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Abstract. We consider the relational characterisation of branching bisimilarity with explicit diver-
gence. We prove that it is an equivalence and that it coincides with the original definition of branch-
ing bisimilarity with explicit divergence in terms of coloured traces. We also establish a correspon-
dence with several variants of an action-based modal logic with until- and divergence modalities.

1. Introduction

Branching bisimilarity was proposed in [6]. It is a behavioural equivalence on processes that is com-
patible with a notion of abstraction from internal activity, while at the same preserving the branching
structure of processes in a strong sense. We refer the readerto [6], in particular to Section 10 therein, for
ample motivation of the relevance of branching bisimilarity.

Branching bisimilarity abstracts to a large extent fromdivergence(i.e., infinite internal activity). For
instance, it identifies a process, sayP , that may perform some internal activity after which it returns to
its initial state (i.e.,P has aτ -loop) with a process, sayP ′, that admits the same behaviour asP except
that it cannot perform the internal activity leading to the initial state (i.e.,P ′ is P without theτ -loop).
This means that branching bisimilarity is not compatible with any temporal logic featuring aneventually
modality: for any desired state thatP ′ will eventually reach, the mentioned internal activity ofP may be
performed continuously, and thus preventP from reaching this desired state.

The notion ofbranching bisimilarity with explicit divergence(BB∆), also proposed in [6], is a suit-
able refinement of branching bisimilarity that is compatible with the well-known branching-time tem-
poral logic CTL∗ without the nexttime operatorX (which is known to be incompatible with abstraction
from internal activity). In fact, in [5] we have proved that it is the coarsest semantic equivalence on
labelled transition systems with silent moves that is a congruence for parallel composition (as found
in process algebras like CCS, CSP or ACP) and only equates processes satisfying the same CTL∗

−X

formulas. It is also the finest equivalence in thelinear time – branching time spectrumof [4].
There are several ways to characterise a behavioural equivalence. The original definition of BB∆,

in terms ofcoloured traces, stems from [6]. In [4], BB∆ is defined in terms of a modal and a relational
characterisation, which are claimed to coincide with each other and with the original notion from [6].
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Of these three definitions of BB∆, the relational characterisation from [4] is the most concise one, in the
sense that it requires the least amount of auxiliary concepts. Moreover, this definition is most in the style
of the standard definitions of other kinds of bisimulation, found elsewhere in the literature. For these
reasons, it is tempting to take it as standard definition.

Although it is not hard to establish that the modal characterisation from [4] is correct, in the sense
that it defines an equivalence that coincides with BB∆ of [6], it is not at all trivial to establish that
the same holds for the relational characterisation from [4]. If fact, it is non-trivial that this relation is
an equivalence, and that it satisfies the so-calledstuttering property. Once these properties have been
established, it follows that the notion coincides with BB∆ of [6].

In the remainder of this paper, we shall first, in Section 2, briefly recapitulate the relational, coloured-
trace, and modal characterisations of branching bisimilarity. Then, in Section 3, we shall discuss the
condition proposed in [4] that can be added to the relationalcharacterisation in order to make it diver-
gence sensitive; we shall then also discuss several variants on this condition. In Section 4 we establish
that the relational characterisation of BB∆ all coincide, that they are equivalences and that they enjoythe
stuttering property. In Section 5 we show that the relational characterisations of BB∆ coincide with the
original definition of BB∆ in terms of coloured traces. Finally, in Section 6, we shall establish agreement
between the relational characterisation from [4], the modal characterisation from [4], and an alternative
modal characterisation obtained by adding the divergence modality of [4] to the Hennessy-Milner logic
with until proposed in [2].

2. Branching bisimilarity

We presuppose a setA of actionswith a special elementτ ∈ A, and we presuppose alabelled transition
system(S,→) with labels fromA, i.e.,S is a set ofstatesand→ ⊆ S × A × S is a transition relation
on S. Let s, s′ ∈ S anda ∈ A. We writes a−→ s′ for (s, a, s′) ∈ → and we abbreviate the statement
‘s a−→ s′ or (a = τ ands = s′)’ by s (a)−−→ s′. We denote by→+ the transitive closure of the binary
relation τ−→, and by։ its reflexive-transitive closure. Apath from a states is an alternating sequence
s0, a1, s1, a2, s2, . . . , an, sn of states and actions, such thats = s0 andsk−1

ak−−→ sk for k = 1, . . . , n.
A processis given by a states in a labelled transition system, and encompasses all the states and transi-
tions reachable froms.

Relational characterisation The definition of branching bisimilarity that is most widelyused has a
co-inductive flavour. It defines when a binary relation on states preserves the behaviour of the associated
processes. It then declares two states to be equivalent if there exists such a relation relating them. We
shall refer to this kind of characterisation as arelational characterisationof branching bisimilarity.

Definition 2.1. A symmetric binary relationR onS is abranching bisimulationif it satisfies the follow-
ing condition for alls, t ∈ S anda ∈ A:

(T) if s R t ands a−→ s′ for some states′, then there exist statest′ andt′′ such thatt −։ t′′
(a)−−→ t′,

s R t′′ ands′ R t′.

We writes ↔b t if there exists a branching bisimulationR such thats R t. The relation↔b on states is
referred to as (the relational characterisation of) branching bisimilarity.
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The relational characterisation of branching bisimilarity presented above is from [4]. As shown in [1, 4,
6], it yields the same concept of branching bisimilarity as the original definition in [6]. The technical
advantage of the above definition over the original definition is that the defined notion of branching
bisimulation iscompositional: the composition of two branching bisimulations is again a branching
bisimulation. Basten [1] gives an example showing that the condition used in the original definition of
↔b of [6] fails to be compositional in this sense, and thus argued that establishing transitivity directly for
the original definition is not straightforward.

Coloured-trace characterisation To substantiate their claim that branching bisimilarity indeed pre-
serves the branching structure of processes, van Glabbeek and Weijland present in [6] an alternative
characterisation of the notion in terms of coloured traces.Below we repeat this characterisation.

Definition 2.2. A colouring is an equivalence onS. Given a colouringC and a states ∈ S, thecolour
C(s) of s is the equivalence class containings.

Forπ = s0, a1, s1, . . . , an, sn a path froms, let C(π) be the alternating sequence of colours and ac-
tions obtained fromC(s0), a1, C(s1), . . . , an, C(sn) by contracting all subsequencesC, τ,C, τ, . . . , τ, C
to C. The sequenceC(π) is called aC-coloured traceof s. A colouringC is consistentif two states of
the same colour always have the sameC-coloured traces.

We writes ≡c t if there exists a consistent colouringC with C(s) = C(t).

In [6] it is proved that≡c coincides with the relational characterisation↔b of branching bisimilarity.

Modal characterisation A modal characterisation of a behavioural equivalence is a modal logic such
that two processes are equivalent iff they satisfy the same formulas of the logic. The modal logic thus cor-
responding to a behavioural equivalence then allows one, for any two inequivalent processes, to formally
express a behavioural property that distinguishes them. Whereas colourings or bisimulations are good
tools to show that two processes are equivalent, modal formulas are better for proving inequivalence. The
first modal characterisation of a behavioural equivalence is due to Hennessy and Milner [7]. They pro-
vided a modal characterisation of (strong) bisimilarity onimage-finite labelled transition systems, using
a modal logic that is nowadays referred to as theHennessy-Milner Logic. The modal characterisations
of branching bisimilarity presented below are adaptationsof the Hennessy-Milner Logic.

The class of formulasΦjb of the modal logic for branching bisimilarity proposed in [4] is generated
by the following grammar:

ϕ ::= ¬ϕ |
∧

Φ | ϕ a ϕ (a ∈ A, ϕ ∈ Φjb andΦ ⊆ Φjb). (1)

In case the cardinality|S| of the set of states of our labelled transition system is lessthan some infinite
cardinalκ, we may require that|Φ| < κ in conjunctions, thus obtaining asetof formulas rather than
a proper class. We shall use the following standard abbreviations: ⊤ =

∧
∅, ⊥ = ¬⊤ and

∨
Φ =

¬
∧
{¬ϕ | ϕ ∈ Φ}.
We define when a formulaϕ is valid in a states (notation:s |= ϕ) inductively as follows:

(i) s |= ¬ϕ iff s 6|= ϕ;

(ii) s |=
∧

Φ iff s |= ϕ for all ϕ ∈ Φ;
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(iii) s |= ϕ a ψ iff there exist statess′ ands′′ such thats −։ s′′
(a)−−→ s′, s′′ |= ϕ ands′ |= ψ.

Validity induces an equivalence on states: we define≈ ⊆ S × S by

s ≈ t iff ∀ϕ ∈ Φjb. s |= ϕ⇔ t |= ϕ .

In [4] it was shown that≈ coincides with↔b, that is, branching bisimilarity is characterised by the modal
logic above.

Clause (iii) in the definition of validity appears to be rather liberal. More stringent alternatives are
obtained by usingϕ 〈â〉 ψ or ϕ 〈a〉 ψ instead ofϕ a ψ, with the following definitions:

(iii ′) s |= ϕ 〈â〉 ψ iff either a = τ ands |= ψ, or there exists a sequence of statess0, . . . , sn, sn+1

(n ≥ 0) such thats = s0
τ−→ · · · τ−→ sn

a−→ sn+1, si |= ϕ for all i = 0, . . . , n andsn+1 |= ψ.

(iii ′′) s |= ϕ〈a〉ψ iff there exists statess0, . . . , sn, sn+1 (n ≥ 0) such thats = s0
τ−→· · · τ−→sn

(a)−−→sn+1,
si |= ϕ for all i = 0, . . . , n andsn+1 |= ψ.

The modality〈â〉 stems from De Nicola & Vaandrager [2]. There it was shown, forlabelled transition
systems withbounded nondeterminism, that branching bisimilarity,↔b, is characterised by the logic
with negation, binary conjunction and thisuntil modality. The modality〈a〉 is a common strengthening
of 〈â〉 and thejust-beforemodalitya above; it was first considered in [4].

To be able to compare the expressiveness of modal logics, thefollowing definitions are proposed by
Laroussinie, Pinchinat & Schnoebelen [8].

Definition 2.3. Two modal formulasϕ andψ that are interpreted on states of labelled transition systems
areequivalent, writtenϕ ⇚⇛ ψ, if s |= ϕ ⇔ s |= ψ for all statess in all labelled transition systems.
Two modal logics are equally expressive if for every formulain the one there is an equivalent formula in
the other.

As remarked in [4], the modalities〈â〉 and〈a〉 are equally expressive, since

ϕ 〈τ̂〉 ψ ⇚⇛ ψ ∨ ϕ 〈τ〉 ψ ,

ϕ 〈τ〉 ψ ⇚⇛ ϕ ∧ ϕ 〈τ̂ 〉 ψ and

ϕ 〈a〉 ψ ⇚⇛ ϕ 〈â〉 ψ for all a 6= τ .

Note that the modalitya can be expressed in terms of〈a〉:

ϕ a ψ ⇚⇛ ⊤ 〈τ〉 (ϕ 〈a〉 ψ) .

Laroussinie, Pinchinat & Schnoebelen established in [8] that the modal logic with negation, binary con-
junction anda from [4] and the logic with negation, binary conjunction and〈â〉 from [2] are equally
expressive.
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3. Relational characterisations of BB∆

The notion branching bisimilarity discussed in the previous section abstracts from divergence (i.e, infinite
internal activity). In the remainder of this paper, we discuss a refinement of the notion of branching
bisimulation equivalence that takes divergence into account. In this section we present several conditions
that can be added to the notion of branching bisimulation in order to make it divergence sensitive. The
induced notions of branching bisimilarity with explicit divergence will all turn out to be equivalent.

Definition 3.1. [4] A symmetric binary relationR onS is abranching bisimulation with explicit diver-
genceif it is a branching bisimulation (i.e., it satisfies condition (T) of Definition 2.1) and in addition
satisfies the following condition for alls, t ∈ S anda ∈ A:

(D) if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0, sk
τ−→ sk+1 and

sk R t for all k ∈ ω, then there exists an infinite sequence of states(tℓ)ℓ∈ω such thatt = t0,
tℓ

τ−→ tℓ+1 for all ℓ ∈ ω, andsk R tℓ for all k, ℓ ∈ ω.

We writes ↔∆
b t if there exists a branching bisimulation with explicit divergenceR such thats R t.

ττ τ

ττ ττ

s1

t1

τs = s0

t = t0

sk

tℓ

Figure 1. Condition (D).

Figure 1 illustrates condition (D). In [4] it was claimed that the notion↔∆
b defined above coincides with

branching bisimilarity with explicit divergenceas defined earlier in [6]. In this paper we will substantiate
this claim. On the way to this end, we need to show that↔∆

b is an equivalence and has the so-called
stuttering property.

The difficulty in proving that↔∆
b is an equivalence is in establishing transitivity. Basten’s proof

in [1] that ↔b (i.e., branching bisimilarity without explicit divergence) is transitive, is obtained as an
immediate consequence of the fact that whenever two binary relationsR1 andR2 satisfy (T), then so
does their compositionR1 ; R2 (see Lemma 4.3 below). The condition (D) fails to be compositional, as
we show in the following example.

Example 3.1. Consider the labelled transition system depicted on the left-hand side of Figure 2 together
with the branching bisimulations with explicit divergence

R1= {(s0, t0), (t0, s0), (s1, t1), (t1, s1), (s2, t2), (t2, s2), (s1, t2), (t2, s1), (s2, t1), (t1, s2)} and

R2= {(t0, u0), (u0, t0), (t1, u1), (u1, t1), (t2, u2), (u2, t2), (t0, u1), (u1, t0), (t1, u0), (u0, t1)} .

The compositionR = R1 ; R2 on the relevant fragment is depicted on the right-hand side of Figure 2.
Note thats0 gives rise to a divergence of which every state is related byR to u0. However, sinces0 and
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u1 u2
ττ τu0

t1 t2
ττ τ

s1
τ s2

τ τs0 s1 s2
ττ τs0

u1 u2
ττ τu0

t0

Figure 2. The composition of branching bisimulations with explicit divergence is not a branching bisimulation
with explicit divergence.

u2 are not related according toR, there is no divergence fromu0 of which every state is related to every
state on the divergence froms0. We conclude thatR does not satisfy the condition (D).

Our proof that↔∆
b is an equivalence proceeds along the same lines as Basten’s proof in [1] that↔b is

an equivalence: we replace (D) by an alternative divergencecondition that is compositional, prove that
the resulting notion of bisimilarity is an equivalence, andthen establish that it coincides with↔∆

b . In
the remainder of this section, we shall arrive at our compositional alternative for (D) through a series of
adaptations of (D).

First, we observe that (D) has a technically convenient reformulation: instead of requiring the exis-
tence of adivergencefrom t all the states of which enjoy certain properties, it sufficesto require that there
exists astatereachable fromt by a singleτ -transition with these properties. Formally, the reformulation
of (D) is:

(D0) if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0, sk
τ−→ sk+1 and

sk R t for all k ∈ ω, then there exists a statet′ such thatt τ−→ t′ andsk R t′ for all k ∈ ω.

ττ τ

τ

s1

t′

τs = s0 sk

t

Figure 3. Condition (D0).

Figure 3 illustrates condition (D0). If a binary relation satisfies (D0), then the divergence fromt re-
quired by (D) can be inductively constructed. (We omit the inductive construction here; the proof of
Proposition 3.1 below contains a very similar inductive construction.)

For our next adaptation we observe that (D0) has some redundancy. Note that it requirest′ to be
related toeverystate on the divergence froms. However, the universal quantification in the conclusion
can be relaxed to an existential quantification: it suffices to require thatt has an immediateτ -successor
that is related tosomestate on the divergence froms. The requirement can be expressed as follows:
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(D1) if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0, sk
τ−→ sk+1 and

sk R t for all k ∈ ω, then there exists a statet′ such thatt τ−→ t′ andsk R t′ for somek ∈ ω.

ττ τ

τ

s1

t′

τs = s0 sk

t

Figure 4. Condition (D1).

Condition (D1) appears in the definition of divergence-sensitive stuttering simulation of Nejati [9]. It is
illustrated in Figure 4. We writes ↔∆1

b t if there exists a symmetric binary relationR satisfying (T)
and (D1) such thats R t. Note that every relation satisfying (D) also satisfies (D1), so it follows that
↔∆

b ⊆ ↔∆1

b .
The following example illustrates that condition (D1) is still not compositional, not even if the com-

posed relations satisfy (T).

τ τ

τ

t1 t2
τ ττ

t0 t3

s0s1 s2

τ
τ

u0 u1 u2

τ

s0s1 s2

τ
τ

u0 u1 u2

τ

τ τ

τ τ

τ τ

Figure 5. The composition of binary relations satisfying (T) and (D1) does not necessarily satisfy (D1).

Example 3.2. Consider the labelled transition system depicted on the left-hand side of Figure 5 together
with two binary relations satisfying (T) and (D1):

R1= {(s0, t0), (t0, s0), (s0, t2), (t2, s0), (s1, t3), (t3, s1)} ∪ {(s2, ti), (ti, s2) | 0 ≤ i ≤ 3} and

R2= {(ti, ui), (ui, ti) | 0 ≤ i ≤ 2} ∪ {(t3, u0), (u0, t3)} .

Note that, sinces1 is notR1-related tot0, the divergences0
τ−→ s1

τ−→ s0
τ−→ s1

τ−→ · · · need not be
simulated byt0 in such a way thatt1 is related to eithers0 or s1.

Now consider the compositionR = R1 ; R2. Boths0 ands1 areR-related tou0, whereas the state
u1 is notR-related tos0 nor tos1. We conclude thatR does not satisfy (D1).
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The culprit in the preceding example appears to be the fact that (D1) only considers divergences from
s of which every state is related tot. Our second alternative omits this restriction. It considers every
divergence froms and requires that it is simulated byt.

(D2) if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0 andsk
τ−→ sk+1 for

all k ∈ ω, then there exists a statet′ such thatt τ−→ t′ andsk R t′ for somek ∈ ω.

ττ τ

τ

s1

t′

τs = s0 sk

t

Figure 6. Condition (D2).

Figure 6 illustrates condition (D2). In contrast to the preceding divergence conditions, it does have the
property that if two relations both satisfy it, then so does their relational composition. However, to
facilitate a direct proof of this property, it is technically convenient to reformulate condition (D2) such
that it requires a divergence fromt rather than just oneτ -step:

(D3) if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0 andsk
τ−→ sk+1 for all

k ∈ ω, then there exist an infinite sequence of states(tℓ)ℓ∈ω and a mappingσ : ω → ω such that
t = t0, tℓ

τ−→ tℓ+1 andsσ(ℓ) R tℓ for all ℓ ∈ ω.

ττ τ

ττ ττ

s1

t1

τs = s0

t = t0

sk

tℓ

Figure 7. Condition (D3).

Figure 7 illustrates condition (D3).

Proposition 3.1. A binary relationR satisfies (D2) iff it satisfies (D3).

Proof The implication from right to left is trivial. For the implication from left to right, suppose that
R satisfies (D2) and thats R t, and consider an infinite sequence of states(sk)k∈ω such thats = s0 and
sk

τ−→ sk+1 for all k ∈ ω. We construct an infinite sequence of states(tℓ)ℓ∈ω and a mappingσ : ω → ω

such thatt = t0, tℓ
τ−→ tℓ+1 andsσ(ℓ) R tℓ for all ℓ ∈ ω.

The infinite sequence(tℓ)ℓ∈ω and the mappingσ : ω → ω can be defined simultaneously by induction
on l:
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1. We definet0 = t andσ(0) = 0; it then clearly holds thatsσ(0) R t0.

2. Suppose that the sequence(tℓ)ℓ∈ω and the mappingσ : ω → ω have been defined up toℓ. Then, in
particular,sσ(ℓ) R tℓ. Since(sσ(ℓ)+k)k∈ω is an infinite sequence such thatsσ(ℓ)+k

τ−→ sσ(ℓ)+k+1

for all k ∈ ω, by (D2) there existst′ such thattℓ
τ−→ t′ andsσ(ℓ)+k′ R t′ for somek′ ∈ ω. We

definetℓ+1 = t′ andσ(ℓ+ 1) = k′. �

We writes ↔∆3

b t if there exists a symmetric binary relationR satisfying (T) and (D3) such thats R t.
Note that (D1) is a weaker requirement than (D2), and hence, by Proposition 3.1, than (D3). It follows
that↔∆3

b ⊆ ↔∆1

b . Also note that (D2) and (D3) on the one hand and (D) and (D0) on the other hand are
incomparable.

Using that (D3) is compositional, it will be straightforward to establishthat↔∆3

b is an equivalence.
Then, it remains to establish that↔∆

b and↔∆3

b coincide. We shall prove that↔∆3

b is included in↔∆
b by

establishing that↔∆3

b is a branching bisimulation with explicit divergence; that↔∆3

b is an equivalence
is crucial in the proof of this property. Instead of proving the converse inclusion directly, we obtain a
stronger result by establishing that a notion of bisimilarity defined using a weaker divergence condition
and therefore including↔∆

b , is included in↔∆3

b . The weakest divergence condition we encountered so
far is (D1). It is, however, possible to further weaken (D1): instead of requiring thatt′ is an immediate
τ -successor, it is enough require thatt′ can be reached fromt by one or moreτ -transitions. Formally,

(D4) if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0, sk
τ−→ sk+1 and

sk R t for all k ∈ ω, then there exists a statet′ such thatt −→+ t′ andsk R t′ for somek ∈ ω.

ττ τ

τ ττ

s1
τs = s0

t = t0

sk

t′t1

Figure 8. Condition (D4).

Figure 8 illustrates condition (D4). We write s ↔∆4

b t if there exists a symmetric binary relationR
satisfying (T) and (D4) such thats R t. Clearly,↔∆1

b ⊆ ↔∆4

b , and hence also↔∆3

b ⊆ ↔∆4

b and
↔∆

b ⊆ ↔∆4

b .

In the next section we shall also prove that↔∆4

b ⊆ ↔∆3

b . A crucial tool in our proof of this inclusion
will be the notion ofstuttering closureof a binary relationR on states. The stuttering closure ofR
enjoys the so-calledstuttering property: if from states a states′ can be reached through a sequence of
τ -transitions, and boths ands′ areR-related to the same statet, then all intermediate states between
s ands′ areR-related tot too. We shall prove a lemma to the effect that if a binary relation on states
satisfies (T) and (D4), then its stuttering closure satisfies (T) and (D3), and use it to establish the inclusion
↔∆4

b ⊆ ↔∆3

b . An easy corollary of the lemma is that↔∆4

b has the stuttering property. Here our proof
also has a similarity with Basten’s proof in [1]; in his proofthat the notions of branching bisimilarity
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↔∆

b
↔∆3

b

↔∆1

b

↔∆4

b

(see Sect. 4.2)

(see Sect. 4.4)

Figure 9. Inclusion graph.

induced by (T) and by the original condition used in [6] coincide, establishing the stuttering property is
a crucial step.

Figure 9 shows some inclusions between the different versions of branching bisimilarity with explicit
divergence. (Note that we never defined↔∆0

b and↔∆2

b , as these would be the same as↔∆
b and↔∆3

b ,
respectively.) The solid arrows indicate inclusions that have already been argued for above; the dashed
arrows indicate inclusions that will be established below.

Remark 3.1. We shall establish in the next section that↔∆
b = ↔∆4

b . Note that, once we have this, we
can replace the second condition of Definition 3.1 by anyinterpolantof (D) and (D4), i.e., any condition
that is implied by (D) and implies (D4), and end up with the same equivalence. For instance, we could
replace it by condition (D1), or by the condition of Gerth, Kuiper, Peled & Penczek [3]:

if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0, sk
τ−→ sk+1 and

sk R t for all k ∈ ω, then there exists a statet′ such thatt τ−→ t′ andsk R t′ for somek > 0.

Similarly, we will prove that↔∆3

b = ↔∆4

b , and so we can replace the second condition of Definition 3.1
by an interpolant of (D3) and (D4). For instance, the condition

if s R t and there is an infinite sequence of states(sk)k∈ω such thats = s0 andsk
τ−→ sk+1 for

all k ∈ ω, then there exists a statet′ such thatt −→+ t′ andsk R t′ for somek ≥ 0

is a convenient interpolant of (D3) and (D4) to use when showing that two states are branching bisimula-
tion equivalent with explicit divergence.

4. BB∆ is an equivalence with the stuttering property

Our goal is now to establish that the relational characterisations of branching bisimilarity with explicit
divergence introduced in the previous section all coincide, that they are equivalences and that they enjoy
the stuttering property. To this end, we first show that↔∆3

b is an equivalence relation; condition (D3) will
enable a direct proof of this fact. Using that↔∆3

b is an equivalence, we obtain↔∆3

b ⊆ ↔∆
b . Then, we

define the notion ofstuttering closureand use it to establish↔∆4

b ⊆ ↔∆3

b . Together with the observation
↔∆

b ⊆ ↔∆4

b made above, the cycle of inclusions yields that the relations↔∆
b , ↔∆3

b and↔∆4

b coincide.
It then follows that↔∆

b is an equivalence. We have not been able to find a less roundabout way to
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obtain this result. The intermediate results needed for theequivalence proof also yields that↔∆
b has the

stuttering property.

4.1. ↔∆3

b is an equivalence

The proofs below are rather straightforward. Nevertheless, the proof strategy employed for Lemmas 4.1
and 4.3 would fail for↔∆

b , ↔∆1

b and↔∆4

b . It is for this reason that we present all detail.

Lemma 4.1. Let {Ri | i ∈ I} be a family of binary relations.

(i) If Ri satisfies (T) for alli ∈ I, then so does the union
⋃

i∈I Ri.

(ii) If Ri satisfies (D3) for all i ∈ I, then so does the union
⋃

i∈I Ri.

Proof LetR =
⋃

i∈I Ri.

(i) Suppose thatRi satisfies (T) for alli ∈ I. To prove thatR also satisfies (T), suppose thats R t

ands a−→ s′ for some states′. Thens Ri t for somei ∈ I. SinceRi satisfies (T), it follows that
there are statest′ andt′′ such thatt −։ t′′

(a)−−→ t′, s Ri t
′′ ands′ Ri t

′, and hences R t′′ and
s′ R t′.

(ii) Suppose thatRi satisfies (D3) for all i ∈ I. To prove thatR satisfies (D3), suppose thats R t and
that there is an infinite sequence of states(sk)k∈ω such thats = s0 andsk

τ−→ sk+1. Froms R t it
follows thats Ri t for somei ∈ I. By (D3) there exist an infinite sequence of states(tℓ)ℓ∈ω and a
mappingσ : ω → ω such thatt = t0, tℓ

τ−→ tℓ+1 andsσ(ℓ) Ri tℓ for all ℓ ∈ ω, and from the latter
it follows thatsσ(ℓ) R tℓ for all ℓ ∈ ω. �

Lemma 4.2. Let R be a binary relation that satisfies (T). Ifs R t ands −։ s′, then there is a statet′

such thatt −։ t′ ands′ R t′.

Proof Let s0, . . . , sn be states such thats = s0
τ−→ · · · τ−→ sn = s′. By (T) and a straightforward

induction onn there exist statest0, . . . , tn such thatt = t0−։ · · ·−։tn = t′ andsi R ti for all i ≤ n. �

Lemma 4.3. LetR1 andR2 be binary relations.

(i) If R1 andR2 both satisfy (T), then so does their compositionR1 ; R2.

(ii) If R1 andR2 both satisfy (D3), then so does their compositionR1 ; R2.

Proof LetR = R1 ; R2.

(i) To prove thatR satisfies (T), supposes R u ands a−→ s′. Then there exists a statet such that
s R1 t andt R2 u. SinceR1 satisfies (T), there exist statest′ andt′′ such thatt −։ t′′

(a)−−→ t′,
s R1 t

′′ ands′ R1 t
′. By Lemma 4.2 there is a stateu′′ such thatu −։ u′′ andt′′ R2 u

′′. We now
distinguish two cases:

(a) Suppose thata = τ andt′′ = t′. Thenu −։ u′′
(a)−−→ u′′, from s R1 t

′′ andt′′ R2 u
′′ it

follows thats R u′′, and froms′ R1 t
′ andt′ R2 u

′′ it follows thats′ R u′′.
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(b) Suppose thatt′′ a−→t′. Then there exist statesu′′′ andu′ such thatu′′−։u′′′
(a)−−→u′, t′′ R2 u

′′′

andt′ R2 u
′. So,u−։ u′′′

(a)−−→ u′, from s R1 t
′′ andt′′ R2 u

′′′ it follows thats R u′′′, and
from s′ R1 t

′ andt′ R2 u
′ it follows thats′ R u′.

(ii) To prove thatR satisfies (D3), suppose thats R u and that there is an infinite sequence of states
(sk)k∈ω such thats = s0, sk

τ−→ sk+1 for all k ∈ ω. As before, there exists a statet such that
s R1 t andt R2 u. Froms R1 t it follows that there exist an infinite sequence of states(tℓ)ℓ∈ω

and a mappingσ : ω → ω such thatt = t0, tℓ
τ−→ tℓ+1 andsσ(ℓ) R tℓ for all ℓ ∈ ω. Hence, since

t R2 u, it follows that there exist an infinite sequence of states(um)m∈ω and a mappingρ : ω → ω

such thatu = u0, um
τ−→ um+1 andtρ(m) R2 um for all m ∈ ω. Clearly,sσ(ρ(m)) R um for all

m ∈ ω. �

Theorem 4.1. ↔∆3

b is an equivalence.

Proof The diagonal onS (i.e., the binary relation{(s, s) | s ∈ S}) is a symmetric relation that satisfies
(T) and (D2), so↔∆3

b is reflexive. Furthermore, that↔∆3

b is symmetric is immediate from the required
symmetry of the witnessing relation.

To prove that↔∆3

b is transitive, supposes ↔∆3

b t and t ↔∆3

b u. Then there exist symmetric
binary relationsR1 andR2 satisfying (T) and (D3) such thats R1 t and t R2 u. The relationR =
(R1 ; R2) ∪ (R2 ; R1) is clearly symmetric and, by Lemmas 4.1 and 4.3, satisfies (T)and (D3). Hence,
sinces R u, it follows thats ↔∆3

b u. �

4.2. ↔∆3

b is included in↔∆
b

To prove the inclusion↔∆3

b ⊆ ↔∆
b we establish that↔∆3

b is a branching bisimulation with explicit
divergence.

Lemma 4.4. The relation↔∆3

b satisfies (T) and (D3).

Proof Directly from the definition it follows that↔∆3

b is the union of all symmetric relations satisfying
(T) and (D3), so, using Lemma 4.1,↔∆3

b itself satisfies (T) and (D3). �

In fact, it is now clear that↔∆3

b is the largest symmetric binary relation satisfying (T) and(D3).

Lemma 4.5. The relation↔∆3

b satisfies (D).

Proof Suppose thats ↔∆3

b t and that there is an infinite sequence of states(sk)k∈ω such thats = s0,
sk

τ−→ sk+1 andsk ↔∆3

b t for all k ∈ ω. According to Lemma 4.4, the relation↔∆3

b satisfies (D3), so
there exist an infinite sequence of states(tℓ)ℓ∈ω and a mappingσ : ω → ω such thatt = t0, tℓ

τ−→ tℓ+1

andsσ(ℓ) ↔
∆3

b tℓ for all ℓ ∈ ω. By Theorem 4.1,↔∆3

b is an equivalence, so it follows fromsk ↔∆3

b t,

sσ(ℓ) ↔
∆3

b t andsσ(ℓ) ↔
∆3

b tℓ thatsk ↔∆3

b tℓ for all k, ℓ ∈ ω. Hence↔∆3

b satisfies (D). �
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Theorem 4.2. ↔∆3

b ⊆ ↔∆
b .

Proof By Theorem 4.1, the relation↔∆3

b is symmetric. By Lemma 4.4, it satisfies (T), and by
Lemma 4.5 it satisfies (D). So↔∆3

b is a branching bisimulation with explicit divergence, and hence
s ↔∆3

b t impliess ↔∆
b t. �

4.3. Stuttering closure

Definition 4.1. A binary relationR has thestuttering propertyif, whenevert0
τ−→ · · · τ−→ tn, s R t0

ands R tn, thens R ti for all i = 0, . . . , n.

The following operation converts any binary relationR onS into a larger relation̂R that has the stuttering
property.

Definition 4.2. LetR be a binary relation onS. Thestuttering closureR̂ of R is defined by

R̂ = {(s, t) | ∃s♭, s♯, t♭, t♯ ∈ S. s♭ −։ s−։ s♯ & t♭ −։ t−։ t♯ & s♭ R t♯ & s♯ R t♭} .

t♯

s♯ss♭

t♭ t

Figure 10. Stuttering closure.

Figure 10 illustrates the notion of stuttering closure. ClearlyR ⊆ R̂. We establish a few basic properties
of the stuttering closure.

Lemma 4.6. The stuttering closure of a binary relation has thestuttering property.

Proof LetR be a binary relation and let̂R be its stuttering closure. To show thatR̂ has the stuttering
property, suppose thatt0

τ−→ · · · τ−→ tn, s R̂ t0 ands R̂ tn. Then, on the one hand, there exist statess♯

andt♭0 such thats −։ s♯, t♭0 −։ t0 ands♯ R t♭0, and on the other hand there exist statess♭ andt♯n such
thats♭ −։ s, tn −։ t

♯
n ands♭ R t

♯
n. Now, sinces♭ −։ s −։ s♯ andt♭0 −։ ti −։ t

♯
n for all i = 0, . . . , n,

it follows thats R̂ ti. �

Remark 4.1. The stuttering closurêR of a binary relationR is (contrary to what our terminology may
suggest) not necessarily the smallest relation containingR with the stuttering property. For a counterex-
ample, consider a transition system with statess♭, s♯, t♭ andt♯ and transitionss♭ τ−→ s♯ andt♭ τ−→ t♯; the
binary relation

R = {(s♭, t♯), (t♯, s♭), (s♯, t♭), (t♭, s♯), (s♯, t♯), (t♯, s♯)}

has the stuttering property, but̂R has additionally the pairs(s♭, t♭) and(t♭, s♭).
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Lemma 4.7. The stuttering closurêR of a symmetric binary relationR is symmetric.

Proof Supposes R̂ t; then there exist statess♭, s♯, t♭ andt♯ such thats♭ −։ s −։ s♯, t♭ −։ t −։ t♯,
s♭ R t♯ ands♯ R t♭. SinceR is symmetric, it follows thatt♭ R s♯ andt♯ R s♭. Hencet R̂ s. �

Lemma 4.8. Let R̂ be the stuttering closure ofR. If R satisfies (T) ands R̂ t, then there existst′ such
thatt −։ t′ ands R t′.

Proof Supposes R̂ t; then there exist statess♭, s♯, t♭ andt♯ such thats♭ −։ s −։ s♯, t♭ −։ t −։ t♯,
s♭ R t♯ ands♯ R t♭. Froms♭ R t♯ ands♭ −։ s it follows by Lemma 4.2 that there existst′ such that
(t−։) t♯ −։ t′ ands R t′. �

Lemma 4.9. If R satisfies (T), then so does its stuttering closureR̂.

Proof Suppose thats R̂ t and thats a−→ s′ for somes′. Then by Lemma 4.8 there existst† such that
t −։ t† ands R t†. Hence, sinces a−→ s′, it follows by (T) that there exist statest′′ andt′ such that

(t−։) t† −։ t′′
(a)
−−→ t′, s R t′′ ands′ R t′ .

Now, s R t′′ ands′ R t′ respectively implys R̂ t′′ ands′ R̂ t′. �

4.4. Closing the cycle of inclusions

Using the notion of stuttering closure we can now prove↔∆4

b ⊆ ↔∆3

b , thereby closing the cycle of
inclusions. To prove the inclusion we establish that ifR is a witnessing relation for↔∆4

b , thenR̂ is a
witnessing relation for↔∆3

b .

Lemma 4.10. If R satisfies (T) and (D4), thenR̂ satisfies (D3).

Proof Suppose thatR satisfies (T) and (D4). By Proposition 3.1 it suffices to establish thatR̂ satisfies
(D2). Suppose thats R̂ t and there exists an infinite sequence of states(sk)k∈ω such thats = s0 and
sk

τ−→ sk+1 for all k ∈ ω. We have to show that there exists a statet′ such thatt τ−→ t′ andsk R̂ t′ for
somek ∈ ω.

As s R̂ t, by Lemma 4.8 there existt0, . . . , tn such thatt = t0
τ−→ · · · τ−→ tn ands R tn. By

Lemma 4.6,s R̂ ti for all i = 0, . . . , n, so if n > 0, then we can taket′ = t1. We proceed with the
assumption thatn = 0; sos R t.

First suppose thatsk R t for all k ∈ ω. Then by condition (D4) there existt0, . . . , tm such that
t = t0

τ−→ · · · τ−→ tm with m > 0 andsk R tm for somek ∈ ω. As sk R̂ t0 andsk R̂ tm, it follows by
Lemma 4.6 thatsk R̂ ti for all i = 0, . . . , n. Hence, in particular,sk R̂ t1, so we can taket′ = t1.

In the remaining case there is ak0 ∈ ω such thatsk R t for all k ≤ k0 while sk0+1 andt arenot
related byR. Sincesk0

R t andsk0

τ−→ sk0+1, by condition (T) of Definition 3.1 there exist states
t0, . . . , tm, tm+1 such thatt = t0

τ−→ · · · τ−→ tm
(τ )−−→ tm+1, sk0

R tm andsk0+1 R tm+1. Sincesk0+1

andt are not related byR, it follows thatt0 6= tm+1, so eitherm > 0 or tm
τ−→ tm+1. In casem > 0,

sincesk0
R̂ t0 andsk0

R̂ tm, by Lemma 4.6 it follows thatsk0
R̂ t1, so we can taket′ = t1. In case

m = 0 andt = tm
τ−→ tm+1, we can taket′ = tm+1. �
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Theorem 4.3. ↔∆4

b ⊆ ↔∆3

b .

Proof Suppose thats ↔∆4

b t. Then there exists a binary relationR satisfying (T) and (D4), such that
s R t. By Lemma 4.7 the stuttering closurêR of R is symmetric, by Lemma 4.9 it satisfies (T), and by
Lemma 4.10 it satisfies (D3). Moreover,s R̂ t. Hence,s ↔∆3

b t. �

The inclusions already established in Section 3 together with the inclusions established in Theorems
4.2 and 4.3 yield the following corollary (see also Figure 9).

Corollary 4.1. ↔∆
b = ↔∆4

b = ↔∆3

b . �

Corollary 4.2. The relation↔∆
b is an equivalence. �

Recall that the proof strategy employed in Lemma 4.1(ii) to show that any union of binary relations
satisfying (D3) also satisfies (D3), fails with (D) or (D4) instead of (D3). In fact, it is easy to show that
these results do not even hold. Therefore, we could not directly infer from the definition of↔∆

b that it
is itself a branching bisimulation with explicit divergence. But now it follows, for↔∆

b = ↔∆3

b satisfies
(T) and (D3) by Lemma 4.4, and hence also the weaker condition (D4). It satisfies (D) by Lemma 4.5.

Corollary 4.3. ↔∆
b is the largest symmetric relation satisfying (T) and (D4). It even satisfies (D), (D3)

and (D2). It therefore is the largest branching bisimulation with explicit divergence. �

The following corollary is another consequence, which we need in the next section.

Corollary 4.4. The relation↔∆
b has thestuttering property.

Proof Since↔∆
b satisfies (T) and (D4), its stuttering closurê↔∆

b satisfies (T) and (D3) by Lemmas 4.9
and 4.10. Moreover,̂↔∆

b is symmetric by Lemma 4.7. Thereforê↔∆
b is included in↔∆3

b (cf. the proof
of Lemma 4.4). As↔∆

b ⊆ ↔̂∆
b ⊆ ↔∆3

b we find↔∆
b = ↔̂∆

b . Thus, by Lemma 4.6,↔∆
b has the

stuttering property. �

5. Coloured-trace characterisation of BB∆

We now recall from [6] the original characterisation in terms of coloured traces of branching bisimilarity
with explicit divergence, and establish that it coincides with the relational characterisations of Section 3.

Definition 5.1. Let C be a colouring. A states is C-divergentif there exists an infinite sequence of states
(sk)k∈ω such thats = s0, sk

τ−→ sk+1 andC(sk) = C(s) for all k ∈ ω. A consistent colouring is said to
preserve divergenceif no C-divergent state has the same colour as a nondivergent state.

We writes ≡∆
c t if there exists a consistent, divergence preserving colouring C with C(s) = C(t).

We prove that≡∆
c = ↔∆

b .

Lemma 5.1. Let C be a colouring such that two states with the same colour have the sameC-coloured
traces of length three (i.e. colour - action - colour). ThenC is consistent.
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Proof SupposeC(s0) = C(t0) andC0, a1, C1, . . . , an, Cn is a coloured trace ofs0. Then, fori =
1, . . . , n, there are statessi and pathsπi from si−1 to si, such thatC(πi) = Ci−1, ai, Ci. With induction
on i, for i = 1, . . . , n we find statesti with C(si) = C(ti) and pathsρi from ti−1 to ti such thatC(ρi) =
Ci−1, ai, Ci. Namely, the assumption aboutC allows us to findρi giventi−1, and thenti is defined as the
last state ofρi. Concatenating all the pathsρi yields a pathρ from t0 with C(ρ) = C0, a1, C1, . . . , an, Cn.

�

Theorem 5.1. ≡∆
c = ↔∆

b .

Proof “⊆”: Let C be a consistent colouring that preserves divergence. It suffices to show thatC is a
branching bisimulation with explicit divergence.

Supposes C t, i.e.C(s) = C(t), ands a−→ s′ for some states′. In casea = τ andC(s′) = C(s) we
haves′ C t and condition (T) is satisfied. So supposea 6= τ or C(s′) 6= C(s). Thens, and therefore also
t, has a coloured traceC(s), a, C(s′). This implies that there are statest0, . . . , tn for somen ≥ 0 andt′

with t = t0
τ−→ t1

τ−→ · · · τ−→ tn
(a)−−→ t′ such thatC(ti) = C(s) for i = 0, ..., n andC(t′) = C(s′). Hence

(T) is satisfied.
Now supposes C t and there is an infinite sequence of states(sk)k∈ω such thats = s0, sk

τ−→ sk+1

andsk C t for all k ∈ ω. ThenC(sk) = C(s) for all k ∈ ω. Hences, and therefore alsot, is C-divergent.
Thus there exists an infinite sequence of states(tℓ)ℓ∈ω such thatt = t0, tℓ

τ−→ tℓ+1 andC(tℓ) = C(t) for
all ℓ ∈ ω. It follows thatsk C tℓ for all k, ℓ ∈ ω. Hence also (D) is satisfied.

“⊇”: It suffices to show that↔∆
b is a consistent, divergence preserving colouring. By Corollary 4.2 it

is an equivalence. We also use that it satisfies (T) and (D) (Corollary 4.3) and has the stuttering property
(Corollary 4.4). We invoke Lemma 5.1 for proving consistency.

Suppose thats andt have the same colour, i.e.,s ↔∆
b t, and letC, a,D be a↔∆

b -coloured trace of
s. Thena 6= τ or C 6= D, and there are statess′′ ands′ with s −։ s′′

a−→ s′, such thats′′, s ∈ C and
s′ ∈ D. As ↔∆

b satisfies (T), by Lemma 4.2 there is a statet† with t −։ t† ands′′ ↔∆
b t†. Therefore

there exist statest′′ andt′ such that(t−։) t† −։ t′′
(a)−−→ t′, s′′ ↔∆

b t′′ ands′ ↔∆
b t′. As ↔∆

b has the
stuttering property andt′′ ↔∆

b s′′ ↔∆
b s ↔∆

b t, all states on theτ -path fromt to t′′ have the same colour
ass. HenceC, a,D is a↔∆

b -coloured trace oft.
Now supposes andt have the same colour ands is↔∆

b -divergent. Then there is an infinite sequence
of states(sk)k∈ω such thats = s0, sk

τ−→ sk+1 andsk ↔∆
b s ↔∆

b t for all k ∈ ω. As ↔∆
b satisfies

(D), this implies that there exists an infinite sequence of states(tℓ)ℓ∈ω such thatt = t0, tℓ
τ−→ tℓ+1 and

sk ↔∆
b tℓ for all k, ℓ ∈ ω. It follows thattℓ ↔∆

b t for all ℓ ∈ ω, and hencet is ↔∆
b -divergent. �

6. Modal characterisations of BB∆

We shall now establish agreement between the relational andmodal characterisations of BB∆ proposed
in [4]. The class of formulasΦ∆

jb of the modal logic for BB∆ proposed in [4] is generated by the grammar
obtained by adding the following clause to the grammar in (1)of Section 2:

ϕ ::= ∆ϕ (ϕ ∈ Φ∆
jb). (2)

We extend the inductive definition of validity in Section 2 with:
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(iv) s |= ∆ϕ iff there exists an infinite sequence(sk)k∈ω of states such thats −։ s0, sk
τ−→ sk+1 and

sk |= ϕ for all k ∈ ω.

Again, validity induces an equivalence on states: we define≈∆ ⊆ S × S by

s ≈∆ t iff ∀ϕ ∈ Φ∆
jb . s |= ϕ⇔ t |= ϕ .

We shall now establish that≈∆ coincides with↔∆
b .

Theorem 6.1. For all statess andt: s ↔∆
b t iff s ≈∆ t.

Proof To establish the implication from left to right, we prove by structural induction onϕ that if
s ↔∆

b t ands |= ϕ, thent |= ϕ. There are four cases to consider.

1. Supposeϕ = ¬ψ ands |= ϕ. Thens 6|= ψ. As t ↔∆
b s, it follows by the induction hypothesis

thatt 6|= ψ, and hencet |= ϕ.

2. Supposes |=
∧

Ψ. Then, for allψ ∈ Ψ, s |= ψ, and by inductiont |= ψ. This yieldst |= φ.

3. Supposeϕ = ψaχ ands |= ϕ. Then there exist statess′ ands′′ such thats −։ s′′
(a)
−−→ s′, s′′ |= ψ

ands′ |= χ. By Lemma 4.2, there exists a statet† such thatt −։ t† ands′′ ↔∆
b t†. From this it

follows that there exist statest′ andt′′ such thatt −։ t′′
(a)−−→ t′, s′′ ↔∆

b t′′ ands′ ↔∆
b t′, for if

a = τ ands′ = s′′ we can taket′ = t′′ = t† and otherwise, sinces′′ ↔∆
b t†, the statest′ andt′′

exist by (T). It follows by the induction hypothesis thatt′′ |= ψ andt′ |= χ, and hencet |= ϕ.

4. Supposeϕ = ∆ψ ands |= ϕ. Then there exists an infinite sequence(sk)k∈ω such thats −։ s0,
sk

τ−→ sk+1 andsk |= ψ for all k ∈ ω. By Lemma 4.2, there exists a statet0 such thatt −։ t0 and
s0 ↔∆

b t0. From Corollary 4.3 it follows that↔∆
b satisfies (D3), so there exist an infinite sequence

of states(tℓ)ℓ∈ω and a mappingσ : ω → ω such thattℓ
τ−→ tℓ+1 andsσ(ℓ) ↔

∆
b tℓ for all ℓ ∈ ω. By

the induction hypothesistℓ |= ψ for all ℓ ∈ ω, and hencet |= ϕ.

For the implication from right to left, it suffices by Corollary 4.1 to prove that≈∆ is symmetric and
satisfies the conditions (T) and (D4).

That≈∆ is symmetric is clear from its definition.
To establish condition (T) of Definition 3.1, suppose thats ≈∆ t ands a−→ s′, and define setsT ′′ and

T ′ as follows:

T ′′ = {t′′ ∈ S | t −։ t′′ & s 6≈∆ t′′}; and

T ′ = {t′ ∈ S | ∃t′′ ∈ S. t −։ t′′
(a)−−→ t′ & s′ 6≈∆ t′} .

For eacht′′ ∈ T ′′ let ϕt′′ be a formula such thats |= ϕt′′ andt′′ 6|= ϕt′′ , and letϕ =
∧
{ϕt′′ | t

′′ ∈ T ′′}.
Similarly, for eacht′ ∈ T ′ letψt′ be a formula withs′ |= ψt′ andt′ 6|= ψt′ , and letψ =

∧
{ψt′ | t

′ ∈ T ′}.
Note thats |= ϕ a ψ, and hence, sinces ≈∆ t, alsot |= ϕ a ψ. So, there exist statest′ andt′′ such that
t −։ t′′

(a)
−−→ t′, t′′ |= ϕ andt′ |= ψ. Fromt′′ |= ϕ it follows that t′′ 6∈ T ′′, sos ≈∆ t′′; from t′ |= ψ it

follows thatt′ 6∈ T ′, sos′ ≈∆ t′. Thereby, condition (T) is established.
To establish condition (D4), suppose thats ≈∆ t and that there exists an infinite sequence(sk)k∈ω

such thats = s0, sk
τ−→ sk+1 andsk ≈∆ t for all k ∈ ω. Define the setT∞ by

T∞ = {t′ ∈ S | t −։ t′ & s 6≈∆ t′} .
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For eacht′ ∈ T∞ let ϕt′ be a formula such thats |= ϕt′ andt′ 6|= ϕt′ , and letϕ =
∧
{ϕt′ | t

′ ∈ T∞}.
Sinces0 = s |= ϕ andsk ≈∆ t ≈∆ s, it follows thatsk |= ϕ for all k ∈ ω, and therefores |= ∆ϕ.
Hence,t |= ∆ϕ, so there exists an infinite sequence(tℓ)ℓ∈ω such thatt−։ t0, tℓ

τ−→ tℓ+1 andtℓ |= ϕ for
all ℓ ∈ ω. It follows thattℓ 6∈ T∞, sos ≈∆ tℓ, for all ℓ ∈ ω, and hencesk ≈∆ s ≈∆ tℓ for all k, ℓ ∈ ω.
It follows, in particular, thatt −→+ t1 andsk ≈∆ t1 for somek ∈ ω. Thereby, also condition (D4) is
established. �

We already mentioned in Section 2 the result of Laroussinie,Pinchinat & Schnoebelen [8] that the
modal logic with negation, binary conjunction and〈â〉 and the logic with negation, binary conjunction
anda are equally expressive. Below, we adapt their method to showthat replacinga by 〈â〉 or 〈a〉 in the
modal logic for BB∆ proposed in [4] also yields an equally expressive logic.

Henceforth we denote byΦ∆
u the set of formulas generated by the grammar that is obtainedwhen

replacingϕ a ϕ by ϕ 〈a〉 ϕ in the grammar forΦ∆
jb (see (1) in Section 2 and (2) at the beginning of this

section). The central idea, from [8], is that any formula inΦ∆
jb can be written as a Boolean combination

of formulas that propagate either upwards or downwards along a path ofτ -transitions. A formulaϕ that
propagates upwards, i.e., with the property that ifs −։ t ands |= ϕ, then alsot |= ϕ, we shall call
anupward formula. A formulaϕ that propagates downwards, i.e., with the property that ifs −։ t and
t |= ϕ, then alsos |= ϕ, we shall call adownward formula.

Lemma 6.1. Everyϕ ∈ Φ∆
jb is equivalent with a formula of the form

∨
Φ, where each formula inΦ is a

conjunction of an upward and a downward formula.

Proof Note thatψ a χ and∆ψ are downward formulas and that the negation of a downward formula
is an upward formula. Furthermore, a conjunction of upward formulas is again an upward formula and
a conjunction of downward formulas is again a downward formula. It follows, by the standard laws of
Boolean algebra, that the formulaϕ is equivalent to a formula of the desired shape. �

The proof that for every formulaϕ ∈ Φ∆
u there exists an equivalent formulaϕ′ ∈ Φ∆

jb proceeds by
induction on the structure ofϕ, and the only nontrivial case is whenϕ = ψ 〈a〉 χ. According to
the induction hypothesis, forψ andχ there exist equivalent formulas inΦ∆

jb, so, by Lemma 6.1,ψ
is equivalent to a disjunction of conjunctions of upward anddownward formulas. The proof in [8]
then relies on these disjunctions being finite. To generalise it to infinite disjunctions, we shall use the
following lemma.

Lemma 6.2. Let Φ be a set of formulas and letϕ be a formula. Then

(
∨

Φ) 〈a〉 ϕ ⇚⇛
∨

{(
∨

Φ′) 〈a〉 ϕ | Φ′ a finite subset ofΦ} .

Proof

(⇛) Supposes |= (
∨

Φ) 〈a〉 ϕ. Then there exist statess0, . . . , sn, sn+1 such thats = s0
τ−→ · · · τ−→

sn
(a)−−→sn+1, si |=

∨
Φ for all i = 0, . . . , n andsn+1 |= ϕ. Sincesi |=

∨
Φ, we can associate with

everysi (i = 0, . . . , n) a formulaϕi ∈ Φ such thatsi |= ϕi. LetΦ′ = {ϕi | i = 0, . . . , n}; thenΦ′

is a finite subset ofΦ such thatsi |=
∨

Φ′ for everyi = 0, . . . , n. It follows thats |= (
∨

Φ′) 〈a〉ϕ,
and hences |=

∨
{(
∨

Φ′) 〈a〉 ϕ | Φ′ a finite subset ofΦ}.
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(⇚) If s |=
∨
{(
∨

Φ′) 〈a〉ϕ | Φ′ a finite subset ofΦ}, thens |= (
∨

Φ′) 〈a〉ϕ for some finite subsetΦ′

of Φ. So there exist statess0, . . . , sn, sn+1 such thats = s0
τ−→ · · · τ−→ sn

(a)−−→ sn+1, si |=
∨

Φ′

for all i = 0, . . . , n andsn+1 |= ϕ. Sincesi |=
∨

Φ′ implies si |=
∨

Φ for all i = 0, . . . , n, it
follows thats |= (

∨
Φ) 〈a〉 ϕ. �

We now adapt the method in [8] and show that replacinga by 〈â〉 or 〈a〉 in the modal logic for BB∆

proposed in [4] yields an equally expressive logic.

Theorem 6.2. For every formulaϕ ∈ Φ∆
u there exists an equivalent formulaϕ′ ∈ Φ∆

jb.

Proof The proof is by structural induction onϕ; the only nontrivial case is whenϕ = ψ 〈a〉 χ. By the
induction hypothesis there exist formulasψ′, χ′ ∈ Φ∆

jb such thatψ ⇚⇛ ψ′ andχ ⇚⇛ χ′. By Lemma 6.1,
ψ′ ⇚⇛

∨
Ψ, where each formula inΨ is a conjunction of an upward and a downward formula. Hence,

by the evident congruence property of⇚⇛ and Lemma 6.2,

ϕ ⇚⇛
∨

{(
∨

Ψ′) 〈a〉 χ′ | Ψ′ a finite subset ofΨ} .

Clearly, it now suffices to establish that(
∨

Ψ′) 〈a〉 χ′ is equivalent to a formula inΦ∆
jb, for all finite

subsetsΨ′ of Ψ. Recall thatΨ consists of conjunctions of an upward and a downward formula, so we
can assume thatΨ′ = {ψu

i ∧ ψd
i | i = 1, . . . , n}; we proceed by induction on the cardinality ofΨ′.

If |Ψ′| = 0, then
(∨

Ψ′
)
〈a〉 χ′

⇚⇛ ⊥ ,

and⊥ ∈ Φ∆
jb .

Suppose|Ψ′| > 0. By the induction hypothesis there exists, for everyi = 1, . . . , n, a formulaϕ′
i ∈ Φ∆

jb

such that
(∨

Ψ′ − {ψu
i ∧ ψd

i }
)
〈a〉 χ′

⇚⇛ ϕ′
i .

Then, it is easy to verify that

(∨
Ψ′
)
〈a〉 χ′

⇚⇛

n∨

i=1

(
ψu

i ∧
(
ψd

i a χ
′ ∨ ψd

i τ ϕ
′
i

))
,

and the right-hand side formula is inΦ∆
jb . Some intuition for this last step is offered in [8]. �

In the same vain, there is also an obvious strengthening of the divergence modality∆. Let ∆̂ be the
unary divergence modality with the following definition:

(iv′) s |= ∆̂ϕ iff there exists an infinite sequence(sk)k∈ω of states such thats = s0, sk
τ−→ sk+1 and

sk |= ϕ for all k ∈ ω.

We denote byΦb∆
jb the set of formulas generated by the grammar in (1) with∆ϕ replaced bŷ∆ϕ.

Note that the modality∆ can be expressed in terms of∆̂:

∆ϕ ⇚⇛ ⊤ τ ∆̂ϕ .
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s1 s2 s3
τ τττs = s0

a2 a3 a4a1

b0 b1 b2 b3

t1 t2 t3t0

u0 u1 u2 u3

Figure 11. A divergence.

A crucial step in our adaptation of the method of Laroussinie, Pinchinat & Schnoebelen above con-
sisted of showing that infinite disjunctions in the left argument of 〈a〉 can be avoided. If infinite dis-
junctions could also be avoided as an argument of∆̂, then a further adaptation of the method would be
possible, showing that replacing∆ by ∆̂ in the modal logic for BB∆ would yield a logic with equal
expressivity. However, the following example suggests that infinite disjunctions under̂∆ cannot always
be avoided.

Example 6.1. Let a1, a2, a3, . . . andb0, b1, b2, . . . be infinite sequences of distinct actions and consider
the formula

ϕ = ∆̂

(
∞∨

i=0

(¬ (⊤ 〈ai〉 ⊤) ∧ (⊤ 〈bi〉 ⊤))

)
.

The formulaϕ holds in a state iff there exists an infiniteτ -path such that in every state there is ani ≥ 0
such that the actionbi is still possible, whereas the actionai is not. Note thatϕ holds in the states of
the transition system in Figure 11; each of the disjuncts¬ (⊤ 〈ai〉 ⊤)∧ (⊤ 〈bi〉 ⊤) holds in precisely one
state.

We conjecture that the formula of Example 6.1 is not equivalent to a formula inΦ∆
jb, and that, hence,

replacing∆ by ∆̂ in the modal logic for BB∆ yields a strictly more expressive logic. We conclude the
paper with a proof that the equivalence≈b∆ ⊆ S × S induced on states by validity of formulas inΦb∆

jb ,
defined by

s ≈
b∆ t iff ∀ϕ ∈ Φ

b∆
jb. s |= ϕ⇔ t |= ϕ ,

nevertheless also coincides with↔∆
b .

Theorem 6.3. For all statess andt: s ↔∆
b t iff s ≈

b∆ t.

Proof For the implication from left to right, we prove by structural induction onϕ that if s ↔∆
b t and

s |= ϕ, thent |= ϕ. We only treat the caseϕ = ∆̂ψ, for the casesϕ = ¬ψ, ϕ =
∧

Ψ andϕ = ψ a χ

are already treated in the proof of Theorem 6.1. So, supposeϕ = ∆̂ψ ands |= ϕ. Then there exists
an infinite sequence(sk)k∈ω of states such thats = s0, sk

τ−→ sk+1 andsk |= ψ for all k ∈ ω. From
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Corollary 4.3 it follows that↔∆
b satisfies (D3), so there exist an infinite sequence of states(tℓ)ℓ∈ω and

a mappingσ : ω → ω such thatt = t0, tℓ
τ−→ tℓ+1 andsσ(ℓ) ↔∆

b tℓ for all ℓ ∈ ω. By the induction
hypothesistℓ |= ψ for all ℓ ∈ ω, and hencet |= ϕ.

To establish the implication from right to left, note that ifs ≈
b∆ t, then, since every formula inΦ∆

jb is
equivalent to a formula inΦb∆

jb , alsos ≈∆ t, so by Theorem 6.1 it follows thats ↔∆
b t. �

Comment on Definition 2.3 If in Definition 2.3 we had used a notion of equivalence between modal
formulasϕ andψ that merely requires thats |= ϕ ⇔ s |= ψ for all statess in the presupposed labelled
transition system, rather than quantifying over all labelled transition systems, the resulting concept of
equally expressive logics would be much weaker, and the logicsΦ∆

jb andΦ
b∆
jb would be equally expressive.

In general, let∼ be an equivalence on the set of statesS, and consider two logicsL1 andL2 that both
have negation and arbitrary infinite conjunction, and both characterise∼. For every pair of statess, t ∈ S

with s 6∼ t take a formulaϕs,t from L1 such thats |= ϕs,t but t 6|= ϕs,t. Thenχs =
∧
{ϕs,t | t 6∼ s} is

called acharacteristic formulaof s: one hast |= χs iff t ∼ s. Now letψ be a formula fromL2. Then∨
{χs | s |= ψ} is equivalent toψ, in the sense thatt |= ψ ⇔ t |=

∨
{χs | s |= ψ} for all statest ∈ S.

This proves that the two logics are equally expressive.
Similar reasoning using the notion of equivalence from Definition 2.3 would break down, because

one cannot take conjunctions of a proper class of formula.
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