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Abstract. We describe the mechanisation of an SLR parser produced by a parser
generator, covering background properties of context-free languages and gram-
mars, as well as the construction of an SLR automaton. Among the various prop-
erties proved about the parser we show, in particular, soundness: if the parser
results in a parse tree on a given input, then the parse tree is valid with respect
to the grammar, and the leaves of the parse tree match the input; completeness: if
the input is in the language of the grammar then the parser constructs the correct
parse tree for the input with respect to the grammar; and non-ambiguity: gram-
mars successfully converted to SLR automata are unambiguous.

We also develop versions of the algorithms that are executable by automatic
translation from HOL to SML. These alternative versions of the algorithms re-
quire some interesting termination proofs.

1 Introduction

The (context-free) parsing problem is one of determining whether or not a string of
terminal symbols belongs to a language that has been specified by means of a context-
free grammar. In addition, we imagine that the input is to be processed by some later
form of analysis, e.g., a compiler. Therefore, we wish to generate the parse tree that
demonstrates this membership when the string is in the language, rather than just a
yes/no verdict.

The parsing problem can be solved in a general way for large classes of grammars
through the construction of deterministic push-down automata. Given any grammar in
the acceptable class, the application of one function produces an automaton embodying
the grammar. This automaton then analyses its input, producing an appropriate parse
tree. The particular function we have chosen to formally characterise and verify pro-
duces what is known as an SLR automaton.

Thus, at a high level, our task is to specify and verify two functions

slrmac : grammar -> automaton option
parse : automaton -> token list -> ptree option

The slrmac function returns SOME m if the grammar is in the SLR class, and NONE
otherwise. The parse function uses the machine m to consume the input and produce
a parse tree for the input string, returning NONE in case of a failure. A parser generator
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is used to produce such a parse function for any context-free grammar. In this paper
we will concentrate on implementation and verification of the parse function.

In the rest of the paper, we will describe the types and functions that appear above.
In Section[I.1l we describe grammars and their properties. In Section[I.2] we describe
the type of SLR automata, and the type of the results. In Section we describe the
construction of automata from input grammars. We are then in a position to verify
important properties about these functions. Our theorems are described in Section
Finally, we also wish to be able to turn our verified HOL functions into functions that
can be executed in SML. To do this, a number of definitions that have rather abstract
or “semantic” characterisations need to be shown to have executable equivalents. The
derivation of executable forms is described in Section[3l

Literature and Technology. Being one of our field’s earliest examples of theory leading
to successful practice, parsing and language theory has a large literature. On the other
hand, we are not aware of any existing work on a mechanised theory of parsing. Our
mechanisation has been performed in the HOL4 system [2l5]], and has been inspired
principally by Hopcroft and Ullman’s standard text [3]].

Farsers as External Proof Oracles. If an external, potentially untrusted, tool were to
generate the parse tree for a given string, it would be easy to verify that this parse tree
was indeed valid for the given grammar. The parse tree would be serving as a proof that
the input string was indeed in the grammar’s language, and the trusted infrastructure
need only check that proof. It is natural then to ask what additional value a verified
parser-generator might provide. Apart from the intellectual appeal in mechanising in-
teresting mathematics, we believe there is at least one pragmatic benefit: if the (verified)
construction of an SLR automaton succeeds, one has a proof that the grammar in ques-
tion is unambiguous. When a parse is produced by the automaton, one knows that no
other parse is possible.

1.1 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL using the following type defini-
tions:

symbol = TS of string | NTS of string
rule = rule of string => symbol list

grammar = G of rule list => string

(The => arrow indicates curried arguments to an algebraic type’s constructor. Thus, the
rule constructor is a term of type string -> symbol list -> rule. Weuse
lists rather than sets for the grammar’s rules for ease of later translation to SML, and to
avoid frequent finite-ness side conditions.)

A rule is a mapping from a string to a symbol list, where the string is interpreted as a
non-terminal. Similarly, a grammar consists of a list of rules and a string giving the start
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symbol. Traditional presentations of grammars often include separate sets correspond-
ing to the grammar’s terminals and non-terminals. We extract these sets with functions
terminals and nonTerminals respectively.

Definition 1. A list of symbols (or sentential form) s derives t in a single step if s is of
the form aA~, t is of the form a7, and if A — [ is one of the rules in the grammar.
In HOL:

derives g sfl sf2 =
ds1l s2 rhs N.
(sfl = s1 ++ [NTS N] ++ s2) A
(sf2 = sl ++ rhs ++ s2) A
MEM (rule N rhs) (rules g)

(The infix ++ denotes list concatenation. The MEM relation denotes list membership.)

We can form the reflexive and transitive closure of a binary relation like derives g
with the ” » operator, written as a suffix. Thus, (derives g) "+ sfl sf2 indicates
that s£2 is derived from s£1 in zero or more steps, also denoted as sf1 =* s£2 w.r.t
a grammar.

Later we will also use the rightmost derivation relation, rderives, and its closure.

Definition 2. The language of a grammar consists of all the words that can be derived
from the start symbol.

language g =
{ tsl | (derives g) * [NTS (startSym g)] tsl A
EVERY isTmnlSym tsl }

(Predicate i sTmnlSymis true of a symbol if it is of the form TS s for some string s.
EVERY checks that every element of a list satisfies the given predicate.)

We also define the concept of nullability and relations for finding first sets and follow
sets for a symbol as stated below. These notions are central when the actions for the
SLR automaton are calculated (see Section[1.2).

Definition 3. A list of symbols « is nullable iff o« =™ €:

nullable g sl = (derives g) " * sl []

Definition 4. The first set of a symbol is the set of terminals that can appear first in the
sentential forms derivable from it:

firstSet g sym =
{ (TS fst) | drst.(derives g) " [sym] (TS fst::rst) }

(:: represents the list ‘cons’ operator.)

Definition 5. The follow set of a symbol N is the set of terminals that can occur after
N in a sentential form derivable from any of the right-hand sides belonging to a rule in
the grammar.
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followSet g N =
{ TS ts | IM rhs p s.
MEM (rule M rhs) (rules g) A
(derives g) "x rhs (p ++ [N;TS ts] ++ s) }

(This definition might be simplified by only considering derivations from the start sym-
bol of the grammar. However, we choose to present it in the above way so it is compati-
ble with our executable definition, which ignores reachability of non-terminals.)

Executable versions of these functions (which do not need to scan all possible deriva-
tions) are described in Section 311

1.2 SLR Automata

An SLR machine is a push-down automaton where each state in the automaton corre-
sponds to a list of ifems. An item N — « - (3, is a grammar rule that has been split
in two by the dot (-) marking the progress that has been made in recognising the given
right-hand side («3). In HOL:

item = item of string => symbol list # symbol list
state = item list

In the mechanisation, an automaton state is a list of items, and the empty list represents
an error state. The state of an execution is the current input, coupled with a stack of
pairs of automaton states and parse trees. The root of each parse tree corresponds to a
terminal symbol that has been shifted from the input, or to a non-terminal that has been
produced through a reduction step.

Based on the next symbol in the input (we are implementing SLR with one symbol
lookahead), and the state the parser is in, the parser will perform one of the following
actions:

— REDUCE: the parser recognizes a valid handle on the stack and reduces it to the
left-hand side of the rule

— GOTO: the parser shifts an input symbol on to the stack and goes to the indicated
state

— NA: the parser throws an error

In our framework, the automaton is presented by two functions, goto and reduce.
The goto function takes a symbol and a state as arguments and returns a new
state. We have thus merged two tables in the traditional presentation: the shift table
encoding information for terminals, and the goto table for non-terminals.

The reduce function takes a symbol and a state and returns a list of possible
rules that can be reduced in the given state. When the machine has been constructed
from an SLR grammar the list will always be empty or just one element long. If a
reduction is to be performed for rule N — «, the symbols « are popped off the stack,
revealing a state sg. The non-terminal N is pushed onto the stack, and the machine
shifts to the state given by goto applied to IV and sg.
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Given a state and input symbol, the next action is a shift if the goto function returns
a non-error state. The next action is a reduction if the reduce function returns a list
containing one rule. The SLR construction ensures that both conditions can’t be true
simultaneously. If neither is true, the machine throws an error.

These functions are combined using a while combinator of type

("a -> bool) -> ('a -> ’'a option) -> 'a ->
'a option option

The type ’ a is the type of the execution state. The first argument is a boolean condi-
tion on states specifying when the loop should continue. The second argument encodes
the loop body, allowing for the possibility that the loop execution terminates abnor-
mally (e.g. the parser detects a string not in the grammar’s language). The third argu-
ment is the initial state. The result encodes normal termination, abnormal termination
(SOME NONE) and failure to terminate (NONE).

1.3 Constructing the Parser

The architecture of the parser-construction process is shown in Figure[Tl The first step in
creating the SLR machine is to augment the grammar. The augmentation adds an extra
rule that introduces a new start symbol and a marker (a terminal symbol) that appears
at the end of all the words in the language of the grammar. The parser uses this rule
for reduction exactly when it has accepted the input word. This ensures that the parser
always ‘spots’ the end of input. The augmentor auggr is a function of type

grammar -> string -> string -> grammar option

We use SOME g’ to return the augmented grammar g’ when the symbols being in-
troduced are ‘fresh’ (not part of the old grammar). Otherwise failure is indicated by
returning NONE.

The s1rmac function creates the goto and reduce functions which represent the
three transition tables of the traditional presentation of an LR automaton. It checks that

NONE
augmented slrmac ——> gisnotan

grammar (g) SLR grammar

SOME | (reduce, goto)

input—l_) parser
stack—l_)

parse tree (input in L(g)) error (input not in L(g))

Fig. 1. Architecture of the Parser Construction Process
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the functions don’t produce any shift-reduce or reduce-reduce conflicts. If the functions
pass this test, they can be passed onto the parser function which implements the
machine (as described above in Section[1.2).

Building the Parsing Tables. The construction of the goto function is conceptually
simple: let the result of applying goto to a state o and the symbol s (terminal or non-
terminal) be the list of items N — «as - 3, where N — « - s is an element of ¢. This
behaviour is captured in the HOL function moveDot. Unfortunately, it is not sufficient.

When an item’s dot is before a non-terminal, say A — « - B/, this indicates that
the parser expects to parse the non-terminal (B) next. To ensure the item set contains
all possible rules the parser may be in the midst of parsing, it must additionally include
all items describing how B itself will be parsed. If there are rules for B that themselves
have non-terminals as the first element of a RHS, then those non-terminals’ items must
also be included. Thus we must take a closure: repeatedly including all referenced non-
terminals until we reach a fix-point.

The final goto function is calculated by nextState (which gets access to the
input grammar). The new state is computed by moving the dot over all the items in the
current state that have the input symbol after the dot, and then taking the closure.

nextState g itl sym = closure g (moveDot itl sym)

The other table we must compute is reduce. This really is simple: for every com-
plete item (of the form N — «-) in a state, return the rule N — « if the input symbol
is in the follow set of N. Because we use the entire follow set of N, we are computing
an SLR machine. If we didn’t use a follow set at all, and always reduced on complete
items, we would be implementing an LR(0) parser. If we computed follow sets for states
that depended on where a non-terminal had been used, we would be implementing an
LALR parser.

Checking for Conflicts. When slrmac has constructed the functions goto and
reduce, it then checks them for possible shift-reduce or reduce-reduce conflicts.
Checking for such an error in a given state on a given symbol is done by the noError
function:

noError (go,rd) sym st
case rd st sym of
[1 ->rT
|| [r] -> (go st sym
|| otherwise -> F

(1

The s1lrmac function then tests noError on all reachable states in the automaton,
and for all possible terminal symbols. This is easy to express logically:

okSlr g initState =
Vsyms state tok.
trans g (initState, syms) = SOME state —
noError (goto g, reduce g) tok state
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where trans giterates goto g over a sequence of symbols to find the resulting state
(if any). Hopcroft and Ullman call this function 4.
Expressing this check executably is discussed in Section[3

Putting it all Together. The parser function is as given in Figure[Il

parser (initState, eof, 01ldS) m sl =
let out = mwhile (— o exitCond eof 01dS)
(As.parse m s) (init initState sl)
in
case out of
NONE -> NONE
| | SOME (SOME (sl’,[(state,ptree)]l,csl’)) ->
SOME (SOME ptree)
| | SOME NONE -> SOME NONE
|| SOME _ -> SOME NONE

The parse function implements a single step of the SLR machine (Section[I.2)). init
provides the initial execution state to get this process started. The exitCond function
is true of an execution state if the stack consists of just the non-augmented grammar’s
start symbol, and if the input consists of just the eof token. The while combinator
mwhi le (Section[[.2)) repeatedly performs the parse step until exitCond is true.

2 Proofs

We now have a parser generator formally specified in HOL. To verify that our speci-
fication is indeed correct, we would like to demonstrate that the language accepted by
the automaton is the same as the language defined by the grammar. This goal is natu-
rally split into two inclusion results: that everything accepted by the machine is in the
language (“soundness’), and that everything in the language is accepted by the machine
(“completeness”).

Before we delve into the proofs, we describe what it means to be a valid parse tree
with respect to a grammar:

(validptree g (Node n ptl) =

MEM (rule n (getSymbols ptl)) (rules g) A

(Ve. MEM e ptl A isNode e — validptree g e)) A
(validptree g (Leaf tm) = F)

Here, get Symbo1ls gives the list of symbols at the roots of a list of trees. Thus, a tree
is valid with respect to a grammar if there is a rule in the grammar that corresponds to
the root node deriving the roots of its sub-trees, and if (recursively) all the sub-trees are
also valid.

The proofs to come also depend on a number of simple invariants on the state of a
parse execution:
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— parser inv states implementation-specific properties about the stack. These
properties ensure the items in each of the state on the stack correspond to some
grammar rule (validStates) and that the initial start state is never popped off
from the stack.

parser inv g csl = validStates g csl A —NULL csl

— The SLR automaton works by computing valid items for each viable prefix. Predi-
cate validItem inv asserts that each of the states contains only those items that
are valid for the viable prefix v, which is the string of symbols that has been pushed
on to the stack to reach that state (stk).

validItem_inv g initState stk =
Vstk’.
IS_PREFIX stk stk’ A —-NULL stk’
—
trans g (initState, stackSyms stk’) =
SOME (topState stk’)

2.1 Validity of the Parse Tree Generated

If the parser results in a parse tree, the tree is valid with respect to the grammar for which
the parser was generated. Alternatively, the parse tree was built using rules present in
the given grammar.

Below we abbreviate validptree inv for conditions which state that for all the
non-terminals on the stack, the associated parse trees are valid with respect to the given
grammar. We prove that this property is preserved by the parse function, which takes
a single step of the execution. By induction over the while-loop, if the parser is able to
reduce the stack symbols to the start symbol, then the corresponding parse tree must be
valid as well.

Theorem 1

Vg sl stl.
auggr g s eof = SOME ag A slrmac ag = SOME m A
parser_inv ag csl A validptree_inv g stl A
parser (initState, eof, 0ldS) (SOME m) sl =

SOME (SOME tree)

—_—

validptree ag tree

2.2 Equivalence of the Output Parse Tree and the Input String Parsed

The main predicate of interest here is the 1leaves eq inv. Below it abbreviates con-
ditions which assert that at each state the leaves of the tree are equal to the parsed string.
This ensures that the grammar rules being applied to form the parse tree, correspond to
the input string being parsed and the leaves of the resulting parse tree are equal to the
original input string.
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Theorem 2

Vm g s eof sl csl.
auggr g s eof = SOME ag A slrmac ag = SOME m A
parser inv ag csl A leaves eqg inv sl sl [] A
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree))

—

(sl=leaves tree)

2.3 Soundness of the Parser

To prove soundness, we have to show that the input string for which a valid parse tree
can be constructed, is in the language of the grammar.

Theorem 3

Vm g s eof sl csl.
auggr g s eof = SOME ag A slrmac ag = SOME m A
parser inv ag (stl, csl) A
validptree inv ag (stl, csl) A
leaves eq inv sl sl []1 A
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree))

—

sl € language ag

In turn, this result depends on a simple result stating the equivalence of being able to
derive a sentential form and having a valid parse tree with that form as its leaves.

2.4 Completeness of the Parser

To show completeness, we have to prove that if a string is in the language of a grammar
then the parser will terminate with a parse tree. Soundness (Theorem[3)) already ensures
the validity of the output tree. We assume that the grammar does not have useless non-
terminals, i.e. all the non-terminal symbols generate some terminal string (‘generates
a word’, gaw). We earlier proved that removing useless symbols does not affect the
language of a grammar, so we might extend s1lrmac to do this for us, or just have it
report an error if given a grammar containing useless non-terminals.

Theorem 4
auggr g st eof = SOME ag A sl € language ag A
slrmac ag = SOME m A
(Vnt. nt € nonTerminals ag — gaw ag nt)
—
dtree.
parser (initState, eof, startSym g) (SOME m) sl =
SOME (SOME tree)
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This result has by far the most complicated proof in the mechanisation, and took a con-
siderable proportion of the total time spent. Much of the time was spent casting about
for a detailed version of the argument for LR(0) grammars in Hopcroft and Ullman [3,
§10.7]. That argument specifies the construction of the automaton and continues:

We claim that when M starts with w in L(G) on its input and only sg on
the stack, it will construct a rightmost derivation for w in reverse order. The
only point still requiring proof. ..

Our eventual proof recasts this somewhat. We already have an (arbitrary) rightmost
derivation for w by virtue of the fact that it is in L(G). (We proved the lemma stating that
any derivation of a word has a rightmost equivalent.) We then argue that the machine
will take a sequence of steps that mirror this derivation.

We make the actual derivation concrete (it is a list of sentential forms), and write
RFEd<sfy— sf,if dis aderivation of sf,, starting at sf, and respecting derivation
relation R (i.e., R holds between each successive pair of elements in the list d).

Each sentential form is derived from its predecessor by the expansion of a non-
terminal. When moving backwards through the derivation, this corresponds to a reduc-
tion step.

The crucial lemma supporting our proof states that if we have rderives g - d <
sf, — w, then there is a sequence of n parse-steps bringing the SLR automaton to
a state where it is just about to perform the first reduction of the derivation d. This is
by induction on d. This result in turn relies on knowing that when the current handle,
or RHS of the next reduction, is still partly or completely in the input, the machine will
perform a sequence of shift moves in order to bring the handle onto the stack.

All of these results depend on the invariants already described, and the fact that the
automaton is SLR. For example, in the last lemma: if we know that a shift is possible,
then we also know that a reduction is not.

2.5 SLR Grammars Are Unambiguous

A grammar is unambiguous if for each string we L(G), w has a unique rightmost
derivation.

Definition 6. A word w in the language of grammar g is represented by a derivation
list starting from the start symbol of g and ending in w. A derivation for w is unique iff
all possible derivation lists are identical.

isUnambiguous g =
Vsl d1 d1-.
sl € language g A
rderives g F dl1 < [NTS (startSym g)] — sl A
rderives g + dl1’ < [NTS (startSym g)] — sl A
—_—
dl=d41’
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Theorem 5
auggr g st eof = SOME ag A slr ag = SOME m
—
isUnambiguous ag

A corollary of completeness and the fact that the SLR machine is deterministic.

3 An Executable Parser

For the most part, the HOL definitions turn out to be executable. However, for the sake
of simplicity and clarity, many of our definitions were written in a style that favoured
mathematical ease of expression. The use of existential quantifiers, and the reflexive
and transitive closure in such definitions make them non-executable. Here we describe
how the defined functions can be re-expressed in a way that makes them acceptable to
HOL4’s emi tML technology. Our general approach was to take an existing function
f, and define a new fML constant. After proving termination for the typically compli-
cated recursion equations defining fML, we then had to show that fML’s behaviour was
equivalent to f’s.

Would it save work to just use executable functions from the outset? Sadly no; the
important thing about these executable functions is that they should compute some
mathematical property. Proving that this is the case is the same problem as showing
the equivalences we describe here.

In this section we describe our executable implementations of the non-executable, or
“mathematical” HOL definitions. Even though the HOL versions were more tractable
for proving properties such as our language inclusion results, there have been places
where it was decided to value executability over succinctness of presentation.

3.1 Executable Calculation of Nullable Non-terminals
The executable counterpart of the nullable function is given below.

nullableML g sn [] = T A
nullableML g sn (TS ts::rest) = F A
nullableMlL, g sn (NTS A::rest) =
if (MEM (NTS A) sn) then F
else
EXISTS (nullableML g (NTS A::sn))
(getRhs A (rules g)) A
nullableML. g sn rest

The nullableML function determines whether or not a list of symbols (a sentential
form) can derive the empty string. When the string includes a terminal symbol, the result
is false. When a non-terminal is encountered, we recursively determine if any of that
non-terminal’s RHSes might derive the empty string.

In order to ensure that this recursion terminates, we introduce a “seen” list and up-
date this with the non-terminal that is being visited when we expand it. To then con-
vince HOL that this function terminates, we must find a wellfounded relation on the
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arguments of nullableML. Because a singleton list containing a non-terminal may
expand into a list of symbols of arbitrary length, we cannot simply use the length of the
sentential form as a measure. Instead we use the lexicographic combination:

measure (A(g,sn). |nonTerminals g \ set sn|)
LEX
measure LENGTH

We assert that either the number of symbols except the ones in the seen list decreases,
or that the length of the sentential form decreases. The former corresponds to the first
conjunct in the third clause in the definition while the latter takes care of the second
conjunct.

The next step is to show the equivalence between the new HOL constants and the
originals. Proving the equivalence requires showing the following two implications.

Vg sn sf. nullableML g sn sf =— nullable g sf

Vg sf. nullable g sf =— sn = [] — nullableML g sn sf

As previously outlined, for a sentential form to be nullable, it cannot have a terminal
symbol. We look at the non-trivial case, i.e.when the sentential form itself is not empty.
A sentential form N7 Ns...IN,, is nullable iff the individual derivations for the Ns itself
are nullable.

Ny =* €
Ny =* €

N, =% ¢

nullable asserts the existence of some derivation from s f to €. On the other hand,
nullableML looks at a concrete derivation with a specific property, i.e.in each indi-
vidual derivation, the symbols cannot be repeated. This property gives us termination
but it also makes the equivalence proof harder.

The first implication turns out to be easy to prove since we are showing the existence
of a particular form of derivation from a more generic one.

To prove the latter implication, we need to show that each derivation without any
constraints on its form, can be recast into a derivation where the individual derivations
of € do not have repeated symbols. We do this by a complete induction on the length of
the derivation and show that any derivation of the form /N =" € can be recasted into a
new derivation (possibly smaller), that gets accepted by nullable M L.

This ‘obvious’ property of nullable derivations is usually ‘assumed’ in textbook
proofs, but plays a centre role when proving the equivalence between a mathematical
definition and an executable one.

With this equivalence we now know that execution of SML code will provide a be-
haviour corresponding to that of the formal HOL entity.
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The executable firstSet and followSet definitions were defined in a similar
way (by introducing a “seen” list in the computation). The termination and equivalence
proof follow similar lines of reasoning.

An Executable s1rmac. Another interesting termination case is encountered when we
try to make s1rmac definition executable. s1rmac checks whether the resulting table
for the grammar has any conflict or not. It is not strictly a necessary component of the
parser generator but does assist in stating some of the proofs. For example, with this
function we can assert that if we can build a parse table for a grammar and the input
belongs in the language of the grammar, then the parser will output a parse tree.

Building the parse table involves traversing the state space to find the next state for each
of the symbols in the grammar, starting from the initial state. neighbours takes a state
and returns a state list. The state list contains states that can be reached by following each
of the symbols in the input (i.e., transitions one-level deep). It uses symNeighbour to
shift the dot past the current symbol and get the state corresponding to it. The result-
ing state contains no duplicates (rmDupes). The condition DISTINCT ensures that we
don’t loop forever by considering states where the same items might be repeated. An-
other check, validItl makes sure that the items in the state do correspond to some
rule in the grammar.

symNeighbour g itl sym =
rmDupes (closure g (moveDot itl sym))

neighbours g itl [] = []1 A
neighbours g itl (x::xs) =
symNeighbour g itl x::neighbours g itl xs

visit g sn itl =
if = (DISTINCT itl) V —(validItl g itl) then []
else let s = neighbours g itl set (allSyms g) in
let rem = diff s sn in
rem++ (FLAT (MAP (visit g (sn++rem)) rem))

The parse table builder here is the visit function. Starting in the initial state it follows
the transitions for each of the symbols in the grammar until it can reach no more new
states. The important thing here is to make sure states are not repeated otherwise we
end up following the same path over and over again. Here, the number of states seen
increases at each recursive call. We also know that the number of possible states (even
though it might be large) is finite (allGrammarItls). This is because we have a
finite number of symbols in our grammar and a finite number of rules as well. From
this we can deduce that the number of states that have not been encountered decreases
at each call. This forms our termination argument.

measure (A(g,sn,itl). |allGrammarItls g \ set sn|)

With this on hand, we can implement an executable s1rmac that checks the entire
table for shift-reduce and reduce-reduce conflicts.
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slrMLASym g [] sym = SOME (goto g, reduce g) A
slrML4Sym g (i::itl) sym =
let s = goto g 1 sym in
let r = reduce g 1 (sym2Str sym) in
(s,r) of ([]1,[1) -> slrML4Sym g itl sym
[| ([1,[v12]) -> slrML4Sym g itl sym
|| ([1,h::h’"::t) -> NONE
[| (h::t,[]) -> slrML4Sym g itl sym
|| (h::t,h'::t’) -> NONE

slrML g itl [] = SOME (goto g, reduce g) A
slrML g itl (sym::rst) =
if (slrML4Sym g itl sym = NONE) then NONE
else slrML g itl rst

4 Future Work

One piece of future work we would like to pursue is to demonstrate that SLR parsers
terminate on all inputs, not just on strings in the language. This would then demon-
strate the decidability of language membership. (Our mechanisation currently admits
the possibility that parser goes into an infinite loop.)

We would also like to improve the efficiency of the parser. Currently, the DFA states
are computed on the fly. This gives us simpler proof goals, assisting in reasoning about
the program’s properties. Changing this to be computed statically would enhance the
performance of the parser when emitted as executable SML code.

For the sake of simplicity, we have dealt with SLR parsers. In practice however,
compiler-compilers such as yacc and GNU bison generate LALR parsers. Instead of
follow sets, LALR parsers uses lookahead sets, which are more specific as they take
more of the parsing context into account, allowing finer distinctions. It will be inter-
esting to see to what extent the existing work on SLR will assist us in verifying other
parsing algorithms such as LR(1), LALR or GLR parser generator. We anticipate that
most of the proof framework will not change excepting the work related to calculating
lookahead sets.

5 Related Work

To realise the ambition of fully verified translation from source to machine code, all
phases in the compilation process should either be verified or subject to verification
after the fact. These two strategies are implemented in what have been termed verified
or verifying compilers respectively. As we have already commented, one might imagine
that the appropriate strategy for parsing would be to verify the output of an external tool.
This then would be what one might call verifying parsing. For example, a verifying
parser would mesh with Blazy, Dargaye and Leroy’s work on the formal verification of
a compiler front-end for a subset of the C language [[1]], which otherwise ignores parsing
as an issue.
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In the field of language theory, Nipkow [4] provided a verified and executable lexical
analyzer generator. This is the closest in nature to the verification we have done. As with
our work, Nipkow faced issues in making his definitions executable, principally because
of the inductively defined transitive closure.

6 Conclusions

We have presented work on formal verification of an SLR parser generator. Most of the
functions are directly executable. For those that we thought were better expressed more
“mathematically”, we have presented executable definitions of behaviourally equivalent
alternatives. This conversion also illustrated the gap between simple textbook defini-
tions and a verifiable executable implementation in a theorem prover. Issues like termi-
nation which can be ignored when dealing with semantic definitions, become necessary
when executability comes into play. This also highlights how eminently suitable HOL
is for developments of this kind, especially with its facility of emitting verified HOL
definitions as SML code.

HOL sources for the work are available at http://users.rsise.anu.edu.
au/~aditi/. The definitions and proofs are 21000 LOC. It took 7 months to com-
plete the work which includes over 700 lemmas/theorems. This includes the definitions,
major proofs related to SLR grammars and also lemmas about existing HOL types (e.g.,
sets,lists) that were not already present in the system.
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