
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Formalizing adequacy

James Cheney 1 Rene Vestergaard 2 Michael Norrish 3

Abstract

Adequacy is an important criterion for judging the correctness of formal reasoning. The issue is particularly
subtle in the expansive case of approaches to languages with name-binding. We posit that adequacy of
a novel representation technique is best addressed by formalizing an isomorphism or, more generally, an
interpretation explicating the new approach in terms of a more conventional one. We present an example
formalization of an isomorphism relating nominal and higher-order abstract syntax techniques. We also
outline steps towards a systematic framework that could be used for proving adequacy results automatically,
which we believe would help make representation techniques more transparent to end-users of mechanized
metatheory verification systems, and provide insight into the relative merits of different approaches.

Keywords: adequacy, isomorphism, interpretation, nominal abstract syntax, higher-order abstract syntax

1 Introduction

Adequacy is an important criterion for judging the correctness of formal reasoning

about languages with name-binding. Intuitively, adequacy means that an object

language corresponds with its representation in a formal system in a way that justi-

fies reasoning about the object language via its representation. The term adequacy

was introduced by Harper, Honsell and Plotkin in their seminal work on LF [3].

However, as Crary and Harper have pointed out, adequacy is also important for

other formalisms for mechanized metatheory, including nominal techniques [1].

To avoid confusion, we introduce a distinction between two senses of the term

adequacy. By informal adequacy we mean that the formalization of a mathemati-

cal object matches its informal definition. Since informal mathematical definitions

are sometimes ambiguous or subjective, informal adequacy is in general a subjec-

tive judgment, and thus beyond the scope of formalization. Conversely, by formal

adequacy we mean that two candidate formalizations of an object language are

(provably) equivalent in an appropriate sense. Formal adequacy cannot guarantee

informal adequacy; however, it is comforting if we can prove that a novel represen-

tation is equivalent to a well-understood, conventional one (and disconcerting if we

1 University of Edinburgh, Scotland. Email: jcheney@inf.ed.ac.uk
2 JAIST, Ishikawa, Japan. Email: vester@jaist.ac.jp
3 NICTA, Australia. Email: Michael.Norrish@nicta.com.au

c©2009 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:jcheney@inf.ed.ac.uk
mailto:vester@jaist.ac.jp
mailto:

Cheney, Vestergaard and Norrish

cannot). Henceforth, we just write “adequacy” for “formal adequacy”.

An LF representation is considered adequate with respect to an object language

(equipped with a suitable notion of substitution) provided there exists a bijection

from the object-language terms to LF terms of an appropriate type that is compo-

sitional in the sense that the object-language substitution maps to metalanguage

substitution. Proving adequacy properties in LF requires first establishing that LF

terms have unique β-normal, η-long canonical forms [4,5], and once this is done,

showing that a given encoding function is bijective and compositional.

Verifying adequacy is essential for avoiding subtle errors in reasoning. However,

adequacy proofs are tiresome and are typically conducted on paper using infor-

mal approaches to name-binding; thus, they share the well-known disadvantages

of paper-and-pencil syntactic proofs. There are a few treatments of adequacy for

other techniques besides LF [3,4,5,8], notably Crole’s [2] development of adequacy

for the Hybrid system, Norrish and Vestergaard’s [7] formalization of isomorphisms

among several definitions of the untyped lambda-calculus, and Urban’s isomorphism

between classical and nominal representations of the lambda-calculus [9, Sec. 3].

As far as we know none of this work has been mechanically formalized other than

Norrish and Vestergaard’s work. There appears to be little agreement as to how to

define adequacy for other representations besides higher-order abstract syntax.

In this paper, we advocate formalizing adequacy via isomorphisms or inter-

pretations among appropriate structures, following standard definitions in model

theory [6]. Using Nominal Isabelle/HOL [9], we verify an isomorphism between

canonical higher-order abstract syntax and nominal abstract syntax representations

of the untyped lambda-calculus. This result has not been formalized mechanically

before as far as we know, and adds to the existing body of evidence [7] that these

and other formalisms correctly capture the “real” lambda-calculus. However, iso-

morphisms are limited to structures that share a common signature. To avoid this

limitation, we introduce a more general form of adequacy based on interpretations

and speculate on the development of a systematic framework for adequacy that

would decrease the effort involved in proving adequacy results and shed light upon

the relationships among different representation formalisms.

2 Adequacy via isomorphism: an example

We take the view that the goal of adequacy is to justify reasoning about one struc-

ture by reasoning about another. It is nontrivial to relate different formalisms

because they may use entirely different notions to talk about “the same” things.

The concept of isomorphism is a natural way to capture what is really “the same”

about two candidate representations of, say, the lambda-calculus, while allowing us

to abstract away from implementation details.

Here, we consider first-order relational structures. Concretely, let σ be a rela-

tional signature and M,N be models of σ (in the usual sense in first-order logic).

Recall that an isomorphism of relational structures is a function h : M → N that is

bijective and such that for every n-ary relation R ∈ σ, we have RM(x1, . . . , xn) ⇐⇒
RN (h(x1), . . . , h(xn)). Isomorphisms among first-order structures preserve all prop-

erties that are first-order definable using the relations in σ. Thus, as a first approx-

2

Cheney, Vestergaard and Norrish

M ::= c | x | MN | λx.N A ::= a | A → A′

x : A ∈ Γ
Γ ⊢ x ↑ A

c : A ∈ Σ
Γ ⊢ c ↑ A

Γ ⊢ M ↑ A1 → A2 Γ ⊢ N ↓ A1

Γ ⊢ M N ↑ A2

Γ ⊢ M ↑ A

Γ ⊢ M ↓ A

Γ, x : A1 ⊢ M ↑ A2

Γ ⊢ λx.M ↓ A1 → A2

Σλ = {Λ : type, lam : (Λ → Λ) → Λ, app : Λ → Λ → Λ}

app(lam(λx.M) N) ; M [N/x]
M ; M ′

lam(λx.M) ; (λx.M ′)

M ; M ′

app M N ; app M ′ N
N ; N ′

app M N ; app M N ′

Fig. 1. Syntax, typing rules, signature, and reduction rules for λHO.

h(x) = x h(t u) = app (h(t)) (h(u)) h(λx.t) = lam (λx.h(t))

Fig. 2. Encoding function

imation we define M adequate with respect to N to mean that M and N are

isomorphic. This property is symmetric in M and N , but often M is taken to be a

more concrete or well-understood formalization and N is taken to be more abstract.

For example, consider σλ consisting of a binary relation symbol ;. First-order

formulas over σλ capture many standard properties of the lambda-calculus. Norrish

and Vestergaard formalized σλ-isomorphisms among several representations of the

λ-calculus, including de Bruijn and nominal representations. We have formalized

an isomorphism between nominal datatypes λN and λHO corresponding to plain λ-

terms and a higher-order syntax presentation of λ-terms. We omit the details of λN

(which can be found in [7,9]), and focus on λHO and the translation h : λN → λHO.

Higher-order abstract syntax is based on a metalanguage consisting of a typed

lambda-calculus with constants, quotiented by α, β, and η-equivalence; see Figure 1.

For clarity, we write t, u for object-terms and M,N for metalanguage terms. Follow-

ing Harper and Licata [4], to avoid having to deal with β and η-equivalence here, we

assume that expressions are maintained in canonical forms, according to the typing

rules in Figure 1. The signature Σλ defines a type constant Λ and term constants

lam and app. We define λHO as the set of terms {M | ∃Γ ∈ Λ∗.Γ ⊢ M ↓ Λ}, where

Λ∗ is the set of contexts Γ such that every binding in Γ is of the form x : Λ.

Theorem 2.1 The encoding function h : λN → λHO is an isomorphism of σλ-

structures.

Proof. [Outline] We have defined λN , λHO, and their associated substitution func-

tions and reduction relations in Nominal Isabelle/HOL using the Nominal Datatype

Package [9], and verified that h is injective, surjective, commutes with substitu-

tion, and preserves and reflects reduction. It turns out to be easier to prove these

properties for untyped HOAS terms, using an inductive predicate range that (prov-

ably) characterizes the range of h. It then suffices to show that range(M) holds iff

∃Γ ∈ Λ∗.Γ ⊢ M ↓ Λ holds. This seems straightforward in principle, but the reverse

direction is nontrivial to formalize because there are many inversion steps and cases

to consider, and it appears necessary to proceed by height induction on M .

Another subtlety is in the proof of reflection. It is difficult to prove that h(t) ;

3

Cheney, Vestergaard and Norrish

h(u) implies t ; u directly by induction; instead, we define the inverse h−1 : λHO →
λN , and prove that M ; N implies h−1(M) =⇒ h−1(N) provided M,N ∈ λHO.

However, we cannot easily define h−1 by nominal primitive recursion in Nominal

Isabelle/HOL. Instead, we show that h is injective, define h−1 as the left-inverse to

h, and prove that h−1 satisfies the equations:

h−1(x) = x h−1(app M N) = (h−1(M)) (h−1(N)) h−1(lam (λx.M)) = λx.h−1(M)

We can then easily prove h−1 is compositional and preserves reduction on the range

of h, hence h reflects reduction.

In our formalization we use ordinary substitution (defined in the usual way using

nominal primitive recursion), not hereditary substitution [4]. Ordinary substitution

suffices here because it happens to be true that Γ ⊢ M ↓ Λ implies Γ ⊢ M ↑ Λ,

provided Γ ∈ Λ∗ . This would not be true if we distinguished canonical and atomic

forms at the syntactic level (as in [4,5]), or if Γ could contain function variables. 2

3 A systematic approach based on interpretations

To facilitate reasoning about adequacy, we envision identifying classes of object

languages definable using various representations, and proving general adequacy

results systematically for all languages in such classes. For example, we conjecture

that all languages defined via nominal datatypes can be translated to “equivalent”

de Bruijn, HOAS, or other conventional approaches. However, care must be taken

with the definition of the appropriate notion of “equivalence” here. Recall that

we proved that λN and λHO were isomorphic with respect to a fixed σλ. But in

general we do not know what the signatures will be; moreover, the two structures

might have different natural signatures. How can we consider one structure to be

equivalent to another one that might be using different basic language?

We draw inspiration from the idea of interpretation in model theory [6]. Let

M,N be relational structures over (possibly different) signatures σ and τ respec-

tively. An interpretation Γ = (γ, PΓ, RΓ, . . .) of (M, σ) in (N , τ) consists of: a func-

tion γ : N → M, a τ -formula PΓ(x) defining a subset NΓ ⊆ N such that γ is surjec-

tive from NΓ, i.e., γ[NΓ] = M, and for each n-ary R ∈ σ, a τ -formula RΓ(x1, . . . , xn)

such that for every a1, . . . , an ∈ NΓ, we have M |= R(γ(a1), . . . , γ(an)) if and only

if N |= RΓ(a1, . . . , an). Moreover, we can extend any interpretation Γ to a map

from σ-formulas φ to τ -formulas φΓ by replacing occurrences of R(x) with RΓ(x)

and relativizing quantifiers by taking (∀x.φ(x))Γ := ∀x.PΓ(x) ⇒ (φ(x))Γ. It is im-

portant to note that we treat equality (if present) as part of the signature, so that

equality in M may be interpreted as an arbitrary formula =Γ.

Theorem 3.1 (Thm. 4.3.1 [6]) If Γ : (M, σ) → (N , τ) is an interpretation then

M |= φ(γ(a)) ⇐⇒ N |= φΓ(a) for all a ∈ NΓ.

Thus, an interpretation yields an “isomorphic copy” of M inside N , without

requiring M and N to use the same language. Interpretations are closed under

composition and form a natural class of morphisms among pairs (M, σ) of signa-

tures and structures. Any isomorphism of structures over the same signature (as,

for example, in the previous section) clearly extends to an interpretation (in both

4

Cheney, Vestergaard and Norrish

directions). Interpretations can also be used to formulate adequacy theorems among

different formalisms, for example:

Example 3.2 Consider structures (λα,;), the set of lambda-terms quotiented by

α-equivalence, and (λraw,;,≡), the set of raw lambda-terms equipped with reduc-

tion and alpha-equivalence relations; λα is interpreted in λraw by Γ : (λα,;) →
(λraw,;,≡α), where γ(x) = [x]≡, PΓ(x) = true, and x →Γ y = ∃x′, y′.x ≡α

x′ ∧ x′
; y′ ∧ y′ ≡α y.

4 Future directions

To our knowledge, the most rigorous previous treatments of adequacy for HOAS are

Harper and Pfenning [5, Sec. 7] and Harper and Licata [4, Sec. 3]. Our adequacy

result considers a smaller object-language and simply-typed meta-language, but we

have completely formalized it in Nominal Isabelle/HOL. It would be worthwhile to

carry out a similar development of adequacy for a dependently-typed LF encoding of

a multi-sorted object language such as the typed lambda-calculus, perhaps following

the development in Harper and Licata [4].

Verifying adequacy does not seem inherently difficult, but is tedious and must

currently be redone for each new representation. Instead of doing this on a case-by-

case basis, we are investigating fundamental principles for systematically reasoning

about adequacy. In [7], we considered structural collapses, which are intermediate

between isomorphisms and interpretations; in fact, the γ in Example 3.2 is a struc-

tural collapse. An adaptation of the First Isomorphism Theorem of Algebra tells us

that two structures obtained, e.g., from raw syntax, by two collapsing functions with

equal kernels will be isomorphic. Conversely, we have started investigating inverse

isomorphism results that give sufficient conditions for when two structures that

collapse to a common formalism will enjoy similar properties. We plan to integrate

algebraic and model-theoretic techniques in the context of interpretations.

References

[1] Karl Crary and Robert Harper. Higher-order abstract syntax: setting the record straight. SIGACT
News, 37(3):93–96, 2006.

[2] Roy Crole. Hybrid adequacy. Technical Report CS–06–011, University of Leicester, 2006.

[3] Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, 1993.

[4] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. J. Funct.
Program., 17(4-5):613–673, 2007.

[5] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. ACM
Trans. Comput. Log., 6(1):61–101, 2005.

[6] Wilfrid Hodges. A shorter model theory. Cambridge University Press, 1997.

[7] Michael Norrish and René Vestergaard. Proof pearl: De Bruijn terms really do work. In Klaus Schneider
and Jens Brandt, editors, TPHOLs, volume 4732 of Lecture Notes in Computer Science, pages 207–222.
Springer, 2007.

[8] F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume II, chapter 17, pages 1063–1147. Elsevier Science, 2001.

[9] Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning, 40(4):327–356, 2008.

5

	Introduction
	Adequacy via isomorphism: an example
	A systematic approach based on interpretations
	Future directions
	References

