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Abstract

vNUMA, for virtual NUMA, is a virtual machine that
presents a cluster as a virtual shared-memory multipro-
cessor. It is designed to make the computational power
of clusters available to legacy applications and operating
systems.

A characteristic aspect of vNUMA is that it incorpo-
rates distributed shared memory (DSM) inside the hy-
pervisor, in contrast to the more traditional approach
of providing it in middleware. We present the design
of vNUMA, as well as an implementation on Itanium-
based workstations. We discuss in detail the enhance-
ments to standard protocols that were required or en-
abled when implementing DSM inside a hypervisor, and
discuss some of the tradeoffs we encountered. We ex-
amine the scalability of vNUMA on a small cluster, and
analyse some of the design choices.

1 Introduction
Shared-memory multiprocessor (SMM) systems provide
a simple programming model compatible with a large
base of existing applications and operating systems.
They naturally lend themselves to providing a single sys-
tem image (SSI) running a single operating-system (OS)
instance with a single resource name space.

However, for many compute-intensive applications,
a network of commodity workstations presents a more
cost-effective platform. These systems deliver the same
(theoretical) compute power with much less expensive
hardware, and are easily extensible and re-configurable.
Yet their computing power is much more difficult to har-
ness. Most existing OSes were not designed for clus-
ter environments, and applications designed for shared-
memory systems need to be redesigned for clusters by
using explicit communication over the network.

Previous attempts have been made to bridge the gap
between the ease of programming and legacy support

of SMM systems and the economies of cluster hard-
ware. These include distributed shared memory (DSM)
libraries such as Ivy [23] or Treadmarks [19], which
provide a limited illusion of shared memory to applica-
tions, provided that the programmer uses the primitives
supplied by the library. Other projects have attempted
to retrofit support for cluster-wide process scheduling
and migration into OSes [2, 27, 35]. However, these
approaches require extensive and intrusive OS changes,
which are difficult to keep up to date with the fast pace
of OS development.

This paper explores a different approach: the use of
virtualization to bridge the gap between SMM systems
and workstation clusters. We present vNUMA (“virtual
NUMA”), a virtual shared-memory multiprocessor built
from a cluster of commodity workstations. A hypervisor
runs on each node of the cluster and manages the phys-
ical resources. A single virtualized instance of an OS,
such as Linux, is then started on the cluster. This OS
and its applications executes on a virtual ccNUMA ma-
chine with many virtual CPUs. The virtualization layer
transparently maps the virtual CPUs to real CPUs in the
cluster, and provides DSM using software techniques.
In this way, a single OS instance can be scaled “outside
the box”, utilizing the computing resources of more than
one node. Users gain all of the advantages of such an
SSI multiprocessor, such as a single view of resources
and transparent process scheduling.

The core ideas of vNUMA have been presented in an
earlier short paper [7]. Here we focus on the design
and implementation issues that are critical to making
vNUMA work. We address the problem of constructing
a high-performance virtual NUMA system on commod-
ity hardware by:

• an approach to write sharing which individually in-
tercepts sparse write accesses, while falling back to
a page-based write-invalidate protocol when appro-
priate,
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Figure 1: Example vNUMA system

• introducing the technique of write-broadcast with
deterministic incremental merge for providing total
store order, and
• demonstrating an efficient approach for avoidance

of page thrashing.

In the next section we present an overview of the
vNUMA hypervisor and its DSM system, which is de-
signed for a small cluster of commodity workstations.
In Section 3 we discuss a number of enhancements to
established DSM protocols that improve their suitability
for use inside a hypervisor. Section 4 takes a detailed
look at implementation issues, including architecture-
specific optimisations. Section 5 presents an evaluation
of our vNUMA prototype. Related work is summarised
in Section 6.

2 vNUMA Overview
2.1 Approach
In order to minimise overheads, vNUMA is designed as
a Type-I hypervisor, executing on bare hardware with no
host OS. Our prototype was built on Itanium worksta-
tions, which are frequently deployed in clusters for high-
performance computing (HPC) use. While the vNUMA
design is independent of a specific ISA, the implemen-
tation does use processor-specific optimisations.

The majority of previous software DSM systems have
been designed as middleware running on top of an OS.
In vNUMA, the DSM system is integrated with the hy-
pervisor. There are two levels of memory address trans-
lation in a virtualized system. The guest OS maps appli-
cations’ virtual addresses onto a guest-physical address
space, which represents the physical memory of the vir-
tual machine. Then, the hypervisor maps guest physical
addresses to real physical addresses on a host computer.
This lower layer, transparent to the guest OS, is where
the vNUMA DSM system operates. It provides oper-
ating systems with the illusion of a single physical ad-
dress space across multiple host computers, as indicated
in Figure 1.

As a result, the shared address space in vNUMA com-
prises not just some subset of data memory that is known
to be shared, but all of the memory of the virtual ma-
chine. Since our aim is to run unmodified application

binaries (and, ideally, unmodified OSes), vNUMA must
faithfully reproduce the hardware SMP programming
model. Doing this efficiently presents challenges. On
the other hand, vNUMA runs in the processor’s privi-
leged mode, which gives it access to certain techniques
that may be difficult or prohibitively inefficient for a
userspace DSM system. Examples include the efficient
emulation of individual instructions, and the use of the
performance-monitoring unit (PMU) to track the execu-
tion of specific instructions.

2.2 Basic DSM protocol
At the heart of the vNUMA DSM system is a sim-
ple single-writer/multiple-reader write-invalidate proto-
col based on the Ivy protocol [23]. For page lo-
cation, vNUMA implements a fixed distributed man-
ager scheme, whereby the global guest-physical address
space is divided into equal-sized portions; each node acts
as a manager for one of these portions.

vNUMA’s transparency requirements imply that the
concept of a manager node is unknown outside the hy-
pervisor. However, efficiency is improved if the guest
OS has a notion of locality. vNUMA uses the concept of
NUMA node-local memory to ensure that the guest will
favour locally-managed memory when making alloca-
tion decisions, and as such works best with a NUMA-
aware guest OS. While for normal DSM systems the
concept of the manager node is a complication required
for efficiency, for the virtual NUMA system it is actually
a good match.

vNUMA’s DSM algorithm is based on the a version
of the Ivy protocol which the Ivy authors describe as
the “improved” protocol. The improvement keeps the
copyset information (where copies of a page are held)
with a changing page owner rather than the manager.
This helps to minimise the number of messages required,
and to avoid deadlock issues that are a problem with the
basic protocol [13].

3 Enhancements to DSM Protocols
Latency of DSM operations is the crucial limiting fac-
tor for the performance of vNUMA. Whenever a fetch
or invalidation message is sent, consistency requires that
execution on the local processor must stall until the re-
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sponse is received. Here we discuss protocol improve-
ments that are designed to minimise the number of stalls
and messages required for DSM operation.

3.1 Double faults and ownership
In the original Ivy protocol, a page that has been fetched
on a read fault would have to be re-fetched on a subse-
quent write fault in order to ensure consistency. A later
optimisation avoided the double transfer with the help
of version numbers [20]. We use an optimisation that
seems to have been used in Mirage [11]: an owner can
determine whether the page data needs to be sent simply
by consulting the page’s copyset information. This is be-
cause any intervening writes would have invalidated the
faulting node’s read copy and hence removed it from the
copyset.

Another optimisation also goes back to Mirage but is
simplified in vNUMA: as soon as the manager becomes
a member of the copyset, ownership is automatically
transferred to the manager (Mirage required extra mes-
sages for this).

3.2 Addressing sparse data accesses
Minimising the number of communication events in a
distributed shared memory system depends critically on
caching of remote data. Many commonly used data
structures, such as linked lists and trees, tend to have
poor spatial locality, and may result in a processor ac-
cessing many pages. If locally cached copies of these
pages can be accessed, then overheads are small, but if
each of the pages regularly requires a remote fetch, per-
formance will suffer greatly.

In the absence of writes, pages eventually become
read-shared, allowing each processor to access the
cached copy of those pages without any communication.
This is clearly desirable. Now consider that some pro-
cessor occasionally writes a value to a certain page that
is otherwise read-shared. In the Ivy protocol, first the
writer must stall while all of the read copies are invali-
dated, then all of the active readers eventually stall and
re-fetch the entire page data. Clearly it would be more
efficient, for such sparse updates, to propagate the indi-
vidual write to any readers.

3.2.1 Write detection
In any such protocol, writes must be detected and write
update messages sent to other nodes. Write detection
at sub-page granularity is a challenge to implement effi-
ciently. Page diffing, as implemented in Munin [3] and
many later systems, cannot be used by vNUMA, for sev-
eral reasons.

Firstly, by the time that the diffing is performed, in-
formation has been lost about the size of the writes,
which has implications for the outcome of conflicting

writes. For example, assume that a 4-byte integer vari-
able has an initial value of 0. Consider a case where
processor P1 writes 1 to the variable, P2 writes -1, and
then P3 issues a read. The Itanium architecture dictates
that the outcome will be one of 0, -1 or 1 (depending
on which of the writes have been seen at P3). How-
ever, the diff generated at P1 may contain as little as one
byte, since in binary representation only one byte of the
value has changed. The diff generated at P2 contains
four bytes, since all four bytes of the binary representa-
tion have changed (-1 = 0xffffffff in hexadecimal). After
both diffs are applied, the value at P1 may be 0xffffff01,
which is not one of the valid outcomes. Diffing at a
32-bit granularity would solve this problem for 32-bit
values, but there would still be problems with smaller
and larger types. Systems that employ diffing, such as
TreadMarks [19], rely on the programmer to avoid issu-
ing conflicting writes within an interval, and to take care
when using smaller types than the diff granularity. How-
ever, at the ISA level there is no such requirement; in fact
the example above is completely legal if the programmer
does not require a guarantee as to which change is ap-
plied first. This would present problems for legacy code
on vNUMA.

Secondly, the standard diffing approach involves mak-
ing the page freely writable on the first write access, in
order to avoid further write faults. However, if a page is
both readable and writeable, then atomic read-modify-
write instructions such as compare-and-exchange will
freely execute, thus destroying their semantics. User-
level DSM systems that employ diffing schemes can
avoid this issue by stating that the programmer must
use the synchronisation constructs provided by the DSM
system, and not rely on the behaviour of atomic in-
structions to shared memory. This is not practical for
vNUMA.

An alternate approach, software write detection, as
used in Midway [37], relies on compiler support. This
would prevent transparent distribution of legacy applica-
tions, and is therefore also not suitable for vNUMA.

We therefore attempt to intercept writes individually,
a technique we describe as write trapping. While this
is prohibitively expensive for user-level DSM systems,
the overhead can be kept much smaller in a thin hyper-
visor such as vNUMA. The current C language imple-
mentation results in an overhead of around 250 cycles
per write, but this is largely due to compiler limitations;
in theory under 100 cycles should be achievable.

Even so, writes are frequent operations and trapping
every write in the system would be impractical; in-
deed the majority of pages in the system are not ac-
tively write-shared at all. vNUMA uses an adaptive
scheme which changes a page’s mode between this
write-trapping (write-update) mode and the basic write-
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Figure 2: Timeline showing a possible ordering problem

invalidate mode, depending on the access pattern.
The adaptation scheme currently implemented is sim-

ilar to the read-write-broadcast (RWB) protocol [31] de-
veloped for hardware cache coherence. The run-length
of local writes to a page that are uninterrupted by writes
received from other nodes is tracked with a counter.
If the count exceeds a threshold, trapping of individ-
ual writes ceases and the page is transitioned to write-
invalidate mode, in which we use the conventional Ivy-
like write-invalidate protocol described earlier. This can
reflect two types of access patterns — either one node is
accessing the page exclusively, or one node is making a
large number of updates to the page in a short time —
and in both cases invalidation is likely to perform bet-
ter. The decision is made individually by each node, so
even if one node chooses to acquire the page exclusively,
other infrequent writers continue to intercept writes to
the page and report them back to the exclusive owner
(providing there are no reads).

This scheme makes its decision purely on the basis
of tracking write accesses. Its drawback is that it will
not detect producer-consumer sharing with a single in-
termittent writer and multiple readers. This leads to
periodic invalidation of the readers’ copies and subse-
quent re-faulting, even though the write-update mode
may be better in this case. An improved algorithm might
be one similar to the efficient distributed write proto-
col (EDWP) [1], which tracks both read and write ac-
cesses, and prevents a transition to exclusive mode if
more than one processor is accessing the page. How-
ever, this is considerably more complex (since sampling
read accesses is required) and has not been implemented.

3.2.2 Write propagation
For pages in write-update mode, vNUMA broadcasts
writes to all nodes. While this may seem inefficient, it
has some advantages; it greatly reduces the complexity
of the system and naturally results in total store order
(TSO) consistency. Per-packet overheads are amortized
by batching many writes into a single message (see Sec-
tion 4.3). Certainly this design choice would limit scala-
bility, but vNUMA is designed for optimal performance
on a small cluster.

Each node generally applies any write updates that ap-

ply to pages that it has read copies of, and discards any
irrelevant updates. However, care must be taken when
applying write updates to a page that is being migrated.
A node P2 receiving a page from P1 queues the updates
it receives while the page is in flight. Then, it must apply
the subset of queued writes that have not already been
applied at P1. In other words, P2 must apply exactly
those updates which were received at P1 after P1 sent
the page to P2. An example is shown in Figure 2: write
w1 must be applied, while w2 must be discarded.

Our algorithm for determining which writes to apply
assumes that the network provides causal order deliv-
ery, which is a property of typical Ethernet switches (c.f.
Section 4.5). We provide a brief description here, more
details are available elsewhere [6].

We maintain at each node a counter of writes, and
that counter value is included in a page-fetch reply mes-
sage. As per Figure 2, A denotes the event of P2 send-
ing a fetch message to P1, B the event of P1 receiving
that message and immediately replying to P2, and C the
event of P2 receiving the page. In the figure, the respec-
tive counter values are NA = 0, NB = 1, and NC = 2.
N1 denotes the number of writes from P1 queued at P2
at event C (N1 = 1 in the figure). The algorithm then
becomes:

• discard the N1 messages pending from P1;
• out of the remaining writes, apply the latest NC −
NB (and thus discard the earliest NB − NA − N1

writes).

In the example, the first step will dropw2 and the second
step will apply w1.

3.2.3 Deterministic incremental merge
The write-update algorithm as presented so far is in-
sufficient to guarantee coherence in a strict sense. In
the example shown in Figure 3, where nodes P1 and
P2 simultaneously write to a location X , P1 could ob-
serve X = 1 followed by X = 2 while P2 observes
X = 2 followed by X = 1, in violation of coher-
ence. Two solutions to this problem exist in the litera-
ture [8]: a central sequencer or associating every write
with a globally-unique sequence number. The central
sequencer, while guaranteeing that all nodes converge
on the same value, does not prevent intermediate values
from being observed at a single node, in violation of the
architecture’s specification of memory coherence. It also
presents a bottleneck.

A globally-unique sequence number can be imple-
mented as a local sequence number — synchronised
on communication — with the node number as a tie-
breaker where no causality relationship exists [8, 21].
However, the conventional deterministic merging ap-
proach [8] would involve waiting to receive write mes-
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Figure 3: Coherence problem with write notices, and
its resolution by deterministic merging according to se-
quence numbers.

sages from all nodes before deciding on a final value. As
vNUMA only sends write messages as needed, a partic-
ular node may be quiet for a considerable time, which
would necessitate regular empty write messages to en-
sure coherence.

Note, however, that coherence only requires total or-
dering on a per-location basis. Consider the case where
{w1, w2, .., wn} are a set of writes to the same location,
ordered by their global sequence number. From the point
of view of program semantics, it is not essential to guar-
antee that all of {w1..wn} are observed at any particu-
lar node, as long as the observed subset follows the cor-
rect ordering and culminates in the proper final value.
In other words, observing {w2, w1, wn} is not allowed
since w1 must precede w2, but observing {w1, wn} or
even just {wn} is allowable. Omitted intermediate val-
ues could correspond to the case where a processor was
not fast enough to observe the intervening values.

We make use of this fact to implement a technique
we call incremental deterministic merging. Each incom-
ing write notice is applied immediately, but it is only
applied to a certain location if its sequence number is
greater than that of the last write to that location. Since
every node receives all write notices, the value of that
location always ultimately converges on the write with
the maximum sequence number (wn), with any interme-
diate values respecting the required ordering. Figure 3
shows how this resolves the original problem.

3.3 Atomic operations
The protocol described so far is sufficient for correct-
ness, but highly inefficient for hosting an OS (such as
Linux) that uses atomic instructions (xchg, fetchadd
or cmpxchg) to implement kernel locks. Any of those
operations results in a fall-back to write-invalidate mode,
making kernel locks very expensive. We therefore intro-
duce an extension to the protocol, which we call write-
update-plus (WU+).

An important observation is that, in the Itanium archi-
tecture and other typical processor architectures, there
is no requirement for ordering between an atomic read-
and-write instruction and remote reads. A remote read
can safely return either the value before or after the
atomic operation. Thus, there is no need for invalidation

P1 //

P2 //**VVVVVVVVVVVVVVVVV 44hhhhhhhhhhhhhhhhh

(owner) fetch-and-add X = 1

write X = 5

(X = 1 or X = 5)

(X = 1 or X = 5)

Figure 4: Simultaneous atomic operation and remote
write. P1 is the owner ofX and therefore has permission
to execute atomic operations. According to the Itanium
architecture, the correct result is either 5 or 6, depending
on which operation appears first in the total order. Here,
even with deterministic merging, X = 1 may occur.

of read-only copies when an atomic operation is encoun-
tered; the write phase of the operation can be propagated
to readers via the write-update mechanism.

However, in order to guarantee atomicity of the read
and write phases, only one processor at any time can be
allowed to perform an atomic operation to a particular
location. In the WU+ protocol, we enforce that only the
owner of a page can execute atomic operations on that
page. Any other node must first acquire ownership.

In addition, simultaneous atomic operations and re-
mote writes can lead to incorrect results, as shown in
Figure 4. The WU+ protocol therefore enforces a single
writer for pages targeted by atomic operations. Thus,
at any point, a page can be in one of three modes:
write-invalidate, write-update/multiple-writer, or write-
update/single-writer. The transition from multiple- to
single-writer mode occurs when atomic operations to a
page are intercepted; nodes are synchronously notified
that they can no longer generate write updates to the
page without acquiring ownership.

4 Implementation
The implementation of vNUMA is around 10,000 lines
of code. Of this around 4,000 lines constitute a
generic Itanium virtual machine monitor, the DSM sys-
tem is around 3,000 lines, and the remainder deals with
machine-specific initialisation and fault handling. In to-
tal the hypervisor code segment is about 450KiB (Ita-
nium is notorious for low code density).

Besides generic protocol optimisations, we used a
number of implementation techniques to optimise per-
formance, which we discuss in this section. Some of
these are processor-independent, others make use of par-
ticular Itanium features (but similar optimisations can be
made for other ISAs).

4.1 Avoiding thrashing
A naı̈ve DSM implementation suffers from a page
thrashing problem, indicated in Figure 5. If two nodes
simultaneously write to a page, the page may be trans-
ferred back and forth with no useful work done. A
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Figure 5: Timeline demonstrating the page thrashing
problem. Solid lines indicate transfers of ownership.

frequently-used solution to this problem is to introduce
an artificial delay to break the livelock. However, this
is non-optimal by design, as there is no easy way to de-
termine an appropriate delay, and the approach increases
latency. Instead, we use an approach that guarantees that
at least one instruction is executed before a page is trans-
ferred.

One way to implement this is by putting the machine
into single-step mode after receipt of a page, and not
processing any page requests until the trap that is caused
by the execution of the next instruction is processed (at
which time normal execution mode is resumed).

A cheaper alternative (implemented in vNUMA) is
to consult the performance-monitor register that counts
retired instructions to determine whether progress has
been made since the last page transfer. (Note that check-
ing the instruction pointer is not sufficient, as the code
might be executing a tight loop, which could mask
progress.) If lack of progress is detected, then one could
fall back to the single-step approach. Instead we op-
timistically continue and re-check after a short delay.
While this is similar to the timed-backoff scheme im-
plemented in other DSM systems, vNUMA can use a
very short delay to minimise latency, as the hypervisor
can prevent preemption and thus ensure the opportunity
for progress.

A complication of the chosen scheme is that one in-
struction may access several pages, up to four on the Ita-
nium (an instruction page, a data page and two register-
stack engine pages). This introduces the possibility of a
circular wait condition, and thus deadlock.

We prevent deadlock by applying the anti-livelock al-
gorithm only to pages accessed via explicit data refer-
ences, and not instruction or register stack pages. Since
the data reference is always logically the last reference
made by an instruction — occuring after the instruction
reference, and after any register stack accesses — in-
struction completion is guaranteed once the data page is
obtained, and there is no possibility of deadlock. Indeed
it is not necessary to apply the livelock prevention algo-
rithm for instruction and register stack references, since
instruction accesses are always reads, and the Itanium ar-
chitecture specifies that register-stack pages should not
be simultaneously accessed by multiple CPUs (or unde-
fined processor behaviour could result). Even if a ma-

P1 P2

Write wd: (S=1)
XX XX XX XX

$$
��3333333333333
Write wb: (S=2)
.. .. .. YY

zz
���������������

Observed:
00 00 00 00
XX XX XX XX
XX XX XX YY

Observed:
00 00 00 00
00 00 00 YY
XX XX XX YY

Figure 6: Combining writes of different sizes. On P2,
write wd appears to modify 3 bytes.

licious application were to invoke this livelock case, it
would not prevent the operating system from taking con-
trol and the process could be killed. Thus, this strat-
egy prevents livelock in a well-behaved operating sys-
tem while also preventing any possibility of deadlock.

On some other architectures such as x86, this ap-
proach might still result in deadlock, since a single in-
struction may access several data pages. One possibility
would be to release pages after a random period of time,
even if no progress is made. In the worst case, this re-
introduces the problems associated with backoff algo-
rithms, but should perform better in the common case,
while ensuring that a permanent deadlock does not oc-
cur.

4.2 Incremental merging
In Section 3.2.3 we somewhat vaguely referred to “loca-
tions” as the destinations of writes. Given that real ar-
chitectures support writes of different sizes, we need to
understand at which granularity conflict resolution must
be applied. Figure 6 demonstrates that it must be ap-
plied at the byte, not the word level: the 4-byte write wd

at P1 with sequence number S(wd) = 1 logically pre-
cedes the byte-sized write wb at P2 with S(wb) = 2. If
the newer byte-sized write happens to be applied first at
some node, then when the older 4-byte write is received,
it must only appear to modify the top 3 bytes. This set of
observed values is consistent with the Itanium memory
consistency model [16].

This makes efficient implementation a challenge, as
keeping separate sequence numbers for each byte of
memory is clearly prohibitive. As the majority of up-
dates do not conflict, tracking overhead must be min-
imised.

Fortunately, sequence-number information only needs
to be kept for short periods. Once updates with a certain
minimum sequence number are received from all nodes,
all information related to lower sequence numbers can
be discarded.

This observation enables an implementation of se-
quence numbers that is simple and has low overheads.
We use a fixed-size buffer that stores information about
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address

mask

link

0 1

0x1008

11111111

<invalid>

2 3

0x1008

11110000

1

4

0x1008

00001111

3

5

hashtable

4

address

0x1008oo
kkaagg

S(w) //

Figure 7: Data structure for coherence algorithm. The example shows an incoming write with sequence number 3,
address 0x1008 and mask 11111111 (entire 8 bytes); the unshaded fields show the “before” state (but note that entry
4 is originally linked to entry 1). The hash chain is traversed as far back as sequence number 4; since that logically
newer write wrote 00001111 (the lower four bytes), the mask is constrained to 11110000 (the top four bytes). The
appropriate slot for the new write is then updated and linked in place.

a certain number of preceding writes (Figure 7). Each
write is described by the address of the 64-bit machine
word that it targets and a mask of bytes within that word
(note that we assume that writes never cross a machine-
word boundary). Writes are directly inserted into the
buffer using the least significant bits of their sequence
number as an index; assuming that sequence numbers
are allocated in a unique and relatively dense fashion,
this mapping is quite efficient. For fast lookup, writes
are then indexed using a hash function of their target
address; writes with the same hash value are linked to-
gether in a chain. This chain is always kept in reverse
sequence number order.

The only operation on this data structure is adding a
new write. While traversing the linked list to insert a
write, all logically newer writes to the same address are
encountered, which are used to constrain the mask of
bytes to be written. Once a link field with an older se-
quence number is reached, traversal stops and the new
write is inserted into the chain. The constrained mask is
returned and used to determine the bytes in memory that
are actually modified.

Since a chain is never traversed past the sequence
number of a newly received write, the chains need never
be garbage-collected. It is sufficient to make the buffer
large enough so that it covers the window of sequence
numbers that can be received from other nodes at any
time. Since each node tracks the last sequence number
received from each other node, a violation of this rule
can be detected and a stall induced if necessary; how-
ever such stalls are clearly undesirable and can be elimi-
nated by ensuring that each node does periodically send
updates.

4.3 Write batching
Write update messages are small, and vNUMA batches
many of them into a single Ethernet message in order
to improve performance. Batching can make use of the
processor’s weak memory ordering model. The Itanium
architecture uses release consistency: normal load and
store instructions carry no ordering guarantees, but load

instructions can optionally be given acquire semantics
(guaranteeing that they become visible prior to subse-
quent accesses), while store instructions can optionally
have release semantics (guaranteeing that they become
visible after preceding accesses).

Acquire semantics require no special care, since the
processor guarantees this behaviour on local operations,
and because operations are never visible remotely before
they are visible locally.

Release semantics require special care, however. Con-
sider an accessA that is followed by a write with release
semanticsWrel. Amust become visible on all nodes be-
fore Wrel. The processor interprets the release annota-
tion and guarantees thatA completes beforeWrel. How-
ever, in the case that A is a write, local completion does
not imply remote visibility — writes may be queued by
vNUMA before being propagated to remote nodes. It
is up to vNUMA to guarantee that A is observed before
Wrel.

This is trivial if Wrel is to a write-update page: if A
is to an exclusive page, it becomes visible immediately
and thus necessarily before Wrel; if not, then the DSM
system simply needs to ensure that the writes are sent
in order. The interesting case is where Wrel is to an
exclusive page and A is a queued write to a write-update
page. In this case, the DSM system needs to ensure that
Wrel is propagated before a read response to A.

The challenge is to detect when Wrel is to an
exclusively-held page, as this cannot be made to trap
without making all ordinary writes to the same page fault
as well. Fortunately, the Itanium performance monitor-
ing unit (PMU) provides a counter which can be con-
figured to count releases. When a read request arrives
for an exclusive page, the counter is checked to deter-
mine whether a release occurred on the last interval. If
so, the write buffers are flushed before sending the read
response.

As an additional optimisation, the write queue is ea-
gerly flushed at the time that a write is intercepted, if
a release has been seen (either on that instruction or in
the previous interval) and if the network card transmit
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queue is empty. This expedites transmission of writes,
since a release is usually used in the context of data that
is intended to be observed by another processor. If the
transmit queue is not empty, then the flush is scheduled
to occur after a delay; this rate-limits the update pack-
ets and allows additional writes to accrue while previous
update packets are being transmitted.

4.4 Memory fences
Itanium also provides a memory fence instruction, mf,
that has both acquire and release semantics: loads and
stores cannot pass it in either direction. The PMU counts
mf as a release (as well as an acquire), so the above de-
tection mechanism can be used to ensure that writes are
ordered correctly across a fence. The one case that is
problematic is the ordering between writes and subse-
quent reads. If a write is separated from a subsequent
read by a fence, as in Figure 8, then the strict semantics
of mf would require preventing the read from returning
a cached copy before the write is visible everywhere. In
practice this means that if both both X and Y are ini-
tially zero, at most one processor is allowed to read that
value.

P1
Y = 1

mf
read X

P2
X = 1

mf
read Y

Figure 8: The memory fences prevent that both proces-
sors’ reads return the initial values of the respective vari-
ables.

A strict implementation of the mf semantics would
have severe performance implications in vNUMA. In-
stead, we decided to compromise our goal of full trans-
parency, and require that mf operations are replaced by
atomic operations (equivalent to a lock-based implemen-
tation of mf). Despite the assortment of synchronisation
algorithms implemented in Linux, only one case was
encountered in testing which required a full fence —
the implementation of the wait on bit lock func-
tion — and this was resolved via a simple modification.

4.5 Inter-node communication
vNUMA performance is highly sensitive to communi-
cation latency. This rules out hosting device drivers in-
side a guest OS as done in many modern virtual-machine
monitors. Instead, vNUMA contains, inside the hyper-
visor, latency-optimised drivers for a number of Gigabit
Ethernet chipsets.

We further minimise communication overhead by
defining a very simple protocol at the Ethernet layer. We
use the coalescing feature of Ethernet cards to separate
the headers and payload into different buffers to enable

zero-copy in the common case (in the special case where
a local write occurs while a page is being sent, a shadow
copy is created). Transfers of 4KiB pages either use a
single ‘jumbo’ frame or are broken into four fragments.
Fragmenting the packet is actually preferable to reduce
latency, since the fragments can be pipelined through the
network (this is also why four fragments are preferable
to three, although above this the overheads outweigh the
benefits).

vNUMA also makes extensive use of known prop-
erties of networking hardware, in order to avoid pro-
tocol overhead where possible. Specifically, vNUMA
relies on the network to be (mostly) reliable, to provide
causally-ordered delivery, and ideally to provide sender-
oblivious total-order broadcast. The last requirement
means that if P1 broadcasts m1, and P2 broadcasts m2,
then either all other observers observe m1 before m2,
or all other observers observe m2 before m1. “Sender-
oblivious” means that P1 and P2 do not need to make
any conclusions about the total order; this is an optimi-
sation geared towards Ethernet, where a sender does not
receive its own broadcast.

Causally-ordered delivery is guaranteed by the design
of typical Ethernet switches. Reliability is not guaran-
teed, but packet loss is very rare. vNUMA is therefore
optimised for lossless transmission. Timeouts and se-
quence numbers, combined with a knowledge that the
number of messages in-flight is bounded, are used to
deal with occasional packet loss.

Total-order broadcast usually holds in small switches
but may be violated by a switch that contains several
switch chips connected by a trunk, as a broadcast will
be queued in a local port on one chip before forwarded
over the trunk. It may also be violated when packets are
lost. In this case, remote store atomicity may not hold in
vNUMA. This could potentially be resolved with a more
complex protocol for store atomicity, similar to our ap-
proach to coherence. We did not design such a protocol.
In practice, this limitation is of little significance; many
other processor architectures including x86 also do not
guarantee store atomicity.

4.6 I/O
vNUMA contains support for three classes of virtual de-
vices: network (Ethernet), disk (SCSI) and console.

The network is presented as a single virtual Ether-
net card. As processes arbitrarily and transparently mi-
grate between nodes, and TCP/IP connections are fixed
to a certain IP address, transparency requires a single IP
address for the cluster. Outgoing messages can be sent
from any node, vNUMA simply substitutes the Ether-
net address of the real local network card into outgoing
packets. Incoming packets are all received by a single
node. This has the advantage that the receiving part of
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the driver and network stack always runs on a single
node, but the disadvantage that the actual consumer of
the data may well be running on a different node.

The ideal approach for dealing with disks would be
to connect them to a storage area network (SAN), so
that they can be accessed from any of the nodes. This is
done by Virtual Iron’s VFe hypervisor [34], but is in con-
flict with vNUMA’s objective of employing commodity
hardware. Therefore, the vNUMA virtual machine pro-
vides a single virtual SCSI disk. The present implemen-
tation routes all disk I/O to the bootstrap node, which
contains the physical disk(s). It would be possible to
remove this bottleneck by striping or mirroring across
available disks on other nodes.

The console is only supported for debugging, as users
are expected to access the vNUMA system via the net-
work. All console output is currently sent to the local
console (which changes as processes migrate). Input can
be accepted at any node.

4.7 Other implementation issues
vNUMA virtualizes inter-processor interrupts (IPIs) and
global TLB-purge instructions in the obvious way, by
routing them to the appropriate nodes.

In order to boot up a vNUMA system, all of the nodes
in the cluster must be configured to boot the vNUMA
hypervisor image in place of an operating system kernel.
Then, one of the nodes is selected by the administrator
to be the bootstrap node, by providing it with a guest
kernel image and boot parameters; the other nodes need
no special configuration.

Once the bootstrap node initialises, it uses a discov-
ery protocol to find the other nodes and their resources,
and provides them with information about the rest of the
cluster. It then starts executing the guest kernel. As
part of its normal boot process, the guest OS registers
an SMP startup address and wakes the other nodes by
sending IPIs. The other nodes start executing at the
given address in the globally-shared guest-physical ad-
dress space, thus faulting in the OS image on demand.

4.8 Limitations
Like the ubiquitous x86 architecture, Itanium was orig-
inally not trap-and-emulate virtualizable [24]. While
this has now been mostly remedied by the VT-i exten-
sions [17], a number of challenges [14] remain, partic-
ularly relating to the register stack engine and its inter-
action with the processor’s complex translation modes.
vNUMA utilizes some para-virtualization of the guest
OS, and thus presently only supports Linux guests.

5 Evaluation
We evaluated vNUMA using three types of applications,
which cover some of the most common use scenarios

for large computer systems: computationally-intensive
scientific workloads, software-build workloads, and
database server workloads.

5.1 Test environment
Our test cluster consisted of eight HP rx2600 servers
with 900MHz Itanium 2 processors, connected using a
Gigabit Ethernet via an HP ProCurve 2708 switch. Since
vNUMA does not yet support SMP within a node, only
one CPU was used in each server.

The guest OS was Linux 2.6.16, using default config-
uration settings where possible, including a 16KiB page
size. An exception are the Treadmarks measurements,
which were performed with a 4KiB page size to provide
a fair comparison of DSM performance (since vNUMA
subdivides pages to 4KiB granularity internally).

Pre-virtualization [22] was used to automatically
transform the Linux kernel for execution on vNUMA
(our Itanium machines are not VT-i enabled). Three mi-
nor changes were made manually. Firstly, the Linux
wait on bit lock function was modified as de-
scribed in Section 4.4. Secondly, the clear page
function was replaced with a hypervisor call to al-
low it to be implemented more optimally. Finally,
the kernel linker script was modified to place the
.data.read mostly section on a separate page to
ease read-sharing (the default setup co-allocates this sec-
tion with one which contains locks).

Results presented are a median of the results from at
least ten runs of a benchmark. The median was chosen
as it naturally avoids counting outliers.

5.2 HPC benchmarks
HPC is a main application of compute clusters, and
therefore a natural application domain for vNUMA.
While many HPC applications use an explicit message-
passing paradigm as supported by libraries such as MPI
[26], a significant number rely on hardware-supported
shared memory or DSM, and are therefore well-suited
to execution on vNUMA. We used TreadMarks [19] as
a DSM baseline. While TreadMarks may no longer rep-
resent the state of the art in DSM research, it is one of
the few DSM systems that has been widely used in the
scientific community.

TreadMarks is distributed with an assortment of
benchmark applications, mostly from the Stanford
SPLASH-2 suite [36] and the NAS Parallel Bench-
marks from NASA [10]. To avoid biasing the eval-
uation against TreadMarks, we used the unmodified
TreadMarks-optimised sources, and for vNUMA pro-
vided a stub library that maps TreadMarks APIs to
fork() and shared memory. We also ran the bench-
marks on one of our SMP servers on native Linux to
show best-case scalability (although limited to the two
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Figure 9: HPC benchmark performance summary. Horizontal axes represent number of nodes, vertical axes represent
speed-up.

CPUs available).
Figure 9 shows an overview of results for each bench-

mark. While the ultimate limits of scalability are diffi-
cult to establish without a much larger cluster, vNUMA
was designed for optimal performance on a small clus-
ter. As the graphs show, vNUMA scalability is at least
as good as TreadMarks on all benchmarks, and signifi-
cantly better on Barnes, Water, TSP and IS. In abso-
lute terms MG exhibits the poorest scalability, but it is a
benchmark that poses challenges for all DSM systems,
due to the highly irregular sizes of its three-dimensional
arrays.

5.3 Compile benchmark
Large servers and clusters are frequently used for soft-
ware builds. Figure 10 compares vNUMA’s scalability
with distcc [29] when compiling vNUMA. As com-
pilation throughput tends to be significantly affected by
disk performance, we eliminated this factor by building
on a memory file system (RAM disk).

The figure shows that vNUMA scales almost exactly
as well as distcc. The line labelled “Optimal” is
an extrapolation of SMP results, based on an idealised
model where the parallelisable portion of the workload
(86 %) scales perfectly. On 4 nodes, the ideal speed-up
is 2.8, while both vNUMA and distcc achieve 2.3. On
8 nodes, the ideal speed-up is 4.0, while both vNUMA
and distcc achieve 3.1.

In the case of distcc, the overheads stem from the
centralised pre-processing of source files (which creates
a bottleneck on the first node), as well as the obvious
overheads of transferring source files and results over the
network. In the case of vNUMA, the largest overhead is
naturally the DSM system. Of the 15 % overhead ac-
countable to vNUMA in the four node case, DSM stalls
comprise 7 %, the cost of intercepting writes is around
3 %, network interrupt processing around 2 % and other
virtualization overheads also around 2 % (see also Sec-
tion 5.4).

The majority of the DSM stalls originate from the
guest kernel. This is because the compiler processes
do not themselves communicate through shared mem-
ory. Their code pages are easily replicated throughout
the cluster and their data pages become locally owned.
However, inputs and outputs are read from and written to
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Figure 10: Compile benchmark performance summary
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Figure 11: Effect of protocol on compile benchmark

the file system, which shifts the burden of communica-
tion onto the kernel. In general, the compile benchmark
can be considered representative of an application that
consists of many processes which do not interact directly
but interact through the filesystem.

Profiling the kernel overheads shows that the largest
communication costs arise from maintaining the page
cache (where cached file data is stored), and acquiring
related locks. Similarly the file system directory en-
try cache (which caches filenames), and related locks,
also feature as major contributors. Nonetheless, consid-
ering that the overall overhead is no greater than that of
distcc— a solution specifically crafted for distributed
compilation — this seems a small price to pay for the
benefits of a single system image.

5.4 Effect of DSM protocol optimisations
To quantify the benefits of the chosen DSM protocols,
we also executed the compile benchmark at three dif-
ferent levels of protocol optimisations: using the ba-
sic Ivy-like write-invalidate protocol, using our write-
update protocol, and using our write-update-plus (WU+)
protocol which intercepts atomic operations as well as
ordinary writes. The results are summarised in Fig-
ure 11.

Performance is improved significantly by the more
advanced protocols, with speed-up on four nodes in-
creasing from 1.84 to 2.02 to 2.34. This is due to
a sharp reduction in the number and latency of stalls.
With the write-invalidate protocol, 420,000 synchronous
stalls are incurred, totalling 26.0 seconds (an average
of 62 µs/stall, which is dominated by the high latency
of fetching page data that is required in 66% of cases).
The write-update protocol reduces the number of syn-

chronous stalls to 285,000, with a proportional decrease
in stall time to 19.2s. However, the write-update-plus
protocol has the most dramatic impact, reducing stall
time to only 5.1s. While the total number of stalls is still
164,000, the majority of these are now ownership trans-
fers, which involve minimum-length packets and there-
fore have low latency (17 µs in the common case). The
number of stalls that must fetch data has decreased to
only 28,000, which shows the effectiveness of this pro-
tocol in enhancing read-caching.

The price of this improved read-caching is that many
more writes must be intercepted and propagated, which
is reflected in higher overheads both for intercepting the
writes (reflected in hypervisor overhead) and at the re-
ceivers of the write notices (reflected in interrupt over-
head). Nonetheless there is still a significant net perfor-
mance improvement.

5.5 Database benchmark
Databases present a third domain where high-end
servers and clusters are used. We benchmarked Post-
greSQL [30], one of the two most popular open source
database servers used on Linux. The open-source na-
ture was important to be able to understand performance
problems. For the same reason — ease of understanding
— simple synthetic benchmarks were employed instead
of a complex hybrid workload such as TPC-C. Two ta-
bles were initialised with 10,000 rows each: one describ-
ing hypothetical users of a system, and the other repre-
senting posts made by those users on a bulletin board. A
pool of client threads then performed continuous queries
on these tables. The total number of queries completed
in 30 seconds (after 5 seconds of warm-up) is recorded.
This is similar in principle to benchmarks like TPC-C,
but utilizes a smaller number of tables and a simpler mix
of transactions.

Four different types of queries were used: SELECT,
which retrieves a row from the users table by matching
on the primary key; SEARCH, which retrieves a row
from the users table by searching a column that is not in-
dexed; AGGREGATE, which sums all entries in a cer-
tain column of the users table, and COMPLEX, which
returns information about the five most prolific posters
(this involves aggregating data in the posts table, and
then performing a ‘join’ with the user table).

The results are summarised in Figure 12. vNUMA
performs well for COMPLEX, which involves a base
throughput of tens of queries a second. However, per-
formance is degraded for the higher-throughput work-
loads, SEARCH and AGGREGATE, and most signif-
icantly so for SELECT, which involves little computa-
tion per query and can thus usually achieve thousands of
queries a second on a single node. SEARCH and AG-
GREGATE barely manage to regain single-node perfor-
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Figure 12: Database benchmark performance summary. Horizontal axes represent number of nodes.

mance on 8 nodes, while SELECT does not scale at all.
The cause of this throughput-limiting behaviour is

simple: using multiple distributed nodes suddenly in-
troduces the potential for much larger communication
and synchronisation latencies. If one considers that each
query involves at least a certain number of these high-
latency events, then the maximum query throughput per
node is inversely proportional to the number and cost of
those events.

A breakdown of processor time usage for SELECT
shows that only 14 % of available processor time is used
for user-level computation, which explains why the four
nodes cannot match the performance of a single node.
Another 12 % is spent idle, which occurs when the Post-
greSQL server processes are waiting to acquire locks.
DSM stalls account for 57 % of processor time, with
three-quarters of that being in userspace and specifically
in the PostgreSQL server processes, and the other quar-
ter in the Linux kernel. There is 9 % overhead for log-
ging writes for the write-update protocol, and 2 % vir-
tualization overhead (while SELECT normally experi-
ences high virtualization overheads, the fact that it is
only running 14 % of the time makes the virtualization
overhead insignificant).

Further analysis, using performance counters, con-
firms that the major overheads are related to locking
within PostgreSQL. The system uses multiple layers of
locks: spinlocks, “lightweight” locks built on spinlocks,
and heavyweight locks built on lightweight locks. Im-
portantly, each heavyweight lock does not use its own
lightweight lock, but there are a small number of con-
tiguous lightweight locks which are used for protecting
data about all of the heavyweight locks in the system.
Thus, contention for this small number of lightweight
locks can hamper the scalability of all heavyweight
locks. In addition to this bottleneck, the multi-layer
design substantially increases the potential overheads
when lock contention occurs.

While this result is disappointing for vNUMA, it is
not reasonable to extrapolate from PostgreSQL and as-
sume that all database software will experience such se-
vere locking problems. Since vNUMA can provide high
levels of read replication and caching — and potentially
a large amount of distributed RAM that may be faster
than disk — designs that allow lock-free read accesses

to data, such as via read-copy-update techniques [12,25],
could theoretically provide very good performance. In
this case, kernel performance would again become the
ultimate challenge.

6 Related Work
Ivy [23] is the ancestor of most modern DSM systems.
Ivy introduced the basic write-invalidate DSM protocol
that forms an integral part of vNUMA’s protocol. Mi-
rage [11] moved the DSM system into the OS kernel,
thus improving transparency. It also attempted to ad-
dress the page thrashing problem, which was mentioned
earlier in Section 4.1. Ivy and Mirage were followed by
a large number of similar systems [28].

Munin [5] was the first system to leverage release con-
sistency to allow multiple simultaneous writers. Aside
from release consistency, other systems have also im-
plemented entry consistency (Midway [4]), scope con-
sistency (JIAJIA [9], Brazos [33]) and view-based con-
sistency (VODCA [15]), which further relax the consis-
tency model by associating specific objects with critical
sections. However, all of these systems rely on the pro-
grammer to adhere to a particular memory synchronisa-
tion model, and thus they are not suitable for transparent
execution of unmodified applications.

Recently there has also been much interest in virtual-
ization, with systems such as Xen, VMware ESX Server
and Microsoft Virtual Server making inroads in the en-
terprise. The majority of hypervisors are designed for
the purposes of server consolidation, allowing multi-
ple OS instances to be co-located on a single physical
computer. vNUMA is, in a sense, the opposite, allow-
ing multiple physical computers to host a single OS in-
stance.

Since our initial work [7], three other systems have
emerged which apply similar ideas to vNUMA: Virtual
Iron’s VFe hypervisor [34], ScaleMP’s vSMP [32] and
the University of Tokyo’s Virtual Multiprocessor [18].
While these systems all combine virtualization with dis-
tributed shared memory, they are limited in scope and
performance, and do not address many of the challenges
that this work addresses. In particular, both VFe and
the Tokyo system use simpler virtualization schemes and
distributed shared memory protocols, resulting in severe
performance limitations, especially in the case of Virtual
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Multiprocessor. Virtual Iron attempted to address some
of these performance issues by using high-end hardware,
such as InfiniBand rather than Gigabit Ethernet. How-
ever, this greatly increases the cost of such a system,
and limits the target market. Virtual Iron has since aban-
doned the product for commercial reasons, which largely
seems to stem from its dependence on such high-end
hardware. vNUMA, in contrast, demonstrates how novel
techniques can achieve good performance on commod-
ity hardware.

Little is known about vSMP, other than that it runs
on x86-64 hardware and also relies on InfiniBand. The
company claims scalability to 128 nodes, but only pub-
lishes benchmarks showing the performance of (single-
threaded) SPEC benchmarks. No real comparison with
vNUMA is possible with the information available.

7 Conclusions and Future Work
We have presented vNUMA, a system that uses virtual-
ization to present a small cluster as a shared-memory
multiprocessor, able to support legacy SMP/NUMA
operating-system and multiprocessor applications. This
approach provides a higher level of transparency than
classical software DSM systems. Implementation in the
hypervisor also has the advantage that many operations
can be implemented more efficiently, and can make use
of all the features of the underlying processor architec-
ture. However, a faithful mirroring of the underlying
ISA is required.

The different trade-offs resulted in protocols and im-
plementation choices that are quite different from most
existing DSM systems. Specifically, we developed
a protocol utilizing broadcast of write-updates, which
adaptively transitions between write-update/multiple-
writer, write-update/single-writer and write-invalidate
modes of operation. We also designed a deterministic
incremental merge scheme that can provide true write
coherence.

The evaluation showed that vNUMA scales signifi-
cantly better than TreadMarks on HPC workloads, and
equal to distcc on compiles. Database benchmarks
showed the limitations of vNUMA for workloads which
make extensive use of locks.

At the time this project was commenced (2002), Ita-
nium was envisaged as the commodity system of the
future, a 64-bit replacement of x86. This clearly has
not happened, and as such, hardware supporting the
present vNUMA implementation is not exactly consid-
ered “commodity”, widespread deployment of Itanium
systems in HPC environments notwithstanding. We are
therefore investigating a port of vNUMA to AMD64
platforms. Some optimisations, such as those described
in Section 4.3, will not apply there, but there is scope for
other architecture-specific optimisations.
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