
Correcting a Space-Efficient Simulation Algorithm⋆

Rob van Glabbeek1,2 & Bas Ploeger3⋆⋆

1 National ICT Australia, Locked Bag 6016, Sydney, NSW1466, Australia
2 School of Computer Science and Engineering, The University of New South Wales,

Sydney, NSW 2052, Australia
3 Eindhoven University of Technology, Design and Analysis of Systems Group,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. Although there are many efficient algorithms for calculating the simu-
lation preorder on finite Kripke structures, only two have been proposedof which
the space complexity is of the same order as the size of the output of the algo-
rithm. Of these, the one with the best time complexity exploits the representation
of the simulation problem as a generalised coarsest partition problem. It isbased
on a fixed-point operator for obtaining a generalised coarsest partitionas the limit
of a sequence of partition pairs. We show that this fixed-point theory is flawed,
and that the algorithm is incorrect. Although we do not see how the fixed-point
operator can be repaired, we correct the algorithm without affecting its space and
time complexity.

1 Introduction

The simulation preorder[17] is a behavioural refinement relation on concurrent sys-
tems, represented as Kripke structures or labelled transition systems, that plays a crucial
rôle in compositional verification and model checking. It preserves the existential and
universal fragments of temporal and modal logics. For CTL∗ [6] this is shown in [5],
and for the modalµ-calculus [14] it is shown in [16]. This makes it possible to combat
the state explosion problem in model checking by minimisingthe state space of a given
system modulo simulation equivalence before checking the validity of relevant proper-
ties within those fragments. Given that the simulation preorder is a precongruence for
parallel composition [11], components in parallel compositions can even be minimised
individually.

Simulation equivalence is also used directly in equivalence checking [15] of finite-
state processes. Often deciding the simulation preorder between processes is the most
appropriate method of showing that two systems are related by another preorder, that
may be appropriate for the task at hand. In applications where deadlock behaviour plays
a crucial r̂ole, theready simulation preorder[1] is widely regarded to be an appropriate
behavioural refinement relation for matching an implementation with a specification.
Via a straightforward reduction (the computation of the initial partition ER1 in [2]),

⋆ This is an extended abstract; all proofs are omitted. They can be found inthe full version [10].
⋆⋆ This author is partially supported by the Netherlands Organisation for Scientific Research

(NWO) under VoLTS grant number 612.065.410.



2 R.J. van Glabbeek & B. Ploeger

finding a ready simulation between two processes is as hard asfinding a plain simula-
tion. In applications where deadlock behaviour plays no rôle, trace inclusionis often
proposed as an appropriate refinement relation. However, deciding trace inclusion on
finite-state processes is PSPACE-hard [19], and as the simulation preorder is the coars-
est preorder included in trace inclusion that is known to be decidable in polynomial
time [2, 3, 8, 12, 18, 20], establishing a simulation betweentwo processes is a favourite
way of showing that they are related by trace inclusion.

In many crucial applications, space rather than time becomes the bottleneck as
the input graph grows [4, 7, 8, 13]. Hence, simulation algorithms with minimal space
complexity are of particular interest. These are the ones byBustan and Grumberg [3]
and by Gentilini, Piazza and Policriti [8]. For an input graph with N states,T transi-
tions andS simulation equivalence classes, the space complexity of both algorithms is
O(S2 + N log S). This can be considered minimal:O(S2) space is needed for stor-
ing the simulation preorder as a partial order on simulationequivalence classes and
O(N log S) space is needed to store for every state, the equivalence class to which it
belongs. Of these algorithms, the one by Gentiliniet al. has a better time complexity:
O(S2T ). A more time-efficient algorithm is the one by Ranzato and Tapparo [18], but
it is less space efficient.

The approach of Gentiliniet al. represents the simulation problem as a gener-
alised coarsest partition problem (GCPP). According to theauthors, this problem can be
solved by approximating the greatest fixed point of a decreasing operator on partition
pairs that they define in their paper. They give a partitioning algorithm to compute this
fixed point for any legal input. We recite this definition and apart of the algorithm in
Sect. 3. In Sect. 4 we show that the operator is flawed because it is not uniquely defined
for all partition pairs. We give an instance of the GCPP for which repeated application
of the operator does not lead to a unique fixed point. We also show that on this exam-
ple the partitioning algorithm irrevocably allocates two simulation-equivalent states to
different simulation-equivalence classes, and subsequently deadlocks.

In Sect. 5 we define a simple, yet inefficient fixed-point operator for which we prove
correctness. This operator is not meant to be an improvementover the original one, but
merely serves as an expedient for establishing correctnessof the algorithm that we
present in Sect. 6. This algorithm is obtained from that of Gentilini et al.by means of a
few simple corrections; consequently, it benefits from the key ideas behind the original
partitioning algorithm and has the same time and space complexities. Yet its correctness
proof requires entirely new techniques and is surprisinglynon-trivial. We also show that
no fixed-point operator can be defined that captures the behaviour of this algorithm.

2 Preliminaries

Partitions and relations.For any setS, apartition overS is a setΣ ⊆ P(S) such that⋃
Σ = S and∀α ∈ Σ . α 6= ∅ ∧ ∀β ∈ Σ . α 6= β ⇒ α ∩ β = ∅. For anys ∈ S we

denote by[s]Σ the blockα ∈ Σ such thats ∈ α. Given two partitionsΣ andΠ we say
Π is finer thanΣ iff for every α ∈ Π there exists anα′ ∈ Σ such thatα ⊆ α′. For any
setS, we denote byI(S) the identity relationoverS, i.e.I(S) = {(s, s) | s ∈ S}. For
any relationP , we denote byP+ thetransitive closureof P .



Correcting a Space-Efficient Simulation Algorithm 3

Graphs. A (directed) graphis a tuple(N,→) whereN is a finite set of nodes and
→ ⊆ N × N is a set of directed transitions between those nodes. Alabelled graphis
a tuple(N,→, Σ) where(N,→) is a graph andΣ is a partition overN . For a graph
(N,→), a ∈ N andβ ⊆ N , we writea → β if ∃b ∈ β . a → b. Moreover, we define
the relations→∃ and→∀ overP(N) as follows, for anyα, β ⊆ N :

α →∃ β ⇔ ∃a ∈ α . a → β α →∀ β ⇔ ∀a ∈ α . a → β.

Simulations.For any labelled graph(N,→, Σ) a relationR ⊆ N × N is asimulation
iff for any a, b ∈ N , (a, b) ∈ R implies:

• [a]Σ = [b]Σ and

• ∀c ∈ N . a → c ⇒ ∃d ∈ N . b → d ∧ (c, d) ∈ R.

We say thata is simulated byb, denoteda ⊂
→ b, iff there exists a simulationR such that

(a, b) ∈ R. It is well known and easy to check that⊂
→ is a preorder,i.e. a reflexive and

transitive relation, onN , and moreover the largest simulation. We say thata andb are
simulation equivalent, denoteda →← b, iff a ⊂

→ b andb ⊂→ a.

The simulation problem.Given a labelled graphG = (N,→, Σ), thesimulation prob-
lemoverG consists in finding the simulation preorder⊂

→ onG.
A variant of the simulation problem asks, given a labelled graph(N,→, Σ) and two

nodesa, b ∈ N , whethera ⊂
→ b. In general, no methods to solve this problem are known

that are more efficient than computing the entire relation⊂
→ ⊆ N × N and looking up

whether(a, b) ∈ ⊂
→. Another variant of the simulation problem merely asks to find the

simulation equivalence relation→← rather than the preorder⊂→. Again, no methods to
solve that problem are known that do not amount to finding⊂

→ as well.
Typically, the simulation problem arises in the context ofKripke structuresor la-

belled transition systems. It is trivial to encode a Kripke structure as a labelled graph
in such a way that the simulation preorder on the Kripke structure agrees with the one
on its labelled graph representation. Likewise, it is not hard to reduce the simulation
problem for labelled transition systems to that for labelled graphs. Alternatively one
can enrich the theory in a straightforward way to deal with transition labels as well, so
that it is applicable to labelled transition systems directly.

The generalised coarsest partition problem.Given a graphG = (N,→), a partition
pair overG is a pair〈Σ,P 〉 whereΣ is a partition overN andP ⊆ Σ×Σ is a reflexive,
acyclic relation overΣ. A partition pair〈Σ,P 〉 is calledtransitiveif P is transitive, and
hence a partial order. Given a partitionΣ, a partitionΠ finer thanΣ, and a relationP
overΣ, we denote byP (Π) the induced relationof P onΠ:

P (Π) = {(α, β) ∈ Π × Π | ∃(α′, β′) ∈ P . α ⊆ α′ ∧ β ⊆ β′}.

We define apartial order≤ on partition pairs by writing, for any partition pairs〈Σ,P 〉
and〈Π,Q〉: 〈Π,Q〉 ≤ 〈Σ,P 〉 iff Π is finer thanΣ andQ ⊆ P (Π). Given a graph
G = (N,→), we say a partition pair〈Σ,P 〉 overG is stable with respect to→ [8] iff:

∀α, β, γ ∈ Σ . ((α, β) ∈ P ∧ α →∃ γ) ⇒ ∃δ ∈ Σ . (γ, δ) ∈ P ∧ β →∀ δ.



4 R.J. van Glabbeek & B. Ploeger

Given a graphG = (N,→) and a partition pair〈Σ,P 〉 overG, thegeneralised coarsest
partition problem(GCPP) [8] consists in finding a≤-maximal partition pair〈Ξ,�〉
such that〈Ξ,�〉 ≤ 〈Σ,P+〉 and〈Ξ,�〉 is stable with respect to→.

The simulation problem as a GCPP.Let G = (N,→, Σ) be a labelled graph. Any
preorder⊑ on N can be represented as a partition pairPP(⊑) := 〈Π,�〉, as follows:
Π is the set of equivalence classes ofN w.r.t. the equivalence relation≡ := ⊑ ∩ ⊑−1

induced by⊑, and� is given by[a]Π � [b]Π iff a ⊑ b. Note that� is a partial order.
Moreover, if⊑ is a simulation thenPP(⊑) is stable w.r.t.→ andPP(⊑) ≤ 〈Σ, I(Σ)〉.

Any partition pair〈Π,Q〉 over the graph(N,→) can be represented as a relation
R〈Π,Q〉 ⊆ N × N as follows:(a, b) ∈ R〈Π,Q〉 iff ∃(α, β) ∈ Q . a ∈ α ∧ b ∈ β. Note
that if 〈Π,Q〉 is stable w.r.t.→ and〈Π,Q〉 ≤ 〈Σ, I(Σ)〉 thenR〈Π,Q〉 is a simulation.
Moreover,〈Π,Q〉 ≤ 〈Π ′, Q′〉 iff R〈Π,Q〉 ⊆ R〈Π′,Q′〉. Also note thatRPP(⊑) = ⊑.

HencePP(⊂→) is the solution of the GCPP on(N,→) and〈Σ, I(Σ)〉. In particular,
the GCPP, when applied to partition pairs of the form〈Σ, I(Σ)〉 (plain partitions),
always has a unique solution〈Ξ,�〉, in which moreover� is always a partial order.1

3 The GCPP Solution of Gentilini, Piazza and Policriti

To solve the GCPP, Gentilini, Piazza and Policriti [8] introduce the following operator:

Definition 4.11 in [8] (Operator σ). Let G = (N,→) and〈Σ,P 〉 be a partition pair
overG. The partition pair〈Π,Q〉 = σ(〈Σ,P 〉) is defined as follows:

(1σ) Π is the coarsest partition finer thanΣ such that

(a) ∀α ∈ Π ∀γ ∈ Σ(α →∃ γ ⇒ ∃δ ∈ Σ((γ, δ) ∈ P ∧ α →∀ δ));

(2σ) Q is maximal such thatQ ⊆ P (Π) and if (α, β) ∈ Q, then

(b) ∀γ ∈ Σ(α →∀ γ ⇒ ∃γ′ ∈ Σ((γ, γ′) ∈ P ∧ β →∃ γ′)) and

(c) ∀γ ∈ Π(α →∀ γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ Q ∧ β →∃ γ′)).

They argue that applyingσ iteratively on an initial partition pair〈Σ0, P0〉 yields a se-
quence of partition pairs〈Σi, Pi〉i≥0 with 〈Σi+1, Pi+1〉 = σ(〈Σi, Pi〉). By construc-
tion, this sequence is decreasing, in the sense that〈Σi+1, Pi+1〉 ≤ 〈Σi, Pi〉. Hence it
will reach a fixed point〈Σk, Pk〉 = σ(〈Σk, Pk〉). This is the solution to the GCPP.

Applying this, they give a partitioning algorithm to solve the GCPP. We have in-
cluded it here as Algorithm 1 and call it PAGPP. It takes as input a graph(N,→) and a
transitive partition pair〈Σ,P 〉 and repeatedly calls the following functions to compute
σ until a fixed point is reached: REFINEGPP which computes the partitionΠ of (1σ)
and UPDATEGPP which computes the relationQ of (2σ). The boolean variablechange

is set to⊤ by REFINEGPP iff its output partition differs from its input partition. We have

1 The same reasoning extends to the GCPP applied to any partition pairs, but this requires
considering simulations on structures of the form(N,→, Σ,�) with (N,→, Σ) a labelled
graph, and� a partial order onΣ; the first clause in the definition of simulation then becomes
[a]Σ � [b]Σ .



Correcting a Space-Efficient Simulation Algorithm 5

Algorithm 1 The partitioning algorithm of [8]: PAGPP((N,→), 〈Σ,P 〉)

1: change := ⊤; i := 0; Σ0 := Σ; P0 := P ;
2: while change do
3: change := ⊥;
4: Σi+1 := REFINEGPP(Σi, Pi, change);
5: Pi+1 := UPDATEGPP(Σi, Pi, Σi+1);
6: i := i + 1;
7: end while

Algorithm 2 The refine function of [8]: REFINEGPP(Σi, Pi, change)

1: Σi+1 := Σi;
2: for all α ∈ Σi+1 do Stable(α) := ∅; end for
3: for all γ ∈ Σi do Row(γ) := {γ′ | (γ, γ′) ∈ Pi}; end for
4: LetSort be a reverse topological sorting ofΣi w.r.t. Pi;
5: while Sort 6= ∅ do
6: γ := dequeue(Sort);
7: A := ∅;
8: for all α ∈ Σi+1, α →∃ γ, Stable(α) ∩ Row(γ) = ∅ do
9: α1 := α ∩→−1(γ);

10: α2 := α \ α1;
11: if α2 6= ∅ then change := ⊤; end if
12: Σi+1 := Σi+1 \ {α};
13: A := A ∪ {α1, α2};
14: Stable(α1) := Stable(α) ∪ {γ};
15: Stable(α2) := Stable(α);
16: end for
17: Σi+1 := Σi+1 ∪ A;
18: Sort := Sort \ {γ};
19: end while
20: return Σi+1;

included the REFINEGPP function as Algorithm 2. In line 4 of this algorithm, a “reverse
topological sorting ofΣi w.r.t. Pi” indicates an ordered listing of the elements ofΣi

such that if(γ, δ) ∈ Pi thenδ occurs prior toγ.

4 Incorrectness of the Fixed-Point Operator

Following the definition ofσ, the authors claim that for any partition pair〈Σ,P 〉, if
〈Π,Q〉 = σ(〈Σ,P 〉) thenQ is acyclic. We give an example that counters this claim.

Counterexample 1.Consider the graph in Fig. 1(a) and the partition pair〈Σ,P 〉 with
Σ = {α, β, γ, δ} as depicted andP = I(Σ)∪{(β,δ), (δ,γ)}. Let 〈Π,Q〉 = σ(〈Σ,P 〉),
then

Π = {α1, α2, β, γ, δ} Q = I(Π) ∪ {(α1, α2), (α2, α1), (β, δ), (δ, γ)}

whereα1 = {a1} andα2 = {a2}. Q is not acyclic, which counters the claim. ⊓⊔



6 R.J. van Glabbeek & B. Ploeger

α a1 a2

γ

c

β

b

δ

d

(a)

αa1a0 a2

γ

c

β

b

δ

d

(b)

Fig. 1.Counterexamples for (a) acyclicity ofQ and (b) well-definedness ofσ.

This counterexample shows that applyingσ to a given partition pair does not necessarily
yield another partition pair. After all, for that the resulting relation has to be acyclic.

However, a more fundamental theorem that the authors claim to have proven, turns
out not to hold. Theorem 4.13 states that for every partitionpair 〈Σ,P 〉 there exists a
unique≤-maximal partition pair〈Π,Q〉 ≤ 〈Σ,P 〉 satisfying conditions (a), (b) and (c)
of Definition 4.11,i.e. theσ operator is well-defined, and a function. This theorem is
countered by the following example.

Counterexample 2.Consider the graph in Fig. 1(b) and the partition pair〈Σ,P 〉 with
Σ = {α, β, γ, δ} as depicted andP = I(Σ)∪{(β, γ), (γ, δ)}. Let〈Π,Q〉 and〈Π ′, Q′〉
be partition pairs such that:

Π = {α0, α1, β, γ, δ} Q = I(Π) ∪ {(α0, α1), (α1, α0), (β, γ), (γ, δ)}

Π ′ = {α′0, α
′
1, β, γ, δ} Q′ = I(Π ′) ∪ {(α′0, α

′
1), (α

′
1, α
′
0), (β, γ), (γ, δ)}

whereα0 = {a0, a1}, α1 = {a2}, α′0 = {a0} andα′1 = {a1, a2}. Both 〈Π,Q〉 and
〈Π ′, Q′〉 satisfy conditions (a), (b) and (c) of Definition 4.11, but neither is the≤-
largest. The only partition pair greater than both〈Π,Q〉 and〈Π ′, Q′〉 and at most as
large as〈Σ,P 〉, is 〈Σ,P 〉 itself, but〈Σ,P 〉 does not satisfy (a). Hence, this example
counters Theorem 4.13 of [8] and shows thatσ is not well-defined. ⊓⊔

Following Theorem 4.13, the authors present their main fixed-point theorem which
states that the solution of the GCPP over a graphG and partition pair〈Σ,P 〉 can be
computed by applyingσ to 〈Σ,P 〉 finitely many times until a fixed point is reached
(Theorem 4.14). In this theorem, the authors demand thatP be transitive. One might be
inclined to think that Counterexample 2 does not affect thistheorem, as we used a non-
transitiveP . We now show that this is not the case: the main theorem indeedloses its
meaning due to our counterexample for Theorem 4.13. To do so,we first give an exam-
ple in which the application ofσ to a transitive partition pair produces a non-transitive
partition pair.

Example 3.Consider the graph in Fig. 2(a) and the partition pair〈Σ,P 〉 with Σ =
{α, β, γ} as depicted andP = I(Σ). Let 〈Π,Q〉 = σ(〈Σ,P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}

whereα1 = {a0, a1}, α2 = {a2} andα3 = {a3}. ⊓⊔



Correcting a Space-Efficient Simulation Algorithm 7

α a1a0 a2 a3

β

b

γ

c

(a)

α

a4 a5

a1a0 a2 a3

β

b

γ

c

(b)

Fig. 2. (a) Example for whichσ produces a non-transitive relationQ and (b) counterexample for
correctness ofσ.

Our final counterexample shows thatσ is not suitable for computing the solution of the
GCPP, and is constructed by embedding Counterexample 2 in Example 3, such that the
first application ofσ produces a non-transitive partition pair on whichσ is not well-
defined.

Counterexample 4.Consider the graph in Fig. 2(b) and the partition pair〈Σ,P 〉 with
Σ = {α, β, γ} as depicted andP = I(Σ). Let 〈Π,Q〉 = σ(〈Σ,P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}

whereα1 = {a0, a1}, α2 = {a2} andα3 = {a3, a4, a5}. Now, in 〈Π,Q〉 the blockα3

has to be split, becauseα3 →∃ α3 but¬∃δ ∈ Π . ((α3, δ) ∈ Q ∧ α3 →∀ δ)). There
are two candidate partition pairs forσ(〈Π,Q〉): α3 can be split into eitherα3,0 = {a4}
andα3,1 = {a3, a5} or α′3,0 = {a4, a5} andα′3,1 = {a3}. However, neither of these is
greater than the other, so a unique≤-maximal partition pair does not exist. ⊓⊔

When splittingα3 in Counterexample 4, the REFINEGPP function of algorithm PAGPP

splits the block intoα3,0 andα3,1. Observe that this is wrong:a4 anda5 should not
end up in different equivalence classes becausea4

→← a5. This split also results in
UPDATEGPP’s returning a cyclic relation. In the subsequent iterationof PAGPP, the ex-
ecution of REFINEGPP then fails because there is no reverse topological sorting of the
partition w.r.t. the cyclic relation (line 4).

5 An Auxiliary Fixed-Point Operator

In this section we introduce a fixed-point operatorρ to solve the GCPP and prove its
correctness. The definition ofρ is straightforward: it is based directly on the stability
condition of Sect. 2.

We emphasise thatρ is not intended to be an improvement over theσ operator of
Sect. 3 in any way: it is a less advanced operator thanσ aimed to be. The purpose ofσ

was to compute the solution to the GCPP efficiently, whileρ gives rise to an algorithm



8 R.J. van Glabbeek & B. Ploeger

that has an inferior time complexity ofO(S3T ) whereS is the number of equivalence
classes of the GCPP solution andT the number of transitions of the input graph.

Namely, the complexity analysis of [8] uses that, as long as no fixed point is reached,
in each refinement-update step the refinement of the partition will be non-trivial,i.e. the
number of blocks increases. As a consequence, there will be at most S refinement-
update steps before the algorithm terminates. Such an analysis is not appropriate forρ:
applyingρ repeatedly could involve many steps in which the partition does not change.
Consequently, the number of iterations of the algorithm is bounded merely by the size
of a relation on the eventual partition,i.e.by S2.

The sole purpose ofρ is to serve as an auxiliary operator for establishing the cor-
rectness of the algorithm that we present in Sect. 6. That algorithm has the same time
complexity as PAGPP and does not correspond to any fixed-point operator, as we show
in the same section.

Definition 1 (Operator ρ). Let 〈Σ,P 〉 be a transitive partition pair over a graph
(N,→). Thenρ(〈Σ,P 〉) is the≤-largest partition pair〈Π,Q〉 ≤ 〈Σ,P 〉 satisfying

(1) ∀α, β ∈Π . ∀γ ∈Σ . ((α, β)∈Q∧α →∃ γ ⇒ ∃δ∈Σ . ((γ, δ)∈P ∧β →∀ δ)).

Alternatively, ρ could be defined just likeσ of Definition 4.11, but insisting that its
input partition pair is transitive, and omitting clause (c). It is not hard to check that this
definition is equivalent to the one above. The correctness ofDefinition 1 is ensured by
the following.

Proposition 1. Let 〈Σ,P 〉 be a transitive partition pair over a graph(N,→). Then
there exists a≤-largest partition pair〈Π,Q〉 ≤ 〈Σ,P 〉 that satisfies(1). Moreover,Q
is transitive.

Proposition 2. The operatorρ is monotone with respect to≤: if 〈Σ,P 〉 and〈Σ′, P ′〉
are transitive partition pairs with〈Σ,P 〉 ≤ 〈Σ′, P ′〉, thenρ(〈Σ,P 〉) ≤ ρ(〈Σ′, P ′〉).

Sinceρ(〈Σ,P 〉) ≤ 〈Σ,P 〉 and≤ is a partial order on a finite set, we obtain:

Proposition 3. Let 〈Σ,P 〉 be a transitive partition pair over a graph. Then for some
n≥0, ρn+1(〈Σ,P 〉)=ρn(〈Σ,P 〉), i.e. repeated application ofρ leads to a fixed point.

The solution to the GCPP over an input graphG and an initial partition pair〈Σ,P 〉 over
G can be obtained by repeatedly applyingρ to 〈Σ,P+〉. The following lemmata say that
as soon as a fixed point is reached, the resulting partition pair is stable. Moreover, each
of the intermediate partition pairs is larger than or equal to the solution of the GCPP. It
then follows that the obtained fixed point is in fact the solution to the GCPP.

Lemma 1. Let 〈Σ,P 〉 be a transitive partition pair over a graph(N,→).
Thenρ(〈Σ,P 〉) = 〈Σ,P 〉 if and only if〈Σ,P 〉 is stable with respect to→.

Lemma 2. Let〈Σ,P 〉 and〈Π,Q〉 be partition pairs over a graphG, withQ transitive,
and let〈Ξ,�〉 be the solution of the GCPP overG and 〈Σ,P 〉. If 〈Ξ,�〉 ≤ 〈Π,Q〉
then〈Ξ,�〉 ≤ ρ(〈Π,Q〉).

Theorem 1. Let 〈Σ,P 〉 be a partition pair over a graphG = (N,→) and〈Ξ,�〉 be
the solution of the GCPP overG and〈Σ,P 〉. Letn ≥ 0 be such thatρn+1(〈Σ,P+〉) =
ρn(〈Σ,P+〉). Thenρn(〈Σ,P+〉) = 〈Ξ,�〉.



Correcting a Space-Efficient Simulation Algorithm 9

6 A Correct and Efficient Algorithm

Algorithm 3 The repaired partitioning algorithm: PA((N,→), 〈Σ,P 〉)

1: Σ1 := REFINE(Σ, P );
2: P1 := UPDATEGPP(Σ, P, Σ1);
3: change := ⊤; i := 1;
4: while change do
5: change := ⊥;
6: Σi+1 := REFINE(Σi, Pi);
7: Pi+1 := UPDATEGPP(Σi, Pi, Σi+1);
8: i := i + 1;
9: end while

Our repaired partitioning algorithm is called PA, see Algorithm 3. The variablechange
and the input graph(N,→) have global scope: they can be accessed from any function.
Note however, that UPDATEGPP does not accesschange.

Our corrections of the algorithm are two. Firstly, it is ensured that at least two
refinement-update steps are taken before the algorithm terminates (lines 1 and 2). The
necessity of this correction is explained in Sect. 6.1. Secondly, the most important error
— the one resulting from the incorrectσ operator — is repaired by the new REFINE

function, Algorithm 4. It contains a few minor improvementsover REFINEGPP: using
list notations for variableSort and preventing empty blocks from being added toΠ.
However, the actual correction is in line 21: if for someγ ∈ Σ and α ∈ Π with
α →∃ γ we haveStable(α) ∩ Row(γ) 6= ∅ then we addγ to Stable(α).

We use theρ operator of Sect. 5 to prove correctness of PA in Sect. 6.2. Its space
and time complexities are the same as for PAGPP: no additional space is needed and
the corrections do not increase the time complexity. Finally, in Sect. 6.3 we show that
there is no fixed-point operator that captures the refinementperformed by our REFINE

function.

6.1 The Correction of Another Mistake

Apart from the error in PAGPP that results from the incorrectσ operator, we found
another mistake in the algorithm. We describe it in this section and propose a solution.
The mistake is shown by the following example.

Example 5.Consider the graphG = (N,→) on the right and
the partition pair〈Σ,P 〉 with Σ = {α, β} as depicted and
P = I(Σ) ∪ {(α, β)}. Observe that the solution to the GCPP
over G and〈Σ,P 〉 is 〈Ξ,�〉 with Ξ = {α0, α1, β} and� =
I(Ξ) ∪ {(α1, α0)} whereαi = {ai}. After the first iteration
of PAGPP(G, 〈Σ,P 〉), we haveΣ1 = Σ0 = Σ and P1 =
I(Σ). The algorithm then terminates becausechange = ⊥, and
〈Σ1, P1〉 is its answer to the GCPP overG and〈Σ,P 〉. Obvi-
ously〈Σ1, P1〉 6= 〈Ξ,�〉, so this answer is wrong. ⊓⊔

αa0 a1

β

b



10 R.J. van Glabbeek & B. Ploeger

Algorithm 4 The repaired refine function: REFINE(Σ,P )

1: Π := Σ;
2: for all α ∈ Π do Stable(α) := ∅; end for
3: for all γ ∈ Σ do Row(γ) := {γ′ | (γ, γ′) ∈ P}; end for
4: LetSortbe a reverse topological sorting ofΣ w.r.t. P ;
5: while Sort 6= [] do
6: γ := head(Sort);
7: A := ∅;
8: for all α ∈ Π, α →∃ γ do
9: if Stable(α) ∩ Row(γ) = ∅ then

10: α1 := α ∩→−1(γ);
11: α2 := α \ α1;
12: Π := Π \ {α};
13: A := A ∪ {α1};
14: Stable(α1) := Stable(α) ∪ {γ};
15: if α2 6= ∅ then
16: change := ⊤;
17: A := A ∪ {α2};
18: Stable(α2) := Stable(α);
19: end if
20: else
21: Stable(α) := Stable(α) ∪ {γ};
22: end if
23: end for
24: Π := Π ∪ A;
25: Sort := tail(Sort);
26: end while
27: return Π;

The correctness of PAGPPhinges on the theory that whenever REFINEGPP(Π,Q,change)
returns its input partitionΠ, and thus fails to split any block inΠ, then also the relation
Q will be unaffected by UPDATEGPP, i.e. UPDATEGPP(Π,Q,Π) returnsQ. This theory
is the upshot of Theorem 4.15 in [8] and is essential in the complexity analysis of the
algorithm. However, the above example shows that it does nothold in general.

In the next section we show that this theory does hold under the condition that
Q itself is obtained as output of UPDATEGPP (Proposition 5). Therefore, this error in
PAGPP can be fixed, without violating the complexity analysis, by insisting that at least
two refinement-update steps are performed prior to termination.

6.2 Correctness of PA

From here on we will use the correctness of the function UPDATEGPP, as established by
Gentilini et al. [9]. This correctness can be summarised as follows:

Proposition 4. Let 〈Σ,P 〉 be a partition pair over a graph(N,→), andΠ be a par-
tition over N that is finer thanΣ. Then there exists a unique relationQ ⊆ P (Π)



Correcting a Space-Efficient Simulation Algorithm 11

satisfying condition(2σ) of Definition 4.11. Moreover, this relation is returned by
UPDATEGPP(Σ,P,Π).

Using this, we obtain the result promised in Sect. 6.1: the following proposition implies
that if a call to REFINE in the while-loop of PA does not split any blocks, then the
subsequent call to UPDATEGPP will return its input relation. The requirement that this
relation has been computed by a previous call to UPDATEGPP is guaranteed by line 2.

Proposition 5. Let 〈Σ,P 〉 and 〈Π,Q〉 be partition pairs over a graph such thatΠ is
finer thanΣ and UPDATEGPP(Σ,P,Π) returnsQ. ThenUPDATEGPP(Π,Q,Π) also
returnsQ.

Let 〈Σi, Pi〉1≤i≤k be the sequence of partition pairs produced by PA. The following
proposition says that everyPi is acyclic and that the sequence is decreasing. The former
implies that PA will never deadlock due to the inability to find a reverse topological
sorting (see line 4 of REFINE). The latter implies that the algorithm terminates.

Proposition 6. Let 〈Σ,P 〉 be a partition pair over a graph(N,→), REFINE(Σ,P )
return Π and UPDATEGPP(Σ,P,Π) return Q. Then〈Π,Q〉 is a partition pair with
〈Π,Q〉 ≤ 〈Σ,P 〉.

Corollary 1. For any graphG and any partition pair〈Σ,P 〉 over G, the algorithm
PA(G, 〈Σ,P 〉) terminates. ⊓⊔

The following lemmata state that REFINE and UPDATEGPP converge towards a fixed
point at least as fast asρ without ever diverging from the path towards the GCPP solu-
tion. In combination with the monotony ofρ (Proposition 2) this implies the correctness
of our algorithm.

Lemma 3. Let 〈Σ,P 〉 be a partition pair over a graph(N,→), REFINE(Σ,P ) return
Π, andUPDATEGPP(Σ,P,Π) returnQ. Then〈Π,Q+〉 ≤ ρ(〈Σ,P+〉).

Lemma 4. Let 〈Σ,P 〉 and 〈Π,Q〉 be partition pairs over a graphG = (N,→),
〈Ξ,�〉 be the solution of the GCPP overG and 〈Σ,P 〉, and 〈Ξ,�〉 ≤ 〈Π,Q〉. Let
REFINE(Π,Q) returnΠ ′ andUPDATEGPP(Π,Q,Π ′) returnQ′. Then〈Ξ,�〉 ≤ 〈Π ′,Q′〉.

Theorem 2. Let 〈Σ,P 〉 be a partition pair over a graphG = (N,→). Let k be the
value of variablei upon termination ofPA(G, 〈Σ,P+〉). Then〈Σk, Pk〉 is the solution
of the GCPP overG and〈Σ,P 〉.

6.3 No Fixed-Point Operator

We now show that there is no (functional) fixed-point operator that captures the par-
tition refinement performed by REFINE, i.e. a functionπ such that for any partition
pairs〈Σ,P 〉 and〈Π,Q〉 with 〈Π,Q〉 = π(〈Σ,P 〉), REFINE(Σ,P ) returnsΠ. More
specifically, we show that the partition returned by REFINE is not uniquely defined, but
depends on the particular reverse topological sorting thatis chosen in line 4.



12 R.J. van Glabbeek & B. Ploeger

αa1a0 a2

γ

c

β

b

δ

d

ε

e

Fig. 3.Example on which REFINE does not return a uniquely defined partition

Example 6.Consider the graphG = (N,→) of Fig. 3 and the partition pair〈Σ,P 〉
with Σ = {α, β, γ, δ, ε} as depicted andP = I(Σ) ∪ {(β, δ), (δ, γ)}. ThenS =
[ε, γ, δ, β, α] andS′ = [γ, δ, β, ε, α] are reverse topological sortings ofΣ with respect
to P . Let Π andΠ ′ be the partitions returned by REFINE(Σ,P ) on sortingsS andS′

respectively. ThenΠ = {{a0}, {a1}, {a2}} andΠ ′ = {{a0, a1}, {a2}}. ⊓⊔

Similar to the construction of Counterexample 4, this example can be embedded in
Example 3 to obtain an example with a transitive relation forwhich the partition after
the second refinement depends on the chosen reverse topological sorting.

7 Conclusions

The correspondence between the simulation problem for finite, labelled graphs and the
generalised coarsest partition problem (GCPP) for unlabelled graphs can be easily es-
tablished. We have shown that theσ operator defined by Gentiliniet al. [8] to solve the
GCPP is flawed. In particular, when applied to a partition pair, the result is not neces-
sarily another partition pair or even well-defined. Moreover, when applied repeatedly to
a transitive partition pair, convergence towards a unique fixed point is not guaranteed.
Thereby we have shown thatσ is not suitable for solving the GCPP. On the counterex-
ample for the latter property, the algorithm of [8] that computesσ, produces a wrong
result in which two simulation-equivalent states are put indifferent equivalence classes.

We have repaired this algorithm such that it correctly computes the solution of the
GCPP. Apart from correcting the error that results from the flaws in theσ operator, we
also corrected a mistake that caused premature terminationof the algorithm on certain
input. Our algorithm benefits from the key ideas behind the original partitioning algo-
rithm and has the same space and time complexities. We have proven its correctness
using an auxiliary operatorρ of which we have shown that it solves the GCPP, though
inefficiently. Finally, we have shown that no operator can bedefined that captures the
partition refinement performed in every iteration of our algorithm.

Another way to repair the algorithm of [8] may be to use the relationP+ instead
of P in REFINEGPP. The so obtained algorithm would converge to a fixed point slightly
slower than ours. More importantly, due to the cost of computing the transitive closure
in each iteration, the time complexity would not match that of the original algorithm.

Acknowledgements.We would like to thank Raffaella Gentilini and Carla Piazza for
answering some of our questions about their paper and providing us with their imple-
mentation of the algorithm.



Correcting a Space-Efficient Simulation Algorithm 13

References

1. B. Bloom, S. Istrail & A.R. Meyer (1995):Bisimulation can’t be traced.Journal of the ACM
42(1), pp. 232–268.

2. B. Bloom & R. Paige (1995):Transformational design and implementation of a new efficient
solution to the ready simulation problem.Science of Computer Programming24(3), pp.
189–220.

3. D. Bustan & O. Grumberg (2003):Simulation-based minimization.ACM Transactions on
Computational Logic4(2), pp. 181–206.

4. C. Courcoubetis, M.Y. Vardi, P. Wolper & M. Yannakakis (1990):Memory efficient algo-
rithms for the verification of temporal properties.In Proc. 2nd Workshop onComputer-
Aided Verification(CAV’90), LNCS 531, Springer, pp. 233–242.

5. D. Dams, O. Grumberg & R. Gerth (1993):Generation of reduced models for checking
fragments of CTL. In Proc. 5th Conference onComputer Aided Verification(CAV ’93),
LNCS 697, Springer, pp. 479–490.

6. E.A. Emerson & J.Y. Halpern (1986):“Sometimes” and “Not Never” revisited: On branch-
ing versus linear time temporal logic.Journal of the ACM33(1), pp. 151–178.

7. S. Evangelista & J.-F. Pradat-Peyre (2005):Memory efficient state space storage in explicit
software model checking.In Proc. 12th International SPIN Workshop onModel Checking
Software, LNCS 3639, Springer, pp. 43–57.

8. R. Gentilini, C. Piazza & A. Policriti (2003):From bisimulation to simulation: Coarsest
partition problems.Journal of Automated Reasoning31(1), pp. 73–103.

9. R. Gentilini, C. Piazza & A. Policriti (2003):From bisimulation to simulation: Coarsest
partition problems.RR 12-2003, Dep. of Computer Science, University of Udine, Italy.

10. R.J. van Glabbeek & B. Ploeger (2008):Correcting a space-efficient simulation algorithm.
CS-Report 08-06, Eindhoven University of Technology.

11. J.F. Groote & F.W. Vaandrager (1992):Structured operational semantics and bisimulation
as a congruence.Information and Computation100(2), pp. 202–260.

12. M.R. Henzinger, T.A. Henzinger & P.W. Kopke (1995):Computing simulations on finite
and infinite graphs. In 36th Annual Symposium onFoundations of Computer Science
(FOCS’95), IEEE Computer Society Press, pp. 453–462.

13. G.J. Holzmann (1988):An improved protocol reachability analysis technique.Software
Practice and Experience18(2), pp. 137–161.

14. D. Kozen (1983):Results on the propositionalµ-calculus. Theoretical Computer Science
27, pp. 333–354.

15. A. Kucera & P. Jancar (2006):Equivalence-checking on infinite-state systems: Techniques
and results.Theory and Practice of Logic Programming6(3), pp. 227–264.

16. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani & S. Bensalem (1995): Property preserving
abstractions for the verification of concurrent systems.Formal Methods in System Design
6(1), pp. 11–44.

17. D.M.R. Park (1981):Concurrency and automata on infinite sequences.In Proc. 5th GI-
Conference onTheoretical Computer Science, LNCS 104, Springer, pp. 167–183.

18. F. Ranzato & F. Tapparo (2007):A new efficient simulation equivalence algorithm.In
Proc. 22nd Annual IEEE Symposium onLogic in Computer Science(LICS’07), IEEE Com-
puter Society Press, pp. 171–180.

19. L.J. Stockmeyer & A.R. Meyer (1973):Word problems requiring exponential time.In
Proc. 5th Annual ACM Symposium onTheory of Computing(STOC’73), ACM, pp. 1–9.

20. L. Tan & R. Cleaveland (2001):Simulation revisited.In Proc. 7th International Conference
onTools and Algorithms for the Construction and Analysis of Systems(TACAS’01), LNCS
2031, Springer, pp. 480–495.


