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Abstract. Although there are many efficient algorithms for calculating the simu-
lation preorder on finite Kripke structures, only two have been propobketich

the space complexity is of the same order as the size of the output of the algo
rithm. Of these, the one with the best time complexity exploits the representation
of the simulation problem as a generalised coarsest partition problenbasézl

on a fixed-point operator for obtaining a generalised coarsest pad#itre limit

of a sequence of partition pairs. We show that this fixed-point theoryviefla

and that the algorithm is incorrect. Although we do not see how the fixed-po
operator can be repaired, we correct the algorithm without affectingatsesand
time complexity.

1 Introduction

The simulation preordef{17] is a behavioural refinement relation on concurrent sys-
tems, represented as Kripke structures or labelled trangystems, that plays a crucial
réle in compositional verification and model checking. Itgmeres the existential and
universal fragments of temporal and modal logics. For €8] this is shown in [5],
and for the modal:-calculus [14] it is shown in [16]. This makes it possible tmtbat
the state explosion problem in model checking by minimishregstate space of a given
system modulo simulation equivalence before checking #tidity of relevant proper-
ties within those fragments. Given that the simulation pteois a precongruence for
parallel composition [11], components in parallel composs can even be minimised
individually.

Simulation equivalence is also used directly in equivadectoecking [15] of finite-
state processes. Often deciding the simulation preorderclea processes is the most
appropriate method of showing that two systems are relageghbther preorder, that
may be appropriate for the task at hand. In applications etieadlock behaviour plays
a crucial ble, theready simulation preordefl] is widely regarded to be an appropriate
behavioural refinement relation for matching an implemonawith a specification.
Via a straightforward reduction (the computation of thai@hipartition ER; in [2]),

* This is an extended abstract; all proofs are omitted. They can be fouhe fall version [10].
** This author is partially supported by the Netherlands Organisation for t8itieResearch
(NWO) under VOLTS grant number 612.065.410.
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finding a ready simulation between two processes is as hdiddasg a plain simula-
tion. In applications where deadlock behaviour plays @le,trace inclusionis often
proposed as an appropriate refinement relation. Howeveididg trace inclusion on
finite-state processes is PSPACE-hard [19], and as theaimlpreorder is the coars-
est preorder included in trace inclusion that is known to eeidhble in polynomial
time [2, 3, 8, 12, 18, 20], establishing a simulation betwiem processes is a favourite
way of showing that they are related by trace inclusion.

In many crucial applications, space rather than time beesothe bottleneck as
the input graph grows [4, 7, 8, 13]. Hence, simulation alfpons with minimal space
complexity are of particular interest. These are the oneBustan and Grumberg [3]
and by Gentilini, Piazza and Policriti [8]. For an input gnawith N states,T" transi-
tions andS simulation equivalence classes, the space complexity thf édlgorithms is
O(S? + Nlog S). This can be considered minimal(S5?) space is needed for stor-
ing the simulation preorder as a partial order on simuladqnivalence classes and
O(N log S) space is needed to store for every state, the equivalense tdavhich it
belongs. Of these algorithms, the one by Gentiéihal. has a better time complexity:
O(S%T). A more time-efficient algorithm is the one by Ranzato andp&ap [18], but
it is less space efficient.

The approach of Gentilinet al. represents the simulation problem as a gener-
alised coarsest partition problem (GCPP). According t@titbors, this problem can be
solved by approximating the greatest fixed point of a dedangasperator on partition
pairs that they define in their paper. They give a partitigrafgorithm to compute this
fixed point for any legal input. We recite this definition angart of the algorithm in
Sect. 3. In Sect. 4 we show that the operator is flawed bectigsgot uniquely defined
for all partition pairs. We give an instance of the GCPP foichitrepeated application
of the operator does not lead to a unique fixed point. We alew shat on this exam-
ple the partitioning algorithm irrevocably allocates twimslation-equivalent states to
different simulation-equivalence classes, and subseiyudgadlocks.

In Sect. 5 we define a simple, yet inefficient fixed-point oparéor which we prove
correctness. This operator is not meant to be an improveoventthe original one, but
merely serves as an expedient for establishing correctofef®e algorithm that we
present in Sect. 6. This algorithm is obtained from that afit@iai et al. by means of a
few simple corrections; consequently, it benefits from tbg ikleas behind the original
partitioning algorithm and has the same time and space @itipks. Yet its correctness
proof requires entirely new techniques and is surprisingly-trivial. We also show that
no fixed-point operator can be defined that captures the mmhvasf this algorithm.

2 Preliminaries

Partitions and relations.For any setS, apartition over S is a set” C P(.5) such that
UX=SandVa e X . a#0AVB3€ X .a# B=anf =0 Foranys € Swe
denote by[s] 5 the blocka: € X' such thats € «. Given two partitionst andIl we say
T is finer thanX iff for every « € IT there exists an’ € X' such thatx C . For any
setS, we denote by (S) theidentity relationover S, i.e.Z(S) = {(s,s) | s € S}. For
any relationP, we denote byP thetransitive closureof P.
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Graphs. A (directed) graphis a tuple(N, —) where N is a finite set of nodes and
— C N x N is a set of directed transitions between those noddabglled graphis
atuple(N, —, X) where(N, —) is a graph and” is a partition overN. For a graph
(N,—),a € Nands C N, we writea — S if 3b € 8. a — b. Moreover, we define
the relations—3 and— over®(N) as follows, for any, 3 C N:

a—3f < dJaca.a—p a—yf e VYaca.a— LS.

Simulations.For any labelled grapbiv, —, X) a relationR C N x N is asimulation
iff for any a,b € N, (a,b) € R implies:

° [a}gi[b]g and
eVceN.a—c=3deN.b—dA(cd) €R.

We say that is simulated by, denoted: C b, iff there exists a simulatio® such that
(a,b) € R. Itis well known and easy to check th@t is a preorderi.e. a reflexive and
transitive relation, oV, and moreover the largest simulation. We say thahdb are
simulation equivalentdenoted: = b, iff « € bandb C a.

The simulation problemGiven a labelled grapty = (N, —, %), thesimulation prob-
lemover G consists in finding the simulation preorderonG.

A variant of the simulation problem asks, given a labelleapin( NV, —, X’) and two
nodes:, b € N, whether € b. In general, no methods to solve this problem are known
that are more efficient than computing the entire relafiol N x N and looking up
whether(a, b) € C. Another variant of the simulation problem merely asks td time
simulation equivalence relation rather than the preord€r . Again, no methods to
solve that problem are known that do not amount to findings well.

Typically, the simulation problem arises in the contexioipke structuresor la-
belled transition systemét is trivial to encode a Kripke structure as a labelled grap
in such a way that the simulation preorder on the Kripke stmecagrees with the one
on its labelled graph representation. Likewise, it is nadha reduce the simulation
problem for labelled transition systems to that for laleiggaphs. Alternatively one
can enrich the theory in a straightforward way to deal widmsition labels as well, so
that it is applicable to labelled transition systems diyect

The generalised coarsest partition problei®iven a graphG = (N, —), a partition
pair overG is a pair{ X, P) whereX'is a partition ovefV andP C Y x X' is a reflexive,
acyclic relation ovep”. A partition pair(X, P) is calledtransitiveif P is transitive, and
hence a partial order. Given a partitidf) a partitionlI finer than’, and a relationP
over X, we denote byP(I7) theinduced relatiorof P on IT:

P(IT) = {(a,B) e I x T |3(/,B)EP.aCa' ANBC S}

We define gartial order < on partition pairs by writing, for any partition pai(&’, P)
and(IT,Q): {II,Q) < (X, P) iff II is finer thanX and@Q C P(IT). Given a graph
G = (N, —), we say a partition paifX’, P) over( is stable with respect te~ [8] iff:

Va,B,v€ X . ((a, ) E PANa—37) = F6€ X . (7,0) e PAS —v 6.
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Given a graplG = (N, —) and a partition paifX, P) overG, thegeneralised coarsest
partition problem(GCPP) [8] consists in finding &-maximal partition pair{=, <)
such that =, <) < (X, PT) and(Z, <) is stable with respect te-.

The simulation problem as a GCPRet G = (N, —,Y) be a labelled graph. Any
preorderC on N can be represented as a partition f&(C) := (II, <), as follows:
II is the set of equivalence classesMfw.r.t. the equivalence relatioa := C N C—1
induced byC, and= is given by[a] 7 = [b]17 iff a C b. Note that= is a partial order.
Moreover, ifC is a simulation the?P(C) is stable w.rt— andPP(C) < (X Z(X)).
Any partition pair(II, Q) over the grapi{ N, —) can be represented as a relation
R,y € N x N as follows:(a,b) € R, iff 3(o, ) € Q@ .a € a Ab € (3. Note
that if (I7, Q) is stable w.r.t— and(/7, Q) < (¥, Z(X)) thenR gy is a simulation.
Moreover,(H, Q) < <H’, Q/> iff R(HQ) - R(H’,Q’)- Also note thatRpp(g) =L.
HencePP (<) is the solution of the GCPP diV, —) and(X', Z(X)). In particular,
the GCPP, when applied to partition pairs of the foff, Z(X')) (plain partitions),
always has a unique solutidx, <), in which moreover< is always a partial ordér.

3 The GCPP Solution of Gentilini, Piazza and Policriti

To solve the GCPP, Gentilini, Piazza and Policriti [8] imtuce the following operator:

Definition 4.11 in [8] (Operator o). Let G = (N, —) and (X, P) be a partition pair
overG. The partition paifIl, Q) = o({X, P)) is defined as follows:

(1o) II is the coarsest partition finer thansuch that
@ VYaellVye X(a—gy = 30 € X((v,0) € PAa—v 0));
(20) @ is maximal such tha® C P(IT) and if (o, 8) € @, then
(b) Vy € (o —vy = I € X((v,v) € PAB —37')) and
© Vyell(a—yy = I €l((v,7)eQNE—37)).

They argue that applying iteratively on an initial partition paitXy, P,) yields a se-
quence of partition pairsY;, P;),-, with (¥; 1, Piy1) = o((Xs, P;)). By construc-
tion, this sequence is decreasing, in the sense(ttat;, P;11) < (X;, P;). Hence it
will reach a fixed poin{ X, P;) = o({(Xk, Px)). This is the solution to the GCPP.
Applying this, they give a partitioning algorithm to solMeet GCPP. We have in-
cluded it here as Algorithm 1 and call it Rpp. It takes as input a grapliV, —) and a
transitive partition paif X, P) and repeatedly calls the following functions to compute
o until a fixed point is reached: BINEgpp Which computes the partitioil of (10)
and UpDATEgppWhich computes the relatia of (20). The boolean variablehange
is settoT by REFINEgppiff its output partition differs from its input partition. @have

! The same reasoning extends to the GCPP applied to any partition pairsjsuedhires
considering simulations on structures of the fofM, —, X| <) with (N, —, X) a labelled
graph, ancKk a partial order or¥; the first clause in the definition of simulation then becomes
[a]z = [b] 5.
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Algorithm 1 The partitioning algorithm of [8]: PApp((N, —), (X, P))
1: change :==T,;i:=0; Xy :=X; Py := P;

2: while change do

3: change := 1;

4: Ei+1 = REFINEGPP(E'L'7 Pi, ch(mge);
5: P¢+1 = UPDATEGPP(EZ', PZ'7 Ei+1):
6
7.

=1+ 1;
end while

Algorithm 2 The refine function of [8]: RFINEgpp(Y;, P;, change)
DM =2

2: forall a € X1 do Stable(a) := 0; end for

3: forall v € X; do Row(y) := {¥" | (v,7') € B;}; end for
4: Let Sort be a reverse topological sorting 8f w.r.t. P;;

5: while Sort # () do
6.
7
8

[EnY

v := dequeue(Sort);

A= 0;
forall « € X1, a —3 v, Stable(a) N Row(y) = () do
9: a1 ::aﬂ—Fl('y);
10: a2 = a\ aa;
11: if as # 0 then change := T; end if
12: 2i+1 = E—L‘Jrl \ {a};
13: A:=AU{a1,a2};
14: Stable(ay) = Stable(a) U {v};
15: Stable(az) := Stable(a);
16: end for

17: Yiv1:=Xix1 U A;
18: Sort := Sort \ {v};
19: end while

20: return X;4q;

included the RFINEgppfunction as Algorithm 2. In line 4 of this algorithm, a “reser
topological sorting of”; w.r.t. P;” indicates an ordered listing of the elementsof
such that if(, §) € P; thend occurs prior toy.

4 Incorrectness of the Fixed-Point Operator

Following the definition ofs, the authors claim that for any partition p&it, P), if
(IT,Q) = o({¥, P)) thenQ is acyclic. We give an example that counters this claim.

Counterexample 1Consider the graph in Fig. 1(a) and the partition gar; P) with
2 = {a, ,7,0} as depicted an = Z()U{(5.6). (6,7)}. Let(IT, Q) = o({X, P)),
then

I = {a17a23ﬂ5775} Q= I(H) U {(0417()(2), (aQ’al)v (6’ 6)7 (67 7)}

wherea; = {a;1} andas = {az2}. Q is not acyclic, which counters the claim. O
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Fig. 1. Counterexamples for (a) acyclicity 6f and (b) well-definedness of

This counterexample shows that applyintp a given partition pair does not necessarily
yield another partition pair. After all, for that the resadj relation has to be acyclic.

However, a more fundamental theorem that the authors ctaimave proven, turns
out not to hold. Theorem 4.13 states that for every partigiain (X', P) there exists a
unique<-maximal partition paiKII, Q) < (X, P) satisfying conditions (a), (b) and (c)
of Definition 4.11,i.e. the o operator is well-defined, and a function. This theorem is
countered by the following example.

Counterexample 2Consider the graph in Fig. 1(b) and the partition gait, P) with
3 = {a, 3,7, 0} as depicted ané = Z(2)U{(5,7), (7,9)}. Let (11, Q) and(II’, Q")
be partition pairs such that:

I = {O‘07alaﬁ5775} Q= I<H) U {(Oé(),oq), (061,010), (ﬁa 7)? (’776)}
I = {0/07()/175;’7,5} Q = I(H/) U {(046,0/1), (0/17056)» (ﬁv’Y)’ (7:6)}

Whereao = {ao,al}, o = {GQ}, 046 = {(l()} ando/l = {al,ag}. Both <H,Q> and
(IT", Q') satisfy conditions (a), (b) and (c) of Definition 4.11, buither is the<-
largest. The only partition pair greater than beffi, Q) and (II’, Q') and at most as
large as(X, P), is (X, P) itself, but (X, P) does not satisfy (a). Hence, this example
counters Theorem 4.13 of [8] and shows thas not well-defined. ad

Following Theorem 4.13, the authors present their main fp@idt theorem which
states that the solution of the GCPP over a gr&pand partition paif X, P) can be
computed by applying to (X, P) finitely many times until a fixed point is reached
(Theorem 4.14). In this theorem, the authors demandihz transitive. One might be
inclined to think that Counterexample 2 does not affectttieorem, as we used a non-
transitive P. We now show that this is not the case: the main theorem intbsed its
meaning due to our counterexample for Theorem 4.13. To deefdirst give an exam-
ple in which the application of to a transitive partition pair produces a non-transitive
partition pair.

Example 3.Consider the graph in Fig. 2(a) and the partition pair, P) with X =
{a, 8,7} as depicted an® = Z(X). Let (I1, Q) = o ({X, P)), then:

II = {a1,a2,03,3,7} Q=TI(I)U{(az, 1), (a1,a2)}

wherea; = {ao,al}, g = {CLQ} andas = {Cl3}. O
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(b)

Fig. 2. (a) Example for whicly produces a non-transitive relatiGhand (b) counterexample for
correctness of.

Our final counterexample shows thais not suitable for computing the solution of the
GCPP, and is constructed by embedding Counterexample Zamge 3, such that the
first application ofs produces a non-transitive partition pair on whighs not well-
defined.

Counterexample 4Consider the graph in Fig. 2(b) and the partition gai, P) with
Y ={a, 3,7} as depicted an® = Z(X). Let(I1, Q) = o ({X, P)), then:

II = {o1, a2, 03,6,7} Q=Z(II)U{(asz,a1), (a1,a2)}

wherea; = {ag, a1}, as = {az} andaz = {as, a4, as}. Now, in (11, Q) the blocka;
has to be split, becaugg, —3 a3 but—36 € IT . ((a3,9) € Q A az —v 9)). There
are two candidate partition pairs fo((II, ))): a3 can be split into eithetiz o = {a4}
andas 1 = {as,as} or az o = {as,as} andasy ; = {az}. However, neither of these is
greater than the other, so a uniggemaximal partition pair does not exist. ad

When splittingas in Counterexample 4, theERINEgpp function of algorithm PAspp
splits the block intaxs o and«s 1. Observe that this is wrongy andas should not
end up in different equivalence classes because= as. This split also results in
UPDATEGppS returning a cyclic relation. In the subsequent iterattbPAgpp, the ex-
ecution of REFINEgpp then fails because there is no reverse topological sortirigeo
partition w.r.t. the cyclic relation (line 4).

5 An Auxiliary Fixed-Point Operator

In this section we introduce a fixed-point operapaio solve the GCPP and prove its
correctness. The definition gfis straightforward: it is based directly on the stability
condition of Sect. 2.

We emphasise thatis not intended to be an improvement over theperator of
Sect. 3 in any way: it is a less advanced operator thaimed to be. The purpose of
was to compute the solution to the GCPP efficiently, whilgives rise to an algorithm
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that has an inferior time complexity @ (S37") wheresS is the number of equivalence
classes of the GCPP solution afidthe number of transitions of the input graph.

Namely, the complexity analysis of [8] uses that, as longoefixed point is reached,
in each refinement-update step the refinement of the partitibbe non-trivial,i.e.the
number of blocks increases. As a consequence, there wilt beost S refinement-
update steps before the algorithm terminates. Such anss@ynot appropriate fqs:
applyingp repeatedly could involve many steps in which the partitioasinot change.
Consequently, the number of iterations of the algorithmoigrilled merely by the size
of a relation on the eventual partitiairg. by S2.

The sole purpose of is to serve as an auxiliary operator for establishing the cor
rectness of the algorithm that we present in Sect. 6. Thatighgn has the same time
complexity as PAppand does not correspond to any fixed-point operator, as we sho
in the same section.

Definition 1 (Operator p). Let (X, P) be a transitive partition pair over a graph
(N, —). Thenp((X, P)) is the<-largest partition pair(Il, Q) < (¥, P) satisfying

1) Vo, Bell . VyeX . (a,B)eQNa—3y = F0€X.((7,0) EPAS —v 0)).

Alternatively, p could be defined just liker of Definition 4.11, but insisting that its
input partition pair is transitive, and omitting clause. (tjs not hard to check that this
definition is equivalent to the one above. The correctneg¥edifition 1 is ensured by
the following.

Proposition 1. Let (X, P) be a transitive partition pair over a graphiV, —). Then
there exists a-largest partition pair(Il, Q) < (X, P) that satisfieg1). Moreover,Q
is transitive.

Proposition 2. The operatorp is monotone with respect to: if (X, P) and (X', P’)
are transitive partition pairs witH X, P) < (X', P’), thenp((X, P)) < p({X’, P")).

Sincep({X, P)) < (X, P) and< is a partial order on a finite set, we obtain:

Proposition 3. Let (X, P) be a transitive partition pair over a graph. Then for some
n>0, p" (X, P))=p"((X, P)), i.e. repeated application gfleads to a fixed point.

The solution to the GCPP over an input gr&plnd an initial partition pait X, P) over
G can be obtained by repeatedly applyjng (X, P*). The following lemmata say that
as soon as a fixed point is reached, the resulting partitiongstable. Moreover, each
of the intermediate partition pairs is larger than or eqaahe solution of the GCPP. It
then follows that the obtained fixed point is in fact the sioluto the GCPP.

Lemma 1. Let (X, P) be a transitive partition pair over a graphV, —).
Thenp((X¥, P)) = (X, P) if and only if (X, P) is stable with respect te-.

Lemma 2. Let(X, P) and(I1, Q) be partition pairs over a graplr, with @ transitive,
and let(=, <) be the solution of the GCPP ovét and (X, P). If (=,=<) < (I1,Q)
then(Z, <) < p((I1,Q)).

Theorem 1. Let (X, P) be a partition pair over a graplt = (IV, —) and (=, <) be
the solution of the GCPP ové# and (X, P). Letn > 0 be such thap™ ™! ((X, PT)) =
p"((X, PT)). Thenp™ ((X, PT)) = (=, 2).
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6 A Correct and Efficient Algorithm

Algorithm 3 The repaired partitioning algorithm: RAV, —), (X, P))
. X1 := REFINE(X, P);

Py := UPDATEgpp( X, P, X1);

: change == T;i:=1,

. while change do

change := 1,

Yit1 := REFINE(X;, P);

Pi+1 = UF’DATE(;pp(Z‘i7 Pi, Ei+1);

=1+ 1

: end while

[EnY

CoNaRr®WN

Our repaired partitioning algorithm is called PA, see Algon 3. The variablehange
and the input grapfilV, —) have global scope: they can be accessed from any function.
Note however, that BDATEgpp does not acceshange

Our corrections of the algorithm are two. Firstly, it is eresithat at least two
refinement-update steps are taken before the algorithnirtates (lines 1 and 2). The
necessity of this correction is explained in Sect. 6.1. 8dlypthe most important error
— the one resulting from the incorregtoperator — is repaired by the newERNE
function, Algorithm 4. It contains a few minor improvemetatger REFINEgpp: USING
list notations for variablesort and preventing empty blocks from being added fo
However, the actual correction is in line 21: if for somec Y anda € IT with
a —3 v we haveStable(a) N Row(y) # () then we addy to Stable(a).

We use thep operator of Sect. 5 to prove correctness of PA in Sect. GXgdace
and time complexities are the same as forgBA no additional space is needed and
the corrections do not increase the time complexity. Fnail Sect. 6.3 we show that
there is no fixed-point operator that captures the refineperibrmed by our RFINE
function.

6.1 The Correction of Another Mistake

Apart from the error in PApp that results from the incorreet operator, we found
another mistake in the algorithm. We describe it in thisisacind propose a solution.
The mistake is shown by the following example.

Example 5.Consider the grapl&x = (N, —) on the right and

the partition pair(X, P) with ¥ = {a,(} as depicted and

P =17Z(X) U {(a,8)}. Observe that the solution to the GCP 1!
overG and (X, P) is (=, <) with = = {ag, 1,3} and=< = -

Z(E) U {(a1,a0)} wherea; = {a;}. After the first iteration N/

of PAgpp(G, (X, P)), we haveX; = Xy = Y and P, = 0
Z(X). The algorithm then terminates becausenge = L, and

(X4, Py) is its answer to the GCPP ovéf and (X, P). Obvi- A
ously (X1, P1) # (=, <), so this answer is wrong. O
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Algorithm 4 The repaired refine function:EINE(X, P)
110 :=2,

2: forall a € IT do Stable(a) := 0; end for

3: forall v € ¥ do Row () :== {7 | (v,7") € P}; end for
4: LetSortbe a reverse topological sorting &fw.r.t. P;

5: while Sort # [] do

6: v := head(Sort);
7: A:=0;
8: forall « € IT, « —3 v do
9: if Stable(a) N Row(vy) = 0 then
10: a1 ::oeﬂ—fl('\/);
11: az = a\ a;
12: I =1\ {a};
13: A:=AU{a1};
14: Stable(ar) := Stable(a) U {v};
15: if az # () then
16: change := T,
17: A= AU{as};
18: Stable(az) = Stable(a);
19: end if
20: else
21 Stable(c) := Stable(a) U {~};
22: end if
23: end for

24: II:=1ITUA;

25: Sort := tail(Sort);
26: end while

27: return I7;

The correctness of Ré-phinges on the theory that whenevee RNEgpp(17,Q, change)
returns its input partitiord/, and thus fails to split any block iff, then also the relation
@ will be unaffected by BDATEGpp, i.e. UPDATEGpR(I1, @, IT) returns@. This theory
is the upshot of Theorem 4.15 in [8] and is essential in themerity analysis of the
algorithm. However, the above example shows that it doebaldtin general.

In the next section we show that this theory does hold underctndition that
Q itself is obtained as output of RDATEgpp (Proposition 5). Therefore, this error in
PAgpp can be fixed, without violating the complexity analysis, bgisting that at least
two refinement-update steps are performed prior to termoimat

6.2 Correctness of PA

From here on we will use the correctness of the functiemhiregpp, as established by
Gentilini et al.[9]. This correctness can be summarised as follows:

Proposition 4. Let (¥, P) be a partition pair over a grapiiV, —), and II be a par-
tition over IV that is finer thanX'. Then there exists a unique relatigh C P(I1)
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satisfying condition(20) of Definition 4.11. Moreover, this relation is returned by
UPDATEgpp( X, P, IT).

Using this, we obtain the result promised in Sect. 6.1: tlieviang proposition implies
that if a call to REFINE in the while-loop of PA does not split any blocks, then the
subsequent call to RbATEgpp WiIll return its input relation. The requirement that this
relation has been computed by a previous call kDRITEgppis guaranteed by line 2.

Proposition 5. Let (X', P) and (II, Q) be partition pairs over a graph such thaf is
finer than X' and UPDATEgpp(X, P, IT) returns Q. ThenUPDATEGpp(II, Q, II) also
returnsq@.

Let (X, P;), -, be the sequence of partition pairs produced by PA. The fafigw
proposition says that evel; is acyclic and that the sequence is decreasing. The former
implies that PA will never deadlock due to the inability todia reverse topological
sorting (see line 4 of RFINE). The latter implies that the algorithm terminates.

Proposition 6. Let (X, P) be a partition pair over a grapi{N, —), REFINE(X, P)
return IT and UPDATEgpp( X, P, IT) return Q. Then(I1,Q) is a partition pair with
(I1,Q) < (¥, P).

Corollary 1. For any graphG and any partition pair(X, P) over G, the algorithm
PA(G, (¥, P)) terminates. O

The following lemmata state thateBRINE and UPDATEgpp CcONverge towards a fixed
point at least as fast aswithout ever diverging from the path towards the GCPP solu-
tion. In combination with the monotony pf(Proposition 2) this implies the correctness
of our algorithm.

Lemma 3. Let (X, P) be a partition pair over a grapliNV, —), REFINE(X, P) return
II, andUPDATEGpp( X, P, IT) return Q. Then(IT,Q*") < p({X, PT)).

Lemma 4. Let (¥, P) and (II,Q) be partition pairs over a graptG = (N, —),
(2, <) be the solution of the GCPP ovéf and (¥, P), and (£, <) < (I,Q). Let
REFINE(IT,Q) return IT" andUPDATEgpp(11,Q,I1") return@Q’. Then(=,=<) < (IT'Q’).

Theorem 2. Let (X, P) be a partition pair over a graplG = (N, —). Letk be the
value of variable upon termination oPA(G, (X, PT)). Then(Xy, P;) is the solution
of the GCPP ovefiy and (X, P).

6.3 No Fixed-Point Operator

We now show that there is no (functional) fixed-point operéihat captures the par-
tition refinement performed by EFINE, i.e. a functionw such that for any partition
pairs (X, P) and (I, Q) with (II,Q) = =({(X, P)), REFINE(X, P) returns/I. More
specifically, we show that the partition returned byHARNE is not uniquely defined, but
depends on the particular reverse topological sortingishettosen in line 4.
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Fig. 3. Example on which RFINE does not return a uniquely defined partition

Example 6.Consider the grapliy = (N, —) of Fig. 3 and the partition paitX, P)
with X = {«, 3,7, d,e} as depicted and® = Z(X) U {(8,9), (6,7)}. ThenS =
[e,7,0,8,a] andS’ = [v,4, 5, , a] are reverse topological sortings Bfwith respect
to P. Let IT andII’ be the partitions returned byERINE(X, P) on sortingsS and.S’
respectively. Thedl = {{ao}, {a1},{az2}} andll’ = {{ag, a1}, {az2}}. O

Similar to the construction of Counterexample 4, this exiangan be embedded in
Example 3 to obtain an example with a transitive relationvfbich the partition after
the second refinement depends on the chosen reverse taablegiting.

7 Conclusions

The correspondence between the simulation problem foefilsibelled graphs and the
generalised coarsest partition problem (GCPP) for unlethgraphs can be easily es-
tablished. We have shown that theperator defined by Gentilirt al.[8] to solve the
GCPP is flawed. In particular, when applied to a partitiom,ghe result is not neces-
sarily another partition pair or even well-defined. Morapwhen applied repeatedly to
a transitive partition pair, convergence towards a uniggedfpoint is not guaranteed.
Thereby we have shown thatis not suitable for solving the GCPP. On the counterex-
ample for the latter property, the algorithm of [8] that cartgso, produces a wrong
result in which two simulation-equivalent states are putifferent equivalence classes.

We have repaired this algorithm such that it correctly corapthe solution of the
GCPP. Apart from correcting the error that results from thevdl in thes operator, we
also corrected a mistake that caused premature terminaititve algorithm on certain
input. Our algorithm benefits from the key ideas behind theimal partitioning algo-
rithm and has the same space and time complexities. We haverpits correctness
using an auxiliary operatqr of which we have shown that it solves the GCPP, though
inefficiently. Finally, we have shown that no operator cardbéned that captures the
partition refinement performed in every iteration of ourcalthm.

Another way to repair the algorithm of [8] may be to use thatieh P+ instead
of P in REFINEgpp. The so obtained algorithm would converge to a fixed poighsly
slower than ours. More importantly, due to the cost of conmguthe transitive closure
in each iteration, the time complexity would not match thathe original algorithm.

AcknowledgementsWe would like to thank Raffaella Gentilini and Carla Piazpa f
answering some of our questions about their paper and pnavics with their imple-
mentation of the algorithm.
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