A Brief Overview of HOL4

Konrad Slind! and Michael Norrish?

1 School of Computing, University of Utah
slind@cs.utah.edu
2 National ICT Australia
Michael.Norrish@nicta.com.au

Abstract. The HOL4 proof assistant supports specification and proof
in classical higher order logic. It is the latest in a long line of similar
systems. In this short overview, we give an outline of the HOL4 system
and how it may be applied in formal verification.

1 Introduction

HOL4 is an ML-based environment for constructing proofs in higher order logic.
It provides a hierarchy of logical theories which serves as a rich specification
library for verification. It also provides a collection of interactive and fully auto-
matic proof tools which can be used in further theory building or in the provision
of bespoke verification procedures.

Implementation history. The original HOL system was created in the mid-
1980’s when Mike Gordon at Cambridge University performed surgery on the
Edinburgh LCF system, installing a version of Church’s higher order logic as
the object language of the system. The metalanguage in which the logic was
encoded was Edinburgh ML, itself implemented on top of Lisp. An enhanced
version of HOL, called HOLSS [6], was publically released (in 1988), after several
years of further development. HOLI0 (released in 1990) was a port of HOL88 to
SML by Slind at the University of Calgary. The Lisp substrate was abandoned,
and some of the more recondite underlying LCF technology was trimmed away
or reimplemented. HOL90 ran on Poly/ML and SML/NJ. HOL98 (released in
1998) was a new design, emphasizing separate compilation of theories and proof
procedures [12], thus allowing HOL to be ported to MoscowML.

HOL4 is the latest version of HOL, featuring a number of novelties compared
to its predecessors. HOL4 continues to be implemented in SML; it currently runs
atop Poly /ML and MoscowML. HOL4 is also the supported version of the system
for the international HOL community [11].

Project management. The HOL projectﬂ is open source, managed using the
facilities of SourceForge, and currently has about 25 developers, not all of whom
are active. In general, control of user contributions is relaxed; anyone who wishes
to make a contribution to the system may do so, provided they are willing to

! Located at http://hol.sourceforge.net

O. Ait Mohamed, C. Mufioz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 28[32] 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Brief Overview of HOL4 29

provide support. However, modifications to the kernel are scrutinized closely by
the project managers (the present authors) before being accepted.

2 Technical Features
We now summarize some notable aspects of HOL4.

2.1 Logic

The logic implemented by HOL4 is essentially Church’s Simple Type Theory [3],
with polymorphic type variables. The logic implemented by HOL systems, in-
cluding ProofPower and HOL-Light, has been unchanged since the release of
HOLS88. An extremely important aspect of the HOL logic, not mentioned by
Church, is primitive definition principles for consistently introducing new types
and new constants.

An ongoing theme in HOL systems has been adherence to the derivation judge-
ment of the logic: all theorems have to be obtained by performing proofs in higher
order logic. However, in some cases, it is practical to allow external proof tools to be
treated as oracles delivering HOL theorems sans proof. Such theorems are tagged
in such a way that the provenance of subsequent theorems can be ascertained.

2.2 Kernels

As is common with HOL designs, the kernel implementation of the logic is kept
intentionally small. Only a few simple axioms and rules of inference are encapsu-
lated in the abstract type of theorems implemented in the logic kernel. Currently
in HOL4 we maintain two kernels, one based on an explicit substitution calculus,
and one based on a standard name-carrying lambda calculus. The desired kernel
implementation may be chosen at build time. Informal testing indicates that
each kernel outperforms the other on some important classes of input, but that
neither outperforms the other in general.

2.3 Derived Rules and Definition Principles

Given such a simple basis, serious verification efforts would be impossible were it
not for the fact that ML is a programmable metalanguage for the proof system.
Derived inference rules and high-level definition principles are built by program-
ming: such complex logical steps are reduced to a sequence of kernel inferences.
For example, some of the current high-level definition principles for types are
those supporting the introduction of quotient types and ML-style datatypes.
Datatypes can be mutually and nested recursive and may also use record no-
tation. At the term level, support is provided for defining inductively specified
predicates and relations; mutual recursion and infinitary premises are allowed.
Total recursive functions specified as recursion equations, possibly using ML-
style pattern matching, are defined by a package that mechanizes the wellfounded
recursion theorem. Mutual and nested recursions are supported. Simple termi-
nation proofs have been automated; however, more serious termination proofs
have of course to be performed interactively.

30 K. Slind and M. Norrish

2.4 Proof Tools

The view of proof in HOL4 is that the user guides the proof at a high level,
leaving subsidiary proofs to automated reasoners. Towards this, we provide a
database of type-indexed theorems (case analysis, induction, etc) which supports
user control of decisive proof steps. In combination with a few ‘declarative proof’
constructs, this allows many proofs to be conducted at a high level.

HOL4 has a healthy suite of automated reasoners. All produce HOL proofs.
Propositional logic formulas can be sent off to external SAT tools and the re-
sulting resolution-style proofs are backtranslated into HOL proofs. For formulas
involving N, Z, or R, decision procedures for linear arithmetic may be used. A de-
cision procedure for n-bit words has recently been released. For formulas falling
(roughly) into first order logic, a robust implementation of ordered resolution
has become very popular.

Probably the most commonly used proof tool is simplification. We provide a
call-by-value evaluation mechanism which reduces ground, and some symbolic,
terms to normal form [I]. A more general (and more heavily used) tool, the
simplifier, provides conditional and contextual ordered rewriting, using matching
for higher order patterns. The simplifier may be extended with arbitrary context-
aware decision procedures.

For experienced users, most simple proofs can be accomplished via a small
amount of interactive guidance (specifying induction or case-analysis, for exam-
ple) followed by application of the simplifier and first order proof search.

2.5 Theories and Libraries

The system provides a wide collection of theories on which to base further verifi-
cations: booleans, pairs, sums, options, numbers (N, Z, Q, R, fixed point, floating
point, n-bit words), lists, lazy lists, character strings, partial orders, monad in-
stances, predicate sets, multisets, finite maps, polynomials, probability, abstract
algebra, elliptic curves, lambda calculus, program logics (Hoare logic, separation
logic), machine models (ARM, PPC, and TA32), temporal logics (w-automata,
CTL, p-calculus, PSL) and so on. All theories have been built up definitionally.

HOL4 also has an informal notion of a library, which is a collection of theories,
APIs, and proof procedures supporting a particular domain. For example, the
library for N provides theories formalizing Peano Arithmetic and extensions (nu-
merals, gcd, and simple number theory), a decision procedure, simplification sets
for arithmetic expressions, and an extensive collection of syntactic procedures
for manipulating arithmetic terms. Loading a library extends the logical context
with the types, constants, definitions, and theorems of the comprised theories;
it also automatically extends general proof tools, such as the simplifier and the
evaluator, with library-specific contributions.

Both theories and libraries are persistent: this is achieved by representing
them as separately compiled ML structures. A ‘make’-like dependency mainte-
nance tool is used to automatically rebuild formalizations involving disparate
collections of HOL4 libraries and theories, as well as ML or external source code
in other programming languages.

A Brief Overview of HOL4 31

2.6 External Interfaces

There is a variety of ways for a logic implementation to interface with external
tools. On the input side, as we have mentioned, purported theorems coming from
external tools need to be accompanied with enough information to reconstruct a
HOL proof of the theorem. An example of this is the interface with SAT solvers
which can supply proof objects (we currently favour minisat).

Another approach is illustrated by the integration of a BDD library into HOL.
This has been used to support the formalization and application of model-checking
algorithms for temporal logic. Since HOL theorems are eventually derived from
operations on BDDs representing HOL terms, the oracle mechanism mentioned
earlier is used to tag such theorems as having been constructed extra-logically.

On the output side, HOL formalizations confining themselves to the ‘functional
programming’ subset of HOL may be exported to ML. This gives a pathway from
formalizations to executables. The generated code is exported as separately com-
pilable ML source with no dependencies on the HOL4 implementation. Thus, the
theory hierarchy of HOL4 is paralleled by a hierarchy of ML modules containing
exported definitions of datatypes and computable functions formalized in HOL.
We support the substitution of more efficient versions of such modules; for ex-
ample, the GMP library used in the mlton compiler may be used instead of the
relatively slow code generated from our theory of numerals.

Finally, higher order logic can be used as a metalogic in which to formalize
another logic; such has been done for ACL2 [45]. HOL4 is used to show that
ACL2 is sound. This allows a two-way connection between the two systems in
which a HOL formalization may be translated to the HOL theory of ACL2, this
formalization is then transported to the ACL2 system and processed in some way
(e.g., reduced using the powerful ACL2 evaluation engine) and then the result
is transported back to HOL4 and backtranslated to the original HOL theory.

3 Current Projects

Network specification and wvalidation. Peter Sewell and colleagues have used
HOLA4 to give the first detailed formal specifications of commonly used network
infrastructure (UDP, TCP) [2]. This work has heavily used the tools available in
HOL4 for operational semantics. They also implemented an inference rule which
tested the conformance of real-world traces with their semantics.

Programming language semantics. As an application of the HOL4 backend of the
0tt tool [I4], Scott Owens has formalized the operational semantics of a large
subset of OCaml and proved type soundness [13]. The formalization heavily re-
lied upon the definition packages for datatypes, inductive relations, and recursive
functions. Most of the proofs proceeded by rule induction, case analysis, simpli-
fication, and first order proof search with user-selected lemmas. In recent work,
Norrish has formalized the semantics of C++ [I0].

Machine models. An extremely detailed formalization of the ARM due to An-
thony Fox sits at the center of much current work in HOL4 focusing on the

32 K. Slind and M. Norrish

verification of low-level software. The development is based on a proof that a
micro-architecture implements the ARM instruction set architecture. In turn, the
ISA has been extended with so-called ‘Thumb’ instructions (which support com-
pact code) and co-processor instructions. On top of the ISA semantics, Myreen
has built a separation logic for the ARM and provided proof automation [§].
Compiling from logic; decompiling to logic. 1t is possible to compile a ‘functional
programming subset’ of the HOL logic to hardware [I5] and also to ARM code
[7]. This supports high-level correctness proofs of low-level implementations. As
well, one can map in the other direction and decompile machine code to HOL
functions with equivalent semantics [9].

References

1. Barras, B.: Proving and computing in HOL. In: Aagaard, M.D., Harrison, J. (eds.)
TPHOLSs 2000. LNCS, vol. 1869, pp. 17-37. Springer, Heidelberg (2000)

2. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and Sockets. In: Proceedings of SIGCOMM. ACM Press,
New York (2005)

3. Church, A.: A formulation of the Simple Theory of Types. Journal of Symbolic
Logic 5, 56-68 (1940)

4. Gordon, M.J.C., Hunt, W.A., Kaufmann, M., Reynolds, J.: An embedding of the
ACL2 logic in HOL. In: Proceedings of ACL2 2006, ACM International Conference
Proceeding Series, vol. 205, pp. 40-46. ACM Press, New York (2006)

5. Gordon, M.J.C., Reynolds, J., Hunt, W.A., Kaufmann, M.: An integration of HOL
and ACL2. In: Proceedings of FMCAD 2006, pp. 153-160. IEEE Computer Society,
Los Alamitos (2006)

6. Gordon, M., Melham, T.: Introduction to HOL, a theorem proving environment
for higher order logic. Cambridge University Press, Cambridge (1993)

7. Li, G., Slind, K.: Compilation as rewriting in higher order logic. In: Pfenning, F.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603. Springer, Heidelberg (2007)

8. Myreen, M., Gordon, M.: Hoare logic for realistically modelled machine code. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424. Springer, Heidelberg
(2007)

9. Myreen, M., Slind, K., Gordon, M.: Machine-code verification for multiple architec-
tures: An application of decompilation into logic. In: FMCAD 2008 (submitted 2008)

10. Norrish, M.: A formal semantics for C++. In: Informal proceedings of TTVSI 2008
(2008)

11. Norrish, M., Slind, K.: HOL-4 manuals (1998-2008),
http://hol.sourceforge.net/

12. Norrish, M., Slind, K.: A thread of HOL development. Computer Journal 45(1),
3745 (2002)

13. Owens, S.: A sound semantics for OCaml-Light. In: Proceedings of ESOP 2008.
LNCS, vol. 4960. Springer, Heidelberg (2008)

14. Sewell, P., Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.:
Ott: Effective tool support for the working semanticist. In: Proceedings of ICFP
2007. ACM Press, New York (2007)

15. Slind, K., Owens, S., Iyoda, J., Gordon, M.: Proof producing synthesis of arithmetic
and cryptographic hardware. Formal Aspects of Computing 19(3), 343-362 (2007)

http://hol.sourceforge.net/

	A Brief Overview of HOL4
	Introduction
	Technical Features
	Logic
	Kernels
	Derived Rules and Definition Principles
	Proof Tools
	Theories and Libraries
	External Interfaces

	Current Projects

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

