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Abstract

This paper presents a high-level access control model of the seL.4 microkernel. We extend an earlier formali-
sation by Elkaduwe et al with non-determinism, explicit sharing of capability storage, and a delete-operation
for entities. We formally prove that this new model can enforce system-global security policies as well as
authority confinement. By treating sharing explicitly in the abstract access control model we simplify
considerably the refinement proof towards the sel.4 implementation. To our knowledge this is the first
machine-checked access control model with explicit sharing of authority.
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1 Introduction

This paper presents an extension to the machine-checked, high-level security anal-
ysis [8] of seL4. The sel4 kernel [4,6] is an evolution of the L4 kernel series [11].
The sel.4 kernel aims to specifically support secure, embedded devices.

The existing formal access control model by Elkaduwe et al [8] is based on the
classic take-grant model [12] and also, in parts, takes inspiration from the EROS
capability model [16]. The initial focus of the sel4 security model has been to
prove security theorems about the model, showing that it is suitable for enforcing
mandatory, system-global access control policies and authority confinement. Isola-
tion properties have been shown in more recent work [5].

The ultimate aim is to show a refinement relation between the model of Elka-
duwe et al and an implementation in C of the seL.4 kernel. This relation is to be
shown in three steps. Our focus is the first: refinement between the security model
and an abstract operational specification, which was developed in the L4.verified
project [3]. That project aims to show the other two steps: refinement between the
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operational specification and an executable specification, and from the latter to an
implementation in C [10].

Our attempts to prove refinement between the access control model and the
operational specification have shown that certain features of sel.4, which are also
present in other capability systems, make this proof especially complicated. These
features are, in increasing order of complexity: non-determinism, deletion of entities
(not just capabilities), and sharing of capability storage. The first, non-determinism,
is mostly technical and easy to treat. The second, deletion of entities, is conceptu-
ally simple, but introduces a mismatch between entities that occur in the security
specification and those that exist in the implementation; an example is presented
later. The third, sharing of capability storage, introduces a conceptual problem
and, if one naively formalises the classical approach, a great deal of unnecessary
complexity into the relation between abstract and concrete states in the refinement
proof.

The contribution of this article is to treat all of these features directly in the
security model, extending both the existing formalisation and proof of security. In
particular,

* we extend the existing model to include non-determinism for an accurate refine-
ment of failure conditions,

* we extend the model to include deletion of entities, which introduces a change to
the assumptions of the security theorems, and

* we provide the first formal model and security analysis of shared capability stor-
age. Shared capability storage changes the basic predicates of the analysis and
introduces additional possibilities for transmitting authority and information. We
show how the analysis can be adjusted to account for shared authority and we
prove that the adjusted system is still suitable for enforcing mandatory, system-
global access control policies as well as authority confinement and isolation.

All formal definitions and theorems in this paper are machine-checked in the
theorem prover Isabelle/HOL [14].

The resulting security model supports a refinement relation that matches entities
and capabilities in the security model almost one-to-one with kernel objects in
the operational model. This makes the security analysis slightly harder, but it
significantly reduces the effort of showing refinement. The latter is a much larger
activity than the security analysis.

While the refinement proof is not yet complete, enough progress has been made
to expose a security problem in an early version of the operational specification: even
though a grant operation to transfer authority from a thread A to another thread B
is checked explicitly when started, an interruption may occur, and another check is
not made upon resuming the operation, even though the authority could have been
revoked from A during that interruption. The completion of the operation would
therefore be unauthorised and would not refine the security model where all such
operations are atomic. The problem has been fixed in the meantime, and shows
how refinement can be used to expose subtle defects such as this one.

Although our work was motivated by the desire to conduct a refinement proof
for selL4, we believe that the model of shared capability storage is general and
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interesting on its own. Sharing is a common performance optimisation and likely
to be important in resource constrained devices. Instead of sweeping it under the
carpet “without loss of generality”, we believe that treating it explicitly improves
the clarity of a design and the precision of corresponding analyses.

After introducing notation, we proceed by giving a brief overview of the sel.4
kernel and stating precisely what is meant by shared capability storage. We examine
how the traditional argument for shared capability storage leads to unnecessary
complexity, and then present the details of our extended formal access control model
and the associated security theorems.

2 Notation

Our meta-language Isabelle/HOL conforms for the most part with normal mathe-
matical notation. This section introduces some exceptions, as well as a few basic
data types and primitive operations on them.

The space of total functions is denoted by =. Type variables are written ‘a, 'b,
etc. The notation ¢ :: 7 means that HOL term ¢ has HOL type 7.

Sets (type 'a set) follow the usual mathematical convention. We write f ¢ A for
a function f :: ‘a = b applied to a set ‘a set.

The option type
datatype a option = None | Some ‘a

adjoins a new element None to a type ‘a. We use 'a option to model partial functions.
Function update is written f(z := y) where f :: ‘/a = 'b, z :: ‘a and y :: 'b and
f(z — y) stands for f (z := Some y).

Isabelle supports tuples with named components. For instance, we write record
point = {x :: nat, y :: nat} for the type point with two components of type nat. If
p is a point, a possible value for p is notated (| z = 5, y = 2 |). The term z p stands
for the z-component of p. Updating p from a current value ( z = 5, y = 2 |), with
the update notation p( z:= 4 |), gives ( z =4, y = 2 |).

The keyword types introduces a type abbreviation.

Implication in proof rules and theorems is denoted by = and
[ Ai; ...; A, ] = A abbreviates 4 = (... = (4,, = A)... ). Implication
inside object formulae is written —. This distinction is a technical artefact of
Isabelle/HOL.

3 sel4 and shared capability storage

As mentioned in the introduction, sel.4 is a microkernel in the L4 family. It com-
prises 8,700 lines of C code and provides the following basic services: inter-process
communication (IPC), threads, virtual memory, interrupts, and capability-based
access control. Access control governs all kernel services; in order to perform any
system call, a user process must present capabilities that have sufficient access rights
for the requested service. Consider, as two examples, thread communication and
creation. Threads do not address one another directly, but rather through com-
munication endpoints maintained within the kernel. Two capabilities are required
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on an endpoint to send a message through it. The sending thread requires a write
capability and the receiving thread requires a read capability. Creating a thread
involves allocating both a thread control block and a new capability to access that
block. Thus, for one thread to create another it must possess two distinct capa-
bilities for accessing kernel memory: one with space sufficient to store the thread
control block and another with space sufficient to store the new capability.

To support highly dynamic and configurable systems, the kernel allows capabil-
ities to be copied and revoked, and kernel objects, like the endpoints and thread
control blocks mentioned above, to be deleted. The required data structures are the
most complex part of the seL4 implementation [3]. Copying occurs when threads
grant capabilities, and hence delegate authority, to other threads via IPC. If a ca-
pability is later revoked the kernel must transitively revoke all copies made from
it, which simplifies the removal of access to resources from entire subsystems but
necessitates careful bookkeeping in the kernel. An object can only be deleted if it
cannot be accessed from other parts of the system, since the corresponding memory
may be reused subsequently for unrelated purposes.

Capabilities are stored in kernel objects called CNodes. Naturally, access to
the CNode objects themselves is governed by capabilities of another type. But
since the security model abstracts from the types of capabilities, we instead mark
capabilities that provide access to CNode storage with a special store right. Each
thread control block contains a store capability for a CNode, which may then contain
store capabilities for other CNodes, and so on, giving the associated thread access
to a directed graph of capability storage—termed a CSpace. In practice, the CSpace
is often a tree or acyclic graph, but no restriction is made in our model. In terms
of this paper, the most interesting observation is that a CNode, and thus the other
CNodes reachable from it, may be linked into multiple CSpaces: capabilities may
be shared between threads.

Capability models must address the issue of sharing if conclusions drawn from
them are to be valid. In a traditional capability model, the sharing of CNodes can
lead to spooky action at a distance. Consider three threads A, B, and C, where A
has a grant capability to B, but not to C, and where B and C share all capability
storage. Were A to grant a capability to B, it would appear in the storage of B, and,
because of the sharing, also in the storage of C—even though A is not authorised to
grant to C! Similarly, were a capability deleted from B, it would also disappear from
C. A high-level security analysis that neglects the possibility of transfers through
the indirect channel of shared storage would be incorrect.

Sharing is traditionally addressed by arguing around it: that B and C share
capability storage amounts to grant authority between them in both directions and
should be modelled as such. Any action on the capabilities of B must be immediately
mirrored on those of C. There is nothing conceptually wrong with this argument, but
as sharing structures become more complicated, so too does the relationship between
the abstract model and the details of an implementation. The security model must
express both normal grant capabilities as well as additional ones to account for
sharing. The formalisation of the relationship between it and an implementation
model is complex, and proving that it holds is cumbersome. Moreover, there is
no longer a simple correspondence between operations executed in the two models:
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actions in the security model depend on the state of the implementation model.

We contend, in this paper, that it is much easier and more convenient to model
sharing explicitly and to account for it directly during security analysis. Further,
any security monitor that operates according to the main theorems of the model
will have to account for sharing anyway. An explicit model of sharing thus also
benefits implementors of security monitors.

4 A Formal Model of Shared Capability Storage

This section presents an extended model of access control in seL4. Where necessary,
we repeat definitions from Elkaduwe et al [8]. The extensions are non-determinism,
deletion of entities (not just capabilities), and sharing of capability storage.

The model is presented in several parts as we work toward the goal of stating
and proving a security theorem about all possible system behaviours. We start by
defining capabilities and global state in Sect. 4.1. We then, in Sect. 4.2 define what
it means for authority to leak, and, in Sect. 4.3, how the various operations change
the state of the model. The main lemmas of the security proof are stated in Sect. 4.4
and generalised to subsystems in Sect. 4.5.

4.1 Capabilities and global state

Following the Elkaduwe model, we do not distinguish between active (e.g. a thread)
and passive (e.g. memory) objects, but rather call all kernel objects entities. For-
mally, an entity is just a set of capabilities, which is the only property of interest
at this level.

types entity = cap set

Elkaduwe et al [8] model the global state of the security model with a total function
and a separate explicit domain. We instead use a partial function from entity-ids to
entities, to later make the delete command easier to include.

types state = entity-id = entity option
Testing for None suffices to determine whether an entity is part of the state.
is-entity :: state = entity-id = bool
is-entity s ¢ = s e # None
Capabilities are likewise defined as a record with two fields: (a) an identifier

which names a target entity and (b) a set of access rights which defines the opera-
tions the holder is authorised to perform.

record cap = {entity :: entity-id, rights :: rights set}

where datatype rights = Read | Write | Grant | Create | Store

The datatype rights defines the five primitive access rights in our model. Read
and Write signify the ability to read and write information. Possessing the Create
right allows an entity the creation of new entities. An entity with a Grant right
to another is able to grant its capabilities to this other entity. The Store right
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models the concept of shared capabilities. If an entity has a Store right to another
entity, then it has direct access to all the capabilities stored in that entity. Since
multiple entities can have a Store capability to a single entity, this allows sharing of
capabilities. We use the term all-rights to denote the set of all access rights; formally
all-rights = {Read, Write, Grant, Create, Store}.

We say entities possess both direct capabilities (those possessed by the entity
itself) and indirect capabilities (those possessed by entities that are store connected).

Thus to get the complete set of capabilities of an entity, caps-of s e, we get the
direct-caps-of of all of the entities that are store-connected to e, where store-connected
is defined as the transitive, reflexive closure of store-connected-direct, as shown be-
low.

direct-caps-of :: state = entity-id = cap set
direct-caps-of s sref = case s sref of None = {} | Some ¢ = ¢
caps-with-store :: state = entity-id = cap set

caps-with-store s e = {¢’ € direct-caps-of s e. Store € rights ¢’}

store-connected-direct :: state = (entity-id x entity-id) set
store-connected-direct s = {(es, €,). ey € entity ‘ caps-with-store s e, }

store-connected :: state = (entity-id x entity-id) set
store-connected s = (store-connected-direct s)*

caps-of :: state = entity-id = cap set
caps-of s e = |Jdirect-caps-of s ¢ {e’. (e, €’) € store-connected s}

Example
To better understand the above definitions, let us consider a small example,
where the state s is defined by:

s id; = Some e;, i=0,1,2

where the 3 entities are defined by:
eo = {(lentity = id;, rights = {Store})}
e1 = {(entity = id2, rights = {Grant}|}
ez = {}

We can then examine the various capabilities of these entities.
direct-caps-of s idy = {(lentity = id1, rights = {Store})}
direct-caps-of s id; = {(lentity = id2, rights = {Grant}|}
direct-caps-of s ido = {}

We can also work out which entities are store-connected to each other. Any entity
is store-connected to itself by definition, and also to those that are connected via a
series of Store rights. Thus,

store-connected s = {(idg, idy), (id1, id1), (ids, id2), (ido, id1)}
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From this, we can determine the capabilities of each of the entities, which are those
directly possessed by the entity themselves and those possessed by store-connected
entities.

caps-of s idg = {(entity = id1, rights = {Store})), (entity = id2, rights = {Grant})}
caps-of s id; = {(entity = id2, rights = {Grant})}
caps-of s ido = {}

Following the notation of Lipton [12], we introduce a diagrammatical notation
for the formal definitions, with entities as nodes and capabilities as vertices. The
above state is represented in the following Fig. 1. Note that edge labels, e.g. Store
€ c¢1, mean that the right, here Store, is a member of the rights component of ¢;
where c; is a capability in eg whose entity component is e;.

ey ey
Store € Cq Grant € Co

Fig. 1. Diagram representation of the example.

Because we are generally interested in the capabilities (rather than just the
direct capabilities) of an entity, we introduce the dashed arrow to represent these
capabilities. Intuitively, the dashed arrow represents a series of zero or more Store
capabilities, followed by one capability of a certain type as shown in Fig. 2.

___________________ e

Fig. 2. Alternate diagram representation of the example.

4.2 Leak

The central lemma of the security analysis will predict, given the current state, the
future distribution of authority. This reduces to the question of whether authority,
viz capabilities, can leak between entities in a state, which in turn enables us to
identify partitions of the system where collective authority does not increase.

We now define what it means for a capability to leak from one subsystem to
another. The definitions are needed later when we prove that a capability can only
be transferred from one entity to another if those entities are already transitively
connected. We write s - x — y to denote that entity x has the ability to leak
authority to entity y in state s, which is possible if x has a grant capability to y, if
either has store access to the other, or if they both have store access to a common
entity.
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leak :: state = entity-id = entity-id = bool

sk x — y = grant-cap y :< caps-of s z V shares-caps s = y

where grant-cap =z = (lentity = z, rights = {Grant}))

shares-caps s z y = Je;. (z, e;) € store-connected s A (y, e;) € store-connected s
and ¢ :< C = Fc’eC. entity ¢ = entity ¢’ A rights ¢ C rights ¢’

where the notation ¢ :< C means that the capability set C provides at least as
much authority as the capability c.

If an entity can leak a capability to another, we say that the entities are con-
nected, which we define as s -2 < y=sF a2 — y V s -y — 2 The connected
relation is drawn with doubled lines and dual arrows in diagrams. The three ways
two entities can be connected are shown in Fig. 3.

The invariant property of the system relating to propagation of authority is the
symmetric, transitive closure of the leak relation, denoted s - z «* y.

@
\ ’

1 1
| Grantec | Storeec Store € ¢, \\\ // Store € ¢y |
v v <y
@
a) Grant connected b) Store connected c) Shared capabilities d) Connected notation
p

Fig. 3. Different types of connections between entities.

The remaining subsections argue informally that none of the operations of the
system can connect disconnected entities, which will imply that we can create
authority-confined subsystems. We introduce the formal definitions of the oper-
ations as we progress through the proof. The entire proof is around 3000 lines of
Isabelle script; here we show only the key lemmas.

4.8  Operations

Operations transform the state of the security model. In the Elkaduwe model
they must be deterministic but in our model they may be non-deterministic. Non-
determinism allows us to refine the explicitly checked failure conditions of the op-
erational model. The main difference is that an execution step now returns a set of
states rather than a single state.

We will first give informal definitions of the operations and argue that their
respective executions can never connect previously disconnected entities; neither
through transitive grant capabilities, nor through the sharing of capabilities. The
precise definitions of the operations are shown in Fig. 7. The arguments are for-
malised as lemmas in the next subsection.

Operations are only executed if they are legal, that is, if certain preconditions
about their arguments and the state are true, which are also shown in Fig. 7.
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Neither the SysRead e ¢ nor the SysWrite e ¢ operation change the state of
capabilities in the system. They clearly do not connect disconnected entities.

The SysCreate e n ¢1 co operation creates a new entity (n) by using free memory
provided by an existing entity (e1) and by assigning a new capability for controlling
access to n to existing capability storage (e2). It is only legal if the initiating entity
e has both a capability (c¢;) with create rights to e;, and a capability (c2) with
store and write rights to the CNode ey where the new entity’s capability is stored.

Create € C4 Create € c1
4

@ c SysCreateencq cp :> @
) S
Store, Write € ¢, Store, Write € 02

all_rights_s

Fig. 4. Create Operation

This operation cannot connect disconnected entities as the only new connection is
to a new entity.

The SysGrant e ¢; c2 R c3 operation gives (a possibly reduced) copy of an
existing capability to another entity.

Store € Cy Store €Cy

Grant € c1 ——> Grant e c1

@: c SysGrantecy coRcg :> @:
T \
Co . diminish co, R

Fig. 5. Grant Operation

This operation clearly has the possibility of adding a capability to an entity that
did not previously possess this capability. In fact, if an entity x is store connected
to eg and eo store connected to y, then introducing a store connection between eg
and es will connect x and y. However a connection between e3 and ey is only ever
created if a connection existed between e and es, and since e and es are already
connected, any connections introduced are already transitively present beforehand.
Both the SysRemove e ¢; co and SysRevoke e ¢ operations remove capabilities:
in the former case from the entity pointed to by ¢; and in the latter case from a
whole set of entities. We do not specify explicitly which set of entities is removed
by revoke, because this set is tracked in a complex data structure cdt (capability
derivation tree) in the implementation that adds nothing that is relevant for our
purposes to the security analysis. Given this set, the revoke operation is then just
a repeated call of remove.
Clearly neither remove or revoke connect disconnected entities.
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C1 02
@ 77'

< SysRemove e ¢4 ¢y :>

— SysRevoke e ¢4 =>
ol
@77'

(a) Remove Operation (b) Revoke Operation

Fig. 6. Revoke and remove operations

SysDelete e is a new operation introduced here. SysDelete removes an entity from
the state. In the sel.4 implementation this allows the kernel to re-use memory and
the preconditions and book-keeping required for this operation to be safely usable
is complex. On the security level it can be expressed very abstractly and nicely: An
entity e is safe to delete, if none of the entities in the state have capabilities that
point to the entity to be deleted. In the security model it would be sufficient to say
that no other entity in the state has a capability to e, but the sel.4 implementation
will clean up e itself first in any case, therefore it is no restriction to simplify the
formula.

Since we define the state as a partial function from entity-ids to entities, the def-
inition of executing delete is trivial. SysDelete simply removes an entity; therefore
it cannot connect disconnected entities. We will see in the next subsection that
delete has an interesting side effect that slightly complicates the formal statement
of theorem 4.4 and theorem 4.5 as well as theorem 5.1.

Operations are governed by the functions legal and step’, which are both pre-
sented in Fig. 7. The former gives preconditions for operations, which are only
permitted if the entity involved e exists and has the required capabilities. The
latter describes the effect of operations on the state.

We can now define full single-step execution and lift it to sequences of operations.

A function step combines precondition checks on the current state, from legal,
with the effects of operations, from step’. In contrast to the Elkaduwe model,
operations now return a set of possible states. The definition of step ensures that
the result always includes the initial state, thereby accounting for the possibility that
an implementation of seLL4 may abort an operation for reasons that are ignored in
step’. For example, an implementation of the SysCreate operation will fail if it is not
provided with sufficient memory, but this kind of detail is irrelevant in the security
model.

step :: Operations = state = state set

step cmd s = if legal ¢cmd s then step’ cmd s U {s} else {s}
A list of operations is executed by lifting step over sets of states and iterating.
Commands are read from right to left.

execute :: Operations list = state = state set

execute [ s = {s}
execute (emd # cmds) s = |Jstep emd ‘ execute cmds s
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legal :: Operations = state = bool

legal (SysRead e ¢) s = is-entity s e A ¢ € caps-of s e A Read € rights ¢
legal (SysWrite e ¢) s = is-entity s e A ¢ € caps-of s e A Write € rights ¢
legal (SysCreate e n c1 c2) s = is-entity s e A — is-entity s n A {c1, ca} C caps-of s e A

Create € rights ¢1 A Write € rights co A Store € rights c2

legal (SysGrant e ¢1 c2 7 ¢3) s = is-entity s e A {c1, ca} C caps-of s e A c3 € caps-of s (entity c1) A
Grant € rights ¢1 A Store € rights c3

legal (SysRemove e ¢1 ¢2) s = is-entity s e A ¢1 € caps-of s e
legal (SysRevoke e ¢) s = is-entity s e A ¢ € caps-of s e
legal (SysDelete ¢) s = is-entity s e A e ¢ entity ‘all-caps s

step’ :: Operations = state = state set

step’ (SysCreate e n ¢1 c2) s = {let new-cap = (entity = n, rights = all-rights));
newTarget = {new-cap} U direct-caps-of s (entity c2)
in s(n — null-entity, entity co — newTarget)}

step’ (SysGrant e c1 c2 R c3) s = {s(entity c3 — {ca(rights := rights c2 N R)}
U direct-caps-of s (entity ¢3))

w»

step’ (SysRemove e c1 c2) = {removeOperation e c¢1 c2 s}

step’ (SysRevoke e ¢) s = if is-entity s e A ¢ € caps-of s e then revokeOp e s ‘ cdt s c else {s}
step’ (SysDelete ¢€) s = {s(e := None)}
where

removeOperation e c¢1 c2 s = case s (entity c1) of None = s | Some C = s(entity ¢c1 — C — {c2})
revokeOp sRef s xs = foldr (removeCaps sRef) zs s

removeCaps e (c, c¢s) s = foldr (removeOperation e ¢) c¢s s

Fig. 7. Definition of, and preconditions for executing operations.

4.4 FErecution

This subsection introduces the formal statements of the main lemmas in the security
proof. We define sane as an invariant that is a precondition to most theorems in our
security model. We call a state sane if all capabilities point to entities that exist.

sane :: state = bool
sane s = V c€all-caps s. is-entity s (entity c¢)

where all-caps s = |J . direct-caps-of s e
We have shown that sane is invariant over execution:

[sane s; s’ € execute ¢cmds s] = sane s’
We have argued informally in the last subsection that none of the operations in the

kernel will connect previously disconnected entities. Formally this is the following
statement.

Lemma 4.1 If two entities in state s are connected after an execution step, they
must have been transitively connected before:

[sane s; s’ € step emd s; is-entity s z; is-entity s y; s’ z < y]
= sk z oty

11
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The high-level structure of the proof is the same as in Elkaduwe et al [7]. As there,
we cannot directly lift lemma 4.1 to the transitive and reflexive closure, such that
[s" € step ecmd s; '+ z «* y] = s+ z <* y. We break the proof into two
parts: the SysCreate operation that introduces a complication for this lifting step
and transporter commands which move or remove capabilities (all other operations).
The second part has the simpler formal statement:

Lemma 4.2 Transporters preserve connected in sane states:?

[sane s; s € step cmd s; is-entity s x; is-entity s z;
Ven ci co. emd # SysCreate e n ¢y co; s’ x <% 4]
= sk <"y

Note that we picked up an additional precondition compared to the Elkaduwe model.
We now need to know that entity z still exists in the post-state. This is to get us
later through the induction on sequences of operations with SysDelete. To see why
this is the case, consider the case when an entity with ¢d; and an entity with ids
are disconnected. If entity 2 gets deleted, and entity 1 possesses a create right, then
entity 1 is free to create a new entity with idy in a later step. This new entity 2 is
now connected to entity 1. Of course, entity 1 did not gain access to the original
entity 2, but just to a new, different entity stored in the same location.

Instead of strengthening the precondition, we could get around this by intro-
ducing names for entities that are unique not only over the lifetime of the entity,
but over the lifetime of the whole system. These names would have to come from
an infinite set. We chose not to do so, because this problem exists in the imple-
mentation as well, and there is no way to implement such system life-time names in
reality unless the system runs for a known finite time only. As for shared capability
storage, we believed it better to bring the problem out into the open and reflect it
explicitly in the security analysis.

The create lemma remained almost the same, we merely need to add a failure
case. Note that the definition of <* and therefore the proof are now significantly
more complex, though.

Lemma 4.3 Given entities x and y connected in the state after SysCreate e n ¢y
ca, given that x exists in the pre-state s, and given that sane s, we know s -z <% e
if y is the new entity just created, or s = x «<* y, or the operation failed. Formally:

[sane s; s" € step (SysCreate e n ¢1 c2) s; is-entity s z; s’ F z <" y]
= (if y = nthen —is-entity sy A sz <" eelse stz «* y) Vs =4

2 is-entity s y is implied by the other preconditions, thus is not necessary.

12



BovyToN

Bringing the two lemmas together, we get the final theorem on the connected rela-
tion:

Theorem 4.4 If two entities in a sane state s are transitively connected after exre-
cution, they already have been transitively connected in s:

[sane s; s' € execute cmds s; is-always-entity cmds s x;
is-always-entity ¢cmds s y; s'F 2z <* y]
= sk <"y

The new predicate is-always-entity states that an entity exists in all intermediary ex-
ecution states. It is the consequence of our strengthened precondition in lemma 4.2.

4.5 Subsystems

With the notion of connected established, we can now generalise it to subsystems
and show that it is still possible to implement authority confinement between sub-
systems in selL.4 when shared capability storage is present.

Authority confinement means we can partition entities into subsystems such
that none of the entities in the subsystem ss; will gain access to a capability to an
entity of another subsystem sss if that authority is not already present in ssi. If an
authority is already present, then we show that it cannot be increased. Note that
subsystems can grow over time. We identify a subsystem by an entity within it,
thus we require that this entity remain in existence for the period in question. As
in the main theorem on the connected relation, this requirement is new and due to
the delete command.

We can produce a group of subsystems by having a master entity first creating
some child entities, and then by removing the grant and store capabilities to these
child entities.

Following Elkaduwe et al, we define such
subsystems using the symmetric, transitive
closure over the leak relation. This partitions
entities up into equivalence classes.

subsys s x = {e;. s F e; <* z}

We introduce the notion of a dominates oper-
ator :> and use it to express that a subsystem
cannot increase its authority over a specific
entity. For this, we also need to collect all
entities of a subsystem with the subsys-caps
function:

Fig. 8: An example of two iso-
lated subsystems. They can com-
municate, but the capabilities be-
tween them cannot increase.

subsys-caps s x = | Jcaps-of s ‘ subsys s z
c:> C =Vc'el. entity ¢/ = entity ¢ — rights ¢/ C rights ¢

These definitions are unchanged from Elkaduwe et al. The subsys-caps function takes
the set of entities in the subsystem, and then the union of all their capabilities. Here,
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these are all capabilities that the entities transitively have access to. A capability ¢
dominates a capability set C' (¢ :> () if C provides at most as much authority as
capability ¢ over the entity ¢ points to.

Since capabilities of an entity are those that are stored directly in entities that are
store connected, and since those entities would also be part of the same subsystem,
we can prove an equivalent definition for subsys-caps. This is easier to work with,
because it removes one level of transitive closure.

subsys-caps s * = |Jdirect-caps-of s ‘ subsys s x

The equality allows us to ignore the impact of shared capabilities on the transfer of
capabilities between subsystems, but the SysDelete operation still requires the added
precondition that the entities in question exist continually. Following essentially the
same logic as [8], we can prove the result:

Theorem 4.5 (Confinement of authority). Given a sane state s, a non-empty
subsystem spanned by x in s, and a capability ¢ with a target identity y in s, if the
authority of the subsystem does not exceed ¢ in s, then it will not exceed ¢ in any
future state of the system for as long as x and y both exist.

[sane s; s’ € execute cmds s; entity ¢ = y; is-always-entity cmds s z;
is-always-entity cmds s y; ¢ :> subsys-caps s z]
= ¢ :> subsys-caps s’ z

5 Isolation

The security analysis so far was concerned with de-jure rights, i.e. rights that are
directly conferred by capabilities. If we are interested in the flow of information
through the system, then we need to consider de-facto rights. As mentioned pre-
viously, de-facto rights model entities that may try to collaborate to transport
information through indirectly authorised channels. If A has read access to B, and
C has write access to B, then de facto, A has read access to C even though de jure,
no read operation from A to C will ever be authorised by the kernel.

With entities divided up into subsystems as in the last section, we can examine
the flow of information between subsystems in this sense. We do not examine the
flow of information within a subsystem as capabilities can be transported between
entities within a subsystem by definition already. Bishop’s [1] analysis of information
flow between islands is essentially the same concept.

Unlike in Sect. 4.5 where we examined the symmetric closure of the leak relation,
information flow is a directed relation. Elkaduwe’s original extension to showing
isolation in the information flow sense is still bidirectional [5].

Since we know that the capabilities between subsystems cannot increase, we can
conclude that paths for information flow cannot increase between subsystems over
time. This motivates the following definition.

We say that information can flow from one set of entities X to another set of
entities Y if either an entity of X has a write capability to an entity in Y, or if an
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entity of Y has a read capability to an entity in X, which we write as (X, Y) €
set-flow s.
Formally:
(X, Y) € set-flow s) =
(JzeX. JyeY. read-cap z :< caps-of s y V write-cap y :< caps-of s z)

From this we define the flow of information between subsystems.

sz~ y = ((subsys s x, subsys s y) € set-flow s)

If we take the transitive closure of this relation we can establish when information
can flow between two subsystems over time.

Theorem 5.1 If information cannot flow between the subsystems containing x and
y in the present, then information will never be able to flow between any future
subsystems that x and y are in (for as long as x and y both exist).

[sane s; is-always-entity cmds s x; is-always-entity cmds s y;

s' € execute cmds s; - s F x ~* g

== sk~ y

The proof proceeds by showing that no operation can create a new flow of informa-
tion. By induction over the sequence of commands, we can deduce the contrapositive
of the above theorem. The main difficulty in the proof lies in examining all possible
cases produced by SysCreate.

Thus, if one can examine the capabilities of the system, one can predict the
possibly indirect flows of information through the system they authorise.

6 Related work

The first to formulate an access control analysis were Harrison et al [9]. They
introduced the focus on the ability of a subject to obtain a particular authority over
another in some future state.

As mentioned previously, our selLl4 access control model is inspired by the take-
grant model [12]. The original analysis on the take grant model [12,2] already
uses the same approximation to model the exposure of access rights: the tran-
sitive, symmetric closure on the given initial graph. The difference here is that
we make capability storage and sharing explicit and that we conduct all proofs in
Isabelle/HOL.

Snyder [17] and later Bishop [1] introduced explicit de-facto rules into the take-
grant model for reasoning about the information flow paths induced by the capa-
bility distribution. Their concept of the maximum take-grant connected subgraph
is similar to our subsystems. In contrast to Bishop and Snyder, we do not need
to introduce additional rules into the specification; instead we model the impact of
de-facto rights directly in the isolation relation.

Shapiro [16] applied the diminish-take model—another variant of take-grant to
capture the operational semantics of the EROS system. The ability of sel.4 to
diminish access rights during the grant operation is inspired by this diminish-take
model.
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None of the formalisations above model sharing of capabilities explicitly, and
none of them formalise and prove their security statements in a theorem prover.

The most closely related work to this paper is the model of sel.4 access control
by Elkaduwe et al [5,7,8] that we directly build on and extend.

Rushby [15] provides a formulation of isolation called non-interference. Non-
interference is stronger than the concept of isolation we use in this formalisation,
because it goes beyond access control. It also includes covert storage channels,
whereas we are only concerned with the overt, explicitly authorised, but still possibly
indirect flows of information. The difference is that non-interference would for
instance cover things like leaking information by making an observable decision
in the program that depends on secret data. Non-interference traditionally talks
about different security levels that should be kept separate, whereas we are in this
model more interested in which entities can communicate with each other in a highly
dynamic setting. Non-interference is not necessarily preserved under refinement, so
special care would need to be taken to connect such a property to the operational
model and the C implementation of sel.4.

7 Conclusion

We have presented three extensions to the existing formal access control model of
the seL.4 microkernel. The extensions are the inclusion of non-determinism, a delete
operation for entities, and an explicit treatment of shared capability storage.

The first extension was easy to add, the second introduced minor changes to the
main theorems, because the concept of entity identity becomes more subtle. Explic-
itly modelling shared capabilities is the main contribution of this paper. Sharing
makes the access control model more complex and changes the fundamental notions
of the main security theorem. We have adjusted the corresponding definitions and
proved that the access control model is still decidable.? This is a significant result,
because not all access control systems are decidable [9,13], and previous arguments
on capability sharing we have found in the literature were of the very high-level
“without loss of generality” kind. This main theorem implies that a monitor for
system-global security policies can be implemented.

Our more explicit access control model represents an almost complete one-to-
one correspondence to the existing operational model of selL4. The next step in
this project will be to complete the refinement proof of the access control to the
operational model and therefore to the C implementation of selL4, justifying the s
in sel4.
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