Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Rewriting Conversions Implemented with Continuations

Michael Norrish

the date of receipt and acceptance should be inserted later

Abstract We give a continuation-based implementation of rewritioigslystems in the LCF
tradition. These systems must construct explicit proofgadations when rewriting, and
currently do so in a way that can be very space-inefficient.efplicit representation of
continuations improves performance on large terms, andrgg+funning computations.

1 Introduction

Rewriting (orsimplification is a standard work-horse of all interactive theorem-prg\ays-
tems. Rewriting is used both to expand the definitions of oms, and to apply previously
proven equational results.

Despite its heavy use, rewriting in the various HOL syster@l(4 [6, 8], HOL Light [7]
and ProofPower [9]), and in Isabelle [12], is nonethelegd@émented in “fully expansive”
fashion, in keeping with these systems’ LCF ancesffhis means that if rewriting has
transformed initial terni; to ¢2, then the system will have explicitly proven the theorem
F t1 = ty to justify this step. If the transformation is, for examd\F normalisation by
the rewrite rules

then there may well have been exponentially many sub-amgtd knit together to create
the final equational theorem.

The task of assembling all of these sub-equations, the tBSleplacing equals with
equals” in the correct places and in the correct order, iptbserve of the rewriting system.

Michael Norrish

Canberra Research Lab., NICTA,

PO Box 8001, Canberra,

ACT 2601, AUSTRALIA

E-mail: Michael.Norrish@nicta.com.au

1 The Coq system is also an “LCF-style” system, but the natuits ahderlying logic means that achieving
equational reasoning of the sort described in this papetilisas active research topic. See for example,
Chrzaszcz and Walukiewicz-Chrzaszcz [5].

In the LCF-style systems examined here, this assembly eégulations ultimately depends
on the rules of inference presented in Figure 1. The secdadmplements transitivity; the
last two are congruence rules, allowing the substitutioeafals for equals in sub-terms.
The rest of this introduction focuses on transitivity. $@mt$ 2.4 and 2.5 discuss rewriting
sub-terms using congruence rules.

Nre=y Ixty==z

Fr==x Nnulyktz=z
N f=g Ikx=y 'ty =to
zg I’
nNulykfa=gy I' (Az.t1) = (Ax.t2)

Fig. 1 Primitive Rules of Inference for Rewriting. The HOL4 names floese rules ar&EFL, TRANS,
MK_COMB and ABS. In themselves, these rules can only derive instances okiéfle but can be used in
conjunction with user-provided equations to derive moreriggting results.

The HOL systems all use a rewriting technology ultimatelyivd from the influen-
tial paper by Paulso Higher-Order Implementation of Rewritirifj1]. In this paper, the
concept of aonversions introduced:

A term conversion is any function that maps a term t to a theore=u. This
converts the term t to another term u, and proves the two alguitz Since ML
allows us to take theorems apart, we can extract the new tdromuthe theorem
—t=u.

In all of the HOL systems, the ML data tygesr mimplements well-typed terms of the
simply-typedX-calculus. In each HOL system, theorems (typger) are created by func-
tions defined in the system’s kernel, or by derived functitbrad will ultimately depend on
the kernel’s facilities. A conversion is thus an ML functitmat manipulates the term and
theorem types exported by the LCF-style kernel to producetsonal theorems.

An atomic conversion might be one that demonstratgsemuivalence: the function
BETA_CONV takes, for example, the terMz.x y) t and returns the theorem

FAzazy)t=ty

Or a conversion may match and instantiate a given rewrite tnlHOL4 and HOL Light,
REWR_CONV is of typet hm >(t er m >t hnj .2 The first argument is the rewrite rule, and
the second argument is the term to be transformed. For egaihpDD_SUCis the theorem

FSUCz +y = SUC (2 +)

thenREWR_CONV ADD_SUC s a conversion that will take the input ter®JC 3 + z, and
return the theorem
FSUC3 4 2z = SUC (3 + 2)

instantiating the variablesandy from ADD_SUC appropriately. (The issue of what happens
whenREWR_CONV is given a term thaloesn’tmatch the provided rewrite rule is addressed
in Sections 2.2 and 3.1.)

2 The analogue in ProofPowerss npl e_eq_nat ch_conv.

The phrase “higher-order” in Paulson’s title comes fromfttwd that conversions, them-
selves functions, can be combined using higher-orderimmet The most important of these
is THENC (HOL4 and HOL Light retain this name; ProofPower call$HEN_C). A call to
c1 THENC ¢y (THENC is used as an infix) creates the sequential composition ofitbe
conversiong:; andce. An SML definition of THENC is given in Figure 2. As in the quota-

fun THENC(cl, c2) t = let

val thl =clt

val th2 = c2 (rhs (concl thl))
in

TRANS thl th2
end

Fig. 2 An SML definition of THENC. The type ofTHENC is conv*conv -> conv, whereconv is an
abbreviation fort er m >t hm Using SML's facilities for infixes, one can writEHENC(c1, c2) ascl
THENC c2.

tion from Paulson’s original paper, the definitionTHHENC uses existing functions to take
theorems apart. The functimoncl| returns a theorem’s conclusion, and the functiors
returns the right-hand-side of an equation. Finally, tHe afinferenceTRANS implements
the rule of transitivity (the second rule from Figure 1). Htb theorems are equations, and
the left-hand side (I.h.s.) of the second is the same termhasight-hand side (r.h.s.) of
the first, then a new theorem equating the I.h.s. of the fir#h thie r.h.s. of the second is
returned.

It is now possible to examine the way in which the compositevecsion

BETA_CONV THENC REVWR_CONV ADD_SUC

will act on the input term{Az. = + 3) (SUC 10). First, the intermediate SML valuehl is
created by applyin@ETA_CONV to the input term.

val thl = F (Az.z+3)(SUC10) =SUC10+3

The r.h.s. of the conclusion of this theorem is the t&dC 10 + 3, and this term is passed
to the second conversion. The result will be

val th2 = +SUC10+ 3 =SUC (10 + 3)
WhenTRANS is applied tat h1 andt h2, the final result is returned:

F (Az. z + 3) (SUC 10) = SUC (10 + 3)

1.1 The Problem witifHENC, and a Simple CPS Solution

This technology (with a number of enhancements discussdaten sections) underpins
rewriting in the HOL systems and Isabelle. Rewriting in thegstems is undeniably impor-
tant and the success of the systems is a credit to Paulsagilsadidesign. Nonetheless there
is a problem, observable on large rewriting tasks, in alhefimplementations.

When assembling a chain of rewrites, all of the systems permttogether with the
equivalent ofTHENC. The problem is that in a calt1 THENC c2), THENC does not relin-
quish control to the second conversia@®]. Instead, it waits foc 2 to return so thaT RANS

can be applied. In a chain of a million rewrites, the languaggementation will create a
million stack-frames, each waiting for its two sub-callditosh so that the two results can be
combined withTRANS. This can be very space-inefficient. Perhaps the easiestrism-
tion of this inefficiency is to set up a looping rewrite in arfitlee systems considered here,
and to set it running. As the implementation diverges, thewarhof memory consumed by
the system increasésThis use of additional space can only be a waste of time. Nadvo
this consumption of space be necessary if the sequence dfegwas making progress
towards some goal rather than looping.

When confronted with code that is wasting space on the stanktural response is to
try converting it to continuation-passing style. In theea$ THENC however, this will not
save any memory: the pending calls’RANS will simply be stored on the heap as closures,
and space saved on the stack will be wasted on the heap.

The solution is to represent continuations explicitly Ifeatthan performing the usual
conversion to continuations as closures), and to expleitattising opportunities to merge
pending calls tarRANS. Code to do just this is presented in Figure 3.

dat atype cont =

Conv of ((cont ->term-> thn) * cont)
| Trans of (thm=* cont)
| Done

type cps_conv = cont ->term-> thm

fun apply_cont k th =

case k of
Done =>th
| Conv (c,k’) => ¢ (Trans (th, k’)) (rhs (concl th))

| Trans (th’, k') => apply_cont k' (TRANS th’' th)

fun lift (cnv:term>thm k t = apply_cont k (cnv t)
fun drop ¢ = ¢ Done

fun Cv (c, Trans(th, k))
| O (c, k)

Trans(th, Conv(c, k))
Conv(c, k)

fun KTHENC (c1, c2) kt =c1 (Cv (c2,k)) t

Fig. 3 SML code implementing conversions in a continuation passiylg $thus “cps-conversions”). The
functionsl i f t anddr op allow cps-conversions and normal conversions to be intevexted. The function
Cv stops arr ans constructor from being buried undeCanv. Finally, K THENC implements sequencing.

The data typecont is the type of continuations. Then, a “cps-conversion” saket
just a term to which it is applied, buteont as well, representing what is to happen to the
theorem that results. As continuations are not closureefiions), but rather the concrete
typecont , the action of applying a continuation to a theorem must b@lémented by a
separate functiorappl y_cont).

The three different sorts of continuation in typent can be summarised as follows

3 In interactive sessions with Poly/ML (used in ProofPowsabielle, and also a development version of
HOL4), just interrupting such a divergent execution takksg time: the system is relatively slow to unwind
its enormous chain of stack-frames. Moscow ML, used in thedsi@hHOL4 implementation, raises an
Qut _of _menory quickly, signalling that the relatively limited space it Fellocated for the stack has been
exhausted. OCaml, used in HOL Light, grows its stack slowig &@rminates immediately when interrupted.

Conv(c, k) Continue with cps-conversian, and after that, da. TheConv
constructor is thus used to stack up a to-do list of futurekwor

Trans(th, k) Continue with continuatiok, but remember that we got this far
via the equation int h.

Done Stop.

As is clear from the definition oippl y_cont, the Tr ans constructor represents a
pending call to thdRANS inference rule. The aim of the conversion to continuatiasging
style is to ensure that these calls cannot proliferate.

1.1.1 A Worked Example

Let the termt O be(A\z. (A\y. z+y) 3) (SUC 10) and letc1 andc2 be the lifted conversions
lift BETA_ CONWandlift (REWR_CONV ADD_SUC) respectively. Further let1,
t 2 andt 3 be the successive terms created by applying those comusrtsib0. That is,

t1=(\y.SUC10+y)3
t2 =SUC10+3
t3 = SUC(10 + 3)

Right-associating the calls tofTHENC in order to demonstrate the effect of t@e func-
tion, consider the application

(c1 KTHENC (c1 KTHENC c2)) Done tO

The following computation will unfold:

(cl KTHENC (cl KTHENC c2)) Done t

cl (Cv(cl KTHENC c2, Done)) tO

cl (Conv(cl kTHENC c2, Done)) tO

appl y_cont (Conv(cl KTHENC c2, Done)) (BETA_CONV tO0)
apply_cont (Conv(cl KTHENC c2, Done)) (- t0 = t1)

(cl KTHENC c2) (Trans(+ tO0 =t1, Done)) t1

cl (Cv(c2, Trans(- t0 =1t1, Done))) t1l

cl (Trans(- t0 = t1l, Conv(c2,Done))) t1l

apply_cont (Trans(+ t0 = t1, Conv(c2,Done))) (BETA CONV t1)
apply_cont (Trans(- t0 = t1, Conv(c2,Done))) (F tl1 =12)
appl y_cont (Conv(c2,Done)) (TRANS (F t0 = tl)(F t1 =12))
appl y_cont (Conv(c2,Done)) (F t0 =12)

c2 (Trans(+ t0 = t2,Done)) t2

apply_cont (Trans(+ t0 = t2, Done)) (REWR_CONV ADD SUC t 2)
apply_cont (Trans(- t0 = t2,Done)) (- t2 t3)

appl y_cont Done (TRANS (- tO0 =1t2) (F1t2 t3)

apply_cont Done (- t0 = t3)

Ft0 =13

The only places where work is not peformed at the head pasgiavhen calling the lifted
conversions, when callingRANS, and when callin@v. The latter is a constant-time pattern
match. The other calls are where the work of the rewritingasej and unavoidable. The
advantage of this approach is that the two callSRANS are made as soon as possible.

It is interesting to note that the calls T&RANS made by

(BETA_CONV THENC (BETA_CONV THENC REWR _CONV ADD SUC)) tO

would be
TRANS (- t1 = t2) (Ft2 = t3)
TRANS (- t0 = t1) (F t1 = t3)

The same sequence as in the cps-conversion computatich lmewroduced by calling the
left-associated

((BETA_CONV THENC BETA_CONV) THENC REWR CONV ADD SUC) t 0

However, reassociating the cps-conversion makes no eliféey; it will always make the
same calls tdRANS.

1.1.2 Logic and Algebra

Definition 1 A cont value iswell-formedif it contains no occurrence of ther ans con-
structor, or if it contains just one, which must be at the outest position.

By inspection of the defined operations, an important imrasé result follows:

Theorem 1 The operations of Figure 3 preserwell-formedcontinuations.

Definition 2 A call of cps-conversior with arguments; andt is legitimateif & is Tr ans-
free, or if k is of the formTr ans((- ¢y = t), ko) for some termiy, and someTr ans-
free) continuatiorkg. In other words, a calt k t is legitimate ifk is well-formed, and
additionally requires that ik has a top-mostr ans, then the ternt must be the r.h.s. of
theTr ans theorem.

If c; KTHENC cs is called legitimately, then the call it makesdpwill also be legiti-
mate. Further, the call to a cps-conversiomppl y_cont is always legitimate.

This “THENC-fragment” is as yet a rather impoverished language, butameimplement a
left and right-identity fok THENC. This isk ALL_ CONV:

fun KALL_CONV k t = apply_cont k (REFL t)

whereREFL is the SML function that takes a tertand returns the theoremt = t. It thus
implements the first rule of inference from Figure 1.

Definition 3 Say that a cps-conversiaeris well-behavedf

— when legitimately applied to a continuatiéhand to a term, execution ok & ¢ either
aborts, or eventually reacheppl y_cont k th, whereth is a theorem of the form
F t = u for some termu, and whereu is the same for all possible Further, ifc & ¢
aborts, then so too does:’ ¢ for all &’.

Note thatl i ft c is automatically well-behaved, and thatk THENC ¢, is well-behaved
if ¢y andcy are.

Theorem 2 The conversioft ALL_CONV is an identity (extensionally) fd¢ THENC.

Left identity for a well-behaved, and aTr ans-freek follows from:

(KALL_CONV KTHENC ¢) k ¢

= KALL_CONV (Cv(c,k)) ¢ (def'n of KTHENC)
=apply_cont (Cv(c,k)) (Ft=1) (def’n of KALL__CONV)
=c(Trans((Ft=1t),k))t (def’n ofappl y_cont)
=apply_cont (Trans((Ft=1t),k)) (Ft=u) (well-behaved)
=apply_cont k£ (TRANS (Ft=1¢) (Ft=u)) (def'n ofappl y_cont)
=apply_cont k(Ft=u) (TRANS)

This is the same result that would arise if the initial calbvjastc £k ¢t. O

If & has an outermosIr ans, the proof requires the definition @fppl y_cont to be
expanded in the various cabppl y_cont k.
The fact thak ALL_CONV is also a right-identity fok THENC follows from the fact that

TRANS (Ft=u) (Fu=u) = (Ft=mu)

and similar equational reasoning.

1.1.3 Experimental Performance

With a CPS version ofHENCimplemented, it is possible to test the performance of tlse cp
conversions in comparison with the original implementatid/e construct an admittedly
artificial rewriting test by defining a functioft

f0=0
f(SUCn) = fn

This function has the property that a term suchy &8UC(SUC- - - 0)) (with n applications
of SUC) can be repeatedly rewritten without ever needing to debg#n sub-terms (which
important feature is described below in Sections 2.4 and 4).

The experimental task is to rewrite a teyh{SUC™0) to f 0, where varying: allows us
to generate larger problems as necessary. Assumé @hist the theorent f(0) = 0 and
thatf SUCis - f(SUC n) = f(n). Further define #i-fold conversion” functionsNCONV
andk NCONV:

fun NCO\W n c t =
if n=0 then REFL t
el se (¢ THENC NCONV (n - 1) c) t

fun KNCON\V.n ¢c k t =
if n=0 then apply_cont k (REFL t)
el se (¢ KTHENC kNCONV (n - 1) c) k t

Then the conversion used to test the standard implementatio
NCONV n (REWR_CONV f SUC)
and the corresponding cps-conversion is

drop (KNCONV n (lift (REWR CONV fSUC))

Experiments were run comparing the performance of these-sbippets on terms of
size up ton = 2'°. Figure 4 is a graphical presentation of the results, witipbs for both
the standard HOL4 implementation in Moscow ML, and a secondhe as-yet unreleased
Poly/ML implementation. These, and all subsequent, erpanis were run on a 2.33 GHz
Intel Core Duo in a Macbook Pro running MacOS 10.5. The use®Poly/ML implemen-
tation as well as the Moscow ML implementation provides sao#&idence that results are
not the result of a quirk in the SML implementation.

THENC Data (Moscow ML) THENC Data (Poly/ML)

o 59 TadUSR R oo O TadUSR
Trad GC w Trad GC
a-4 CPSUSR - a-5 CPSUSR

CPS GC -7 CPS GC

Time (seconds)
Time (seconds)

01—

0.01—

000t | | | | | ooof- -

Term size (log) Term size (log)

Fig. 4 Timing statistics for the'HENC experiment. The data-points are means collected over 100 Thes
Moscow ML implementation raises @bt _of _nmenory exception on terms of size 218, meaning that
its runtime stack has been exhausted. At size: 219, the Poly/ML CPS implementation has= 1.205,
o = 0.010, while the traditional implementation has = 3.138, ¢ = 0.586. In the Moscow ML CPS
implementation at the same poipt—= 11.649 ando = 0.149.

The graphs make it clear that the cps-conversions are batkeyuand that they stress
the implementations’ memory management much less. Runvithgloscow ML, the per-
formance of the traditional implementation is worse tharedir whereas the CPS imple-
mentation retains linear performance. Under Poly/ML, tiiectis harder to see at the term
sizes tested, but here it also appears as if garbage cofldstcausing the performance of
the traditional implementation to become worse than lineaany case, at the maximum
term size, the CPS implementation is more than two and aihsktfaster.

The rest of this paper will first describe Paulson’s origisydtem [11], give a detailed de-
scription of how it has been updated and implemented in H@U, tauch on two further
problems with the system (Section 2). Then, the paper withalestrate how the simple
continuation-based system already presented can be extémdnplement these important
features, and to do so efficiently.

2 Paulson’s System and its Implementation in HOL

The important functions from Paulson [11] are

THENC Sequencing of two conversiomrs andce, such that ife; transformsy to ¢1, and
co transformst; to to, then(c; THENC c2) transformsig to ¢o (producing the theorem
F to = t2 along the way).

ORELSEC Alternation of two conversions, which may raise exceptitmidicate failure.
The expressiofic; ORELSEC ¢5) is a conversion which will first try:; on inputt. If
that application succeeds, then that is the resutt, f raises an exception, thep ¢ is
tried.

REPEATC Repetition of a conversiolREPEATC c¢ appliesc to its input, and if that suc-
ceeds, appliesto the result, and so on. Whemventually fails, returns the accumulated
effect of the previous successful calls.

COVB_CONV Applies a conversion to the sub-terms of an application téfrithe argument
t is the applicationf x, thenCOVB_CONV c ¢ will result in ¢ being called orf andx
independently, and the results combined, deriving a tmeafehe form- f z = f 2’

ABS_CONV Applies a conversion to the body of an abstraction term. éfalgument is
the abstractiorf\z. M), thenABS_CONV c ¢ will apply to ¢ to M, returning a theorem
of the formk (\z.M) = (M. M")

TOP_DEPTH_CONV Applies a conversion repeatedly at all positions withinrantesweep-
ing across the term in a top-down fashion. This is just onefafrdly of possible rewrit-
ing strategies for term traversal. Its implementationeebn all of the other functions
described so far.

These functions are written in ML, and rely on basic infrasture for manipulating the
terms and theorems of the kernel. A summary of these furefimm HOL4 is given in
Figure 5.

val total ("a->"b) ->"a ->"b option
val HOL_ERR (ezndata) -> exn

val UNCHANGED : exn

val aconv term-> term-> bool

(* access sub-terns x)

val dest_conb : term->term=* term
val dest_abs term-> term

(* split equation terns *)

val |hs term-> term

val rhs term->term

val dest_eq term->term=* term
val concl thm-> term

(» theoremprinmtives, as per Figure 1 *)
val REFL term-> thm

val TRANS thm-> thm-> thm
val M{_COvB thm-> thm-> thm
val ABS thm-> thm

Fig. 5 Functions from the HOL4 API. The utility functiohot al is used to catch exceptions, turning a
successful application of x into SOVE result; if f x raises an exception, then the resultoft al f =

is NONE. The HOL_ERR value is the

standard way for HOL functions to report faifuréhe UNCHANGED

exception is used to indicate a successful rewriting step dbesn’t change its input; see Section 2.6. A
call toaconv t; to returns true iff the two terms are alpha-convertible. Thecfiomsdest _conb and
dest _abs pull apart application and abstraction terms respectivelyrning immediate sub-terms. Both
raiseHOL_ERR exceptions if the terms are not of the right shape.

10

2.1 Sequencing and its Identity

Repeating from Figure 2, the HOL4 definition BHENC is

fun THENC(c1, c2) t = let

val thl = clt

val th2 = ¢c2 (rhs (concl thl))
in

TRANS thl th2
end

The identity forTHENC is ALL_ CONV which when applied to a termreturns the theorem
F ¢ = t. In other wordsALL_CONV is simply the same as the primitive ruREFL.

Section 1.1 made it clear how the pending calllT®®ANS, waiting forc1 andc?2 to
return, is not necessarily space-efficient.

2.2 Failure

A conversion can indicate that it has failed on a particut@ut by raising an exception. In
HOLA4, this exception will be #0L_ERR. The implementation cdDRELSEC s simple.

fun ORELSEC(c1l,c2) t = clt handle HOL_ERR _ => c2 t

Like THENC, ORELSEC is typically used as an infix. The HOL4 implementation only
catchesHOL_ERR exceptions (which take as a parameter additional infolonabout the
nature of the error). Other exceptions, such as the builtirer r upt , or those users might
care to invent, are allowed to propagate out.

Following Paulson, there is an identity conversion@REL SEC, NO_CONV:

fun NO CONV t = raise HOL_ERR (data)

2.3 Repetition witlREPEATC, a Poor Man’s Loop
REPEATC, which applies a conversion repeatedly until it fails, cardiefined

fun REPEATC c t =
((c THENC REPEATC c) ORELSEC ALL_CONV) t

(The eta-expansion to include the argumernis necessary to avoid an immediate diver-
gence.)

There is a problem witiREPEATC. It lies with its poor structuring of control-flow,
which in turn leads to the proliferation of unnecessary pkioa-handlers, and thus the
unnecessary consumption of memory. After expanding therodst call tctORELSEC, the
execution state is

(c THENC REPEATC c) t handle HOL_ERR _ => ALL_CONV t

The exception handler has scope over notgubtit the call toREPEATC. This is unneces-
sary because the call REPEATC cannot raise an exception. Worse, each successive call to
REPEATC will create a fresh handler.

11

Conceptually, the exception handler is only present tacakceptions arising in. The
flow control should be

REPEATC c
succeeds
ALL_CONV

To handle this possibility, an explicit conditional consi@n can be written. In the traditional
style, this is rather awkward (the cps-converdidri-C of Section 3.2 is much more elegant):

fun IFC(g,s,f) t =
case total g t of
SOME th => TRANS th (s (rhs (concl th)))
| NONE => f t

The implementation doesn’t refer T¢HENC, but of course it haSHENC's standard problem:
the call toTRANS is suspended untd returns.

Nonetheless, a new implementatiorREPEATC can be written, here calledREPEATC
to distinguish it from Paulson’s original:

fun i REPEATC ¢ t = I FC(c, i REPEATC c, ALL_CONV) t

2.4 Rewriting Sub-terms

Rewriting systems must be able to apply their rewrites atmsjtion within the term that
is being rewritten. This ability is permitted by the two congnce rules presented in Fig-
ure 1. In the HOL4 implementation, these rules are impleswby two primitive rules of
inferenceABS, andMK_COMB. The first implements the congruence for abstractionsngive
an equational theorefl + t; = to and a variabley, a call toABS v (I" + t; = t2) re-
turns the theorent” - (\v.t1) = (Mwv.t2), with an exception occurring if € I". The rule
MK_COWVB takes a pair of theorems, + f = g andI> - =z = y and returns the theorem
Uy f(z) = g(y), as long ag (andg) are of function type with domain equal to the
type ofz (andy).

The functionsCOVB_CONV and ABS_CONV are used to rewrite with these rules. An
SML implementation o2OVB_CONV is

fun COMB_CONV c t = | et

val (rator,rand) = dest_conb t
in

MK_COVB(c rator, c¢ rand)
end

where the functiomest _conb pulls apart an application (or “combination” term) return-
ing the pair of the function and argument terms. If the termas an application (is an
abstraction, variable or constant), or if the callM§_COWVB fails because the equations
provided are not compatible, an exception is raised.

The implementation oABS_CONV is similar.

12

2.5 Term Traversal Strategies

The standard rewriting strategy in HOL4 is:

Repeatedly apply rewrites at the top level, as long as anyyappen descend
recursively into sub-terms. If anything changes from thasdrsal, try a rewrite at
the top-level again. If this succeeds, repeat.

The essence of this strategy is captured in the fundi@® DEPTH_CONV. This is another
higher-order conversion, which takes as an argument theecsion to perform rewrites at
the top position of a term. It is then the responsibilityf@®_DEPTH_CONV to organise the
term-traversal. This function is similar to, but not quite same as thEOP_DEPTH_CONV
in Paulson [11]. The difference is that Paulson’s versiorstit check if the recursion
changed the term or not. The HOL4 implementation is

fun TOP_DEPTH CONV ¢ t =
(REPEATC ¢ THENC
TRY_CONV
(CHANGED_CONV (SUB_CONV (TOP_DEPTH CONV c)) THENC
TRY_CONV (c THENC TOP_DEPTH CONV c))) t

There are three new functions here. Two are simple:

fun TRY_CONV c ¢ ORELSEC ALL_CONV
fun SUB_CONV c TRY_CONV (COVB_CONV ¢ ORELSEC ABS_CONV c)

A call to CHANGED_CONV c t appliesc to t and checks to see if the result is an instance of
reflexivity. If so, it fails. The implementation is straidgbtward:

fun CHANGED CONV c t = let
val th =ct
val (l,r) = dest_eq (concl th)
in
if aconv | r then raise HOL_ERR (No change error)
else th
end

2.6 Avoiding Excessive Term-Rebuilding

There is one extremely important feature of the modern Lgfesewriting systems that
is not in Paulson [11]: the use of special return values tongthat a term has not been
changed by a rewriting step.

The standard term traversal strategies repeatedly exatiioba term looking for pos-
sible matches for rewrite rules. When rewriting an appi@aterm f z, the traversal will
eventually create theorems of the formf = g andt =z = y that will be fed into the rule
MK_COMB. However, it can often happen that a term doesn’t changen Bbéh theorems
will be instances of reflexivity, and so too will the outpubrfin MK_COVB.

If aterm is traversed, but doesn’t contain any matches fostlpplied rewrite rules, the
action of all the calls tdvK_COVB and ABS will be to create fresh copies of the original’'s
internal structure (though not its leaves). This followanfrthe kernel’'s implementation of
these rules of inference. For example, the kerrdks COVB will be something like

13

fun MK COMB (fth,xth) = let
val (f,qg) dest _eq (concl fth)
val (X,y) dest _eq (concl xth)
in
nk_t hm(uni on_hyp (hyp fth) (hyp xth),
nk_eq(nk_conb(f,x), nmk_conb(g,y)))

end

where the calls talest _eq check that the input theorems really are equalities, andavhe
the calls tark__conb check that the types of the functions link up with those ofafgument
appropriately before creating an application term.

When rewriting, the original term being traversed was offtiven nk_conb(f, x),
and this code will create this term again to serve as the othporem’s I.h.s. If is syntac-
tically equal tof , andx is syntactically equal tg, then the second call tok_conb will
end up creating aecondcopy of the original.

One might imagine extending the kernel to provide a versfdvko COVB that took the
original application term as an argument, and that used staontitime pointer-equality test
to check both that the input theorems did actually equatsubeterms of the original, and
also to avoid creating a fresh r.h.s. when the sub-terms’theltiinged. (If the necessarily
approximate pointer-equality test failed on either chehbk, new rule would fall back to
callingnk_conb.)

Rather than tailor the kernel to this one (admittedly imaot} application, the LCF
rewriting implementations all use a different trick: thelyange their conversions so that
they can signal that the input term has not changed. In HOIOL, Hight and ProofPower,
this is done by having conversions raise an exception. lbelsgis simplifier, the process
of rewriting uses the option type to do the same thing. Thes i extremely important for
efficiency. Boulton [4], who is reponsible for its HOL implemtation within the Paulson
framework of conversions, credits it to Huet.

In HOL4, the exception used ISNCHANGED. The functionTHENC (first in Figure 6)
changes, with two handlers set up to cope with the possitofiteither conversion rais-
ing UNCHANGED. The bare call tac2 t naturally admits the possibility that the call to
THENC will also raisetUNCHANGED, when both conversions do the same. The definitions of
ORELSEC, NO_CONV, REPEATC, ABS_CONV, SUB_CONV, TRY_CONV, and also of the
term-traversal operat@OP_DEPTH_CONV are unchanged.

The new implementation cOVB_CONV (third in Figure 6) has a similar feel to that of
THENC, but it becomes fiddlier to get the scopes right (the nelsesd i n- end is neces-
sary so that the outermost handler can still “see” the valiseilo-termd andx).

Note that a successful traversal will still end up creatirgppy of the original term on
the L.h.s. of the resulting theorem. (More accurately: amgrnal structure above sub-terms
that change on the r.h.s. will be created afresh on the &b.well.)

Finally, CHANGED _CONV needs to now check that its call ot hasn't raised the
UNCHANGED exception. If it does, this needs to be converted HOha_ERR.

3 The CPS-Conversion System

When moving beyond the introduction’s simple system (wlicly implements sequencing
with K THENC), there are two critical new features that influence thegiesihe first is the
possibility of failure.

14

fun THENC(cl,c2) t = let

val thl =clt
in

TRANS thl (c2 (rhs (concl thl))) handl e UNCHANGED => thil
end handl e UNCHANGED => c2 t

fun ALL_CONV t = rai se UNCHANGED

fun COMB_CONV c t = let
val (f,x) = dest_conb t
in
| et
val fth
val xth
in
MK_COMB(fth, xth)
end handl e UNCHANGED => MK_COMB(REFL f, c Xx)
end

=c f
= ¢ x handl e UNCHANGED => REFL x

fun CHANGED CONV c t = let
val th = c t handl e UNCHANGED => rai se HOL_ERR (No change error)
val (l,r) = dest_eq (concl th)
in
if aconv | r then raise HOL_ERR (No change error)
el se th
end

Fig. 6 HOL4 implementations ofTHENC, ALL_CONV, COVB_CONV and CHANGED_CONV when the
UNCHANGED exception is being used to signal that a conversion has featad its input term.

To create an analogue of raising an exception in the worlghefaonversions, the basic
type changes. A cps-conversion will now include two cordimns: one for a successful
computation, and one for failure. This is a well-known treant for exceptions in a CPS
style. There is also a new form of continuatiétgt ur nTo, specifying a term to return to
before continuing with a failure continuation. This constor will be explained further in
Section 3.1, where we will see how this new constructor pelsathe existinglr ans form.

The second critical feature from Section 2 that informs tb&igh of the full CPS system
is the use of th&/NCHANGED exception to indicate that a conversion has succeededydut t
it has not changed the input. In the world of cps-conversisoscess continuations need
to be able to transparently handle the possibility that tbeay be called in a state where
a previous conversion has not returned a theorem, but hesadhsignalled an unchanged
condition.

Our approach is to create a new sum typenvr esul t :

dat at ype convresult = TMof term| THM of thm

TheTMconstructor indicates that a conversion has signalledifanged” on the term argu-
ment toTM The THMconstructor is used for the normal return of an theorem éuyidte
input term to some result.

The type of a continuationcont) changes to include the new failure continuation
Ret ur nTo, and to have a closure as the argume@idav. We also note that tHeet ur nTo
andDone forms will only occur in failure continuations, and that thieans constructor
will only occur in success continuations.

15

dat at ype cont = Conv of (convresult -> convresult)
| Trans of (thm = cont)
| ReturnTo of (term = cont)

| Done

IgnoringRet ur nTo for the moment, there are two natural questions to ask abaute-
sign. Why is there a closure as an argumen€emv, and why does the closure have the
type that it does?

To answer the second question first: a continuation is anemehtation of a function
that consumes the result type of the underlying computagiod then performs some further
transformation. (Of course, in the traditional CPS tratisteof functions, the continuations
arefunctions.) Because the aim of this design is to stay withengpace of cps-conversions
(allowing them to be combined using Paulson’s algebraicaipes), the “further transfor-
mations” will naturally produce the result type again.

The use of the function space under t@env constructor allows flexibility. There
are too many sorts of continuation possible when one comesgtement operators like
COVB_CONV and CHANGED_CONV. Trying to encode these concretely leads to the cre-
ation of a veryad hocand confusing data type. Using a closure ur@env still allows the
TRANS-merging optimisation of the introduction because Tmens constructor remains
available for just that purpose.

The type of a cps-conversion is then
type cps_conv = cont -> cont -> term-> convresult

Precisely because thmont type is not simply a closure, the action ofcant on a
convr esul t mustbe explicitly defined. Figure 7 gives the action of a sgscontinuation
in two separate functions, one for theorems (& constructor), and one for terms (the
TMconstructor). Next, we must treat failure continuations.

fun apply_cont k th =
case k of
Conv f =>f (THMth)
| Trans(thO, k) => apply_cont k (TRANS thO th)

fun apply_unchanged k t =
case k of
Conv f =>f (TMt)
| Trans(th, kO) => apply_cont kO th

Fig. 7 Functionsappl y_cont andappl y_unchanged, detailing how to apply a success continuation to
the two sorts of conversion result, theorems and terms ragglgct

3.1 Failure Continuations

A failure continuation represents what should be done ifravetsion fails. If a conversion
does fail, there will not be a theorem to apply the contirarato. Instead, the term to which
the conversion that failed was applied will be available aAgsult, one might imagine that
theappl y_f ai | function for applying a continuation should have type

cont -> term->convresult

16

In order to support the provision of extra data about a caiwals failure, we actually use
the type

cont -> exn -> term-> convresult

In this way, the ultimate result of applying a failure coni@ion can still be the raising of
an exception.
Now, consider the conversion

(c1 THENC c2) ORELSEC c3

Here, the conversion3 will get called if eitherc 1 or c2 fails. Imagine that in fact 1 suc-

cessfully transforms some inputtetri tot 1. If c2 then fails,c3 should be applied tb0,

nott 1. When this conversion is translated to its CPS analogug atfialysis suggests that

although the failure continuation wher is called should get handed tetr, the contin-

uation should itself know to cai3 ont 0. This is done by having the failure continuation

use theRet ur nTo constructor to encode the requirement to return to somequegterm.
The definition ofappl y_f ai | is given in Figure 8.

fun apply_fail k et =
case k of
Done => raise e
| ReturnTo(t’,k') => apply_fail k' e t’
| Conv f =>f (TMt)

Fig. 8 The definition ofappl y_f ai | , the function that computes the effect of applying a failuwetnua-

tion to a term. The additional exception argument allows thedvaf cps-conversions to raise an exception
if it runs out of other things to do (hasione continuation). The term argument will have been the argument
to a conversion that failed.

Just as the simple system of the introduction avoided hawinlgple Tr ans construc-
tors in a continuation, it makes sense to avoid having ctaiRet ur nTo constructors. In
a continuation like

ReturnTo(t 1, ReturnTo(t2,k))

the outermosRet ur nTo is redundant; the continuation might as well call for a direturn
tot 2. This minor optimisation is performed by tiRg function:

fun RT (t1, k as ReturnTo _) =k
| RT (t, «¢) = ReturnTo(t, c)

3.2 Sequencing and AlternatioRHENC, ORELSEC andl FC

The next component of the full CPS-system isdlo@t i nue function. This implements the
action of applying a conversion to the result of a converdioereby allowing conversions to
be composed, or chained together. In the vanilla Paulsstesy the result of a conversion
is a theorem. One can see the Paulson-analogaerdfi nue by splitting THENC thus:

fun pcontinue c th TRANS th (¢ (rhs (concl th)))
fun (cl THENC c2) t = pcontinue c2 (cl t)

17

In the CPS-system, theont i nue function takes a cps-conversion, success and failure
continuations and a value of typ®nvr esul t . If the convr esul t is a term, meaning
that the previous conversion left its argument unchangdgesh the cps-conversion argument
should just be applied to that term, along with the contiimmest This is also the behaviour
that is required when a conversion is applied to a bare termhich some other conversion
has failed.

If the convr esul t is a theorem, then the cps-conversion needs to be calledeon th
r.h.s. of that theorem’s conclusion. In addition, both thidufe and success continuations
need to be adjusted. The success continuation needs tatstotieeorem with th@r ans
constructor so that a call fbRANS can be made later. The failure continuation needs to
record the L.h.s. of the theorem, so that if the cps-coneerfils, the failure continuation
can return to the original term. The full definitionobnt i nue is given in Figure 9.

fun continue ¢ k f (TMt) =c k f t
| continue ¢ k f (THMth) = let
val (l,r) = dest_eq (concl th)
in
c (Trans(th,k)) (RT(I,f)) r
end

fun SCont ¢ k f =
case k of
Trans(th,k’) => Trans(th, Conv(continue c k' f))
| _ => Conv(continue ¢ k f)
fun FCont ¢ k f = Conv(continue c k f)

fun KTHENC (cl1,c2) k f t
fun kORELSEC (c1,c2) k f t
fun kKIFC (g,c1,c2) k f t

cl (SCont c2 k f) f
cl k (FCont c2 k
g (SCont c1 k f) (FCont c2 k

Fig. 9 Fundamental sequencing and alternation operate/BHENC, KORELSEC and kI FC). The
cont i nue function applies a cps-conversion to the two usual contiona and aconvr esul t . Also
shown are th&sCont andFCont functions, which construct success and failamnt values embodying
conti nue. TheSCont function keeps anyr ans constructor uppermost.

The expressiooont i nue ¢ k f isafunction taking oneonvr esul t to another,
so it can be given as an argument to @env constructor to create a continuatiaoft)
value.

With cont i nue defined, it is then possible to define the sequencing anchatien
operatorsk THENC, k ORELSEC andkl FC, as in Figure 9. The first two call the first con-
version €1), and pustt2 onto the success or failure continuations respectivelgKTH-C
operator calls its argumegt and pushes the other two conversion arguments onto the suc-
cess and failure continuations.

Note how this design overload®nt i nue so that it is used to apply a conversion both
to the result of a successful conversion, and to a term whenmecsion fails. When working
with a failure continuation, only the first branch ©bnt i nue’s definition will be called.
This is why theFCont auxiliary does not need to worry about keepifrgans constructors
uppermost, as is done I8Cont .

18

3.3 Connection with Traditional Conversions

The final elements of the CPS-system laré t anddr op. A naive attempt to writéi f t
might be
fun lift (cnv : term->thm k f t =
apply_cont k (cnv t)
handle e as HOL_ERR _ => apply_fail f et
| UNCHANGED => appl y_unchanged k t
This is incorrect because the scope of the exception haradiges over not justnv t , but
alsoappl y_cont . Thisis the problem diagnosed and discussed in Benton amaé€y [2],
and unfortunately, there is little option here but to workward with a custom sum type.
Begin with a new data type, and a revised form ofttloé al function:
datatype "a result = OK of "a | UNCH | ERR of exn
fun total f x =
XK (f x) handle e as HOL_ERR _ => ERR e
| UNCHANGED => UNCH

Thenlift is
fun lift ¢c k f t =
case total c t of
K th => apply_cont k th
| UNCH => apply_unchanged k t
| ERR e => apply_fail f et

Thedr op function for turning a cps-conversion into a normal coni@rss simpler:
fun drop ct =
case ¢ (Conv(fn x => x)) Done t of
TM _ => rai se UNCHANGED
| THMth => th

3.4 Initial Derived Forms

Having set up the CPS-system carefully, it is possible tondedfierived operators in ways
that directly mimic definitions made in Paulson’s systeme Tdentities fork THENC and
kORELSEC arek ALL_CONV andk NO_CONV respectively:
fun KALL_CONV k f t = apply_unchanged k t
fun KNOCONV k f t =
apply_fail f (HOL_ERR (KNO_CONV data)) t
Repetition should be implemented with FC, giving
fun KREPEATC ¢ k f t = kI FC(c, kREPEATC c, KALL_CONV) k f t
The functionREPEATC has typeconv - > conv, and the correspondidgREPEATC has
typecps_conv -> cps_conv.
A definition for k REPEATC analogous to Paulson’s original definition would be
fun KREPEATC c k f t =
((c kTHENC KREPEATC c) kORELSEC kALL_CONV) k f t
but experiments reveal that this is less efficient.

When the operators for moving into sub-terms have been dgfihe definition of
TOP_DEPTH_CONV in the CPS-system can also directly mimic the original deéni

19

3.5 Algebra

Theorem 3 The cps-conversiokiNO_CONV is extensionally a left-identity fdcOREL SEC.

(KNO_CONV KORELSEC ¢) k f ¢

= kNO_CONV k (Conv (c, k, f)) t (def'n of KORELSEC)
=apply_fail (Conv(ck, f)) (error-exn t (def’n of KNO_CONV)
=ckft (def'n ofappl y_fail)

As with the analogue@REL SEC andNO_CONV in the HOL4 implementatiork NO_CONV
is not quite a right identity fok ORELSEC. In ¢ kORELSEC kNO_CONV, if ¢ raises an
exception, then the result of the expression wilkidO CONV's exception, not’s.

3.6 Experimental Performance: FlavoursREPEATC

To test conversion repetition, the functignirom the THENC tests of the introduction can
be re-used

fo=0
J(SUCn) = fn

The experimental task is to rewrite a tegffn(SUC™ 0) to zero. The theorermt f(0) = 0
is calledf 0 andf SUCist+ f(SUCn) = f(n). The experiments compare the behaviour of
three different conversions, the traditional original:

REPEATC (REWR_CONV f0 ORELSEC REVWR_CONV f SUC)

the same conversion WiREPEAT Creplaced by REPEATCfrom Section 2.3i(e., REPEATC
implemented with FC), and the cps-conversion:

drop (KREPEATC (lift (REWR CONV f0) kORELSEC
lift (REWR CONV fSUQ)))

Each conversion attempts to rewrite witB first. This attempt fails on all but the last term
in the sequence taking(SUC™ 0) to 0. This tests the handling of exceptionsGRELSEC
and its analogues. Conversely, the successful brancheitisgrepetition is taken on every
termexcepthe zero.

The experimental results (for Moscow ML) are presented gufé 10. These demon-
strate that thé FCoptimisation is of considerable benefit when applied toiti@ual conver-
sions, and that the cps-conversion performs better stiit. ddown are results for the naive
cps-conversion written witholtl FC. At maximum size, this version of the conversion took
13.3s, compared to 11.5s for tké FC version.

4 Accessing Sub-terms with CPS-Conversions

Figure 11 gives all of the code necessary to process theesaois bf an application term. The
done_ri ght function specifies how to proceed once both sub-terms have pp@cessed
(either, both or neither may have been unchanged by theiectise conversions, so there
is four-way case split). Thdo_ri ght continuation applies a cps-conversion to a term

20

REPEATC: Trad vs IFC (Moscow ML) REPEATC: IFC vs CPS (Moscow ML)
=8 Trad USR A 5—8 IFCUSR
0= Trad GC L 0= IFC GC A/’A
& -4 |FC USR Vs 4 =& CPS USR /&,”
IFC GC L CPS GC -

Time (seconds)
Time (seconds)

Term size (log) Term size (log)

Fig. 10 Timing statistics for theREPEATC experiment, with user and garbage collection times. The data-
points are means collected over 100 runs. At term siz@'6, the mean elapsed times forad, IFC and
CPS are 9.2s, 4.0s and 1.4s respectively. Thed implementation raises aBut _of _menory exception

on terms of size&> 217; theIFC implementation does the same on terms of $iza'8.

fun done_conb parent k left right =
case (left,right) of
(T™M TM _) => apply_unchanged k parent

| (TM T, THVT) => apply_cont k (MK COVB(REFL I, r))
| (THMI, TM r) => apply_cont k (MK COVB(I, REFL r))

| (THMI, THMr) => apply_cont k (MK_COVMB(Il, r))

fun do_right ¢ parent k f x left =
¢ (Conv(done_conb parent k left)) f x

fun kCOMB_CONV ¢c k f t = let
val fl = RT(t,f)
in
case total dest_conb t of
OK(t1,t2) =>c (Conv(do_right ¢t k fl t2)) fl t1l
| ERR e => apply_fail f et
end

Fig. 11 Accessing the sub-terms of an application term, leading tintipiementation ok COVB_CONV.

that is assumed to be the right-hand sub-term of an apmlitafinally, k COVB_CONV is
straightforward.

Using these primitives, it is also possible to implementcpsversion analogues of the
standard function&®ATOR_CONV and RAND_CONV, which apply a conversion just to a
particular sub-term. The new definition lbABS_CONV is omitted in the interests of space,
but is included in the (available, see Section 6.2) soucuec

The system has become rather reminiscent of abstract nescfinimplementing par-
ticular evaluation strategies for thecalculus. Such a machine is presented in Barras [1],
where it is used to perform very efficient applicative ordeorhputation”. The difference
between that work and this is that Barras is implementingrg specific evaluation strat-
egy, while this work is meant to allow any strategy to be egpeel. Computation in Barras’s
sense also requires the system to include a notion of whatitates a “value”.

In order to implement the analogue DOP_DEPTH_CONV from Section 2.5, the CPS-
system needs analogues®#B_CONV, TRY_CONV and CHANGED CONV. The first two
can be translated directlyORELSEC is replaced byk ORELSEC et¢). The analogue of

21

CHANGED_CONV is presented in Figure 12. This code handlesUNEHANGED exception
when the argument is called, and additionally looks at the r.h.s. of the resgltheorem.
In the cps-conversion (second in Figure 12); itavest unchanged, then treheck aux-
iliary will be handed that term to compare with itself. Asonv uses a pointer-equality
comparison internally as a fast-path check, the behavidust¥t be constant-time, as de-
sired.

fun KCHANGED CONV ¢ k f t = let
val fail_exn = HOL_ERR (No change error)
fun kont (TM_) = apply_fail f fail_exn t
| kont (THMth) =
if aconv t (rhs (concl th)) then apply_fail f fail_exnt
el se apply_cont k th
in
¢ (Conv kont) f t
end

Fig. 12 CPS-conversion implementation BHANGED_CONV, a higher-order conversion that fails if its ar-
gument does not change its input. Taeonv (read “alpha-convertible”) function tests if two terms are
alpha-equivalent.

One can now produce an implementatiok®OP_DEPTH_CONV that directly parallels
the traditional code. Though experiments reveal the slovidto be smaller, this suffers
from the same problem &EPEATC (identified in Section 2.3): exception handlers are given
scope over functions that cannot raise exceptions, ané t@imulate unnecessarily. It is
better to implement TOP_DEPTH_CONV as

fun KTOP_DEPTH CONV ¢ k f t =
(KREPEATC ¢ kTHENC
kl FC(kCHANGED _CONV (kSUB_CONV (kTOP_DEPTH CONV c)),
kl FC(c, kTOP_DEPTH CONV c, KkALL_CONV),
KALL_CONV)) k f t

4.1 Experimental Performance: Rewriting Sub-terms

Experiment #1: Ackermann’s Functiohhe first test of the cps-conversions on a problem
where (repeated) term-traversal is required is to rewrith the following definition of
Ackermann'’s function:

Ack 0 n

Ack (SUC m 0 Ack m (SUC 0)

Ack (SUC m (SUC n) Ack m (Ack (SUC m) n)
This definition is effectively three rewrite theorems. Tloti@n of trying each rewrite in turn
can be done efficiently through the use of a standard HOL ianxIREWRI TES_CONV, and
a specialised data structure called a term-net.

If the term-net for these three rewritesfisk_r wt s, then the traditional conversion is

SUC n

TOP_DEPTH_CONV (REWRI TES_CONV Ack_rwt s)

and the cps-conversion is

22

drop (kTOP_DEPTH CONV (lift (REWRI TES CONV Ack_rwts)))

In this way, the behaviour of the cps-conversion at the lef/atomic rewriting steps directly
mimicks the original conversion. The only difference lieghe efficiency, or otherwise, of
the assembly of the resulting theorems.

The experiment compared the performance of these conmergiben applied to terms
of the form

Ack (SUC(SUC(SUC 0))) (SucC® 0)

for 0 < n < 8. This computation is an extremely inefficient way of cald:iuigz(”+3) -3
(in unary notation no less). The results for this experinaeatpresented in Figure 13. When
having to recurse over the structure of increasingly laeges$, remembering one’s position
along the way, the cps-conversions’ advantage is less mh#inka in the earlier experiments.
The cps-conversions cannot escape having to build up whtieidively a stack of positions.
Moreover, the traversal only ever chains together at masethewrites at the same term
position (moving from a term matching the second clause efigfinition to one matching
the third, and then finally, one matching the first), vitigtihe cps-conversions’ strength in
chaining together calls tbRANS.

Nonetheless, in the Moscow ML implementation, the cps-easions are significantly
quicker on the largest problem. In the Poly/ML implememtatithe cps-conversions are
slightly slower. It is not clear why this should be so. It i tiee use of closures: a version
of the cps-conversion system with concrete constructarthiodata typeont performed
much the same as the version with j@&tnv andTr ans as constructors focont . See
Section 6.1 for more discussion of Poly/ML.

Computing Ackermann 3: Trad vs CPS (Moscow ML) Computing Ackermann 3: Trad vs CPS (Poly/ML)
A
100— 100—
&—& Trad USR “ @—a Trad USR
Trad GC Trad GC
10— &~ CPSUSR g 10— “~& CPSUSR P
CPS GC CPSGC

Time (seconds)
Time (seconds)

01—

0.01— 0.01—

0.003; / ! ! O.UOJDL

Argument (n in Ack(3,1)) Argument (nin Ack(3,n)

Fig. 13 Timing statistics for the Ackermann experiment. The datasoéme means collected over 5 runs
at each argument size. The mean times taken in the Moscow ML imptatien atn = 8 were 232s
for the traditional implementation, and 154s for the cps-eosion. For the Poly/ML implementation, the
corresponding times were 18.1s and 20L.&s,the cps-conversion was slower.

The technology in the Barras’s previously mentioned “tgHvalue” rewriting engine
(called EVAL in HOL4) provides an interesting comparison here. BMAL function is
generally quicker than rewriting. However, if one attentptsall EVAL on the last problem
from the experiment (calculatingl* — 3), it causes Poly/ML to crash with what it claims
is a “stack limit reached” error. When the same test is madleariMoscow ML implemen-
tation, it succeeds after 830s, which is over three timesesidhan the use of traditional
conversions.

23

Experiment #2: Naive NNF and Prenexifidne rewriting done above to calculate Acker-
mann'’s function is somewhat atypical in that the term ofries$é grows larger as the rewrit-
ing proceeds. In interactive use, it is more typical to hdeihput term stay roughly the
same size, or even grow smaller.

In order to test the CPS-system on a rewriting problem thatdge typical, we tried a
formula normalisation problem. At the atomic level, we cametthe action of the following
rewrites:

-(pAg) = —pVg ~(pVe = —pA—q -—p = p
(3z.P) = pt (vz.P) = Pf (t: = ¢ P)
—(3z.P) = Vz.-P -(Vz.P) = 3z.-P

Ez.PYAQ =3PAQ PAGeQ)=3xPAQ
(Vz.P) A (Vz.Q) =Vz.PAQ Vz.P)AQ =Vz.PAQ PAVz.Q) =Vz.PAQ
(Fz.P)V (F2.Q) = Jz.PV Q (Fz.P)VQ =3z.PVQ PV (3z.Q) =3x.PVQ
Vz.P)VQ =Vz.PVQ PV (Vz.Q) =Vz.PVQ

The rewrites are attempted in the order given. There is eogit made to avoid unnecessary
quantifier-alternation, and by combining quantifier movatrie the head of the formula
with pushing negations inwards, repeated traversals ahfhg term are guaranteed.

The above rewrites were turned into a list of conversioomism_convs. The traditional
conversion tested was

TOP_DEPTH_CONV (FI RST_CONV nor m_convs)
whereFl RST_CONV is the standard auxiliary defined as

fun FIRST_CONV [] tm = NO CONV tm
| FIRST_CONV (c::rst) tm=
c tmhandle (HOL_ERR) => FIRST_CONV rst tm

The CPS-system version Bf RST_CONV is

fun KFIRST_CONV clist k f t =
case clist of

[T => kNO CO\V k f t

c:

| :cs => (lift ¢ KORELSEC kFI RST_CONV cs) k f t

This auxiliary was defined just for the purpose of the experitnand takes as an argument
a list of traditional conversions rather than a list of cpsnersions. This allows the code
run as the CPS part of the experiment to be

drop (kTOP_DEPTH_CONV (kFI RST_CONV nor m convs))

For each term size, a random binary tree was generated (vathljorithm due to Martin
and Orr [10]), and nodes randomly annotated with negatioscuantifiers. The largest
term had size 3319. The results are presented graphicafjgimre 14. Again, the CPS-
system is a clear improvement when running in Moscow ML. Uritely/ML, the overall
improvement is barely discernible, though the superianityarbage collection times is even
visible in the log-scaled graph.

24

Prenexing: Trad vs CPS (Moscow ML) Prenexing: Trad vs CPS (Poly/ML)
1000— / 1000—
s—a Trad USR g 5—a Trad USR
100— Trad GC 100— Trad GC
& -A CPSUSR & -A CPSUSR
cPsGC cPsGC

10—

1—

Time (seconds)
-
|

Time (seconds)

01— 01—

0.01— 0.01—

Lo L | |
0. 0011 0. 0011

2 3

Term size (log,) Term size (log,)

Fig. 14 Timing statistics for the prenexing experiment. The datayscare means collected over 10 runs on
the same term of the given size. The mean times taken in the Mosttownmplementation on the largest
formula were 1165s for the traditional implementation, ands9®6 the cps-conversion. For the Poly/ML
implementation, the corresponding times were 238s and 287she cps-conversion was only very slightly
faster.

5 Advanced Features

The last features to be implemented in the CPS-system adbticoral rewriting, and user-
supplied congruences. These features are described soRdill], but the implementations
are only sketched, and were clearly the subject of intengork at the time.

Both features require the rewriter to be called recursiviglythe case of conditional
rewriting, this recursive call happens at what might be gidwf as the “leaf-level” of the
rewriting, when calling the analogue BEWR_CONV.

Each feature requires rather more code to implement thahelsitple conversions in
the earlier parts of this paper. For this reason, the imphations are not given completely.
Again, full source code is available from the URL given in &@t6.2.

5.1 Conditional Rewriting

Conditional rewriting is the ability to perform a rewrite weh only holds if some pre-
condition is discharged. For example, conditional rewsrdee common when working with
integer division and modulus, where one uses theorems like

Fr<n = (gn+r)MODn=r
FO<n = (zn+7r)DIVn=z+rDIVn
Fk<n = kMODn=%k
FOo<nAl<d = (nDVd<n)=T

If a user specifies that a rewrite should be done with a theofehis form, the rewriting
system needs to be able to show that the precondition is &feedit replaces the I.h.s. with
the r.h.s. from the rewrite theorem. Assuming that the gmeite tool for discharging these
preconditions is the rewriting engine itself, this thenuiegs a recursive call.

There is a risk of exponential blow-up here: a pre-conditienally involves sub-terms
of the original, so that if simplification of the pre-conditi doesn’t succeed, and if the
simplifier then goes onto look at that sub-term again as gaxttop-down traversal, it will
be simplified twice. In a bottom-up traversal, sub-terms mgain be traversed twice, but

25

the second traversal (in the pre-condition solver) willegtst be of terms that have already
been normalised.

In order to sit well with the CPS style of the cps-conversjahese recursive calls can
be recast as calls to continuations. Because of the getyashthe Conv constructor (from
Section 3), this is quite straightforward.

The only nicety in the following is a limit on the number of & the rewriter will let
itself be called to decide a conditional rewrite’s pre-atind. With pathological rewrites
(of the sort that users throw at rewriting systems as a mafteourse), it is all too easy for
a system to go into an infinite loop chaining backwards on ovedsle pre-conditions. In
practice, it appears that this limit can be quite low. Hehne,limit is chosen to be three.

fun kCondRewr th rewiter n k fl t =
if n>3 then apply_fail fl stackdeep t
else if is_inp (concl th) then
case total (PART_MATCH (lhs o #2 o dest_inp) th) t of
ERR e => apply_fail fl et
| OKrw => let
val (cond, _) = dest_inp (concl rw)
fun kont (TM_) = apply_fail fl cond_unproven t
| kont (THMth) =
case total EQT_ELIMth of
ERR _ => apply_fail fl cond_unproven t
| OKth => apply_cont k (MP rwt th")
in
rewiter (n + 1) (Conv kont) (RT(t,fl)) cond
end
el se
case total (PART_MATCH lhs th) t of
ERR e => apply_fail fl et
| OKrwt => apply_cont k rw

Fig. 15 The conditional rewriting primitive as a cps-conversione ART_MATCH function attempts to
match part of a theorem (here its |.h.s.) to a given term, andirethe appropriately instantiated theorem. The
EQT_ELI Mfunction attempts to turn a theorem of the formz = T into - z. The functionMP implements
modus ponendhe code also assumes predefined exception valuaskdeep andcond_unpr oven to
signal that pre-condition solving has recursed too far, thiadl a pre-condition couldn’t be proven, respec-
tively.

The code fokCondRewr is given in Figure 15. The first check is to see whether or not
the limit on pre-condition attempts has been reached. Therdde tests to see whether or
not the provided rewrite is conditional or not. If not, theledalls through to code at the bot-
tom of the definition that attempts to match and instantiatereconditional rewrite. Finally,
in the last case, if there is a match with the conditional ieythen the providedewr i t er
function is called on the rewrite’s pre-conditiomond). The continuatiortont checks to
see ifcond has been reduced to true, and if so, useslus ponent discharge the pre-
condition, creating a result theorem that does indeed eghatoriginal argument to some
new r.h.s.

Putting the atomi&kCondRewr into a rewriting system usingTOP_DEPTH_CONV
or some other traversal strategy becomes slightly contplicevhen it comes to tying the
various recursive knots. However, using the existing apsrersion combinators, the code
mimics that used in the existing HOL4 simplifier, and the taett a CPS style is being used
is concealed from the programmer.

26

5.2 Rewriting with User-supplied Congruences

A congruence is a theorem capturing how equalities on substean be used to construct an
equality on a larger term. For example, the inference rulérfadviK_COVB can be captured
by the theorem

F(f=9)=(z=y) = (fz=gy))

In general, a congruence will be
F subeqn, = (- = (subegn,, = eqn))

where the equation iagn will match terms of a particular form and the variosishegn;
specify that certain sub-terms should be rewritten. Fomgpta, the theorem

Fg=g = (ifgthentelse e) = (if ¢’ then ¢ else)

is a congruence that causes only the guard ¢f-tiren-else form to be rewritten.

One important refinement of this idea is to support the inclusf additional context
when a sub-term is examined. The idea is to allow the variatisyn, above to have the
form P = (tg = t). The P represents additional context that may be assumed in thrsecou
of simplifying to. For example, one can use the following as a congruencerfgliying
conjunctions:

FP=P)=(P=Q=Q)=PArQ=P1Q))

This uses the idea that it is valid to assume the truth @fhen simplifying@. More specifi-
cally, this rule encodes the rewriting strategy of first siifgjing P to P/, and then assuming
P’ while simplifyingQ to Q.

A naive cps-conversion version of a simplifier that uses ngence rules in this vein can
be written in 50 lines of code. The handling of congruencegig done by a function taking
a theorem representing the congruence rule as an argurhiém.rule has been reduced to
a bare equality, this is the result. Otherwise, the impiicats split, and the rewriter called
recursively on the implication’s first argument. The coudtion passed to the recursive call
is to usemodus ponenan the rule and the result, generating a smaller congruertegand
then repeating.

If the implication’s first argument is itself an implicatipthen this implication’s first
argument can be assumed going into the recursive call. Indhgnuation, the assumption
is discharged from the result theorem, producing sometbinige right form for the call to
modus ponens

Note that using a congruence rule makes it harder to detest\@rsub-term traversal
has left its argument unchanged. Currently, both the HOL@! laabelle simplifiers make
explicit calls to an equality check after a congruence haslagplied so that they can then
signal unchangedness appropriately. Though this may skem $ource of inefficiency, the
way in which congruence rules are instantiated should rasthe call toaconv quickly
hitting sub-terms that are pointer-equivalent.

27

6 Conclusion

In the conclusion of [11], Paulson writes

It is hard to improve the efficiency in the LCF framework. Angngplifier must
produce a theorem to justify its result. It must coexist vather theorem-proving
tools, and with ML.

This paper demonstrates that while requiring non-triviédre some efficiency gains in

LCF-style rewriting are indeed possible. These gains aneaed by considering the struc-
ture of the call graph brought into being as rewriting pratsee@nd more generally, by wor-
rying about rewriting’s memory allocations.

Switching to CPS-conversions allows exactly the same sexguef calls to “atomic”
rewriting steps€.g, calls to functions likeREWR_CONV andBETA_CONV), while combin-
ing the results of these calls more efficiently. If existiragle performed its rewriting steps
as a result of the application of a particular term-travessategy, the new CPS-system pro-
vides a directly analogous API so that the same strategyeaiséxd, and the same rewriting
steps produced.

The improvements in performance are incontrovertiblehlandl to observe when rewrit-
ing small terms, or when rewriting terminates quickly. Olicge, these are the scenarios
usually encountered when using the LCF-style systemsactigely. However, the beauty
of these programmable systems is that they can be the badisef@onstruction of non-
interactive tools. In these situations, long-running riéng efforts can and do occur. This
was certainly the author’s experience when implementiegdbl behind the work described
in [3].

Boulton [4] also found it hard to make HOL's rewriting go fastin addition to investi-
gating theUNCHANGED optimisation (whichs a clear advance compared to not using it), he
looked at deferring all theorem-proving work within a retivig) application until the end of
the process. This then enables optimisations such as reaydewrites so that all changes
in one sub-term can be done together, minimising the numhbterm-traversals done with
MK_COMB.

Using Boulton’s general framework it is certainly possitdeavoid building an explicit
chain of calls toTRANS in a call-stack. Instead, one of the optimisation he comsidieon-
structs a large representation of all these calls in menaony,then examines them for op-
timisation opportunities later. This “lazy” approach t@thandling ofTRANS (and other
inference rules) is thus quite the opposite tactic to thigepa aim of eagerly evaluating
TRANS as soon as possible.

6.1 Future Work

There are a number of areas that still remain to be investigadne is the behaviour of
Poly/ML, which can be quite odd on large terms. In some sitnat though it is running 5—
10 times faster than Moscow ML, it is consuming 2—3 times aslmmemory, and garbage
collections can cause a rewriting application that noryntalkes roughly a second to take
10 times as long. Independently, we observed Poly/ML crashlarge problem (evaluating
Ack 3 8 with Barras'sEVAL) that Moscow ML has no problem with. | hope that when these
issues, whether they be in our port of HOL4 or in the Poly/MIpiementation, are resolved,
future experiments will provide yet more vindication of ttygs-conversion approach.

28

The memory behaviour of rewriting discussed in Section 2.8l$o intriguing. It is
the termsuc(»+1) 0, then rewriting with the theorermn SUC 0 = 1 results in a theorem

- suc) o = suc 1

In general, one would hope that applying a conversion tora teshould result in a theorem
Ft =t’ where the inthe theorem should be the same structure in memory &s tinet
was passed to the conversion. But in fact, in the examplengiveet in the theorem is a
“deep” copy of the input, sharing no structure with the oraditermt . This profligacy with
memory surely represents a run-time cost. Approaches s$optfeblem might include the
alternative version ofK_COMB discussed in Section 2.6, or (more radically) hash-consing
in the kernel.

For the moment, the advantages offered by cps-conversmnstdeem great enough to
warrant reworking the standard HOL4 simplifier to use thigrapch. In particular, there is a
great deal of code in use which relies on conversions beitypeft er m - > t hm Chang-
ing extant code to instead use the more complex continuatsed type is unappealing in
general. Of course, in specialised settings, where thela@eknows that rewriting will
be running for long periods, cps-conversions may indeegpeopriate. This paper demon-
strates that cps-conversions support a familiar set of aweidrs, and that they inter-convert
with normal Paulson-style conversions straightforwardly

The same analysis of memory consumption and call-patteat$dd to the development
of cps-conversions also led to the recognition tREPEATC is not implemented ideally at
the moment. The change to useCinstead ofORELSEC is one that will appear in a future
release of HOL4.

6.2 Availability

The source code for the various forms of cps-conversiorsdhece code for the experiments
performed, and the data generated in those experiment avaitable in a compressed tar-
file from

http://users.rsise. anu. edu. au/ ~m chael n/ dat a/ cpsconvs. t gz.

Acknowledgements NICTA is funded by the Australian Government as represenethé Department of
Broadband, Communications and the Digital Economy and therdliest Research Council through the ICT
Centre of Excellence program. Joe Hurd and Rob Arthan pravigeful early discussion and comments on
this work. The anonymous referees suggested a much-needgdmisation of the material’s presentation.

References

1. Bruno Barras. Programming and computing in HOL. In Mark Adgamd John Harrison, editors,
Theorem Proving in Higher Order Logics, 13th Internatio@inference, TPHOLs 2000olume 1869
of Lecture Notes in Computer Scienpages 17-37. Springer, August 2000.

2. Nick Benton and Andrew Kennedy. Exceptional synturnal of Functional Programmindg 1(4):395—
410, July 2001.

3. Steve Bishop, Matthew Fairbairn, Michael Norrish, P&8ewell, Michael Smith, and Keith Wansbrough.
Engineering with logic: HOL specification and symbolic-axation testing for TCP implementations. In
POPL'06: Conference record of the 33rd ACM SIGPLAN-SIGAg Eosium on Principles of Program-
ming Languagegpages 55-66, New York, NY, USA, 2006. ACM Press.

4. R.J. Boulton. Transparent optimisation of rewriting conalbdrs.Journal of Functional Programming
9(2):113-146, March 1999.

29

11.

12.

. Jacek Chrzaszcz and Daria Walukiewicz-Chrzaszczafdswewriting in Coq. In Huber Comon-Lundh,

Claude Kirchner, and Hélene Kirchner, editdRewriting, Computation and Proof: Essays Dedicated to
Jean-Pierre Jouannaud on the Occasion of His 60th Birthdajume 4600 ofLecture Notes in Com-
puter Sciencegpages 113-131. Springer, 2007.

. M. J. C. Gordon and T. Melham, editotatroduction to HOL: a theorem proving environment for hégh

order logic Cambridge University Press, 1993.

. John Harrison. HOL Light: a tutorial introduction. In Mdamyam Srivas and Albert Camilleri, editors,

Proceedings of the First International Conference on ForMathods in Computer-Aided Design (FM-
CAD’96), volume 1166 ot.ecture Notes in Computer Scienpages 265-269. Springer-Verlag, 1996.

. HOL websiteht t p: / / hol . sour cef or ge. net .
. R.B. Jones. ICL ProofPoweRCS-FACS FACTSSeries Ill, 1(1):10-13, Winter 1992.
. Harold W. Martin and Bonnie J. Orr. A random binary treegator. InCSC '89: Proceedings of the

17th Annual Computer Science Conferemzgges 33—-38, New York, NY, USA, 1989. ACM.
Lawrence Paulson. A higher-order implementation of tévgi Science of Computer Programming
3(2):119-149, August 1983.

Lawrence C. Paulsonisabelle: A Generic Theorem Provemlume 828 of_ecture Notes in Computer
Science Springer-Verlag, Berlin, 1994.

