CAP [NW77] where capabilities control access to physical memory, the KeyKOS and EROS
systems [Har85, SSF99] with their controls on dissemination of capabilities and the take-grant model [LS77]. A
detailed description of the seL4 API can be found elsewhere [NIC06,DEK+06,EDE07]. In this section, we provide
an overview of the relevant parts of the seL4 kernel.

2.1. Overview

Similar to the L4 microkernel, seL4 provides three basic abstractions: threads, address spaces and inter-process
communication (IPC). In addition, seL4 introduces an abstraction of so-called untyped memory. Roughly speaking,
untyped memory stands for a region of currently unused physical memory. We will describe the concept in more
detail further below.

All kernel abstractions are provided via named, first-class kernel objects. Each kernel object implements a
particular abstraction and supports one or more operations. Authorised users can obtain kernel services by invoking
operations on kernel objects.

Authority over these objects is conferred via capabilities [DVH66], specifically, partitioned capabilities. Ca-
pabilities are stored inside kernel objects called CNodes. These can be seen as tables of capabilities, which may be
inspected and modified only via invocation of the CNode object itself. Through this mechanism they are guarded
against user tampering. CNodes are similar to KeyKOS nodes [Har85], except that they are composed similar to
guarded page tables [Lie94] to form a local capability address space.

Capabilities in seL4 are immutable. While user-level programs may specify some of its properties at the time
the capability is created, those properties may only be changed by removing the capability and replacing it with
another.

All system calls are invocations of capabilities. System call arguments can either be data or other capabilities
required to complete the system call. Users specify a capability as an index into a local capability address space
that will translate the given index to a capability. Threads have no intrinsic authority beyond what they possess as
capabilities.

Fig. 1 shows an example of a thread invoking a system call. As arguments to the system call the thread provides
the operation to perform (encoded as an integer, in Fig. 1 the send operation), a capability index (in the example
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0xFA10) that names the capability and thereby the kernel object to invoke, and possibility further arguments of
the operation consisting of either data or more capability indices, depending on the system call. Associated with
each thread is a capability address space or a CSpace. The CSpace defines a local capability name space for each
thread; it maps capability indices to capabilities. Upon receiving the request, the kernel locates the root of the
CSpace associated with the currently running thread. This root, located in its thread control block (TCB), is a
pointer to a CNode kernel object. Roughly speaking,2 a CNode translates parts of of the capability index. In the
example, the first CNode translates the FA part of the index, leading to another CNode that for 10 finally returns a
pointer to the kernel object that the capability names (in the example, this is an IPC endpoint, supporting the send
operation). The set of CNodes reachable by lookup from the root defines the CSpace. Each lookup checks whether
the capability possesses sufficient authority to complete the requested operation. If so, the object named by the
capability is invoked with the rest of the arguments provided in the system call. On the other hand, if the capability
does not possess sufficient authority the kernel, depending on the operation, either notifies a designated thread or
drops the operation silently.

The authority a thread possesses can be modified by means of system call operations on CNodes. These system
calls are in turn authorised by the current distribution of capabilities, using the same mechanism explained above.
The main question answered in this paper is how to model and control the distribution of authority in seL4.

The seL4 kernel uses a variant of the take-grant model to control the dissemination of authority via capabilities.
Sect. 3 discuss the take-grant model and the modifications introduced by seL4. In Sect. 5 we formalise this model
in Isabelle/HOL which is then used in our analysis in Sect. 6 and Sect. 7.

2.2. Memory Allocation Model

An important part of the seL4 design is that all memory — be it the memory directly used by an application (e.g.
memory frames) or indirectly in the kernel (e.g. page tables), is fully accounted for by capabilities. The motivation
for this allocation scheme can be found elsewhere [EDE07]. Here, we explain at an example how the system works.

At boot time, seL4 preallocates all memory required for the kernel to run — space for kernel code, data, and
kernel stack. As shown in Fig. 2 the remainder of memory is divided into untyped memory (UM) objects. The
initial thread, the resource manager, has full authority over these UM objects. The resource manager is responsible
for enforcing a suitable resource management policy and for boot strapping the rest of the system.

A parent capability to untyped memory can be refined into child capabilities to smaller sized untyped mem-
ory blocks or into other kernel objects via the retype operation on UM objects. Retype has the following two
restrictions:

1. the refined child capabilities must refer to non-overlapping UM objects of size less than or equal to the original,
and

2. the parent capability must have not currently posses any previously refined child capabilities.

To guarantee the integrity of kernel objects, a region of memory must implement a single kernel object type at

2 The seL4 implementation uses guarded page tables, a very similar, but slightly more complex mechanism that allows to store large CSpaces
efficiently.
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a time. The restrictions above ensure that there are no overlapping or previously allocated objects within the given
region.

Once a kernel object is created via the retype operation, the creator has full authority over the created object.
What “full authority” means depends on the object type. For example, if the created object is untyped memory, full
authority means authority to retype, for a frame it is {read, write}, for an IPC endpoint it is {send, receive} and
so on. The creator can then delegate all or part of the authority it possesses over the object to one or more of its
clients. This is done by granting the client a capability to the object with possibly diminished access rights.

The example in Fig. 2 illustrates a sample system architecture, with a domain specific resource manager running
at user-level, receiving authority to remaining untyped memory after boot strapping. The resource manager has the
freedom to apply any policy depending on the domain, such as subdividing untyped memory for delegation to
any guest OS, or withholding memory and providing an interface to applications for them to request specific OS
services.

Applications are at liberty to use a suitable policy to manage the available untyped memory. This can be a
simple static or a complex dynamic policy. In the above example, the legacy OS server might employ a complex
and error prone policy to manage its UM objects, in contrast to a simple static policy used by the resource manager.
However, since the legacy OS can not exceed the authority it possesses, any misbehaviour of the legacy OS is
isolated from the rest of the system.

As a result, different allocation policies over the kernel’s meta data can be enforced from user space, without
modifying the kernel code. In our context, this is desirable — depending on the domain, a suitable allocation policy
can be enforced without modifying the verified kernel code base.

In summary, there is no implicit memory allocation within the kernel; all allocation is explicit by user request
via capability invocations. Restricting the number of UM capabilities possessed by an application guarantees the
precise amount of physical memory that can be directly or indirectly consumed by a subsystem. That means,
by construction, the question of partitioning hardware resources, in particular physical memory, is a question of
authority distribution and with that, capability distribution, only. The next sections show how authority distribution
is modelled and controlled.

3. The Take-Grant Model

Access control models (also ‘protection models’) provide a formalism and framework for specifying, analysing
and implementing security policies. Such a model consists of: (a) finite set of access rights, and (b) a finite set of
rules for modifying the distribution of these access rights. The safety analysis then determines, for the given set of
rules in the model and an initial distribution of access rights, whether or not it is possible to reach a state in which
a particular access right α is acquired by a subject that did not possess it initially. If there exists an algorithm that
decides safety, then the model is said to be decidable.

The classical access model used in capability systems is the take-grant model, originally proposed by Lipton
and Snyder [LS77] and later enhanced by many authors [BS79,Sny81,Bis81,Bis96,SW00]. The model is decidable
in linear time [LS77]. In this section we provide an overview of the classical take-grant model and the modification
introduced by the seL4.

3.1. The Classical Take-Grant Model

The take-grant model represents the protection state of the system as a directed graph; where nodes represent
subjects or objects in the system and the labelled, directed arcs represent authority — capabilities, possessed by a
subject over the object pointed by the arc. An out going arc from X to Y with label α means X possess α authority
over the object Y (see Fig. 3).

If the set of of access rights of the system is R, then any label α on an arc is a nonempty subset of R (α ⊆ R).
While R might vary, there are two rights that occur in every instance of the model: the take right (t) and the grant
right (g). They play a special role in dissemination of authority.

System operations that modify the authority distribution are modelled as graph mutation rules. There are a
number of such rules, but the most common ones are take, grant, create and remove. Take and grant rules propagate
existing authority from one node to another. The create rule adds a node to the graph and an arc connecting the
new node to an existing one. The remove rule takes away part of the access rights from an arc or removes the arc
entirely. Following is a description of the graph rewriting rules:

• take rule: Let S, X, Y be three distinct vertices in the protection graph. Let there be an arc from X to Y
labelled α, and from S to X with a label γ such that t ∈ γ. Then the take rule defines a new graph by adding
an edge from S to Y with the label β ⊆ α. Part (a) of Fig. 3 represents an application of the take rule.

• grant rule: Let S, X, Y be three distinct vertices in the protection graph. Let there be an arc from S to Y
labelled α, and from S to X with a label γ such that g ∈ γ. Then the grant rule defines a new graph by adding
an edge from X to Y with the label β ⊆ α. Part (b) in Fig. 3 is a graphical illustration of this rule.

• create rule: Let S be a vertex in the protection graph. Then the create rule defines a new graph by adding an
new node X and a arc from S to X with a label α. Part (c) of Fig. 3 represents an application of this rule.
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Fig. 3. Take-Grant Rules

• remove rule: Let S, X be vertices in the protection graph. Let there be an arc from S to X with a label α. Then
the remove rule defines a new graph by deleting β labels from α. If α − β = {} then the arc itself is removed.
The operation is shown in part (d) of Fig. 3.

Lipton and Synder [LS77] showed that safety is decidable for this model. Bishop et. al. [BS79] later extended
the analysis to cover de facto rights — access rights implied by a given distribution of authority. For example,
assume that there is a subject S1 with write authority over subject S2. Moreover, S2 has write authority to subject
S3. Then, S1 possesses a de facto write authority to subject S3; because data that S1 writes to S2 can then be
transfered to S3 via S2. S1 does not possess direct (de jure) write authority, nor is there any take or grant authority
propagation necessary for S1 to indirectly write to S3. The above example is an instance of the find rule defined
in [BS79]. Our analysis below is concerned with authority propagation and memory separation, and hence mainly
with de jure authority. The analysis could itself be seen as computing an approximation of the de facto grant right
distribution. The issue of other de facto rights is orthogonal and our analysis should extend easily to it.

3.2. The seL4 Take-Grant Model

The seL4 access control model is a variant of take-grant. It modifies the classical model in several aspects. While
the formal access control model of seL4 is the focus of Sect. 5, in this section we provide an informal description
of the modifications introduced by seL4.

The most significant of these modifications is the create rule. Adding a new node to the protection graph
corresponds to allocating a new object in the concrete kernel. As we mentioned in Sect. 2.1 the authority to
allocate is conferred by untyped capabilities. As such, the create rule is only applicable if there is an outgoing
arc with create authority which is represented by label c. All other operations do not consume additional resources.
All resources required for the functionality of an object are pre-allocated at the time of object creation.

The second modification is that our remove rule is simpler than that of the take-grant model. It removes the
capability, that is, the whole arc, instead of removing part of its label. Our motivation for this changes is that in the
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concrete kernel capabilities are immutable. The only way to diminish authority (the label of an arc) is by removing
the capability and creating a new one with diminished authority.

In addition to removing a single capability, the seL4 kernel provides an operation called revoke which removes a
set of capabilities. In practice, this mechanism is applied to re-use resources previously handed out to a subsystem.
Since the kernel keeps track of what authority was derived from each untyped capability, the supervisor can remove
all authority from a subsystem in one operation by revoking the untyped capability from which the subsystem was
created. None of the graph rewriting rules in take-grant represent the revoke operation. However, it can be simply
be thought of as a set of multiple applications of remove.

The take rule of take-grant is not employed by the seL4 kernel. All authority propagations are grant operations.
The transfer of a capability is authorised by the capabilities possessed by the sender. As such, there is no explicit
take (t) right in our model.

4. Notation

This section introduces the notation used in the formal parts of the paper below. We directly use the notation of the
Isabelle/HOL theorem prover [NPW02] which for the most part coincides with standard mathematics. Isabelle is a
generic system for implementing logical formalisms, and Isabelle/HOL is the specialisation of Isabelle for Higher
Order Logic.

HOL is a typed logic whose type system is similar to that of functional programming languages like ML or
Haskell. Typed variables are written ’a, ’b, etc. The notation x::’a means that HOL term x is of type ’a. HOL
provides a number of base types, in particular bool, the type of truth values and nat, the type of natural numbers.
Type constructors are supported as well: nat list is a list of natural numbers and nat set denotes a set of natural
numbers. The empty list is written [] and the list constructor is written with the infix x ·xs.

In this paper we are using three ways to introduce new types. The command datatype defines a new algebraic
data type. For example, the four primitive access rights of our kernel are defined by:

datatype rights = Read | Write | Grant | Create
For simple abbreviations, we write expressions like types caps = capability set. Finally, the record command

introduces tuples with named components. In the example

record point =
x :: nat
y :: nat

the new type point is a tuple of two nat components. If p is a point, the term x p stands for the x-component of
p, and y p for its y-component. If p has the value (|x = 2, y = 3 |), then the update notation p(|y := 4 |) stands for
(|x = 2, y = 4 |).

The space of total functions is denoted by ⇒. Function update is written f(x:=y). Sequential updates are written
f(x:=a, y:=b). Applying a function f to a set A is written f ‘ A ≡ {y | ∃ x∈A. y = f x}.

We use =⇒ for implication when we write lemmas to separate antecedent and conclusion. [[ A1; . . .; An ]] =⇒
A abbreviates A1 =⇒ ( . . . =⇒ (An =⇒ A) . . . ).

Isabelle proofs can be augmented with LATEX text. We use this presentation mechanism to generate the text
for all of the definitions and theorems in this paper, thus taking them directly from the machine-checked Isabelle
sources.

5. The seL4 Protection Model

In the remainder of this paper, we formally analyse the behaviour of the seL4 kernel. Our goal is to show that it
is feasible to implement isolated subsystems using seL4 mechanisms. An isolated subsystem can be viewed as a
collection of processes or entities encapsulated in such a way that authority can neither get in nor out. In seL4, this
also means that the subsystem cannot gain access to any additional physical memory at any time in the future and
is thus strongly spatially separated from the rest of the system.

We start with an example of our requirements, which we carry forward in the discussion below. Assume there
are n distinct subsystems in our system, namely ss1, ss2 . . . ssn (see Fig. 4). Each subsystem may contain one or
more entities. The resource manager responsible for setting up these subsystems would like to guarantee that any
given subsystem, say ssi, can not exceed the authority explicitly given to it, and with that the amount of physical
memory and overt communication channels. In other words, the resource manager would like to guarantee that no
entity within ssi can obtain capabilities to another entity unless these capabilities are already already present in
ssi (possibly in another entity of ssi).

Given this scenario, the question is: Under which conditions can some entity, say ex, leak a capability to some
other entity ei at any point in the future? And, importantly, can such a future leak be foreseen and prevented?

Once the subsystems are created, they will execute system calls, and thereby modify the system state. In order
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to make strong isolation guarantees we need to show that there is no sequence of commands with which to arrive
at a future system state in which ex can leak more access to ei.

Our interest is in mandatory capability confinement, that is, in showing that ex cannot leak a capability to ei,
rather than that ex can but does not.

The structure of our analysis is as follows: the decidability analysis in Sect. 6 shows that it is feasible to decide
if such a leak can take place in any future state and identifies what restrictions should be in place to prevent such a
leak. Sect. 7 shows how to implement isolated subsystems using seL4 mechanisms.

In the remainder of this section we develop an abstract model of our kernel, sketch how it refines to the concrete
seL4 API, and define a number predicates that will be used below.

5.1. Formalisation

The system state consist of a collection of kernel objects. We do not make the usual distinction between active
subjects and passive objects. Instead, we collectively call them entities. Entities are identified by their memory
address which we model as natural numbers. In the usual graph model found in the literature, entities would be
nodes and their addresses the names or labels of these nodes.

types entity_id = nat

There are four primitive access rights in our model. Each capability has associated with it a set of these rights.
Thus we define

datatype rights = Read | Write | Grant | Create
Read and Write have the obvious meaning — they authorise reading and writing of information. Similar to the

take-grant model [LS77], Grant is sufficient authority to propagate a capability to another entity. The Create right
models the behaviour of untyped memory objects. It confers the authority to create new entities.

A capability is a record with two fields: a) an identifier which names an entity, and b) a set of rights which
defines the operations the entity is authorised to perform on that entity.

record cap = entity :: entity_id

rights :: rights set

On this abstract level, a kernel object (an entity) only contains a set of capabilities. Entities have no additional
authority beyond what they possess as capabilities.

record entity = caps :: cap set

The state of the system consist of two fields:

record state = heap :: entity_id ⇒ entity

next_id :: entity_id

The component heap stores the entities of the system. It can be viewed as an array that contains entities at
addresses 0 up to and excluding next_id. The next_id is the next free slot for placing an entity without overlapping
with any existing one.3 This setup allows a simple test to determine the existence of an entity_id :

3 An alternative to this model would be to use a partial function for the heap. We found working with a total function and an explicit, separate
domain slightly more convenient in Isabelle.
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isEntityOf :: state ⇒ entity_id ⇒ bool

isEntityOf s e ≡ e < next_id s

This test is not present in the kernel implementation itself. In the implementation, the existence of a capability
in the system implies the existence of the entity. The same is true in our abstract model for well-formed states:
the entities stored in heap contain capabilities, which again contain references to other entities. In any run of the
system, these references should only point to existing entities. We call such system states sane :

sane :: state ⇒ bool

sane s ≡ (∀ c∈all_caps s. isEntityOf s (entity c)) ∧ (∀ e. ¬ isEntityOf s e −→ caps_of s e = ∅)

all_caps :: state ⇒ cap set

all_caps s ≡
S

e caps_of s e

caps_of :: state ⇒ entity_id ⇒ cap set

caps_of s sref ≡ caps (heap s sref)

where caps_of s r denotes the set of all capabilities contained in the entity with address r in state s, and all_caps

s denotes all capabilities in the given state s — the union of the capabilities over all entities in the system. The
create operation will guarantee that for any sane state s

• the new entity will not overlap with any of the existing ones and
• no capability in the current state will be pointing to the heap location of the new entity.

We already discussed the implications of overlapping objects in Section 2.2. As we will see later, the second
property is essential for our safety analysis as well.

Next, we introduce the operations of the seL4 model, captured in data type sysOPs :
datatype sysOPs = SysNoOP entity_id

| SysRead entity_id cap

| SysWrite entity_id cap

| SysCreate entity_id cap cap

| SysGrant entity_id cap cap rights set

| SysRemove entity_id cap cap

| SysRevoke entity_id cap

A traditional abstract system model would usually lack the NoOp operation. We have included it in our specifi-
cation, because we intend to prove a formal refinement relation between the take-grant model presented here and
the interface the kernel implementation provides. Some of the operations that exist in the seL4 kernel API will not
be observable on this abstract level and thus can only be mapped to SysNoOP. An example is sending a non-blocking
message to a thread not willing to accept, which will result in a dropped message. These operations do not change
the set of capabilities that is available to any entity in the system. In fact, neither SysRead nor SysWrite change the
abstract system state either. We include them in this model, because they have preconditions that are observable on
this level and thus might be interesting for later analysis.

The first argument of each operation indicates the entity initiating that operation. The second argument is the
capability being invoked. The third argument for SysCreate points to the destination entity for the new capability,
for SysGrant it is the capability that is transported and for SysRemove it is the capability that is removed. The fourth
argument to SysGrant is a mask for the access rights of the transported capability. The diminish function reduces
access rights according to such a mask.

diminish :: cap ⇒ rights set ⇒ cap

diminish c R ≡ c(|rights := rights c ∩ R |)

Through the diminish function, the entity initiating SysGrant operation is at liberty to transport a subset of the
authority it possesses to the receiver.

Any operation is allowed only under certain preconditions, encoded by legal.
legal :: sysOPs ⇒ state ⇒ bool

legal (SysNoOP e) s = isEntityOf s e

legal (SysRead e c) s = isEntityOf s e ∧ c ∈ caps_of s e ∧ Read ∈ rights c

legal (SysWrite e c) s = isEntityOf s e ∧ c ∈ caps_of s e ∧ Write ∈ rights c

legal (SysCreate e c1 c2) s = isEntityOf s e ∧ {c1, c2} ⊆ caps_of s e ∧ Grant ∈ rights c2 ∧
Create ∈ rights c1

legal (SysGrant e c1 c2 r) s = isEntityOf s e ∧ {c1, c2} ⊆ caps_of s e ∧ Grant ∈ rights c1

legal (SysRemove e c1 c2) s = isEntityOf s e ∧ c1 ∈ caps_of s e

legal (SysRevoke e c) s = isEntityOf s e ∧ c ∈ caps_of s e

The definition of a legal operation firstly checks if the entity initiating the operation exists in that system state.
Secondly, all the capabilities specified in the operation should be in the entity’s possession at that state. Finally, the
capabilities specified should have at least the appropriate permissions.

We now define how each of the operations mutates the system state, assuming it is started in a legal state. The
SysCreate and SysGrant operations add capabilities to entities.
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createOperation e c1 c2 s ≡
let nullEntity = (|caps = ∅|);

newCap = (|entity = next_id s, rights = allRights |);
newTarget = (|caps = {newCap} ∪ caps_of s (entity c2) |)

in (|heap = (heap s)(next_id s := nullEntity, entity c2 := newTarget),
next_id = next_id s + 1 |)

The SysCreate operation allocates a new entity in the system heap, creates a new capability to the new entity
with full authority, and places this new capability in the entity pointed to by the c2 capability. The operation
consumes resources in terms of creating a new entity in the heap. So, the subject initiating this call is required to
provide and invoke an untyped capability c1. Placing the new capability does not consume additional resources.

grantOperation e c1 c2 R s ≡
s(|heap := (heap s)(entity c1 := (|caps = {diminish c2 R} ∪ caps_of s (entity c1) |)) |)

The SysGrant operation, similar to SysCreate, adds a capability to the entity pointed to by c1. However, unlike
SysCreate, the new capability is a diminished copy of the existing capability c2.

The SysRemove and SysRevoke operation remove capabilities from system entities.

removeOperation e c1 c2 s ≡
s(|heap := (heap s)(entity c1 := (|caps = caps_of s (entity c1) - {c2} |)) |)

The SysRemove operation removes the specified capability c2 from the entity denoted by c1.

cdt :: state ⇒ cap ⇒ (cap × cap list) list

removeCaps e (c, cs) s ≡ foldr (removeOperation e c) cs s

revokeOperation e c s ≡ foldr (removeCaps e) (cdt s c) s

foldr f [] a = a

foldr f (x ·xs) a = f x (foldr f xs a)

The SysRevoke operation is used to revoke all authority from a whole subsystem to prepare it for re-use. The seL4
kernel internally tracks in the so-called capability derivation tree [EDE07] how capabilities are derived from one
another with create and grant operations. We do not model the capability derivation tree explicitly at this level,
instead we assume the existence of a function cdt that returns for the current system state and the capability to be
revoked, a list that describes which capabilities are to be removed from which entities. Given this list, the revoke
operation is then just a repeated call of SysRemove.

Fig. 5 shows the definitions above as graph rewriting rules.
A single step of execution in the system is summarised by the functions step’ and step :

step :: sysOPs ⇒ state ⇒ state

step’ (SysNoOP e) s = s

step’ (SysRead e c) s = s

step’ (SysWrite e c) s = s

step’ (SysCreate e c1 c2) s = createOperation e c1 c2 s

step’ (SysGrant e c1 c2 R) s = grantOperation e c1 c2 R s

step’ (SysRemove e c1 c2) s = removeOperation e c1 c2 s

step’ (SysRevoke e c) s = revokeOperation e c s

step :: sysOPs ⇒ state ⇒ state

step cmd s ≡ if legal cmd s then step’ cmd s else s

The state after a whole system run, i.e., executing a list of system operations, is then just repetition of step (note
that the list of commands is read from right to left here):

execute :: sysOPs list ⇒ state ⇒ state

execute = foldr step

In our model, the kernel after bootstrapping starts with one entity, the resource manager, which posses full
rights to itself. In the concrete kernel implementation, the initial state is slightly more complex, with the resource
manager thread and a number of separate untyped capabilities to cover all available memory. We have summarised
these here into one. We write

s i ≡ (|heap = [0 7→ {allCap 0}], next_id = 1 |)

for the initial state s i. The notation [0 7→ {allCap 0}] stands for an empty heap where position 0 is overwritten
with an object that has {allCap 0} as its capability set. The empty heap is defined as emptyHeap ≡ λx. nullEntity

where nullEntity ≡ (|caps = ∅|) and allCap e ≡ (|entity = e, rights = allRights |).



10 Dhammika Elkaduwe, Gerwin Klein and Kevin Elphinstone

e
2

e

e
1

e
2

e

e
1

SysGrant e c
1
 c

2 
R

e
2

e

e
1

Create  ∈ c
1 Grant ∈ c

2

e
2

e

e
1

allRights

SysCreate e c
1
 c

2

(a) SysCreate Operation

(b) SysGrant Operation

SysRemove e c
1
 c

2

(c) SysRemove Operation

e
2

e

e
1

c
1

c
2

e
2

e

e
1

e
1

e

e
2

c
1

e
n

...

SysRevoke e c
1

(c) SysRevoke Operation

e
1

e

e
2

e
n

...

c
2 Grant ∈ c

1

diminish c
2
 R

e
n

c
2

Fig. 5. The seL4 authority distribution rules

5.2. Refining to the seL4 API

The abstract formalism we presented in the last section provides a framework for reasoning about the ability to
enforce security policies. One important question, however, is: What does such a policy mean for the concrete
kernel? While a full treatment of his topic is beyond the scope of this paper, it is our longer term goal to formally
connect the security proofs presented here with the concrete kernel by means of formal refinement between the
abstract model we presented above and the deployable kernel implementation. In other work [EKD+07,DEK+06,
TKN07] we have developed a precise, abstract formalisation of the seL4 API and have shown how we plan to
prove refinement between this API and the implementation.
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Fig. 6. Refinement

In this section we briefly describe how to connect the abstract take-grant model of Sect. 5.1 to the API formal-
isation. We have not mechanised this proof in Isabelle yet, but we can give a sketch of the proof outline below.

We show formal refinement [dRE98] by forward simulation. For this, we need to map each concrete kernel API
call to a sequence of one or more take-grant model operations, and show that they preserve a suitable refinement
relation between abstract and concrete states.

Fig. 6 shows an example. Given a concrete kernel state (represented by C1 in Fig. 6), and the corresponding
abstract state (represented by A1), we need to find a refinement relation R between them such that it is preserved
by execution in the following way. Whenever we perform an operation on the concrete kernel, and thereby modify
its state to C2, we need to show that

• there exist a sequence of operations in the abstract model corresponding to the concrete operation, resulting in
state A2, and

• the relation R holds for the new states C2 and A2.

Once this is shown for all concrete operations, we can conclude that all state invariants proven on the abstract
model hold for the concrete API (under the image of the refinement relation R). The security properties shown in
the sections below are such state invariants.

As we mentioned earlier, the design of the abstract model was influenced by our plan to prove formal refine-
ment. We have already discussed the motivation behind keeping SysNoOP. Concrete operations such as IPCSend
(that is a send operation invoked on an communication endpoint), or IPCReceive (a receive operation on an end-
point) map to SysWrite and SysRead in the abstract model respectively. Not all concrete operations can be modelled
by a single abstract operation. For example, the concrete kernel provides a system call to move capabilities from
one CSpace to another. In the abstract model, this corresponds to two operations: a SysGrant followed by a SysRe-
move.

The refinement relation R can be sketched as follows. Each concrete kernel object apart for CNode objects
maps to an entity in the abstract model. CNode objects store capabilities and are related to thread objects in the
concrete kernel by the lookup operation explained in Sect. 2.1. They map to the capability sets of the entities
corresponding to these threads. All other entities have empty capability sets. The refinement proof then consists
of observing for each concrete API operation that its effect is correctly reduced to the effect on the capability
distribution in the abstract model.

5.3. Predicates

Before we proceed to our analysis, a precise statement of what we mean by leak is warranted. Earlier in this section
we provided an informal description of leak: if we have two entities, ex and e i, we want to prevent ex from giving
(or leaking) a capability to e i in the current state as well as in any future state that can be reached by executing any
sequence of commands.

In our model, there are two operations that add a capability to a system entity — SysCreate and SysGrant.
Furthermore, they are legal only if the entity initiating the operation has a capability that points to the entity under
consideration and has Grant authority (see definition in Sect. 5.1). Such a capability we call a grantCap :

grantCap :: entity_id ⇒ cap

grantCap e ≡ (|entity = e, rights = {Grant} |)

Note that grantCap e is the least authorised capability that allows an addition of a capability to entity e. We use
the infix operator :< to indicate that a set of capabilities has at least as much authority as a given capability:

c :< C ≡ ∃ c’∈C. entity c = entity c’ ∧ rights c ⊆ rights c’
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If there is a capability in the given set such that it points to the same object and has equal or more authority, then
:< returns true and false otherwise.

Now we can define the predicate leak. We write s ` ex → e i to indicate that in state s, entity ex has the ability
to give a capability to entity e i. Its definition is as follows:

leak :: state ⇒ entity_id ⇒ entity_id ⇒ bool

s ` ex → e i ≡ grantCap e i :< caps_of s ex

Preventing a leak in the initial state (s0) is trivial — the resource manager creates this state, and therefore the
capabilities possessed by any entity are directly under its control. More interesting are leaks that might occur in
some later state:

leakInFuture :: state ⇒ entity_id ⇒ entity_id ⇒ bool

♦ s ` ex → e i ≡ ∃ cmds. execute cmds s ` ex → e i

That means, there is a sequence of commands, that if executed will result in a state in which entity ex can leak to
e i. The purpose of the analysis in the next section is twofold. Firstly, we show that given s, it is feasible to decide
whether ♦ s0 ` ex → e i is true. Secondly, we identify a restriction R that the resource manager can enforce on s

such that R s =⇒ ¬ ♦ s ` ex → e i.

6. Access Control in seL4 is Decidable

In this section, we show that the seL4 access control model is decidable. To be precise, we show that given a
state s, and two entities ex and ey in s, we can give a tight and safe approximation of the value of the predicate
♦ s ` ex → e i. We will show formally that the approximation is safe and argue informally that it is tight. In fact,
the literature usually does not call this predicate an approximation, but just makes stronger assumptions on the
system such that the approximation is precise and the problem can be called decidable outright. We prefer to leave
the model itself more general, and recognise that the decision procedure is in fact a (very good) approximation
only.

Using this approximation, if the resource manager adheres to certain restrictions on the initial dissemination of
capabilities, a leak can be prevented in any state derived from s.

Note that we are not excluding the ability to create entities. Contrary to the pen-and-paper proofs in the liter-
ature, we directly show the property for any sequence of commands, including ones that add new entities to the
state. The only restriction is that the entities ex and ey already exist in s, otherwise the statement does not make
sense in state s. We will discuss later why this does not constitute any loss of generality.

The proof is about 2000 lines of Isabelle scripts. We show here the essential lemmas and, in brief, various
engineering techniques we used in the proof. The structure of the proof is as follows. We identify a property,
related to leak, that is preserved by step. We then show that this property naturally lends itself to identifying R —
the restriction that will prevent a leak in future.

In the proof we only consider sane states: those where no dangling capability pointers exist and where newly
created entities are guaranteed not to overlap with existing ones (see Sect. 5.1). This is trivially true for the initial
state of the system, and is preserved over execution.

Lemma 1. Single execution steps preserve sanity: sane s =⇒ sane (step a s)

Proof. By case distinction on the command to be executed, unfolding definitions, and observing that no operation
creates overlapping objects or references to non-existing objects.

Lemma 2. Execution preserves sanity: sane s =⇒ sane (execute cmds s)

Proof. By induction over the command sequence and Lemma 1.

The main invariant property of the system relating to authority is the symmetric, reflexive, transitive closure over
the leak relation — the grant arcs in the capability graph. Occasionally, the symmetric closure alone is useful. We
call it connected and write s ` ex ↔ ey:

s ` ex ↔ ey = s ` ex → ey ∨ s ` ey → ex

The intuition behind this invariant is the following. We are looking at grant capabilities only, because these are
the only ones that can disseminate authority. We need the transitive closure, because we are looking at an arbitrary
number of execution steps. We need the symmetric closure, because as soon as there is one entity in the transitive
closure that has a grant capability to itself, it can use this capability to invert all grant arcs. The reflexive part of the
closure is introduced by the create operation. Given the transitive and symmetric part, each entity with a suitable
create right can create a transitive grant path to itself via the entity it has created.

There are two assumptions in this closure that make it an approximation: symmetry and reflexivity. Without
these, the property is not invariant over the grant and create operations. With them, we might claim that a given
system can gain more authority in the future than what it in fact can: a) if there is no transitive self-referential grant
capability in the system or b) if there is no create capability in the system. Although it is possible to build such
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systems in seL4, and for small, static systems this might even occur in practise, these are very simple to analyse
and it is unlikely that the approximation will lead to undue false alarms. For the vast majority — those with the
ability to create and to grant to themselves — the invariant and therefore the prediction is precise.

Recall the definition of leak (see Sect. 5.3): it is computed based on the authority one entity possesses over the
other. Given our states are sane, we see that only two existing entities can be connected.

Lemma 3. Connected implies existence: [[sane s; s ` ex ↔ ey ]] =⇒ isEntityOf s ex ∧ isEntityOf s ey

Proof. By unfolding the definitions, and observing from leak that one entity must possess a capability that points
to the other. Thus, given the state is sane, both must be existing entities in that state.

The next part of the proof analyses how each of the operations affects the connected relation. In particular, we
are interested in properties of the form ‘if two entities are connected after execution of an operation, they must
have already been connected before’.

The SysNoOP operation, as the name implies does nothing. Similarly, SysRead and SysWrite mutate data and have
no effect on the capability distribution. Therefore, it is trivial to conclude that these three operations will not effect
the connected relation:

Lemma 4. Connected is invariant over NoOP: step (SysNoOP e) s ` ex ↔ ey =⇒ s ` ex ↔ ey

Lemma 5. Connected is invariant over Read: step (SysRead e c) s ` ex ↔ ey =⇒ s ` ex ↔ ey

Lemma 6. Connected is invariant over Write: step (SysWrite e c) s ` ex ↔ ey =⇒ s ` ex ↔ ey

Proof. By unfolding the definition of step.

The remaining four operations — SysCreate, SysGrant, SysRemove and SysRevoke, modify the capability distribu-
tion, and therefore have the potential to modify the predicate. We now examine their behaviour in detail.

Out of these operations, SysRemove and SysRevoke, remove capabilities: from a single entity in the case of
SysRemove or from a set of entities in the case of SysRevoke. Moreover recall that leak and therefore connected

checks for the existence of a particular capability. As such, neither operation has the potential to connect two
entities that are disconnected. This leads to the following two lemmas.

Lemma 7. Connected is invariant over Remove: step (SysRemove e c1 c2) s ` ex ↔ ey =⇒ s ` ex ↔ ey

Proof. By unfolding the semantics of remove and observing that they can not add capabilities to the state.

Lemma 8. Connected is invariant over Revoke: step (SysRevoke e c) s ` ex ↔ ey =⇒ s ` ex ↔ ey

Proof. By induction over the list of capabilities to remove and Lemma 7.

The SysGrant operation on the other hand, does have the ability to connect two entities that previously had not
been connected. However, only under restricted conditions: the grant operation can connect two entities only if
they were transitively connected in the state before.

Lemma 9. Grant preserves the transitive, reflexive closure of connections:
step (SysGrant e c1 c2 R) s ` ex ↔ ey =⇒ s ` ex ↔∗ ey

Proof. Suppose s ` ex ↔ ey, then by definition of the transitive closure, the lemma is true. Thus, the case we need
to consider is when ¬ s i ` ex ↔ ey, but step (SysGrant e c1 c2 R) s ` ex ↔ ey. For this to happen, either ex

or ey, in the derived state, must possess a grantCap to the other. Let this entity be x and the other y. From the
definition of SysGrant, we see that entity c1 = y, entity c2 = x and Grant ∈ rights c2. Moreover, from legal we
see {c1, c2} ⊆ caps_of s e and Grant ∈ rights c1. Thus, by definition and symmetry of connected, we have s `
x ↔ e and s ` e ↔ y. Given these facts, from the definition of transitive and reflexive closure, we can conclude
the lemma.

Unlike the operations we considered thus far, SysCreate introduces a complication in that it introduces new
entities in to the system. However, if we consider existing entities and make use of the sane state property, we see
that:

Lemma 10. Create preserves connected on existing entities:
[[isEntityOf s ex; isEntityOf s ey; step (SysCreate e c1 c2) s ` ex ↔ ey ]]
=⇒ s ` ex ↔ ey

Proof. By unfolding the definition of create operations and making use of the fact that there can be no dangling
references that might point to the new entity (given the state is sane), and that the new entity does not overlap with
any of the existing ones.

From these lemmas we see that if two existing entities become connected after executing a single command,
then they should either be connected in the previous state, in the case of SysNoOP, SysRead, SysWrite, SysRemove,

SysRevoke and SysCreate, or connected transitively, in the case of SysGrant. By combining the previous lemmas we
have:
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Lemma 11. Connected after a single command:

[[isEntityOf s ex; isEntityOf s ey; step cmd s ` ex ↔ ey ]] =⇒ s ` ex ↔∗ ey

Proof. By case distinction on the command, and using the appropriate lemma from Lemma 4 to Lemma 10.

The plan for the rest of the proof is as follows: We first lift Lemma 11 to the transitive closure, such that
step cmd s ` ex ↔∗ ey =⇒ s ` ex ↔∗ ey, for any two existing entities ex and ey. Then, by induction we get
execute cmds s ` ex ↔∗ e i =⇒ s ` ex ↔∗ e i. Moreover, if ex can leak to e i in the derived state execute cmds s,
then by definition execute cmds s ` x ↔ y, and hence execute cmds s ` x ↔∗ y. From this we can conclude that
if ex can leak to ey in some future state derived from s then s ` ex ↔∗ ey.

It turns out, that the first step, lifting Lemma 11 to the reflexive, transitive closure, is the most interesting one.
For this proof we use induction over the reflexive transitive closure. Although, we are considering the connected

relationship between existing entities, the proof obligation in the induction step is more general in that it requires
us to consider entities that might have being introduced by the current command. Recall that there is only one
command that introduces a new entity — SysCreate. It turns out that Lemma 10 is not strong enough to get through
the induction step, because it requires both entities to exist in the pre-state.

Hence, we break the proof into two parts: we treat SysCreate separately from the other commands. We call the
commands that do not introduce new entities transporters and start by looking at these in more detail. We proved:

Lemma 12. Transport commands preserve connected∗ in sane states:

[[step cmd s ` ex ↔∗ ey; sane s; ∀ e c1 c2. cmd 6= SysCreate e c1 c2]]
=⇒ s ` ex ↔∗ ey

Proof. Firstly we see that the derived state is sane, this follows from Lemma 1. Next, we induct over the transitive
and reflexive closure. If two entities, x and y, are connected in the derived state, from Lemma 3 it follows both x

and y exists in that state. Given that transporters do not add new entities, x and y are entities in s i, hence from
Lemma 11 we can conclude the lemma.

The complication that arises with SysCreate is that it introduces new entities. Thus, in the induction over the
transitive and reflexive closure, the entity considered in the induction step can be the newly created entity. To get
through the induction, we need to strengthen the lemma to answer the following question: Can two entities, say x

and y, become transitively connected through the newly introduced entity, and if so what is the relationship between
x and y in the previous state?

Lemma 13. Given two entity ex and ez in the state after SysCreate e c1 c2, given that ex exists in the pre-state s,
and given that sane s, we know that s ` ex ↔∗ e if ez is the entity just created, or s ` ex ↔∗ ez otherwise. In
Isabelle:

[[step (SysCreate e c1 c2) s ` ex ↔∗ ez; isEntityOf s ex; sane s ]]
=⇒ if ez = next_id s then s ` ex ↔∗ e else s ` ex ↔∗ ez

Proof. We note that the derived state is sane, which follows from Lemma 1 proceed by induction over the transitive
and reflexive closure. The base case is trivial. The induction step has the following form: given isEntityOf s ex,
sane s , step (SysCreate e c1 c2) s ` ex ↔∗ ey, step (SysCreate e c1 c2) s ` ey ↔ ez, and the induction hy-
pothesis if ey = next_id s then s ` ex ↔∗ e else s ` ex ↔∗ ey, we show ez = next_id s −→ s ` ex ↔∗ e

and ez 6= next_id s −→ s ` ex ↔∗ ez. We make a case distinction on whether ey and ez are existing or newly
introduced entities.

If both are existing entities we conclude using Lemma 11. If both are newly added, we have s ` ex ↔∗ e by
assumption.

If ey is newly created, and ez is existing, we know from the induction hypothesis that s ` ex ↔∗ e and
need to show s ` ex ↔∗ ez. This is true, since from the assumption step (SysCreate e c1 c2) s ` ey ↔ ez, the
definition of legal, and sane s, we have that s ` e ↔ ez and therefore with transitivity what we had to show.

The remaining case is the dual. We know that ey is an existing entity, and hence s ` ex ↔∗ ey. We also
know that ez is new and therefore need to show s ` ex ↔∗ e. This reduces to showing s ` ey ↔ e which again
follows from the assumption step (SysCreate e c1 c2) s ` ey ↔ ez, ez being new, the definition of legal, and
sane s. This concludes the proof of Lemma 13.

We combine Lemma 12 and Lemma 13 to prove the following.

Lemma 14. Single execution steps preserve connected∗ for existing entities in sane states:

[[step cmd s ` ex ↔∗ ez; isEntityOf s ex; isEntityOf s ez; sane s ]]
=⇒ s ` ex ↔∗ ez

Proof. By case distinction on transporter commands and create, and using Lemma 12 and Lemma 13 to prove each
case respectively.

The rest of the proof is easy. By induction, we can immediately conclude:

Lemma 15. Execution preserves connected∗ for all entities existing in any sane initial state:
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[[sane s; isEntityOf s ex; isEntityOf s ey; execute cmds s ` ex ↔∗ ey ]]
=⇒ s ` ex ↔∗ ey

Proof. By induction on the list of commands and Lemma 14

Together with s i ` ex → e i =⇒ s i ` ex ↔∗ e i, we conclude our theorem on the decidability of the seL4
model:

Lemma 16. In a sane state, if one existing entity can leak authority to another entity at any time in the future, then
they are connected now:

[[sane s; isEntityOf s ex; isEntityOf s ey; ♦ s ` ex → ey ]] =⇒ s ` ex ↔∗ ey

Proof. By Lemma 15 and the definition of ♦ s ` ex → ey.

The decidability (or approximation thereof) of this model is more naturally phrased like in the literature as the
contrapositive of Lemma 16. It clearly identifies the restriction that will prevent a leak from ex to ey in any future
state:

Theorem 1. In any sane state, if two existing entity are not connected, they will never be able to leak authority to
each other.

[[sane s; isEntityOf s ex; isEntityOf s ey; ¬ s ` ex ↔∗ ey ]]
=⇒ ¬ ♦ s ` ex → ey

Proof. Contrapositive of Lemma 16.

The connected∗ relation can easily and efficiently be computed by the resource manager in the initial state who
has full control and knowledge over the initial distribution of grant rights.

The assumptions of Theorem 1 are that the state s is sane and that both entities exist in s. Sanity is not a
problem. We have already shown that it is preserved by execution and since the initial state of the system is sane,
it is a global system invariant. The restriction to existing entities might be a reason for concern, though. Formally,
we can make no useful statement in s over entities that do no exist in s yet. However, intuitively, we would like
the non-leakage property to be true as well for all entities that do not exist yet. The theorem implies that ex can not
leak authority to ey via any of these new entities (create operations were not excluded in the proof), but what about
a new entity e, created later, leaking new authority to ey? The theorem does not make a statement about this (the
precondition isEntityOf s e is false), but we can run the system up until e is freshly created. In this state e exists,
has no authority yet, the state is sane, and ey still exists. The theorem is then applicable and says that e will not be
able to leak to ey if ey is not transitively connected to e at that point.

This situation is not entirely satisfying. The classic non-leakage property does not fully express our intuition
about the system and for new entities might require the resource manager to keep track of the grant capability
distribution in the system.

The next section generalises the above theorem to make a more intuitive and direct statement about authority
distribution.

7. Mandatory Isolation of Components

In the last section we proved a standard take-grant non-leakage property for authority distribution in seL4, but
found that the statement is not fully satisfying with respect to entities that do not yet exist in the state that is
analysed.

In this section, we revisit what the intuition of authority confinement should be and show that it is feasible to
implement isolated subsystems in seL4. A subsystem is merely a set of connected entities and by isolated we mean
that none of the entities in the subsystem will gain access to a capability over an entity of another subsystem if that
authority is not already present in the subsystem. If the authority is already present, then we show that it cannot be
increased. Subsystems can grow over time and therefore the statement also includes entities that currently do not
exist yet.

We start with an illustrative example. Given in Fig. 7 is the configuration of a system with two subsystems. We
call them subsystem ss1 and ss2. The state shown here is the initial configuration s0 after bootstrapping. In s0,
neither of the two entities e1 and e2 has a capability to e5. This object might be any system resource, such as a
communication endpoint or an untyped object that encapsulates a region of memory.

For isolation to hold we need to show that in no future system state any of the entities in ss1 — which might
grow/shrink depending on create/remove operations — will have a capability to e5.

Formally, we identify a subsystem by any of its entities es and define it as the set of entities in the symmetric,
reflexive, transitive closure of grant arcs to es, or short connected∗:

subSys :: state ⇒ entity_id ⇒ entity_id set

subSys s es ≡ {e i | s ` e i ↔∗ es}



16 Dhammika Elkaduwe, Gerwin Klein and Kevin Elphinstone

resource manager

subsystem ss
1 subsystem ss

2

e
3

e
5

e
4

e
1

e
2

{read, write}

     {read}

{grant}
{grant}

 c
1

Fig. 7. Example System Configuration

We obtain the entities in a subsystem, using the subSys function, specifying the current system state and one of
the entities in that subsystem. For instance, the entities of subsystem ss1 in s0 are subSys s0 e1 = {e1, e2}.

For this proof, we have three main assumptions. Firstly, as we have done before, we assume s is sane. Secondly,
we assume that the entity we are interested in gaining authority to (or not) exists in s. In the case of our example this
is entity e5. Thirdly, we assume that at least one entity in the subsystem under consideration exists now, otherwise
the subsystem would be empty. In the example we have for instance es = e1.

Given these, we aim to show that the subsystem of es cannot increase authority over e. To formally phrase this
statement, we introduce two more concepts — the subSysCaps function and the :> operator.

subSysCaps :: state ⇒ entity_id ⇒ cap set

subSysCaps s x ≡
S

caps_of s ‘ subSys s x

The function initially finds the set of entities in the subsystem by using subSys, and then returns the union of all
capabilities possessed by the entities in that subsystem.

The infix operator c :> C expresses that the capability set C provides at most as much authority as capability c.
That means, if c only posses a grant right to some entity e, then no capability in C will provide more than a grant
right to e. It is the dual to :<. Formally:

c :> C ≡ ∀ c’∈C. entity c’ = entity c −→ rights c’ ⊆ rights c

In our example, we write noCap e5 :> subSysCaps s0 e1 with noCap e ≡ (|entity = e, rights = ∅|) to indicate that
there is no e5 capability anywhere in subsystem ss1. Similarly, for e3 we write rwCap e3 :> subSysCaps s0 e3,
where rwCap e ≡ (|entity = e, rights = {Read, Write} |). That is, the maximum authority within subsystem ss1

over the entity e3 is {Read, Write}. For isolation to hold we would like to show that:

∀ cmds. c :> subSysCaps (execute cmds s0) e1

where c is some capability to an entity in s. For example c can be noCap e5, if we are considering the flow of
authority over e5, or rwCap e3 if the interest is on e3.

By using :> we can express that authority currently possessed can never grow, as opposed to giving a particular
fixed value or restricting ourselves to particular access rights like grant only in Sect. 6. Below, we show such
isolation is feasible. Following that, in Sect. 7.2, we provide an example of isolated subsystems together with a
brief description of how the resource manager bootstraps them.

7.1. Isolation of Authority

To show isolation, we build upon the results from Sect. 6. It turns out that the main classical take-grant theorem
of Sect. 6 is not of much direct use in this proof. However, the central Lemma 14 of Sect. 6 can be used to good
advantage. Recall, that for two existing entities in any sane state s, they can not become transitively connected after
executing a single command, unless they were already transitively connected before:

[[step cmd s ` ex ↔∗ ey; isEntityOf s ex; isEntityOf s ey; sane s ]]
=⇒ s ` ex ↔∗ ey

The main lemma we would like to show in this section is that single step execution does not increase the
authority of a subsystem, that is, something of the form:

c :> subSysCaps s es =⇒ c :> subSysCaps (step cmd s) es



Verified Protection Model of the seL4 Microkernel 17

This can then be lifted again to command sequences by induction.
The term c :> subSysCaps s es can be expressed directly by referring to the entities of subsystem es. By defi-

nition, we get for any entity that is transitively connected to es in s, that there is no capability that contains more
authority than c. Formally:

Lemma 17. Unfolding c :> subSysCaps s es:

(c :> subSysCaps s es) = (∀ ex. s ` ex ↔∗ es −→ c :> caps_of s ex)

Proof. By unfolding the definitions of :>, subSysCaps and subSys.

For isolation to hold we need to show that the above property is true for all states derived from s.

Lemma 18. Single execution steps do not increase subsystem authority:

[[sane s; isEntityOf s es; isEntityOf s e; entity c = e; c :> subSysCaps s es]]
=⇒ c :> subSysCaps (step cmd s) es

Proof. We may assume a sane state s, and two entities es and e such that e is the entity the capability c points to.
Let us consider the situation after executing a single command on s. Let the new state be s’. After unfolding the
goal as above, we may additionally assume s’ ` ex ↔∗ es for an arbitrary, but fixed ex and now have to show
c :> caps_of s’ ex. We proceed by case distinction on whether c :> caps_of s ex, that is if c already dominated
all authority of ex before the command was executed.

• We start with the case ¬ c :> caps_of s ex. That means, in s the entity ex already had a capability with more
authority than c.
We know by assumption that isEntityOf s es. Moreover, given we are considering sane states, ex also must
already exist in s — otherwise it could not have any capability, in particular not one stronger than c. Given
both of these are entities in s and we know by assumption that s’ ` ex ↔∗ es, we get via Lemma 14 that
s ` ex ↔∗ es. But if that is the case, then ex was already part of the es subsystem in s, and thus the subsystem
es in s already had more authority than c, which is a contradiction.

• In the second case, we assume c :> caps_of s ex and we still need to show that the execution step did not add
authority stronger than c. Here, we proceed by case distinction over the command that was executed. The only
interesting cases are SysGrant and SysCreate.
If the operation was some SysGrant eg c1 c2 R, the capability diminish c2 R is being added to the entity of
c1. If that entity is not ex, then caps_of s’ ex = caps_of s ex and we are done. If the entity of c1 happens
to be ex we need to check that diminish c2 R has less authority than c. Via sane we know that ex exists in
s (c1 points to it) and from s’ ` ex ↔∗ es we get again via Lemma 14 that s ` ex ↔∗ es. From legal we
know that {c1, c2} ⊆ caps_of s eg and Grant ∈ rights c1 and therefore s ` ex ↔ eg. By transitivity, eg is
in the subsystem of es, and by assumption c :> subSysCaps s es. The capability c2 is part of eg, hence part of
subSysCaps s es and therefore has less authority than c. The diminished version of c2 has even less authority
and in particular less than c. This concludes the grant case.
If the operation was some SysCreate ec c1 c2, then there are three possibilities: ex is the entity that was created,
it was the target of c2 that gets the new capability to the entity that was created, or it is neither of these. In
the latter case, caps_of s’ ex = caps_of s ex and we are done. In the first case, caps_of s’ ex = ∅ and since
trivially c :> ∅, we are done as well. In the remaining case, we add the capability newCap s to caps_of s ex. We
know that newCap s points to next_id s which was not an entity in s. On the other hand, we know by assumption
that the target of c is an entity in s. Thus, the addition of newCap s to caps_of s ex does not increase authority
over the target of c. This concludes the create case and the proof.

The above lemma is essentially the induction step of the final isolation theorem. In addition, there is one more
small lemma that we need. We observe that if e is an entity in s, then it will be an entity in any subsequent state:

Lemma 19. Entities are preserved by execution: isEntityOf s x =⇒ isEntityOf (execute cmds s) x

Proof. By induction on cmds, then unfolding the definitions and observing that next_id never decreases.

This leads us to the final isolation theorem.

Theorem 2 (Isolation of authority). Given a sane state s, a non-empty subsystem es in s, and a capability c with
a target identity e in s, if the authority of the subsystem does not exceed c in s, then it will not exceed c in any
future state of the system.

[[sane s; isEntityOf s es; isEntityOf s e; entity c = e; c :> subSysCaps s es]]
=⇒ c :> subSysCaps (execute cmds s) es

Proof. By induction over the command sequence, and using the lemmas Lemma 18, Lemma 19, and Lemma 2 to
prove the induction step.
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Fig. 8. Subsystem Configuration

This concludes our isolation proof. The authority that any subsystem collectively has over another entity can
not grow beyond what is conferred by the resource manager initially.

Going back to our example in Fig. 7, this means that no entity in subsystem ss1 will ever have more authority
than {Read, Write} over entity e3. Moreover, none of these entities will ever gain any authority at all over entity e5.

7.2. Implementing Subsystems

In this section we provide a description of how the resource manager bootstraps subsystems, together with an
example of a system with two isolated subsystems. Note that there are a number of methods the resource manager
can use: given here is one possible method.

Recall that after system startup, the initial state s i contains only the resource manager with full access rights
to itself and with the authority over all the physical memory that is not used by the kernel: s i ≡ (|heap = [0 7→
{allCap 0}], next_id = 1 |) (see also Sect. 5.1).

It is the responsibility of the resource manager to create and set up the rest of the system.
The current mechanisms used by our resource manager for simple static systems is as follows. For each of the

subsystems it creates a subsystem resource manager who is responsible for bootstrapping the rest of that partic-
ular subsystem. This scheme stems from a major application domain of seL4: running para-virtualised operating
systems in each subsystem.

Coupled with the resource manager is a specification language. This language allows the developer to specify
the subsystems that should be created together with the authority they should possess over one another and the
amount of physical memory that should be committed each manager. Given below is an example written in our
specification language:

"ss0" {
text { 1024 to 4096 };
data { 4096 to 5120 };
resource { 4 };
comm { this → ss2 };

};

"ss1" {
text { 5120 to 6144 };
resource { 4 };
comm { this → ss1 };

};

To explain the above specification, the system has two subsystems ss0 and ss1. Given this specification the
resource manager creates two subsystems by creating two subsystem resource managers. The keywords text and
data specify where to find the text and data segment of the program. The resource specifies the amount of physical
memory — untyped capabilities, each should have access to. Keyword comm specifies the required communication
channels. We write comm {this → ss1} to say that the current entity should be able to send information to ss1.

For ss0 and ss1 to be authority confined subsystems, what should be guaranteed is that neither ss0 nor ss1

has a capability with Grant authority that points to the other. In other words, ¬ s ` ss0 ↔ ss1. This property is
guaranteed by our specification language — there is no language construct to specify such a connection. Note that
this does not mean that there will be no grant operations in the system at all. The subsystem resource managers
are free to provide grant authority within each of the subsystems. We merely exclude the possibility for authority
to leak between subsystem partitions. A simple compiler then compiles this specification to a sequence of kernel
operations, which is used by the resource manager in the bootstrapping process. While it is feasible to use the
specification language directly in the resource manager, we use the compiler to reduce runtime complexity.

Initially, the resource manager creates a pool of entities. Then it populates each entity in accordance with the
description produced by the compiler. In addition to what is in the description, each entity gets a capability to itself
with Grant authority to enable authority distribution within the subsystem itself.
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The system state created by the kernel is shown in part (a) of Fig. 8. As mentioned earlier, this state consists
of a single entity: the resource manager (entity 0). In the diagram, allRights refers to full authority, and C, G, W is
used to denote Create, Grant and Write rights respectively. At the start, the resource manager possesses a capability
with full authority to itself (see part (a) of Fig. 8). The configuration soon after creating and populating each entity
with the required authority, according to the above specification is given in part (b) of Fig. 8. We see that in part (b)
of the diagram the two entities (entity 1 and 2) are connected through the resource manager which formally means
that both entities still inhabit the same single subsystem. The final task of the resource manager is to break these
connections. Once all the required capabilities are in place, the resource manager removes its own capabilities
to the bootstrapped entities and exits. Thereby, it breaks the connection and makes them isolated subsystems, as
shown in part (c) of Fig. 8. The state just after resource manger has exited is the state (s0).

One possible sequence of commands the resource manager (entity 0) can execute to produce s0 is given below:

cmdSeq ≡
[SysCreate 0 (grantCap 0) (allCap 0), SysCreate 0 (grantCap 0) (allCap 0),
SysCreate 0 (grantCap 0) (allCap 0), SysCreate 0 (grantCap 0) (allCap 0),
SysGrant 0 (allCap 1) (allCap 1) {Grant},
SysGrant 0 (allCap 1) (allCap 2) {Write},
SysGrant 0 (allCap 1) (allCap 3) {Create},
SysGrant 0 (allCap 2) (allCap 2) {Grant},
SysGrant 0 (allCap 2) (allCap 1) {Write},
SysGrant 0 (allCap 2) (allCap 4) {Create},
SysRemove 0 (allCap 0) (allCap 1), SysRemove 0 (allCap 0) (allCap 2),
SysRemove 0 (allCap 0) (allCap 3), SysRemove 0 (allCap 0) (allCap 4)]

where allCap e ≡ (|entity = e, rights = allRights |) and grantCap ex ≡ (|entity = ex, rights = {Grant} |).
The direct, formal description of the final state created by the resource manager (i.e. the state shown in part (c)

of Fig. 8) is given below:
s0 = (|heap = [1 7→ {grantCap 1, writeCap 2, utCap 3}, 2 7→ {grantCap 2, writeCap 1, utCap 4}], next_id = 5 |)
where writeCap e ≡ (|entity = e, rights = {Write} |) and utCap e ≡ (|entity = e, rights = {Create} |).

Note that in s0 all subsystems, including 1 and 2, have only one entity. There are 5 subsystems in s0, only the
entities 1 and 2 have a grantCap to themselves. Each of 1 and 2 possesses the authority to send information to the
other, conferred by the corresponding writeCap and has access to an untyped capability. They can use this untyped
capability to create other entities and bootstrap the remainder of the subsystem.

The two main subsystems thus created cannot increase the authority they have over each other. For example,
we can show

Lemma 20. For no sequence of commands can the subsystem 1 gain authority over entity 4 which stands for the
physical memory resources of subsystem 2.

∀ cmds. noCap 4 :> subSysCaps (execute cmds s0) 1

Proof. Firstly, we note sane s0. Moreover, by examining s0 we see that isEntityOf s0 1 and isEntityOf s0 4. Then
we observe that noCap 4 :> subSysCaps s0 1. Given these facts, we can directly apply Theorem 2 and conclude.

8. Related Work

The use of abstract formulations of the protection system for safety analysis, i.e. the process of determining whether
a particular access can take place, has a long history. Harrison et al. [HRU76], in a model known as HRU, showed
safety is undecidable in the general case. Since then a number of protection models for which safety is decidable
has been proposed — the take-grant model [LS77] and its variations [LM82, Min84], the schematic protection
model [San88] and the typed access matrix model [San92a].

In particular the take-grant model [LS77] (TG), as we mentioned before is closely related to our work. The
model is generally described in terms of graph theory — each node in the directed graph represents a subject
and outgoing, labelled arcs represent the authority possessed by the subject. System operations are modelled as
graph rewriting rules. The key similarity between the TG and our model is the distinction between the authority to
manipulate data and capabilities. However, the semantics of the create rule in our model differs from that of TG in
that the ability to create in our model is explicitly conferred by a capability. This is important to enforce resource
usage restrictions in seL4. Furthermore, there is no take rule in our model.

The analysis of de jure (explicitly authorised) access rights in [LS77, BS79] on the TG model states that by
constructing a transitive closure on the given initial graph the potential exposure of access rights can be revealed.
Our machine checked Theorem 2 affirms this result. In contrast to the pen-and-paper proof that mainly uses graph
diagrams for reasoning, we fully formalise the system and make our wellformedness conditions explicit: new nodes
added to the graph should not overlap with the existing ones, the graph should not have dangling arcs, and the entity
under consideration must exist at the time of analysis. All these restrictions relate to introducing new nodes to the
protection graph. If the new node overlaps with an existing one then such a graph mutation will not preserve the
initial transitive closure. The same is true if there are dangling references that happen to point to the new node.
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Snyder [Sny81] and later Bishop [Bis96] enhanced the TG model by introducing de facto rules — rules that
derive feasible information flow paths given the capability distribution. They used the term island to denote a max-
imum take-grant connected subject only subgraph which is similar to our definition of a subsystem. Their analysis
identifies conditions under which information can flow from one island to another. The analysis we presented can
be extended easily to de facto rights.

Minsky [Min84], in analysing the send/receive transport mechanism — a restrictive form of TG, showed that
creation of new subjects does not increase the possibility of a leak between two existing subjects as long as all
subjects possess the ability to send and receive authority from themselves; such a state he calls uniform. Thus,
he was able to ignore the create operation from the analysis, assuming the initial state is uniform. The motivation
behind removing create operation is to fix the number of subjects in the system. However, our work shows that an
indefinite number of subjects does not complicate the analysis — the create operation can be incorporated into the
proof with relative ease and therefore the restriction to a uniform initial state is not necessary. It is enough to make
the closure over the grant-graph reflexive in the analysis.

The authors in [LM82] showed that by removing the grant rule from TG the flow of authority can be made uni-
directional. All capability transfers are authorised by the authority possessed by the receiver rather than the sender,
thereby providing endogenous control — the ability to receive a capability is determined solely by the authority
within the entity. In a similar manner, the diminish-take [Sha99] model proposes filters on the take operation to
enforce a transitive read-only path by the authority on the receiver-side. While desirable, endogenous control is not
central to our system — the resource manager who enforces the policy has a global view at its disposal. Moreover,
there is a natural fit between the grant rule and the operations of the concrete seL4 implementation.

The schematic protection model [San88], or SPM is closer to HRU [HRU76]. As such, it is more expressive
than the TG model and TG can be viewed as an instance of SPM. Moreover, an extension by Ammann and Sandhu
[AS90, AS91]; called the extended SPM or ESPM, yields a model that is formally equivalent to the monotonic
HRU [HR78] model. Subjects in SPM are associated with a static security type. Each type is allowed to create
other types as defined by can-create relationship. The model is decidable for acyclic creates [San92b]. That is,
if subjects of type a are allowed to directly or indirectly create subjects of type b, then it should not possible for
subjects of type b to directly or indirectly create subjects of type a. The can-create relation is static, in that the types
of subjects that can be created by another type, do not change as the system evolves. In seL4 however, the ability
to create is dynamic. The distribution of untyped capabilities changes, depending on grant and create operations.
Moreover, the static nature of the can-create relation is exploited in the analysis of SPM. All create operations are
assumed to occur first. Each subject creates subjects of all possible type, and so do the newly created subjects. Once
this state is computed, any subsequent create is redundant, thus the analysis focuses on copy (or grant) operations.
Note that in [San88] there is another operation called demand, which was later shown to be redundant [San89].
Our analysis is much more direct in that we do not need to make any assumptions about the command sequences,
and in particular do not need to move all create operations to the beginning, which for seL4 would constitute a loss
of generality.

The typed access matrix model [San92a] (TAM) introduces the notion of strong typing to HRU. The monotonic
TAM (MTAM) is decidable, but NP-hard. A simplified version of MTAM called, ternary MTAM is decidable in
polynomial complexity. The techniques used in the analysis of this model [San92a] is similar to that of the SPM.

9. Conclusions

In this paper, we have presented a machine-checked, high-level security analysis of the seL4 microkernel.
We have formalised an access control model of seL4 in the interactive theorem prover Isabelle/HOL. The

formalisation is inspired by the classical take-grant model, but without the take rule which does not exist in the
seL4 kernel and with a more realistic create rule that is explicitly authorised by a capability. Our formalisation
makes the intuitive graph diagram notation that is commonly used for this type of analysis fully precise.

We have shown, in Isabelle/HOL, that our access control model is decidable, or more precisely, that a close
approximation thereof is.

We have also shown, in Isabelle/HOL, that the kernel provided mechanisms are sufficient to enforce mandatory
isolation between subsystems and that collective authority of subsystems does not increase.

Since all memory is controlled directly by capabilities in seL4, this implies that it is possible to build fully
spatially separated systems on top of seL4. The model is general enough to also allow for explicit information
flow between partition boundaries via explicit read/write operations. Our main theorem shows that subsystems
can neither exceed their authority over physical memory nor their authority over communication channels to other
subsystems.

Through an example we have shown that the restrictions required for isolation are pragmatic, and have im-
plemented a resource manager for static systems on seL4 that can bootstrap subsystems from a simple and clear
specification language.

In our analysis, we do not look at covert information channels, but at explicit authority distribution only. This
might include de facto rights later, but not covert timing channels or physical attacks on the hardware. We are
able to guarantee full spatial memory separation and thereby fault isolation, but we believe that with current stock
hardware preventing all covert timing channels is not possible.
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Future work includes the de facto rights analysis mentioned above, which should be easy to do in our model,
and, more importantly, a formal refinement between the model presented here and our work on the abstract seL4
API we have presented elsewhere [DEK+06]. The aim is to make our security analysis apply directly to the full
C/assembler implementation of seL4 on the ARM11 platform.
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