
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Rewriting Conversions Implemented with Continuations

Michael Norrish

the date of receipt and acceptance should be inserted later

Abstract We give a continuation-based implementation of rewriting for systems in the LCF
tradition. These systems must construct explicit proofs ofequations when rewriting, and
currently do so in a way that can be very space-inefficient. Anexplicit representation of
continuations improves performance on large terms, and on long-running computations.

1 Introduction

Rewriting (orsimplification) is a standard work-horse of all interactive theorem-proving sys-
tems. Rewriting is used both to expand the definitions of constants, and to apply previously
proven equational results.

Despite its heavy use, rewriting in the various HOL systems (HOL4 [6,8], HOL Light [7]
and ProofPower [9]), and in Isabelle [12], is nonetheless implemented in “fully expansive”
fashion, in keeping with these systems’ LCF ancestry.1 This means that if rewriting has
transformed initial termt1 to t2, then the system will have explicitly proven the theorem
⊢ t1 = t2 to justify this step. If the transformation is, for example,DNF normalisation by
the rewrite rules

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

(p ∨ q) ∧ r = (p ∧ r) ∨ (q ∧ r)

then there may well have been exponentially many sub-equations to knit together to create
the final equational theorem.

The task of assembling all of these sub-equations, the task of “replacing equals with
equals” in the correct places and in the correct order, is thepreserve of the rewriting system.

Michael Norrish
Canberra Research Lab., NICTA,
PO Box 8001, Canberra,
ACT 2601, AUSTRALIA

E-mail: Michael.Norrish@nicta.com.au

1 The Coq system is also an “LCF-style” system, but the nature ofits underlying logic means that achieving
equational reasoning of the sort described in this paper is still an active research topic. See for example,
Chrząszcz and Walukiewicz-Chrząszcz [5].

2

In the LCF-style systems examined here, this assembly of sub-equations ultimately depends
on the rules of inference presented in Figure 1. The second rule implements transitivity; the
last two are congruence rules, allowing the substitution ofequals for equals in sub-terms.
The rest of this introduction focuses on transitivity. Sections 2.4 and 2.5 discuss rewriting
sub-terms using congruence rules.

⊢ x = x

Γ1 ⊢ x = y Γ2 ⊢ y = z

Γ1 ∪ Γ2 ⊢ x = z

Γ1 ⊢ f = g Γ2 ⊢ x = y

Γ1 ∪ Γ2 ⊢ f x = g y

Γ ⊢ t1 = t2

Γ ⊢ (λx.t1) = (λx.t2)
x 6∈ Γ

Fig. 1 Primitive Rules of Inference for Rewriting. The HOL4 names forthese rules areREFL, TRANS,
MK_COMB andABS. In themselves, these rules can only derive instances of reflexivity, but can be used in
conjunction with user-provided equations to derive more interesting results.

The HOL systems all use a rewriting technology ultimately derived from the influen-
tial paper by Paulson,A Higher-Order Implementation of Rewriting[11]. In this paper, the
concept of aconversionis introduced:

A term conversion is any function that maps a term t to a theorem ⊢t=u. This
converts the term t to another term u, and proves the two equivalent. Since ML
allows us to take theorems apart, we can extract the new term ufrom the theorem
⊢t=u.

In all of the HOL systems, the ML data typeterm implements well-typed terms of the
simply-typedλ-calculus. In each HOL system, theorems (typethm) are created by func-
tions defined in the system’s kernel, or by derived functionsthat will ultimately depend on
the kernel’s facilities. A conversion is thus an ML functionthat manipulates the term and
theorem types exported by the LCF-style kernel to produce equational theorems.

An atomic conversion might be one that demonstrates aβ-equivalence: the function
BETA_CONV takes, for example, the term(λx.x y) t and returns the theorem

⊢ (λx.x y) t = t y

Or a conversion may match and instantiate a given rewrite rule. In HOL4 and HOL Light,
REWR_CONV is of typethm->(term->thm).2 The first argument is the rewrite rule, and
the second argument is the term to be transformed. For example, if ADD_SUC is the theorem

⊢ SUC x + y = SUC (x + y)

thenREWR_CONV ADD_SUC is a conversion that will take the input termSUC 3 + z, and
return the theorem

⊢ SUC 3 + z = SUC (3 + z)

instantiating the variablesx andy fromADD_SUC appropriately. (The issue of what happens
whenREWR_CONV is given a term thatdoesn’tmatch the provided rewrite rule is addressed
in Sections 2.2 and 3.1.)

2 The analogue in ProofPower issimple_eq_match_conv.

3

The phrase “higher-order” in Paulson’s title comes from thefact that conversions, them-
selves functions, can be combined using higher-order functions. The most important of these
is THENC (HOL4 and HOL Light retain this name; ProofPower calls itTHEN_C). A call to
c1 THENC c2 (THENC is used as an infix) creates the sequential composition of thetwo
conversionsc1 andc2. An SML definition ofTHENC is given in Figure 2. As in the quota-

fun THENC(c1, c2) t = let
val th1 = c1 t
val th2 = c2 (rhs (concl th1))

in
TRANS th1 th2

end

Fig. 2 An SML definition ofTHENC. The type ofTHENC is conv*conv -> conv, whereconv is an
abbreviation forterm->thm. Using SML’s facilities for infixes, one can writeTHENC(c1,c2) asc1
THENC c2.

tion from Paulson’s original paper, the definition ofTHENC uses existing functions to take
theorems apart. The functionconcl returns a theorem’s conclusion, and the functionrhs
returns the right-hand-side of an equation. Finally, the rule of inferenceTRANS implements
the rule of transitivity (the second rule from Figure 1). If both theorems are equations, and
the left-hand side (l.h.s.) of the second is the same term as the right-hand side (r.h.s.) of
the first, then a new theorem equating the l.h.s. of the first with the r.h.s. of the second is
returned.

It is now possible to examine the way in which the composite conversion

BETA_CONV THENC REWR_CONV ADD_SUC

will act on the input term(λx. x + 3) (SUC 10). First, the intermediate SML valueth1 is
created by applyingBETA_CONV to the input term.

val th1 = ⊢ (λx. x + 3) (SUC 10) = SUC 10 + 3

The r.h.s. of the conclusion of this theorem is the termSUC 10 + 3, and this term is passed
to the second conversion. The result will be

val th2 = ⊢ SUC 10 + 3 = SUC (10 + 3)

WhenTRANS is applied toth1 andth2, the final result is returned:

⊢ (λx. x + 3) (SUC 10) = SUC (10 + 3)

1.1 The Problem withTHENC, and a Simple CPS Solution

This technology (with a number of enhancements discussed inlater sections) underpins
rewriting in the HOL systems and Isabelle. Rewriting in these systems is undeniably impor-
tant and the success of the systems is a credit to Paulson’s original design. Nonetheless there
is a problem, observable on large rewriting tasks, in all of the implementations.

When assembling a chain of rewrites, all of the systems put them together with the
equivalent ofTHENC. The problem is that in a call(c1 THENC c2), THENC does not relin-
quish control to the second conversion (c2). Instead, it waits forc2 to return so thatTRANS

4

can be applied. In a chain of a million rewrites, the languageimplementation will create a
million stack-frames, each waiting for its two sub-calls tofinish so that the two results can be
combined withTRANS. This can be very space-inefficient. Perhaps the easiest demonstra-
tion of this inefficiency is to set up a looping rewrite in any of the systems considered here,
and to set it running. As the implementation diverges, the amount of memory consumed by
the system increases.3 This use of additional space can only be a waste of time. Nor would
this consumption of space be necessary if the sequence of rewrites was making progress
towards some goal rather than looping.

When confronted with code that is wasting space on the stack,a natural response is to
try converting it to continuation-passing style. In the case ofTHENC however, this will not
save any memory: the pending calls toTRANS will simply be stored on the heap as closures,
and space saved on the stack will be wasted on the heap.

The solution is to represent continuations explicitly (rather than performing the usual
conversion to continuations as closures), and to exploit the arising opportunities to merge
pending calls toTRANS. Code to do just this is presented in Figure 3.

datatype cont =
Conv of ((cont -> term -> thm) * cont)

| Trans of (thm * cont)
| Done

type cps_conv = cont -> term -> thm

fun apply_cont k th =
case k of

Done => th
| Conv (c,k’) => c (Trans (th, k’)) (rhs (concl th))
| Trans (th’, k’) => apply_cont k’ (TRANS th’ th)

fun lift (cnv:term->thm) k t = apply_cont k (cnv t)
fun drop c = c Done

fun Cv (c, Trans(th, k)) = Trans(th,Conv(c,k))
| Cv (c, k) = Conv(c,k)

fun kTHENC (c1, c2) k t = c1 (Cv (c2,k)) t

Fig. 3 SML code implementing conversions in a continuation passing style (thus “cps-conversions”). The
functionslift anddrop allow cps-conversions and normal conversions to be inter-converted. The function
Cv stops aTrans constructor from being buried under aConv. Finally,kTHENC implements sequencing.

The data typecont is the type of continuations. Then, a “cps-conversion” takes not
just a term to which it is applied, but acont as well, representing what is to happen to the
theorem that results. As continuations are not closures (functions), but rather the concrete
typecont, the action of applying a continuation to a theorem must be implemented by a
separate function (apply_cont).

The three different sorts of continuation in typecont can be summarised as follows

3 In interactive sessions with Poly/ML (used in ProofPower, Isabelle, and also a development version of
HOL4), just interrupting such a divergent execution takes along time: the system is relatively slow to unwind
its enormous chain of stack-frames. Moscow ML, used in the standard HOL4 implementation, raises an
Out_of_memory quickly, signalling that the relatively limited space it hasallocated for the stack has been
exhausted. OCaml, used in HOL Light, grows its stack slowly, and terminates immediately when interrupted.

5

Conv(c,k) Continue with cps-conversionc, and after that, dok. TheConv
constructor is thus used to stack up a to-do list of future work.

Trans(th,k) Continue with continuationk, but remember that we got this far
via the equation inth.

Done Stop.

As is clear from the definition ofapply_cont, theTrans constructor represents a
pending call to theTRANS inference rule. The aim of the conversion to continuation-passing
style is to ensure that these calls cannot proliferate.

1.1.1 A Worked Example

Let the termt0 be(λx. (λy. x+y) 3) (SUC 10) and letc1 andc2 be the lifted conversions
lift BETA_CONV andlift (REWR_CONV ADD_SUC) respectively. Further lett1,
t2 andt3 be the successive terms created by applying those conversions tot0. That is,

t1 = (λy. SUC 10 + y) 3

t2 = SUC 10 + 3

t3 = SUC(10 + 3)

Right-associating the calls tokTHENC in order to demonstrate the effect of theCv func-
tion, consider the application

(c1 kTHENC (c1 kTHENC c2)) Done t0

The following computation will unfold:

(c1 kTHENC (c1 kTHENC c2)) Done t
= c1 (Cv(c1 kTHENC c2, Done)) t0
= c1 (Conv(c1 kTHENC c2, Done)) t0
= apply_cont (Conv(c1 kTHENC c2, Done)) (BETA_CONV t0)
= apply_cont (Conv(c1 kTHENC c2, Done)) (⊢ t0 = t1)
= (c1 kTHENC c2) (Trans(⊢ t0 = t1, Done)) t1
= c1 (Cv(c2, Trans(⊢ t0 = t1, Done))) t1
= c1 (Trans(⊢ t0 = t1, Conv(c2,Done))) t1
= apply_cont (Trans(⊢ t0 = t1,Conv(c2,Done))) (BETA_CONV t1)
= apply_cont (Trans(⊢ t0 = t1,Conv(c2,Done))) (⊢ t1 = t2)
= apply_cont (Conv(c2,Done)) (TRANS (⊢ t0 = t1)(⊢ t1 = t2))
= apply_cont (Conv(c2,Done)) (⊢ t0 = t2)
= c2 (Trans(⊢ t0 = t2,Done)) t2
= apply_cont (Trans(⊢ t0 = t2,Done)) (REWR_CONV ADD_SUC t2)
= apply_cont (Trans(⊢ t0 = t2,Done)) (⊢ t2 = t3)
= apply_cont Done (TRANS (⊢ t0 = t2) (⊢ t2 = t3)
= apply_cont Done (⊢ t0 = t3)
= ⊢ t0 = t3

The only places where work is not peformed at the head position is when calling the lifted
conversions, when callingTRANS, and when callingCv. The latter is a constant-time pattern
match. The other calls are where the work of the rewriting is done, and unavoidable. The
advantage of this approach is that the two calls toTRANS are made as soon as possible.

It is interesting to note that the calls toTRANS made by

6

(BETA_CONV THENC (BETA_CONV THENC REWR_CONV ADD_SUC)) t0

would be

TRANS (⊢ t1 = t2) (⊢ t2 = t3)
TRANS (⊢ t0 = t1) (⊢ t1 = t3)

The same sequence as in the cps-conversion computation could be produced by calling the
left-associated

((BETA_CONV THENC BETA_CONV) THENC REWR_CONV ADD_SUC) t0

However, reassociating the cps-conversion makes no difference; it will always make the
same calls toTRANS.

1.1.2 Logic and Algebra

Definition 1 A cont value iswell-formedif it contains no occurrence of theTrans con-
structor, or if it contains just one, which must be at the outermost position.

By inspection of the defined operations, an important invariance result follows:

Theorem 1 The operations of Figure 3 preservewell-formedcontinuations.

Definition 2 A call of cps-conversionc with argumentsk andt is legitimateif k is Trans-
free, or if k is of the formTrans((⊢ t0 = t), k0) for some termt0 and some (Trans-
free) continuationk0. In other words, a callc k t is legitimate ifk is well-formed, and
additionally requires that ifk has a top-mostTrans, then the termt must be the r.h.s. of
theTrans theorem.

If c1 kTHENC c2 is called legitimately, then the call it makes toc1 will also be legiti-
mate. Further, the call to a cps-conversion inapply_cont is always legitimate.

This “THENC-fragment” is as yet a rather impoverished language, but we can implement a
left and right-identity forkTHENC. This iskALL_CONV:

fun kALL_CONV k t = apply_cont k (REFL t)

whereREFL is the SML function that takes a termt and returns the theorem⊢ t = t. It thus
implements the first rule of inference from Figure 1.

Definition 3 Say that a cps-conversionc is well-behavedif

– when legitimately applied to a continuationk, and to a termt, execution ofc k t either
aborts, or eventually reachesapply_cont k th, whereth is a theorem of the form
⊢ t = u for some termu, and whereu is the same for all possiblek. Further, ifc k t

aborts, then so too doesc k′ t for all k′.

Note thatlift c is automatically well-behaved, and thatc1 kTHENC c2 is well-behaved
if c1 andc2 are.

Theorem 2 The conversionkALL_CONV is an identity (extensionally) forkTHENC.

7

Left identity for a well-behavedc, and aTrans-freek follows from:

(kALL_CONV kTHENC c) k t

= kALL_CONV (Cv(c, k)) t (def’n of kTHENC)
= apply_cont (Cv(c, k)) (⊢ t = t) (def’n of kALL_CONV)
= c (Trans((⊢ t = t), k)) t (def’n of apply_cont)
= apply_cont (Trans((⊢ t = t), k)) (⊢ t = u) (well-behaved)
= apply_cont k (TRANS (⊢ t = t) (⊢ t = u)) (def’n of apply_cont)
= apply_cont k (⊢ t = u) (TRANS)

This is the same result that would arise if the initial call was justc k t. ⊓⊔

If k has an outermostTrans, the proof requires the definition ofapply_cont to be
expanded in the various callsapply_cont k.

The fact thatkALL_CONV is also a right-identity forkTHENC follows from the fact that

TRANS (⊢ t = u) (⊢ u = u) = (⊢ t = u)

and similar equational reasoning.

1.1.3 Experimental Performance

With a CPS version ofTHENC implemented, it is possible to test the performance of the cps-
conversions in comparison with the original implementation. We construct an admittedly
artificial rewriting test by defining a functionf :

f 0 = 0

f (SUC n) = f n

This function has the property that a term such asf(SUC(SUC · · · 0)) (with n applications
of SUC) can be repeatedly rewritten without ever needing to descend into sub-terms (which
important feature is described below in Sections 2.4 and 4).

The experimental task is to rewrite a termf (SUCn0) to f 0, where varyingn allows us
to generate larger problems as necessary. Assume thatf0 is the theorem⊢ f(0) = 0 and
thatfSUC is ⊢ f(SUC n) = f(n). Further define “n-fold conversion” functions,NCONV
andkNCONV:

fun NCONV n c t =
if n = 0 then REFL t
else (c THENC NCONV (n - 1) c) t

fun kNCONV n c k t =
if n = 0 then apply_cont k (REFL t)
else (c kTHENC kNCONV (n - 1) c) k t

Then the conversion used to test the standard implementation is

NCONV n (REWR_CONV fSUC)

and the corresponding cps-conversion is

drop (kNCONV n (lift (REWR_CONV fSUC))

8

Experiments were run comparing the performance of these code-snippets on terms of
size up ton = 219. Figure 4 is a graphical presentation of the results, with graphs for both
the standard HOL4 implementation in Moscow ML, and a second for the as-yet unreleased
Poly/ML implementation. These, and all subsequent, experiments were run on a 2.33 GHz
Intel Core Duo in a Macbook Pro running MacOS 10.5. The use of the Poly/ML implemen-
tation as well as the Moscow ML implementation provides someconfidence that results are
not the result of a quirk in the SML implementation.

8 10 12 14 16 18

Term size (log)

0.001

0.01

0.1

1

10

T
im

e
(s

ec
on

ds
)

Trad USR

Trad GC

CPS USR

CPS GC

THENC Data (Moscow ML)

8 10 12 14 16 18

Term size (log)

0.001

0.01

0.1

1

10

T
im

e
(s

ec
on

ds
)

Trad USR

Trad GC

CPS USR

CPS GC

THENC Data (Poly/ML)

Fig. 4 Timing statistics for theTHENC experiment. The data-points are means collected over 100 runs. The
Moscow ML implementation raises anOut_of_memory exception on terms of size≥ 218, meaning that
its runtime stack has been exhausted. At sizen = 219, the Poly/ML CPS implementation hasµ = 1.205,
σ = 0.010, while the traditional implementation hasµ = 3.138, σ = 0.586. In the Moscow ML CPS
implementation at the same point,µ = 11.649 andσ = 0.149.

The graphs make it clear that the cps-conversions are both quicker, and that they stress
the implementations’ memory management much less. Runningwith Moscow ML, the per-
formance of the traditional implementation is worse than linear whereas the CPS imple-
mentation retains linear performance. Under Poly/ML, the effect is harder to see at the term
sizes tested, but here it also appears as if garbage collection is causing the performance of
the traditional implementation to become worse than linear. In any case, at the maximum
term size, the CPS implementation is more than two and a half times faster.

The rest of this paper will first describe Paulson’s originalsystem [11], give a detailed de-
scription of how it has been updated and implemented in HOL, and touch on two further
problems with the system (Section 2). Then, the paper will demonstrate how the simple
continuation-based system already presented can be extended to implement these important
features, and to do so efficiently.

2 Paulson’s System and its Implementation in HOL

The important functions from Paulson [11] are

THENC Sequencing of two conversionsc1 andc2, such that ifc1 transformst0 to t1, and
c2 transformst1 to t2, then(c1 THENC c2) transformst0 to t2 (producing the theorem
⊢ t0 = t2 along the way).

9

ORELSEC Alternation of two conversions, which may raise exceptionsto indicate failure.
The expression(c1 ORELSEC c2) is a conversion which will first tryc1 on inputt. If
that application succeeds, then that is the result. Ifc1 t raises an exception, thenc2 t is
tried.

REPEATC Repetition of a conversion.REPEATC c appliesc to its input, and if that suc-
ceeds, appliesc to the result, and so on. Whenc eventually fails, returns the accumulated
effect of the previous successful calls.

COMB_CONV Applies a conversion to the sub-terms of an application term. If the argument
t is the applicationf x, thenCOMB_CONV c t will result in c being called onf andx

independently, and the results combined, deriving a theorem of the form⊢ f x = f ′ x′

ABS_CONV Applies a conversion to the body of an abstraction term. If the argumentt is
the abstraction(λx.M), thenABS_CONV c t will apply to c to M , returning a theorem
of the form⊢ (λx.M) = (λx.M ′)

TOP_DEPTH_CONV Applies a conversion repeatedly at all positions within a term, sweep-
ing across the term in a top-down fashion. This is just one of afamily of possible rewrit-
ing strategies for term traversal. Its implementation relies on all of the other functions
described so far.

These functions are written in ML, and rely on basic infrastructure for manipulating the
terms and theorems of the kernel. A summary of these functions from HOL4 is given in
Figure 5.

val total : (’a -> ’b) -> ’a -> ’b option
val HOL_ERR : 〈exndata〉 -> exn
val UNCHANGED : exn

val aconv : term -> term -> bool

(* access sub-terms *)
val dest_comb : term -> term * term
val dest_abs : term -> term

(* split equation terms *)
val lhs : term -> term
val rhs : term -> term
val dest_eq : term -> term * term

val concl : thm -> term

(* theorem primitives, as per Figure 1 *)
val REFL : term -> thm
val TRANS : thm -> thm -> thm
val MK_COMB : thm -> thm -> thm
val ABS : thm -> thm

Fig. 5 Functions from the HOL4 API. The utility functiontotal is used to catch exceptions, turning a
successful application off x into SOME result ; if f x raises an exception, then the result oftotal f x

is NONE. TheHOL_ERR value is the standard way for HOL functions to report failures. TheUNCHANGED
exception is used to indicate a successful rewriting step that doesn’t change its input; see Section 2.6. A
call to aconv t1 t2 returns true iff the two terms are alpha-convertible. The functionsdest_comb and
dest_abs pull apart application and abstraction terms respectively,returning immediate sub-terms. Both
raiseHOL_ERR exceptions if the terms are not of the right shape.

10

2.1 Sequencing and its Identity

Repeating from Figure 2, the HOL4 definition ofTHENC is

fun THENC(c1, c2) t = let
val th1 = c1 t
val th2 = c2 (rhs (concl th1))

in
TRANS th1 th2

end

The identity forTHENC is ALL_CONV which when applied to a termt returns the theorem
⊢ t = t. In other words,ALL_CONV is simply the same as the primitive ruleREFL.

Section 1.1 made it clear how the pending call toTRANS, waiting for c1 andc2 to
return, is not necessarily space-efficient.

2.2 Failure

A conversion can indicate that it has failed on a particular input by raising an exception. In
HOL4, this exception will be aHOL_ERR. The implementation ofORELSEC is simple.

fun ORELSEC(c1,c2) t = c1 t handle HOL_ERR _ => c2 t

Like THENC, ORELSEC is typically used as an infix. The HOL4 implementation only
catchesHOL_ERR exceptions (which take as a parameter additional information about the
nature of the error). Other exceptions, such as the built-inInterrupt, or those users might
care to invent, are allowed to propagate out.

Following Paulson, there is an identity conversion forORELSEC, NO_CONV:

fun NO_CONV t = raise HOL_ERR 〈data〉

2.3 Repetition withREPEATC, a Poor Man’s Loop

REPEATC, which applies a conversion repeatedly until it fails, can be defined

fun REPEATC c t =
((c THENC REPEATC c) ORELSEC ALL_CONV) t

(The eta-expansion to include the argumentt is necessary to avoid an immediate diver-
gence.)

There is a problem withREPEATC. It lies with its poor structuring of control-flow,
which in turn leads to the proliferation of unnecessary exception-handlers, and thus the
unnecessary consumption of memory. After expanding the outermost call toORELSEC, the
execution state is

(c THENC REPEATC c) t handle HOL_ERR _ => ALL_CONV t

The exception handler has scope over not justc but the call toREPEATC. This is unneces-
sary because the call toREPEATC cannot raise an exception. Worse, each successive call to
REPEATC will create a fresh handler.

11

Conceptually, the exception handler is only present to catch exceptions arising inc. The
flow control should be

REPEATC c

c

ALL_CONV

succeeds

fails

To handle this possibility, an explicit conditional conversion can be written. In the traditional
style, this is rather awkward (the cps-conversionkIFC of Section 3.2 is much more elegant):

fun IFC(g,s,f) t =
case total g t of

SOME th => TRANS th (s (rhs (concl th)))
| NONE => f t

The implementation doesn’t refer toTHENC, but of course it hasTHENC’s standard problem:
the call toTRANS is suspended untils returns.

Nonetheless, a new implementation ofREPEATC can be written, here callediREPEATC
to distinguish it from Paulson’s original:

fun iREPEATC c t = IFC(c,iREPEATC c,ALL_CONV) t

2.4 Rewriting Sub-terms

Rewriting systems must be able to apply their rewrites at anyposition within the term that
is being rewritten. This ability is permitted by the two congruence rules presented in Fig-
ure 1. In the HOL4 implementation, these rules are implemented by two primitive rules of
inference:ABS, andMK_COMB. The first implements the congruence for abstractions: given
an equational theoremΓ ⊢ t1 = t2 and a variablev, a call toABS v (Γ ⊢ t1 = t2) re-
turns the theoremΓ ⊢ (λv.t1) = (λv.t2), with an exception occurring ifv ∈ Γ . The rule
MK_COMB takes a pair of theoremsΓ1 ⊢ f = g andΓ2 ⊢ x = y and returns the theorem
Γ1 ∪ Γ2 ⊢ f(x) = g(y), as long asf (andg) are of function type with domain equal to the
type ofx (andy).

The functionsCOMB_CONV andABS_CONV are used to rewrite with these rules. An
SML implementation ofCOMB_CONV is

fun COMB_CONV c t = let
val (rator,rand) = dest_comb t

in
MK_COMB(c rator, c rand)

end

where the functiondest_comb pulls apart an application (or “combination” term) return-
ing the pair of the function and argument terms. If the term isnot an application (is an
abstraction, variable or constant), or if the call toMK_COMB fails because the equations
provided are not compatible, an exception is raised.

The implementation ofABS_CONV is similar.

12

2.5 Term Traversal Strategies

The standard rewriting strategy in HOL4 is:

Repeatedly apply rewrites at the top level, as long as any apply. Then descend
recursively into sub-terms. If anything changes from this traversal, try a rewrite at
the top-level again. If this succeeds, repeat.

The essence of this strategy is captured in the functionTOP_DEPTH_CONV. This is another
higher-order conversion, which takes as an argument the conversion to perform rewrites at
the top position of a term. It is then the responsibility ofTOP_DEPTH_CONV to organise the
term-traversal. This function is similar to, but not quite the same as theTOP_DEPTH_CONV
in Paulson [11]. The difference is that Paulson’s version doesn’t check if the recursion
changed the term or not. The HOL4 implementation is

fun TOP_DEPTH_CONV c t =
(REPEATC c THENC
TRY_CONV

(CHANGED_CONV (SUB_CONV (TOP_DEPTH_CONV c)) THENC
TRY_CONV (c THENC TOP_DEPTH_CONV c))) t

There are three new functions here. Two are simple:

fun TRY_CONV c = c ORELSEC ALL_CONV
fun SUB_CONV c = TRY_CONV (COMB_CONV c ORELSEC ABS_CONV c)

A call to CHANGED_CONV c t appliesc to t and checks to see if the result is an instance of
reflexivity. If so, it fails. The implementation is straightforward:

fun CHANGED_CONV c t = let
val th = c t
val (l,r) = dest_eq (concl th)

in
if aconv l r then raise HOL_ERR 〈No change error〉
else th

end

2.6 Avoiding Excessive Term-Rebuilding

There is one extremely important feature of the modern LCF-style rewriting systems that
is not in Paulson [11]: the use of special return values to record that a term has not been
changed by a rewriting step.

The standard term traversal strategies repeatedly examineall of a term looking for pos-
sible matches for rewrite rules. When rewriting an application termf x, the traversal will
eventually create theorems of the form⊢ f = g and⊢ x = y that will be fed into the rule
MK_COMB. However, it can often happen that a term doesn’t change. Then both theorems
will be instances of reflexivity, and so too will the output fromMK_COMB.

If a term is traversed, but doesn’t contain any matches for the supplied rewrite rules, the
action of all the calls toMK_COMB andABS will be to create fresh copies of the original’s
internal structure (though not its leaves). This follows from the kernel’s implementation of
these rules of inference. For example, the kernel’sMK_COMB will be something like

13

fun MK_COMB (fth,xth) = let
val (f,g) = dest_eq (concl fth)
val (x,y) = dest_eq (concl xth)

in
mk_thm(union_hyp (hyp fth) (hyp xth),

mk_eq(mk_comb(f,x), mk_comb(g,y)))
end

where the calls todest_eq check that the input theorems really are equalities, and where
the calls tomk_comb check that the types of the functions link up with those of theargument
appropriately before creating an application term.

When rewriting, the original term being traversed was of theform mk_comb(f,x),
and this code will create this term again to serve as the output theorem’s l.h.s. Ifg is syntac-
tically equal tof, andx is syntactically equal toy, then the second call tomk_comb will
end up creating asecondcopy of the original.

One might imagine extending the kernel to provide a version of MK_COMB that took the
original application term as an argument, and that used a constant-time pointer-equality test
to check both that the input theorems did actually equate thesub-terms of the original, and
also to avoid creating a fresh r.h.s. when the sub-terms hadn’t changed. (If the necessarily
approximate pointer-equality test failed on either check,the new rule would fall back to
callingmk_comb.)

Rather than tailor the kernel to this one (admittedly important) application, the LCF
rewriting implementations all use a different trick: they change their conversions so that
they can signal that the input term has not changed. In HOL4, HOL Light and ProofPower,
this is done by having conversions raise an exception. In Isabelle’s simplifier, the process
of rewriting uses the option type to do the same thing. This idea is extremely important for
efficiency. Boulton [4], who is reponsible for its HOL implementation within the Paulson
framework of conversions, credits it to Huet.

In HOL4, the exception used isUNCHANGED. The functionTHENC (first in Figure 6)
changes, with two handlers set up to cope with the possibility of either conversion rais-
ing UNCHANGED. The bare call toc2 t naturally admits the possibility that the call to
THENC will also raiseUNCHANGED, when both conversions do the same. The definitions of
ORELSEC, NO_CONV, REPEATC, ABS_CONV, SUB_CONV, TRY_CONV, and also of the
term-traversal operatorTOP_DEPTH_CONV are unchanged.

The new implementation ofCOMB_CONV (third in Figure 6) has a similar feel to that of
THENC, but it becomes fiddlier to get the scopes right (the nestedlet-in-end is neces-
sary so that the outermost handler can still “see” the value of sub-termsf andx).

Note that a successful traversal will still end up creating acopy of the original term on
the l.h.s. of the resulting theorem. (More accurately: any internal structure above sub-terms
that change on the r.h.s. will be created afresh on the l.h.s.as well.)

Finally, CHANGED_CONV needs to now check that its call toc t hasn’t raised the
UNCHANGED exception. If it does, this needs to be converted to aHOL_ERR.

3 The CPS-Conversion System

When moving beyond the introduction’s simple system (whichonly implements sequencing
with kTHENC), there are two critical new features that influence the design. The first is the
possibility of failure.

14

fun THENC(c1,c2) t = let
val th1 = c1 t

in
TRANS th1 (c2 (rhs (concl th1))) handle UNCHANGED => th1

end handle UNCHANGED => c2 t

fun ALL_CONV t = raise UNCHANGED

fun COMB_CONV c t = let
val (f,x) = dest_comb t

in
let
val fth = c f
val xth = c x handle UNCHANGED => REFL x

in
MK_COMB(fth, xth)

end handle UNCHANGED => MK_COMB(REFL f, c x)
end

fun CHANGED_CONV c t = let
val th = c t handle UNCHANGED => raise HOL_ERR 〈No change error〉
val (l,r) = dest_eq (concl th)

in
if aconv l r then raise HOL_ERR 〈No change error〉
else th

end

Fig. 6 HOL4 implementations ofTHENC, ALL_CONV, COMB_CONV and CHANGED_CONV when the
UNCHANGED exception is being used to signal that a conversion has not affected its input term.

To create an analogue of raising an exception in the world of cps-conversions, the basic
type changes. A cps-conversion will now include two continuations: one for a successful
computation, and one for failure. This is a well-known treatment for exceptions in a CPS
style. There is also a new form of continuation,ReturnTo, specifying a term to return to
before continuing with a failure continuation. This constructor will be explained further in
Section 3.1, where we will see how this new constructor parallels the existingTrans form.

The second critical feature from Section 2 that informs the design of the full CPS system
is the use of theUNCHANGED exception to indicate that a conversion has succeeded, but that
it has not changed the input. In the world of cps-conversions, success continuations need
to be able to transparently handle the possibility that theycan be called in a state where
a previous conversion has not returned a theorem, but has instead signalled an unchanged
condition.

Our approach is to create a new sum type,convresult:

datatype convresult = TM of term | THM of thm

TheTM constructor indicates that a conversion has signalled “unchanged” on the term argu-
ment toTM. TheTHM constructor is used for the normal return of an theorem equating the
input term to some result.

The type of a continuation (cont) changes to include the new failure continuation
ReturnTo, and to have a closure as the argument toConv. We also note that theReturnTo
andDone forms will only occur in failure continuations, and that theTrans constructor
will only occur in success continuations.

15

datatype cont = Conv of (convresult -> convresult)
| Trans of (thm * cont)
| ReturnTo of (term * cont)
| Done

IgnoringReturnTo for the moment, there are two natural questions to ask about this de-
sign. Why is there a closure as an argument toConv, and why does the closure have the
type that it does?

To answer the second question first: a continuation is an implementation of a function
that consumes the result type of the underlying computation, and then performs some further
transformation. (Of course, in the traditional CPS translation of functions, the continuations
are functions.) Because the aim of this design is to stay within the space of cps-conversions
(allowing them to be combined using Paulson’s algebraic operators), the “further transfor-
mations” will naturally produce the result type again.

The use of the function space under theConv constructor allows flexibility. There
are too many sorts of continuation possible when one comes toimplement operators like
COMB_CONV andCHANGED_CONV. Trying to encode these concretely leads to the cre-
ation of a veryad hocand confusing data type. Using a closure underConv still allows the
TRANS-merging optimisation of the introduction because theTrans constructor remains
available for just that purpose.

The type of a cps-conversion is then

type cps_conv = cont -> cont -> term -> convresult

Precisely because thecont type is not simply a closure, the action of acont on a
convresultmust be explicitly defined. Figure 7 gives the action of a success continuation
in two separate functions, one for theorems (theTHM constructor), and one for terms (the
TM constructor). Next, we must treat failure continuations.

fun apply_cont k th =
case k of
Conv f => f (THM th)

| Trans(th0,k) => apply_cont k (TRANS th0 th)

fun apply_unchanged k t =
case k of
Conv f => f (TM t)

| Trans(th,k0) => apply_cont k0 th

Fig. 7 Functionsapply_cont andapply_unchanged, detailing how to apply a success continuation to
the two sorts of conversion result, theorems and terms respectively.

3.1 Failure Continuations

A failure continuation represents what should be done if a conversion fails. If a conversion
does fail, there will not be a theorem to apply the continuation to. Instead, the term to which
the conversion that failed was applied will be available. Asa result, one might imagine that
theapply_fail function for applying a continuation should have type

cont -> term ->convresult

16

In order to support the provision of extra data about a conversion’s failure, we actually use
the type

cont -> exn -> term -> convresult

In this way, the ultimate result of applying a failure continuation can still be the raising of
an exception.

Now, consider the conversion

(c1 THENC c2) ORELSEC c3

Here, the conversionc3 will get called if eitherc1 orc2 fails. Imagine that in fact,c1 suc-
cessfully transforms some input termt0 tot1. If c2 then fails,c3 should be applied tot0,
not t1. When this conversion is translated to its CPS analogue, this analysis suggests that
although the failure continuation whenc2 is called should get handed termt1, the contin-
uation should itself know to callc3 ont0. This is done by having the failure continuation
use theReturnTo constructor to encode the requirement to return to some previous term.

The definition ofapply_fail is given in Figure 8.

fun apply_fail k e t =
case k of
Done => raise e

| ReturnTo(t’,k’) => apply_fail k’ e t’
| Conv f => f (TM t)

Fig. 8 The definition ofapply_fail, the function that computes the effect of applying a failure continua-
tion to a term. The additional exception argument allows the world of cps-conversions to raise an exception
if it runs out of other things to do (has aDone continuation). The term argument will have been the argument
to a conversion that failed.

Just as the simple system of the introduction avoided havingmultipleTrans construc-
tors in a continuation, it makes sense to avoid having chainsof ReturnTo constructors. In
a continuation like

ReturnTo(t1,ReturnTo(t2,k))

the outermostReturnTo is redundant; the continuation might as well call for a direct return
to t2. This minor optimisation is performed by theRT function:

fun RT (t1, k as ReturnTo _) = k
| RT (t, c) = ReturnTo(t, c)

3.2 Sequencing and Alternation:THENC, ORELSEC andIFC

The next component of the full CPS-system is thecontinue function. This implements the
action of applying a conversion to the result of a conversion, thereby allowing conversions to
be composed, or chained together. In the vanilla Paulson-system, the result of a conversion
is a theorem. One can see the Paulson-analogue ofcontinue by splittingTHENC thus:

fun pcontinue c th = TRANS th (c (rhs (concl th)))
fun (c1 THENC c2) t = pcontinue c2 (c1 t)

17

In the CPS-system, thecontinue function takes a cps-conversion, success and failure
continuations and a value of typeconvresult. If the convresult is a term, meaning
that the previous conversion left its argument unchanged, then the cps-conversion argument
should just be applied to that term, along with the continuations. This is also the behaviour
that is required when a conversion is applied to a bare term onwhich some other conversion
has failed.

If the convresult is a theorem, then the cps-conversion needs to be called on the
r.h.s. of that theorem’s conclusion. In addition, both the failure and success continuations
need to be adjusted. The success continuation needs to storethe theorem with theTrans
constructor so that a call toTRANS can be made later. The failure continuation needs to
record the l.h.s. of the theorem, so that if the cps-conversion fails, the failure continuation
can return to the original term. The full definition ofcontinue is given in Figure 9.

fun continue c k f (TM t) = c k f t
| continue c k f (THM th) = let

val (l,r) = dest_eq (concl th)
in

c (Trans(th,k)) (RT(l,f)) r
end

fun SCont c k f =
case k of
Trans(th,k’) => Trans(th,Conv(continue c k’ f))

| _ => Conv(continue c k f)
fun FCont c k f = Conv(continue c k f)

fun kTHENC (c1,c2) k f t = c1 (SCont c2 k f) f t
fun kORELSEC (c1,c2) k f t = c1 k (FCont c2 k f) t
fun kIFC (g,c1,c2) k f t = g (SCont c1 k f) (FCont c2 k f) t

Fig. 9 Fundamental sequencing and alternation operators (kTHENC, kORELSEC and kIFC). The
continue function applies a cps-conversion to the two usual continuations and aconvresult. Also
shown are theSCont andFCont functions, which construct success and failurecont values embodying
continue. TheSCont function keeps anyTrans constructor uppermost.

The expressioncontinue c k f is a function taking oneconvresult to another,
so it can be given as an argument to theConv constructor to create a continuation (cont)
value.

With continue defined, it is then possible to define the sequencing and alternation
operatorskTHENC, kORELSEC andkIFC, as in Figure 9. The first two call the first con-
version (c1), and pushc2 onto the success or failure continuations respectively. ThekIFC
operator calls its argumentg, and pushes the other two conversion arguments onto the suc-
cess and failure continuations.

Note how this design overloadscontinue so that it is used to apply a conversion both
to the result of a successful conversion, and to a term when a conversion fails. When working
with a failure continuation, only the first branch ofcontinue’s definition will be called.
This is why theFCont auxiliary does not need to worry about keepingTrans constructors
uppermost, as is done bySCont.

18

3.3 Connection with Traditional Conversions

The final elements of the CPS-system arelift anddrop. A naïve attempt to writelift
might be

fun lift (cnv : term -> thm) k f t =
apply_cont k (cnv t)
handle e as HOL_ERR _ => apply_fail f e t

| UNCHANGED => apply_unchanged k t

This is incorrect because the scope of the exception handlerranges over not justcnv t, but
alsoapply_cont. This is the problem diagnosed and discussed in Benton and Kennedy [2],
and unfortunately, there is little option here but to work around with a custom sum type.

Begin with a new data type, and a revised form of thetotal function:
datatype ’a result = OK of ’a | UNCH | ERR of exn
fun total f x =

OK (f x) handle e as HOL_ERR _ => ERR e
| UNCHANGED => UNCH

Then,lift is
fun lift c k f t =

case total c t of
OK th => apply_cont k th

| UNCH => apply_unchanged k t
| ERR e => apply_fail f e t

Thedrop function for turning a cps-conversion into a normal conversion is simpler:
fun drop c t =

case c (Conv(fn x => x)) Done t of
TM _ => raise UNCHANGED

| THM th => th

3.4 Initial Derived Forms

Having set up the CPS-system carefully, it is possible to define derived operators in ways
that directly mimic definitions made in Paulson’s system. The identities forkTHENC and
kORELSEC arekALL_CONV andkNO_CONV respectively:

fun kALL_CONV k f t = apply_unchanged k t
fun kNO_CONV k f t =

apply_fail f (HOL_ERR 〈kNO_CONV data〉) t

Repetition should be implemented withkIFC, giving

fun kREPEATC c k f t = kIFC(c,kREPEATC c,kALL_CONV) k f t

The functionREPEATC has typeconv -> conv, and the correspondingkREPEATC has
typecps_conv -> cps_conv.

A definition forkREPEATC analogous to Paulson’s original definition would be
fun kREPEATC c k f t =

((c kTHENC kREPEATC c) kORELSEC kALL_CONV) k f t
but experiments reveal that this is less efficient.

When the operators for moving into sub-terms have been defined, the definition of
TOP_DEPTH_CONV in the CPS-system can also directly mimic the original definition.

19

3.5 Algebra

Theorem 3 The cps-conversionkNO_CONV is extensionally a left-identity forkORELSEC.

(kNO_CONV kORELSEC c) k f t

= kNO_CONV k (Conv(c, k, f)) t (def’n of kORELSEC)
= apply_fail (Conv(c, k, f)) 〈error-exn〉 t (def’n of kNO_CONV)
= c k f t (def’n of apply_fail)

As with the analoguesORELSEC andNO_CONV in the HOL4 implementation,kNO_CONV
is not quite a right identity forkORELSEC. In c kORELSEC kNO_CONV, if c raises an
exception, then the result of the expression will bekNO_CONV’s exception, notc’s.

3.6 Experimental Performance: Flavours ofREPEATC

To test conversion repetition, the functionf from theTHENC tests of the introduction can
be re-used

f 0 = 0

f (SUC n) = f n

The experimental task is to rewrite a termf (SUCn 0) to zero. The theorem⊢ f(0) = 0

is calledf0 andfSUC is ⊢ f(SUC n) = f(n). The experiments compare the behaviour of
three different conversions, the traditional original:

REPEATC (REWR_CONV f0 ORELSEC REWR_CONV fSUC)

the same conversion withREPEATC replaced byiREPEATC from Section 2.3 (i.e.,REPEATC
implemented withIFC), and the cps-conversion:

drop (kREPEATC (lift (REWR_CONV f0) kORELSEC
lift (REWR_CONV fSUC)))

Each conversion attempts to rewrite withf0 first. This attempt fails on all but the last term
in the sequence takingf(SUCn 0) to 0. This tests the handling of exceptions inORELSEC
and its analogues. Conversely, the successful branch inside the repetition is taken on every
termexceptthe zero.

The experimental results (for Moscow ML) are presented in Figure 10. These demon-
strate that theIFC optimisation is of considerable benefit when applied to traditional conver-
sions, and that the cps-conversion performs better still. Not shown are results for the naïve
cps-conversion written withoutkIFC. At maximum size, this version of the conversion took
13.3s, compared to 11.5s for thekIFC version.

4 Accessing Sub-terms with CPS-Conversions

Figure 11 gives all of the code necessary to process the sub-terms of an application term. The
done_right function specifies how to proceed once both sub-terms have been processed
(either, both or neither may have been unchanged by their respective conversions, so there
is four-way case split). Thedo_right continuation applies a cps-conversion to a term

20

8 10 12 14 16 18

Term size (log)

0.001

0.01

0.1

1

10

T
im

e
(s

ec
on

ds
)

Trad USR

Trad GC

IFC USR

IFC GC

REPEATC: Trad vs IFC (Moscow ML)

8 10 12 14 16 18

Term size (log)

0.001

0.01

0.1

1

10

T
im

e
(s

ec
on

ds
)

IFC USR

IFC GC

CPS USR

CPS GC

REPEATC: IFC vs CPS (Moscow ML)

Fig. 10 Timing statistics for theREPEATC experiment, with user and garbage collection times. The data-
points are means collected over 100 runs. At term size= 216, the mean elapsed times forTrad, IFC and
CPS are 9.2s, 4.0s and 1.4s respectively. TheTrad implementation raises anOut_of_memory exception
on terms of size≥ 217; the IFC implementation does the same on terms of size≥ 218.

fun done_comb parent k left right =
case (left,right) of
(TM _, TM _) => apply_unchanged k parent

| (TM l, THM r) => apply_cont k (MK_COMB(REFL l, r))
| (THM l, TM r) => apply_cont k (MK_COMB(l, REFL r))
| (THM l, THM r) => apply_cont k (MK_COMB(l, r))

fun do_right c parent k f x left =
c (Conv(done_comb parent k left)) f x

fun kCOMB_CONV c k f t = let
val fl = RT(t,f)

in
case total dest_comb t of
OK(t1,t2) => c (Conv(do_right c t k fl t2)) fl t1

| ERR e => apply_fail f e t
end

Fig. 11 Accessing the sub-terms of an application term, leading to theimplementation ofkCOMB_CONV.

that is assumed to be the right-hand sub-term of an application. Finally,kCOMB_CONV is
straightforward.

Using these primitives, it is also possible to implement cps-conversion analogues of the
standard functionsRATOR_CONV andRAND_CONV, which apply a conversion just to a
particular sub-term. The new definition ofkABS_CONV is omitted in the interests of space,
but is included in the (available, see Section 6.2) source-code.

The system has become rather reminiscent of abstract machines for implementing par-
ticular evaluation strategies for theλ-calculus. Such a machine is presented in Barras [1],
where it is used to perform very efficient applicative order “computation”. The difference
between that work and this is that Barras is implementing a very specific evaluation strat-
egy, while this work is meant to allow any strategy to be expressed. Computation in Barras’s
sense also requires the system to include a notion of what constitutes a “value”.

In order to implement the analogue ofTOP_DEPTH_CONV from Section 2.5, the CPS-
system needs analogues ofSUB_CONV, TRY_CONV andCHANGED_CONV. The first two
can be translated directly (ORELSEC is replaced bykORELSEC etc). The analogue of

21

CHANGED_CONV is presented in Figure 12. This code handles theUNCHANGED exception
when the argumentc is called, and additionally looks at the r.h.s. of the resulting theorem.
In the cps-conversion (second in Figure 12), ifc leavest unchanged, then thecheck aux-
iliary will be handed that term to compare with itself. Asaconv uses a pointer-equality
comparison internally as a fast-path check, the behaviour will still be constant-time, as de-
sired.

fun kCHANGED_CONV c k f t = let
val fail_exn = HOL_ERR 〈No change error〉
fun kont (TM _) = apply_fail f fail_exn t
| kont (THM th) =

if aconv t (rhs (concl th)) then apply_fail f fail_exn t
else apply_cont k th

in
c (Conv kont) f t

end

Fig. 12 CPS-conversion implementation ofCHANGED_CONV, a higher-order conversion that fails if its ar-
gument does not change its input. Theaconv (read “alpha-convertible”) function tests if two terms are
alpha-equivalent.

One can now produce an implementation ofkTOP_DEPTH_CONV that directly parallels
the traditional code. Though experiments reveal the slowdown to be smaller, this suffers
from the same problem asREPEATC (identified in Section 2.3): exception handlers are given
scope over functions that cannot raise exceptions, and these accumulate unnecessarily. It is
better to implementkTOP_DEPTH_CONV as

fun kTOP_DEPTH_CONV c k f t =
(kREPEATC c kTHENC
kIFC(kCHANGED_CONV (kSUB_CONV (kTOP_DEPTH_CONV c)),

kIFC(c, kTOP_DEPTH_CONV c, kALL_CONV),
kALL_CONV)) k f t

4.1 Experimental Performance: Rewriting Sub-terms

Experiment #1: Ackermann’s FunctionThe first test of the cps-conversions on a problem
where (repeated) term-traversal is required is to rewrite with the following definition of
Ackermann’s function:

Ack 0 n = SUC n
Ack (SUC m) 0 = Ack m (SUC 0)
Ack (SUC m) (SUC n) = Ack m (Ack (SUC m) n)

This definition is effectively three rewrite theorems. The action of trying each rewrite in turn
can be done efficiently through the use of a standard HOL auxiliaryREWRITES_CONV, and
a specialised data structure called a term-net.

If the term-net for these three rewrites isAck_rwts, then the traditional conversion is

TOP_DEPTH_CONV (REWRITES_CONV Ack_rwts)

and the cps-conversion is

22

drop (kTOP_DEPTH_CONV (lift (REWRITES_CONV Ack_rwts)))

In this way, the behaviour of the cps-conversion at the levelof atomic rewriting steps directly
mimicks the original conversion. The only difference lies in the efficiency, or otherwise, of
the assembly of the resulting theorems.

The experiment compared the performance of these conversions when applied to terms
of the form

Ack (SUC(SUC(SUC 0))) (SUCn 0)

for 0 ≤ n ≤ 8. This computation is an extremely inefficient way of calculating 2(n+3) − 3

(in unary notation no less). The results for this experimentare presented in Figure 13. When
having to recurse over the structure of increasingly large terms, remembering one’s position
along the way, the cps-conversions’ advantage is less marked than in the earlier experiments.
The cps-conversions cannot escape having to build up what iseffectively a stack of positions.
Moreover, the traversal only ever chains together at most three rewrites at the same term
position (moving from a term matching the second clause of the definition to one matching
the third, and then finally, one matching the first), vitiating the cps-conversions’ strength in
chaining together calls toTRANS.

Nonetheless, in the Moscow ML implementation, the cps-conversions are significantly
quicker on the largest problem. In the Poly/ML implementation, the cps-conversions are
slightly slower. It is not clear why this should be so. It is not the use of closures: a version
of the cps-conversion system with concrete constructors for the data typecont performed
much the same as the version with justConv andTrans as constructors forcont. See
Section 6.1 for more discussion of Poly/ML.

0 2 4 6 8

Argument (n in Ack(3,n))

0.001

0.01

0.1

1

10

100

T
im

e
(s

ec
on

ds
)

Trad USR

Trad GC

CPS USR

CPS GC

Computing Ackermann 3: Trad vs CPS (Moscow ML)

0 2 4 6 8

Argument (n in Ack(3,n))

0.001

0.01

0.1

1

10

100

T
im

e
(s

ec
on

ds
)

Trad USR

Trad GC

CPS USR

CPS GC

Computing Ackermann 3: Trad vs CPS (Poly/ML)

Fig. 13 Timing statistics for the Ackermann experiment. The data-points are means collected over 5 runs
at each argument size. The mean times taken in the Moscow ML implementation atn = 8 were 232s
for the traditional implementation, and 154s for the cps-conversion. For the Poly/ML implementation, the
corresponding times were 18.1s and 20.7s,i.e., the cps-conversion was slower.

The technology in the Barras’s previously mentioned “call-by-value” rewriting engine
(calledEVAL in HOL4) provides an interesting comparison here. TheEVAL function is
generally quicker than rewriting. However, if one attemptsto callEVAL on the last problem
from the experiment (calculating211 − 3), it causes Poly/ML to crash with what it claims
is a “stack limit reached” error. When the same test is made inthe Moscow ML implemen-
tation, it succeeds after 830s, which is over three times slower than the use of traditional
conversions.

23

Experiment #2: Naïve NNF and PrenexingThe rewriting done above to calculate Acker-
mann’s function is somewhat atypical in that the term of interest grows larger as the rewrit-
ing proceeds. In interactive use, it is more typical to have the input term stay roughly the
same size, or even grow smaller.

In order to test the CPS-system on a rewriting problem that ismore typical, we tried a
formula normalisation problem. At the atomic level, we combine the action of the following
rewrites:

¬(p ∧ q) = ¬p ∨ ¬q ¬(p ∨ q) = ¬p ∧ ¬q ¬¬p = p

(∃x.P) = P † (∀x.P) = P † († : x /∈ P)

¬(∃x.P) = ∀x.¬P ¬(∀x.P) = ∃x.¬P

(∃x.P) ∧ Q = ∃x.P ∧ Q P ∧ (∃x.Q) = ∃x.P ∧ Q

(∀x.P) ∧ (∀x.Q) = ∀x.P ∧ Q (∀x.P) ∧ Q = ∀x.P ∧ Q P ∧ (∀x.Q) = ∀x.P ∧ Q

(∃x.P) ∨ (∃x.Q) = ∃x.P ∨ Q (∃x.P) ∨ Q = ∃x.P ∨ Q P ∨ (∃x.Q) = ∃x.P ∨ Q

(∀x.P) ∨ Q = ∀x.P ∨ Q P ∨ (∀x.Q) = ∀x.P ∨ Q

The rewrites are attempted in the order given. There is no attempt made to avoid unnecessary
quantifier-alternation, and by combining quantifier movement to the head of the formula
with pushing negations inwards, repeated traversals of theinput term are guaranteed.

The above rewrites were turned into a list of conversionsnorm_convs. The traditional
conversion tested was

TOP_DEPTH_CONV (FIRST_CONV norm_convs)

whereFIRST_CONV is the standard auxiliary defined as

fun FIRST_CONV [] tm = NO_CONV tm
| FIRST_CONV (c::rst) tm =

c tm handle (HOL_ERR _) => FIRST_CONV rst tm

The CPS-system version ofFIRST_CONV is

fun kFIRST_CONV clist k f t =
case clist of

[] => kNO_CONV k f t
| c::cs => (lift c kORELSEC kFIRST_CONV cs) k f t

This auxiliary was defined just for the purpose of the experiment, and takes as an argument
a list of traditional conversions rather than a list of cps-conversions. This allows the code
run as the CPS part of the experiment to be

drop (kTOP_DEPTH_CONV (kFIRST_CONV norm_convs))

For each term size, a random binary tree was generated (with the algorithm due to Martin
and Orr [10]), and nodes randomly annotated with negations and quantifiers. The largest
term had size 3319. The results are presented graphically inFigure 14. Again, the CPS-
system is a clear improvement when running in Moscow ML. Under Poly/ML, the overall
improvement is barely discernible, though the superiorityin garbage collection times is even
visible in the log-scaled graph.

24

1 2 3

Term size (log
10

)

0.001

0.01

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

Trad USR

Trad GC

CPS USR

CPS GC

Prenexing: Trad vs CPS (Moscow ML)

1 2 3

Term size (log
10

)

0.001

0.01

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

Trad USR

Trad GC

CPS USR

CPS GC

Prenexing: Trad vs CPS (Poly/ML)

Fig. 14 Timing statistics for the prenexing experiment. The data-points are means collected over 10 runs on
the same term of the given size. The mean times taken in the MoscowML implementation on the largest
formula were 1165s for the traditional implementation, and 986s for the cps-conversion. For the Poly/ML
implementation, the corresponding times were 238s and 237s,i.e., the cps-conversion was only very slightly
faster.

5 Advanced Features

The last features to be implemented in the CPS-system are conditional rewriting, and user-
supplied congruences. These features are described in Paulson [11], but the implementations
are only sketched, and were clearly the subject of intensivework at the time.

Both features require the rewriter to be called recursively. In the case of conditional
rewriting, this recursive call happens at what might be thought of as the “leaf-level” of the
rewriting, when calling the analogue ofREWR_CONV.

Each feature requires rather more code to implement than do the simple conversions in
the earlier parts of this paper. For this reason, the implementations are not given completely.
Again, full source code is available from the URL given in Section 6.2.

5.1 Conditional Rewriting

Conditional rewriting is the ability to perform a rewrite which only holds if some pre-
condition is discharged. For example, conditional rewrites are common when working with
integer division and modulus, where one uses theorems like

⊢ r < n ⇒ (qn + r) MOD n = r

⊢ 0 < n ⇒ (xn + r) DIV n = x + r DIV n

⊢ k < n ⇒ k MOD n = k

⊢ 0 < n ∧ 1 < d ⇒ (n DIV d < n) = ⊤

If a user specifies that a rewrite should be done with a theoremof this form, the rewriting
system needs to be able to show that the precondition is true before it replaces the l.h.s. with
the r.h.s. from the rewrite theorem. Assuming that the appropriate tool for discharging these
preconditions is the rewriting engine itself, this then requires a recursive call.

There is a risk of exponential blow-up here: a pre-conditionusually involves sub-terms
of the original, so that if simplification of the pre-condition doesn’t succeed, and if the
simplifier then goes onto look at that sub-term again as part of a top-down traversal, it will
be simplified twice. In a bottom-up traversal, sub-terms mayagain be traversed twice, but

25

the second traversal (in the pre-condition solver) will at least be of terms that have already
been normalised.

In order to sit well with the CPS style of the cps-conversions, these recursive calls can
be recast as calls to continuations. Because of the generality of theConv constructor (from
Section 3), this is quite straightforward.

The only nicety in the following is a limit on the number of times the rewriter will let
itself be called to decide a conditional rewrite’s pre-condition. With pathological rewrites
(of the sort that users throw at rewriting systems as a matterof course), it is all too easy for
a system to go into an infinite loop chaining backwards on unprovable pre-conditions. In
practice, it appears that this limit can be quite low. Here, the limit is chosen to be three.

fun kCondRewr th rewriter n k fl t =
if n > 3 then apply_fail fl stackdeep t
else if is_imp (concl th) then
case total (PART_MATCH (lhs o #2 o dest_imp) th) t of

ERR e => apply_fail fl e t
| OK rwt => let

val (cond, _) = dest_imp (concl rwt)
fun kont (TM _) = apply_fail fl cond_unproven t
| kont (THM th) =

case total EQT_ELIM th of
ERR _ => apply_fail fl cond_unproven t

| OK th’ => apply_cont k (MP rwt th’)
in

rewriter (n + 1) (Conv kont) (RT(t,fl)) cond
end

else
case total (PART_MATCH lhs th) t of

ERR e => apply_fail fl e t
| OK rwt => apply_cont k rwt

Fig. 15 The conditional rewriting primitive as a cps-conversion. The PART_MATCH function attempts to
match part of a theorem (here its l.h.s.) to a given term, and returns the appropriately instantiated theorem. The
EQT_ELIM function attempts to turn a theorem of the form⊢ x = ⊤ into⊢ x. The functionMP implements
modus ponens. The code also assumes predefined exception valuesstackdeep andcond_unproven to
signal that pre-condition solving has recursed too far, andthat a pre-condition couldn’t be proven, respec-
tively.

The code forkCondRewr is given in Figure 15. The first check is to see whether or not
the limit on pre-condition attempts has been reached. Then the code tests to see whether or
not the provided rewrite is conditional or not. If not, the code falls through to code at the bot-
tom of the definition that attempts to match and instantiate an unconditional rewrite. Finally,
in the last case, if there is a match with the conditional rewrite, then the providedrewriter
function is called on the rewrite’s pre-condition (cond). The continuationcont checks to
see ifcond has been reduced to true, and if so, usesmodus ponensto discharge the pre-
condition, creating a result theorem that does indeed equate the original argument to some
new r.h.s.

Putting the atomickCondRewr into a rewriting system usingkTOP_DEPTH_CONV
or some other traversal strategy becomes slightly complicated when it comes to tying the
various recursive knots. However, using the existing cps-conversion combinators, the code
mimics that used in the existing HOL4 simplifier, and the factthat a CPS style is being used
is concealed from the programmer.

26

5.2 Rewriting with User-supplied Congruences

A congruence is a theorem capturing how equalities on sub-terms can be used to construct an
equality on a larger term. For example, the inference rule behindMK_COMB can be captured
by the theorem

⊢ (f = g) ⇒ ((x = y) ⇒ (f x = g y))

In general, a congruence will be

⊢ subeqn1 ⇒ (· · · ⇒ (subeqnn ⇒ eqn))

where the equation ineqn will match terms of a particular form and the varioussubeqni

specify that certain sub-terms should be rewritten. For example, the theorem

⊢ g = g′ ⇒ (if g then t else e) = (if g′ then t else e)

is a congruence that causes only the guard of anif-then-else form to be rewritten.
One important refinement of this idea is to support the inclusion of additional context

when a sub-term is examined. The idea is to allow the varioussubeqni above to have the
form P ⇒ (t0 = t). TheP represents additional context that may be assumed in the course
of simplifying t0. For example, one can use the following as a congruence for simplifying
conjunctions:

⊢ (P = P ′) ⇒ ((P ′ ⇒ (Q = Q′)) ⇒ (P ∧ Q = P ′ ∧ Q′))

This uses the idea that it is valid to assume the truth ofP when simplifyingQ. More specifi-
cally, this rule encodes the rewriting strategy of first simplifying P to P ′, and then assuming
P ′ while simplifyingQ to Q′.

A naïve cps-conversion version of a simplifier that uses congruence rules in this vein can
be written in 50 lines of code. The handling of congruence rules is done by a function taking
a theorem representing the congruence rule as an argument. If the rule has been reduced to
a bare equality, this is the result. Otherwise, the implication is split, and the rewriter called
recursively on the implication’s first argument. The continuation passed to the recursive call
is to usemodus ponenson the rule and the result, generating a smaller congruence rule, and
then repeating.

If the implication’s first argument is itself an implication, then this implication’s first
argument can be assumed going into the recursive call. In thecontinuation, the assumption
is discharged from the result theorem, producing somethingof the right form for the call to
modus ponens.

Note that using a congruence rule makes it harder to detect when a sub-term traversal
has left its argument unchanged. Currently, both the HOL4 and Isabelle simplifiers make
explicit calls to an equality check after a congruence has been applied so that they can then
signal unchangedness appropriately. Though this may seem like a source of inefficiency, the
way in which congruence rules are instantiated should result in the call toaconv quickly
hitting sub-terms that are pointer-equivalent.

27

6 Conclusion

In the conclusion of [11], Paulson writes

It is hard to improve the efficiency in the LCF framework. Any simplifier must
produce a theorem to justify its result. It must coexist withother theorem-proving
tools, and with ML.

This paper demonstrates that while requiring non-trivial effort, some efficiency gains in
LCF-style rewriting are indeed possible. These gains are achieved by considering the struc-
ture of the call graph brought into being as rewriting proceeds, and more generally, by wor-
rying about rewriting’s memory allocations.

Switching to CPS-conversions allows exactly the same sequence of calls to “atomic”
rewriting steps (e.g., calls to functions likeREWR_CONV andBETA_CONV), while combin-
ing the results of these calls more efficiently. If existing code performed its rewriting steps
as a result of the application of a particular term-traversal strategy, the new CPS-system pro-
vides a directly analogous API so that the same strategy can be used, and the same rewriting
steps produced.

The improvements in performance are incontrovertible, buthard to observe when rewrit-
ing small terms, or when rewriting terminates quickly. Of course, these are the scenarios
usually encountered when using the LCF-style systems interactively. However, the beauty
of these programmable systems is that they can be the basis for the construction of non-
interactive tools. In these situations, long-running rewriting efforts can and do occur. This
was certainly the author’s experience when implementing the tool behind the work described
in [3].

Boulton [4] also found it hard to make HOL’s rewriting go faster. In addition to investi-
gating theUNCHANGED optimisation (whichis a clear advance compared to not using it), he
looked at deferring all theorem-proving work within a rewriting application until the end of
the process. This then enables optimisations such as reordering rewrites so that all changes
in one sub-term can be done together, minimising the number of term-traversals done with
MK_COMB.

Using Boulton’s general framework it is certainly possibleto avoid building an explicit
chain of calls toTRANS in a call-stack. Instead, one of the optimisation he considered con-
structs a large representation of all these calls in memory,and then examines them for op-
timisation opportunities later. This “lazy” approach to the handling ofTRANS (and other
inference rules) is thus quite the opposite tactic to this paper’s aim of eagerly evaluating
TRANS as soon as possible.

6.1 Future Work

There are a number of areas that still remain to be investigated. One is the behaviour of
Poly/ML, which can be quite odd on large terms. In some situations, though it is running 5–
10 times faster than Moscow ML, it is consuming 2–3 times as much memory, and garbage
collections can cause a rewriting application that normally takes roughly a second to take
10 times as long. Independently, we observed Poly/ML crash on a large problem (evaluating
Ack 3 8 with Barras’sEVAL) that Moscow ML has no problem with. I hope that when these
issues, whether they be in our port of HOL4 or in the Poly/ML implementation, are resolved,
future experiments will provide yet more vindication of thecps-conversion approach.

28

The memory behaviour of rewriting discussed in Section 2.6 is also intriguing. Ift is
the termSUC(n+1) 0, then rewriting with the theorem⊢ SUC 0 = 1 results in a theorem

⊢ SUC(n+1) 0 = SUCn 1

In general, one would hope that applying a conversion to a termt should result in a theorem
⊢ t = t’ where thet in the theorem should be the same structure in memory as thet that
was passed to the conversion. But in fact, in the example given, thet in the theorem is a
“deep” copy of the input, sharing no structure with the original termt. This profligacy with
memory surely represents a run-time cost. Approaches to this problem might include the
alternative version ofMK_COMB discussed in Section 2.6, or (more radically) hash-consing
in the kernel.

For the moment, the advantages offered by cps-conversions do not seem great enough to
warrant reworking the standard HOL4 simplifier to use this approach. In particular, there is a
great deal of code in use which relies on conversions being oftypeterm -> thm. Chang-
ing extant code to instead use the more complex continuation-based type is unappealing in
general. Of course, in specialised settings, where the developer knows that rewriting will
be running for long periods, cps-conversions may indeed be appropriate. This paper demon-
strates that cps-conversions support a familiar set of combinators, and that they inter-convert
with normal Paulson-style conversions straightforwardly.

The same analysis of memory consumption and call-patterns that led to the development
of cps-conversions also led to the recognition thatREPEATC is not implemented ideally at
the moment. The change to useIFC instead ofORELSEC is one that will appear in a future
release of HOL4.

6.2 Availability

The source code for the various forms of cps-conversion, thesource code for the experiments
performed, and the data generated in those experiments are all available in a compressed tar-
file from

http://users.rsise.anu.edu.au/~michaeln/data/cpsconvs.tgz.

Acknowledgements NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program. Joe Hurd and Rob Arthan provided useful early discussion and comments on
this work. The anonymous referees suggested a much-needed reorganisation of the material’s presentation.

References

1. Bruno Barras. Programming and computing in HOL. In Mark Aagard and John Harrison, editors,
Theorem Proving in Higher Order Logics, 13th InternationalConference, TPHOLs 2000, volume 1869
of Lecture Notes in Computer Science, pages 17–37. Springer, August 2000.

2. Nick Benton and Andrew Kennedy. Exceptional syntax.Journal of Functional Programming, 11(4):395–
410, July 2001.

3. Steve Bishop, Matthew Fairbairn, Michael Norrish, PeterSewell, Michael Smith, and Keith Wansbrough.
Engineering with logic: HOL specification and symbolic-evaluation testing for TCP implementations. In
POPL’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages, pages 55–66, New York, NY, USA, 2006. ACM Press.

4. R. J. Boulton. Transparent optimisation of rewriting combinators.Journal of Functional Programming,
9(2):113–146, March 1999.

29

5. Jacek Chrząszcz and Daria Walukiewicz-Chrząszcz. Towards rewriting in Coq. In Huber Comon-Lundh,
Claude Kirchner, and Hélène Kirchner, editors,Rewriting, Computation and Proof: Essays Dedicated to
Jean-Pierre Jouannaud on the Occasion of His 60th Birthday, volume 4600 ofLecture Notes in Com-
puter Science, pages 113–131. Springer, 2007.

6. M. J. C. Gordon and T. Melham, editors.Introduction to HOL: a theorem proving environment for higher
order logic. Cambridge University Press, 1993.

7. John Harrison. HOL Light: a tutorial introduction. In Mandayam Srivas and Albert Camilleri, editors,
Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FM-
CAD’96), volume 1166 ofLecture Notes in Computer Science, pages 265–269. Springer-Verlag, 1996.

8. HOL website.http://hol.sourceforge.net.
9. R. B. Jones. ICL ProofPower.BCS-FACS FACTS, Series III, 1(1):10–13, Winter 1992.

10. Harold W. Martin and Bonnie J. Orr. A random binary tree generator. InCSC ’89: Proceedings of the
17th Annual Computer Science Conference, pages 33–38, New York, NY, USA, 1989. ACM.

11. Lawrence Paulson. A higher-order implementation of rewriting. Science of Computer Programming,
3(2):119–149, August 1983.

12. Lawrence C. Paulson.Isabelle: A Generic Theorem Prover, volume 828 ofLecture Notes in Computer
Science. Springer-Verlag, Berlin, 1994.

