
seL4: Formal Verification of an OS Kernel

Gerwin Klein1,2, Kevin Elphinstone1,2, Gernot Heiser1,2,3

June Andronick1,2, David Cock1, Philip Derrin1∗, Dhammika Elkaduwe1,2‡, Kai Engelhardt1,2

Rafal Kolanski1,2, Michael Norrish1,4, Thomas Sewell1, Harvey Tuch1,2†, Simon Winwood1,2

1 NICTA, 2 UNSW, 3 Open Kernel Labs, 4 ANU
ertos@nicta.com.au

ABSTRACT
Complete formal verification is the only known way to guar-
antee that a system is free of programming errors.

We present our experience in performing the formal,
machine-checked verification of the seL4 microkernel from
an abstract specification down to its C implementation. We
assume correctness of compiler, assembly code, and hardware,
and we used a unique design approach that fuses formal and
operating systems techniques. To our knowledge, this is the
first formal proof of functional correctness of a complete,
general-purpose operating-system kernel. Functional correct-
ness means here that the implementation always strictly fol-
lows our high-level abstract specification of kernel behaviour.
This encompasses traditional design and implementation
safety properties such as the kernel will never crash, and it
will never perform an unsafe operation. It also proves much
more: we can predict precisely how the kernel will behave in
every possible situation.

seL4, a third-generation microkernel of L4 provenance,
comprises 8,700 lines of C code and 600 lines of assembler.
Its performance is comparable to other high-performance L4
kernels.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Verification;
D.2.4 [Software Engineering]: Software/Program Veri-
fication

General Terms
Verification, Design

Keywords
Isabelle/HOL, L4, microkernel, seL4

∗Philip Derrin is now at Open Kernel Labs.
†Harvey Tuch is now at VMware.
‡Dhammika Elkaduwe is now at University of Peradeniya

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09, October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

1. INTRODUCTION
The security and reliability of a computer system can only

be as good as that of the underlying operating system (OS)
kernel. The kernel, defined as the part of the system ex-
ecuting in the most privileged mode of the processor, has
unlimited hardware access. Therefore, any fault in the ker-
nel’s implementation has the potential to undermine the
correct operation of the rest of the system.

General wisdom has it that bugs in any sizeable code
base are inevitable. As a consequence, when security or
reliability is paramount, the usual approach is to reduce
the amount of privileged code, in order to minimise the
exposure to bugs. This is a primary motivation behind
security kernels and separation kernels [38, 54], the MILS
approach [4], microkernels [1, 12,35,45,57,71] and isolation
kernels [69], the use of small hypervisors as a minimal trust
base [16,26,56,59], as well as systems that require the use of
type-safe languages for all code except some“dirty”core [7,23].
Similarly, the Common Criteria [66] at the strictest evaluation
level requires the system under evaluation to have a “simple”
design.

With truly small kernels it becomes possible to take secu-
rity and robustness further, to the point where it is possible
to guarantee the absence of bugs [22, 36, 56, 64]. This can be
achieved by formal, machine-checked verification, providing
mathematical proof that the kernel implementation is consis-
tent with its specification and free from programmer-induced
implementation defects.

We present seL4, a member of the L4 [46] microkernel
family, designed to provide this ultimate degree of assurance
of functional correctness by machine-assisted and machine-
checked formal proof. We have shown the correctness of a
very detailed, low-level design of seL4 and we have formally
verified its C implementation. We assume the correctness
of the compiler, assembly code, boot code, management of
caches, and the hardware; we prove everything else.

Specifically, seL4 achieves the following:

• it is suitable for real-life use, and able to achieve per-
formance that is comparable with the best-performing
microkernels;

• its behaviour is precisely formally specified at an ab-
stract level;

• its formal design is used to prove desirable properties,
including termination and execution safety;

• its implementation is formally proven to satisfy the
specification; and

• its access control mechanism is formally proven to pro-
vide strong security guarantees.

To our knowledge, seL4 is the first-ever general-purpose OS
kernel that is fully formally verified for functional correctness.
As such, it is a platform of unprecedented trustworthiness,
which will allow the construction of highly secure and reliable
systems on top.

The functional-correctness property we prove for seL4
is much stronger and more precise than what automated
techniques like model checking, static analysis or kernel
implementations in type-safe languages can achieve. We
not only analyse specific aspects of the kernel, such as safe
execution, but also provide a full specification and proof for
the kernel’s precise behaviour.

We have created a methodology for rapid kernel design
and implementation that is a fusion of traditional operating
systems and formal methods techniques. We found that our
verification focus improved the design and was surprisingly
often not in conflict with achieving performance.

In this paper, we present the design of seL4, discuss the
methodologies we used, and provide an overview of the ap-
proach used in the formal verification from high-level specifi-
cation to the C implementation. We also discuss the lessons
we have learnt from the project, and the implications for
similar efforts.

The remainder of this paper is structured as follows. In
Sect. 2, we give an overview of seL4, of the design approach,
and of the verification approach. In Sect. 3, we describe
how to design a kernel for formal verification. In Sect. 4, we
describe precisely what we verified, and identify the assump-
tions we make. In Sect. 5, we describe important lessons we
learnt in this project, and in Sect. 6, we contrast our effort
with related work.

2. OVERVIEW

2.1 seL4 programming model
This paper is primarily about the formal verification of

the seL4 kernel, not its API design. We therefore provide
only a brief overview of its main characteristics.

seL4 [20], similarly to projects at Johns Hopkins (Coyotos)
and Dresden (Nova), is a third-generation microkernel, and
is broadly based on L4 [46] and influenced by EROS [58].
It features abstractions for virtual address spaces, threads,
inter-process communication (IPC), and, unlike most L4 ker-
nels, capabilities for authorisation. Virtual address spaces
have no kernel-defined structure; page faults are propagated
via IPC to pager threads, responsible for defining the address
space by mapping frames into the virtual space. Exceptions
and non-native system calls are also propagated via IPC
to support virtualisation. IPC uses synchronous and asyn-
chronous endpoints (port-like destinations without in-kernel
buffering) for inter-thread communication, with RPC facili-
tated via reply capabilities. Capabilities are segregated and
stored in capability address spaces composed of capability
container objects called CNodes.

As in traditional L4 kernels, seL4 device drivers run as
user-mode applications that have access to device registers
and memory either by mapping the device into the virtual
address space, or by controlled access to device ports on x86
hardware. seL4 provides a mechanism to receive notification
of interrupts (via IPC) and acknowledge their receipt.

Design Cycle

Haskell
Prototype

Design

Formal Executable Spec

High-Performance C ImplementationUser Programs

Hardware
Simulator

Proof
Manual

Implementation

+

Figure 1: The seL4 design process

Memory management in seL4 is explicit: both in-kernel ob-
jects and virtual address spaces are protected and managed
via capabilities. Physical memory is initially represented by
untyped capabilities, which can be subdivided or retyped into
kernel objects such as page tables, thread control blocks, CN-
odes, endpoints, and frames (for mapping in virtual address
spaces). The model guarantees all memory allocation in the
kernel is explicit and authorised.

Initial development of seL4, and all verification work, was
done for an ARMv6-based platform, with a subsequent port
of the kernel (so far without proof) to x86.

2.2 Kernel design process
OS developers tend to take a bottom-up approach to ker-

nel design. High performance is obtained by managing the
hardware efficiently, which leads to designs motivated by low-
level details. In contrast, formal methods practitioners tend
toward top-down design, as proof tractability is determined
by system complexity. This leads to designs based on simple
models with a high degree of abstraction from hardware.

As a compromise that blends both views, we adopted
an approach [19, 22] based around an intermediate target
that is readily accessible by both OS developers and formal
methods practitioners. It uses the functional programming
language Haskell to provide a programming language for OS
developers, while at the same time providing an artefact that
can be automatically translated into the theorem proving
tool and reasoned about.

Fig. 1 shows our approach in more detail. The square
boxes are formal artefacts that have a direct role in the proof.
The double arrows represent implementation or proof effort,
the single arrows represent design/implementation influence
of artefacts on other artefacts. The central artefact is the
Haskell prototype of the kernel. The prototype requires the
design and implementation of algorithms that manage the
low-level hardware details. To execute the Haskell prototype
in a near-to-realistic setting, we link it with software (derived
from QEMU) that simulates the hardware platform. Normal
user-level execution is enabled by the simulator, while traps
are passed to the kernel model which computes the result
of the trap. The prototype modifies the user-level state of
the simulator to appear as if a real kernel had executed in
privileged mode.

This arrangement provides a prototyping environment that
enables low-level design evaluation from both the user and
kernel perspective, including low-level physical and virtual
memory management. It also provides a realistic execution

environment that is binary-compatible with the real kernel.
For example, we ran a subset of the Iguana embedded OS [37]
on the simulator-Haskell combination. The alternative of
producing the executable specification directly in the theorem
prover would have meant a steep learning curve for the design
team and a much less sophisticated tool chain for execution
and simulation.

We restrict ourselves to a subset of Haskell that can be
automatically translated into the language of the theorem
prover we use. For instance, we do not make any substantial
use of laziness, make only restricted use of type classes, and
we prove that all functions terminate. The details of this
subset are described elsewhere [19,41].

While the Haskell prototype is an executable model and
implementation of the final design, it is not the final pro-
duction kernel. We manually re-implement the model in
the C programming language for several reasons. Firstly,
the Haskell runtime is a significant body of code (much
bigger than our kernel) which would be hard to verify for
correctness. Secondly, the Haskell runtime relies on garbage
collection which is unsuitable for real-time environments.
Incidentally, the same arguments apply to other systems
based on type-safe languages, such as SPIN [7] and Singu-
larity [23]. Additionally, using C enables optimisation of
the low-level implementation for performance. While an
automated translation from Haskell to C would have sim-
plified verification, we would have lost most opportunities
to micro-optimise the kernel, which is required for adequate
microkernel performance.

2.3 Formal verification
The technique we use for formal verification is interactive,

machine-assisted and machine-checked proof. Specifically,
we use the theorem prover Isabelle/HOL [50]. Interactive
theorem proving requires human intervention and creativity
to construct and guide the proof. However, it has the ad-
vantage that it is not constrained to specific properties or
finite, feasible state spaces, unlike more automated methods
of verification such as static analysis or model checking.

The property we are proving is functional correctness in
the strongest sense. Formally, we are showing refinement [18]:
A refinement proof establishes a correspondence between a
high-level (abstract) and a low-level (concrete, or refined)
representation of a system.

The correspondence established by the refinement proof
ensures that all Hoare logic properties of the abstract model
also hold for the refined model. This means that if a security
property is proved in Hoare logic about the abstract model
(not all security properties can be), refinement guarantees
that the same property holds for the kernel source code. In
this paper, we concentrate on the general functional cor-
rectness property. We have also modelled and proved the
security of seL4’s access-control system in Isabelle/HOL on
a high level. This is described elsewhere [11,21], and we have
not yet connected it to the proof presented here.

Fig. 2 shows the specification layers used in the verification
of seL4; they are related by formal proof. Sect. 4 explains
the proof and each of these layers in detail; here we give a
short summary.

The top-most layer in the picture is the abstract speci-
fication: an operational model that is the main, complete
specification of system behaviour. The abstract level con-
tains enough detail to specify the outer interface of the kernel,

Abstract Specification

Executable Specification

High-Performance C Implementation

Haskell Prototype

Isabelle/HOL

Automatic Translation

Refinement Proof

Figure 2: The refinement layers in the verification
of seL4

e.g., how system-call arguments are encoded in binary form,
and it describes in abstract logical terms the effect of each
system call or what happens when an interrupt or VM fault
occurs. It does not describe in detail how these effects are
implemented in the kernel.

The next layer down in Fig. 2 is the executable specifica-
tion generated from Haskell into the theorem prover. The
translation is not correctness-critical because we seek assur-
ance about the generated definitions and ultimately C, not
the Haskell source, which only serves as an intermediate
prototype. The executable specification contains all data
structure and implementation details we expect the final C
implementation to have.

Finally, the bottom layer in this verification effort is the
high-performance C implementation of seL4. For programs
to be formally verified they must have formally-defined se-
mantics. One of the achievements of this project is a very
exact and faithful formal semantics for a large subset of the
C programming language [62]. Even with a formal semantics
of C in the logic of the theorem prover, we still have to read
and translate the specific program into the prover. This is
discussed in Sect. 4.3.

Verification can never be absolute; it always must make
fundamental assumptions. In our work we stop at the source-
code level, which implies that we assume at least the compiler
and the hardware to be correct.

An often-raised concern is the question of proof correct-
ness. More than 30 years of research in theorem proving
has addressed this issue, and we can now achieve a degree
of trustworthiness of formal, machine-checked proof that far
surpasses the confidence levels we rely on in engineering or
mathematics for our daily survival. We use two specific tech-
niques: firstly, we work foundationally from first principles;
mathematics, semantics, and Hoare logic are not axioma-
tised, but defined and proved. Secondly, the Isabelle theorem
prover we are using can produce external proof representa-
tions that can be independently checked by a small, simple
proof checker.

3. KERNEL DESIGN FOR VERIFICATION
The main body of the correctness proof can be thought

of as showing Hoare triples on program statements and on
functions in each of the specification levels. The proof in
our refinement and Hoare logic framework decomposes along
function boundaries. Each unit of proof has a set of pre-
conditions that need to hold prior to execution, a statement

or sequence of statements in a function that modify the
system state, and the post-conditions that must hold after-
wards. The degree of difficulty in showing that pre- and
post-conditions hold is directly related to the complexity of
the statement, the state the statement can modify, and the
complexity of the properties the pre- and post-conditions
express. Around 80% of the properties we show relate to
preserving invariants.

To make verification of the kernel feasible, its design should
minimise the complexity of these components. Ideally, the
kernel code (and associated proofs) would consist of simple
statements that rely on explicit local state, with simple in-
variants. These smaller elements could then be composed
abstractly into larger elements that avoid exposing under-
lying local elements. Unfortunately, OS kernels are not
usually structured like this, and generally feature highly
inter-dependent subsystems [10].

As a consequence of our design goal of suitability for real-
life use, our kernel design attempts to minimise the proof
complexity without compromising performance. In this light
we will now examine typical properties of kernels and dis-
cuss their effect on verification, including presenting specific
features of our kernel design.

3.1 Global variables and side effects
Programming with global variables and with side effects

is common in operating systems kernels and our verification
technique has no problem dealing with them. However,
implicit state updates and complex use of the same global
for different purposes can make verification harder than
necessary.

Global variables usually require stating and proving in-
variant properties. For example, if global scheduler queues
are implemented as doubly-linked lists, the corresponding
invariant might state that all back links in the list point to
the appropriate nodes and that all elements point to thread
control blocks. Invariants are expensive because they need
to be proved not only locally for the functions that directly
manipulate the scheduler queue, but for the whole kernel—
we have to show that no other pointer manipulation in the
kernel accidentally destroys the list or its properties. This
proof can be easy or hard, depending on how modularly the
global variable is used.

A hypothetical, problematic example would be a com-
plex, overloaded page-table data structure that can represent
translation, validity of memory regions, copy-on-write, zero-
on-demand memory, and the location of data in swap space,
combined with a relationship to the frame table. This would
create a large, complex invariant for each of the involved
data structures, and each of the involved operations would
have to preserve all of it.

The treatment of globals becomes especially difficult if
invariants are temporarily violated. For example, adding a
new node to a doubly-linked list temporarily violates invari-
ants that the list is well formed. Larger execution blocks of
unrelated code, as in preemption or interrupts, should be
avoided during that violation. We address these issues by
limiting preemption points, and by deriving the code from
Haskell, thus making side effects explicit and bringing them
to the attention of the design team.

3.2 Kernel memory management
The seL4 kernel uses a model of memory allocation that

exports control of the in-kernel allocation to appropriately
authorised applications [20]. While this model is mostly
motivated by the need for precise guarantees of memory
consumption, it also benefits verification. The model pushes
the policy for allocation outside of the kernel, which means
we only need to prove that the mechanism works, not that
the user-level policy makes sense. Obviously, moving it into
userland does not change the fact that the memory-allocation
module is part of the trusted computing base. It does mean,
however, that such a module can be verified separately, and
can rely on verified kernel properties.

The correctness of the allocation algorithm involves checks
that new objects are wholly contained within an untyped
(free) memory region and that they do not overlap with
any other objects allocated from the region. Our memory
allocation model keeps track of capability derivations in a tree-
like structure, whose nodes are the capabilities themselves.

Before re-using a block of memory, all references to this
memory must be invalidated. This involves either finding
all outstanding capabilities to the object, or returning the
object to the memory pool only when the last capability is
deleted. Our kernel uses both approaches.

In the first approach, the capability derivation tree is used
to find and invalidate all capabilities referring to a memory
region. In the second approach, the capability derivation tree
is used to ensure, with a check that is local in scope, that
there are no system-wide dangling references. This is possible
because all other kernel objects have further invariants on
their own internal references that relate back to the existence
of capabilities in this derivation tree.

3.3 Concurrency and non-determinism
Concurrency is the execution of computation in parallel

(in the case of multiple hardware processors), or by non-
deterministic interleaving via a concurrency abstraction like
threads. Proofs about concurrent programs are hard, much
harder than proofs about sequential programs.

While we have some ideas on how to construct verifiable
systems on multiprocessors, they are outside the scope of
this paper and left for future work. In this paper we focus
on uniprocessor support where the degree of interleaving of
execution and non-determinism can be controlled. However,
even on a uniprocessor there is some remaining concurrency
resulting from asynchronous I/O devices. seL4 avoids much
of the complications resulting from I/O by running device
drivers at user level, but it must still address interrupts.

Consider the small code fragment A; X; B, where A must
establish the state that X relies on, X must establish the state
B relies on, and so on. Concurrency issues in the verification
of this code arise from yielding, interrupts and exceptions.

Yielding at X results in the potential execution of any
reachable activity in the system. This implies A must es-
tablish the preconditions required for all reachable activi-
ties, and all reachable activities on return must establish
the preconditions of B. Yielding increases complexity sig-
nificantly and makes verification harder. Preemption is a
non-deterministically optional yield. Blocking kernel primi-
tives, such as in lock acquisition and waiting on condition
variables, are also a form of non-deterministic yield.

By design, we side-step addressing the verification complex-
ity of yield by using an event-based kernel execution model,

with a single kernel stack, and a mostly atomic application
programming interface [25].

Interrupt complexity has two forms: non-deterministic
execution of the interrupt handlers, and interrupt handling
resulting in preemption (as a result of timer ticks). Theoreti-
cally, this complexity can be avoided by disabling interrupts
during kernel execution. However, this would be at the ex-
pense of large or unbounded interrupt latency, which we
consider unacceptable.

Instead, we run the kernel with interrupts mostly disabled,
except for a small number of carefully-placed interrupt points.
If, in the above code fragment, X is the interrupt point, A must
establish the state that all interrupt handlers rely on, and
all reachable interrupt handlers must establish or preserve
the properties B relies on.

We simplify the problem further by implementing inter-
rupt points via polling, rather than temporary enabling of
interrupts. On detection of a pending interrupt, we explicitly
return through the function call stack to the kernel/user
boundary. At the boundary we leave a (potentially modified)
event stored in the saved user-level registers. The interrupt
becomes a new kernel event (prefixed to the pending user-
triggered event). After the in-kernel component of interrupt
handling, the interrupted event is restarted. This effectively
re-tries the (modified) operation, including re-establishing
all the preconditions for execution. In this way we avoid
the need for any interrupt-point specific post-conditions for
interrupt handlers, but still achieve Fluke-like partial pre-
emptability [25].

The use of interrupt points creates a trade-off, controlled by
the kernel designer, between proof complexity and interrupt
processing latency. Almost all of seL4’s operations have short
and bounded latency, and can execute without any interrupt
points at all. The exception is object destruction, whose
cleanup operations are inherently unbounded, and are, of
course, critical to kernel integrity.

We make these operations preemptable by storing the state
of progress of destruction in the last capability referencing the
object being destroyed; we refer to this as a zombie capability.
This guarantees that the correctness of a restarted destroy is
not dependent on user-accessible registers. Another advan-
tage of this approach is that if another user thread attempts
to destroy the zombie, it will simply continue where the
first thread was preempted (a form of priority inheritance),
instead of making the new thread dependent (blocked) on
the completion of another.

Exceptions are similar to interrupts in their effect, but
are synchronous in that they result directly from the code
being executed and cannot be deferred. In the seL4 kernel
we avoid exceptions completely and much of that avoidance
is guaranteed as a side-effect of verification. Special care is
required only for memory faults.

We avoid having to deal with virtual-memory exceptions
in kernel code by mapping a fixed region of the virtual ad-
dress space to physical memory, independent of whether it is
actively used or not. The region contains all the memory the
kernel can potentially use for its own internal data structures,
and is guaranteed to never produce a fault. We prove that
this region appears in every virtual address space.

Arguments passed to the kernel from user level are either
transferred in registers or limited to preregistered physical
frames accessed through the kernel region.

3.4 I/O
As described earlier we avoid most of the complexity of

I/O by moving device drivers into protected user-mode com-
ponents. When processing an interrupt event, our interrupt
delivery mechanism determines the interrupt source, masks
further interrupts from that specific source, notifies the regis-
tered user-level handler (device driver) of the interrupt, and
unmasks the interrupt when the handler acknowledges the
interrupt.

We coarsely model the hardware interrupt controller of
the ARM platform to include interrupt support in the proof.
The model includes existence of the controller, masking of
interrupts, and that interrupts only occur if unmasked. This
is sufficient to include interrupt controller access, and basic
behaviour in the proof, without modelling correctness of the
interrupt controller management in detail. The proof is set
up such that it is easy to include more detail in the hardware
model should it become necessary later to prove additional
properties.

Our kernel contains a single device driver, the timer driver,
which generates timer ticks for the scheduler. This is set up
in the initialisation phase of the kernel as an automatically
reloaded source of regular interrupts. It is not modified or
accessed during the execution of the kernel. We did not need
to model the timer explicitly in the proof, we just prove that
system behaviour on each tick event is correct.

3.5 Observations
The requirements of verification force the designers to

think of the simplest and cleanest way of achieving their
goals. We found repeatedly that this leads to overall better
design, which tends to reduce the likelihood of bugs.

In a number of cases there were significant other bene-
fits. This is particularly true for the design decisions aimed
at simplifying concurrency-related verification issues. Non-
preemptable execution (except for a few interrupt-points) has
traditionally been used in L4 kernels to maximise average-
case performance. Recent L4 kernels aimed at embedded
use [32] have adopted an event-based design to reduce the
kernel’s memory footprint (due to the use of a single kernel
stack rather than per-thread stacks).

4. seL4 VERIFICATION
This section describes each of the specification layers as

well as the proof in more detail.

4.1 Abstract specification
The abstract level describes what the system does without

saying how it is done. For all user-visible kernel operations it
describes the functional behaviour that is expected from the
system. All implementations that refine this specification
will be binary compatible.

We precisely describe argument formats, encodings and
error reporting, so for instance some of the C-level size re-
strictions become visible on this level. In order to express
these, we rarely make use of infinite types like natural num-
bers. Instead, we use finite machine words, such as 32-bit
integers. We model memory and typed pointers explicitly.
Otherwise, the data structures used in this abstract specifi-
cation are high-level — essentially sets, lists, trees, functions
and records. We make use of non-determinism in order to
leave implementation choices to lower levels: If there are
multiple correct results for an operation, this abstract layer

schedule ≡ do

threads ← all_active_tcbs;

thread ← select threads;

switch_to_thread thread

od OR switch_to_idle_thread

Figure 3: Isabelle/HOL code for scheduler at ab-
stract level.

would return all of them and make clear that there is a choice.
The implementation is free to pick any one of them.

An example of this is scheduling. No scheduling policy is
defined at the abstract level. Instead, the scheduler is mod-
elled as a function picking any runnable thread that is active
in the system or the idle thread. The Isabelle/HOL code
for this is shown in Fig. 3. The function all_active_tcbs

returns the abstract set of all runnable threads in the system.
Its implementation (not shown) is an abstract logical predi-
cate over the whole system. The select statement picks any
element of the set. The OR makes a non-deterministic choice
between the first block and switch_to_idle_thread. The
executable specification makes this choice more specific.

4.2 Executable specification
The purpose of the executable specification is to fill in the

details left open at the abstract level and to specify how the
kernel works (as opposed to what it does). While trying to
avoid the messy specifics of how data structures and code
are optimised in C, we reflect the fundamental restrictions
in size and code structure that we expect from the hardware
and the C implementation. For instance, we take care not
to use more than 64 bits to represent capabilities, exploiting
for instance known alignment of pointers. We do not specify
in which way this limited information is laid out in C.

The executable specification is deterministic; the only non-
determinism left is that of the underlying machine. All data
structures are now explicit data types, records and lists with
straightforward, efficient implementations in C. For example
the capability derivation tree of seL4, modelled as a tree on
the abstract level, is now modelled as a doubly linked list
with limited level information. It is manipulated explicitly
with pointer-update operations.

Fig. 4 shows part of the scheduler specification at this
level. The additional complexity becomes apparent in the
chooseThread function that is no longer merely a simple pred-
icate, but rather an explicit search backed by data structures
for priority queues. The specification fixes the behaviour
of the scheduler to a simple priority-based round-robin al-
gorithm. It mentions that threads have time slices and it
clarifies when the idle thread will be scheduled. Note that
priority queues duplicate information that is already available
(in the form of thread states), in order to make it available
efficiently. They make it easy to find a runnable thread of
high priority. The optimisation will require us to prove that
the duplicated information is consistent.

We have proved that the executable specification correctly
implements the abstract specification. Because of its extreme
level of detail, this proof alone already provides stronger
design assurance than has been shown for any other general-
purpose OS kernel.

4.3 C implementation
The most detailed layer in our verification is the C im-

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread’ (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread’ prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread’’ q

chooseThread’’ thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Figure 4: Haskell code for schedule.

plementation. The translation from C into Isabelle is
correctness-critical and we take great care to model the
semantics of our C subset precisely and foundationally. Pre-
cisely means that we treat C semantics, types, and mem-
ory model as the standard prescribes, for instance with
architecture-dependent word size, padding of structs, type-
unsafe casting of pointers, and arithmetic on addresses. As
kernel programmers do, we make assumptions about the
compiler (GCC) that go beyond the standard, and about
the architecture used (ARMv6). These are explicit in the
model, and we can therefore detect violations. Foundation-
ally means that we do not just axiomatise the behaviour of
C on a high level, but we derive it from first principles as
far as possible. For example, in our model of C, memory is
a primitive function from addresses to bytes without type
information or restrictions. On top of that, we specify how
types like unsigned int are encoded, how structures are
laid out, and how implicit and explicit type casts behave.
We managed to lift this low-level memory model to a high-
level calculus that allows efficient, abstract reasoning on the
type-safe fragment of the kernel [62, 63, 65]. We generate
proof obligations assuring the safety of each pointer access
and write. They state that the pointer in question must be
non-null and of the correct alignment. They are typically
easy to discharge. We generate similar obligations for all
restrictions the C99 standard demands.

We treat a very large, pragmatic subset of C99 in the veri-
fication. It is a compromise between verification convenience
and the hoops the kernel programmers were willing to jump
through in writing their source. The following paragraphs
describe what is not in this subset.

We do not allow the address-of operator & on local vari-
ables, because, for better automation, we make the assump-
tion that local variables are separate from the heap. This
could be violated if their address was available to pass on. It
is the most far-reaching restriction we implement, because it
is common to use local variable references for return parame-
ters of large types that we do not want to pass on the stack.
We achieved compliance with this requirement by avoiding
reference parameters as much as possible, and where they
were needed, used pointers to global variables (which are not
restricted).

void setPriority(tcb_t *tptr, prio_t prio) {
prio_t oldprio;
if(thread_state_get_tcbQueued(tptr->tcbState)) {

oldprio = tptr->tcbPriority;
ksReadyQueues[oldprio] =

tcbSchedDequeue(tptr, ksReadyQueues[oldprio]);
if(isRunnable(tptr)) {

ksReadyQueues[prio] =
tcbSchedEnqueue(tptr, ksReadyQueues[prio]);

}
else {

thread_state_ptr_set_tcbQueued(&tptr->tcbState,
false);

}
}
tptr->tcbPriority = prio;

}

Figure 5: C code for part of the scheduler.

One feature of C that is problematic for verification (and
programmers) is the unspecified order of evaluation in ex-
pressions with side effects. To deal with this feature soundly,
we limit how side effects can occur in expressions. If more
than one function call occurs within an expression or the
expression otherwise accesses global state, a proof obligation
is generated to show that these functions are side-effect free.
This proof obligation is discharged automatically.

We do not allow function calls through function pointers.
(We do allow handing the address of a function to assembler
code, e.g. for installing exception vector tables.) We also do
not allow goto statements, or switch statements with fall-
through cases. We support C99 compound literals, making it
convenient to return structs from functions, and reducing the
need for reference parameters. We do not allow compound
literals to be lvalues. Some of these restrictions could be
lifted easily, but the features were not required in seL4.

We did not use unions directly in seL4 and therefore do
not support them in the verification (although that would
be possible). Since the C implementation was derived from a
functional program, all unions in seL4 are tagged, and many
structs are packed bitfields. Like other kernel implementors,
we do not trust GCC to compile and optimise bitfields pre-
dictably for kernel code. Instead, we wrote a small tool that
takes a specification and generates C code with the neces-
sary shifting and masking for such bitfields. The tool helps
us to easily map structures to page table entries or other
hardware-defined memory layouts. The generated code can
be inlined and, after compilation on ARM, the result is more
compact and faster than GCC’s native bitfields. The tool not
only generates the C code, it also automatically generates
Isabelle/HOL specifications and proofs of correctness [13].

Fig. 5 shows part of the implementation of the schedul-
ing functionality described in the previous sections. It is
standard C99 code with pointers, arrays and structs. The
thread_state functions used in Fig. 5 are examples of gen-
erated bitfield accessors.

4.4 Machine model
Programming in C is not sufficient for implementing a

kernel. There are places where the programmer has to go
outside the semantics of C to manipulate hardware directly.
In the easiest case, this is achieved by writing to memory-
mapped device registers, as for instance with a timer chip; in
other cases one has to drop down to assembly to implement
the required behaviour, as for instance with TLB flushes.

configureTimer :: irq => unit machine_m
resetTimer :: unit machine_m
setCurrentPD :: paddr => unit machine_m
setHardwareASID :: hw_asid => unit machine_m
invalidateTLB :: unit machine_m
invalidateHWASID :: hw_asid => unit machine_m
invalidateMVA :: word => unit machine_m
cleanCacheMVA :: word => unit machine_m
cleanCacheRange :: word => word => unit machine_m
cleanCache :: unit machine_m
invalidateCacheRange :: word => word => unit machine_m
getIFSR :: word machine_m
getDFSR :: word machine_m
getFAR :: word machine_m
getActiveIRQ :: (irq option) machine_m
maskInterrupt :: bool => irq => unit machine_m

Figure 6: Machine interface functions.

Presently, we do not model the effects of certain direct
hardware instructions because they are too far below the
abstraction layer of C. Of these, cache and TLB flushes
are relevant for the correctness of the code, and we rely on
traditional testing for these limited number of cases. Higher
assurance can be obtained by adding more detail to the
machine model—we have phrased the machine interface such
that future proofs about the TLB and cache can be added
with minimal changes. Additionally, required behaviour can
be guaranteed by targeted assertions (e.g., that page-table
updates always flush the TLB), which would result in further
proof obligations.

The basis of this formal model of the machine is the
internal state of the relevant devices, collected in one
record machine_state. For devices that we model more
closely, such as the interrupt controller, the relevant part in
machine_state contains details such as which interrupts are
currently masked. For the parts that we do not model, such
as the TLB, we leave the corresponding type unspecified, so
it can be replaced with more details later.

Fig. 6 shows our machine interface. The functions are
all of type X machine_m which restricts any side effects to
the machine_state component of the system. Most of the
functions return nothing (type unit), but change the state of
a device. In the abstract and executable specification, these
functions are implemented with maximal non-determinism.
This means that in the extreme case they may arbitrarily
change their part of the machine state. Even for devices
that we model, we are careful to leave as much behaviour as
possible non-deterministic. The less behaviour we prescribe,
the less assumptions the model makes about the hardware.

In the seL4 implementation, the functions in Fig. 6 are
implemented in C where possible, and otherwise in assembly;
we must check (but we do not prove) that the implementa-
tions match the assumptions we make in the levels above.
An example is the function getIFSR, which on ARM returns
the instruction fault status register after a page fault. For
this function, which is basically a single assembly instruction,
we only assume that it does not change the memory state of
the machine, which is easy to check.

4.5 The proof
This section describes the main theorem we have shown

and how its proof was constructed.
As mentioned, the main property we are interested in is

functional correctness, which we prove by showing formal
refinement. We have formalised this property for general

state machines in Isabelle/HOL, and we instantiate each
of the specifications in the previous sections into this state-
machine framework.

We have also proved the well-known reduction of refinement
to forward simulation, illustrated in Fig. 7: To show that a
concrete state machineM2 refines an abstract oneM1, it is
sufficient to show that for each transition in M2 that may
lead from an initial state s to a set of states s′, there exists a
corresponding transition on the abstract side from an abstract
state σ to a set σ′ (they are sets because the machines may
be non-deterministic). The transitions correspond if there
exists a relation R between the states s and σ such that for
each concrete state in s′ there is an abstract one in σ′ that
makes R hold between them again. This has to be shown for
each transition with the same overall relation R. For each
refinement layer in Fig. 2, we have strengthened and varied
this proof technique slightly, but the general idea remains
the same. Details are published elsewhere [14,70].

We now describe the instantiation of this framework to
the seL4 kernel. We have the following types of transition in
our state machines: kernel transitions, user transitions, user
events, idle transitions, and idle events. Kernel transitions
are those that are described by each of the specification layers
in increasing amount of detail. User transitions are specified
as non-deterministically changing arbitrary user-accessible
parts of the state space. User events model kernel entry
(trap instructions, faults, interrupts). Idle transitions model
the behaviour of the idle thread. Finally, idle events are
interrupts occurring during idle time; other interrupts that
occur during kernel execution are modelled explicitly and
separately in each layer of Fig. 2.

The model of the machine and the model of user programs
remain the same across all refinement layers; only the details
of kernel behaviour and kernel data structures change. The
fully non-deterministic model of the user means that our
proof includes all possible user behaviours, be they benign,
buggy, or malicious.

Let machine MA denote the system framework instan-
tiated with the abstract specification of Sect. 4.1, let ma-
chine ME represent the framework instantiated with the
executable specification of Sect. 4.2, and let machine MC

stand for the framework instantiated with the C program
read into the theorem prover. Then we prove the following
two, very simple-looking theorems:

Theorem 1. ME refines MA.

Theorem 2. MC refines ME.

Therefore, because refinement is transitive, we have

Theorem 3. MC refines MA.

Assumptions. The assumptions we make are correctness of
the C compiler, the assembly code level, and the hardware.
We currently omit correctness of the boot/initialisation code
which takes up about 1.2 kLOC of the kernel; the theorems
above state correspondence between the kernel entry and exit
points in each specification layer. We describe these assump-
tions in more detail below and discuss their implications.

For the C level, we assume that the GCC compiler cor-
rectly implements our subset according to the ISO/IEC C99
standard [39], that the formal model of our C subset accu-
rately reflects this standard and that it makes the correct

S
ta
te
 R
e
la
ti
o
n

S
ta
te
 R
e
la
ti
o
n

Concrete Operation M2

Abstract Operation M1
σ, σ

′

s s'

Figure 7: Forward Simulation.

architecture-specific assumptions for the ARMv6 architecture
on the Freescale i.MX31 platform.

The assumptions on the hardware and assembly level mean
that we do not prove correctness of the register save/restore
and the potential context switch on kernel exit. As described
in Sect. 4.4, cache consistency, cache colouring, and TLB
flushing requirements are part of the assembly-implemented
machine interface. These machine interface functions are
called from C, and we assume they do not have any effect on
the memory state of the C program. This is only true under
the assumption they are used correctly.

In-kernel memory and code access is translated by the
TLB on ARM processors. For our C semantics, we assume a
traditional, flat view of in-kernel memory that is consistent
because all kernel reads and writes are performed through a
constant one-to-one VM window which the kernel establishes
in every address space. We make this consistency argument
only informally; our model does not oblige us to prove it.
We do however substantiate the model by manually stated
properties and invariants. This means our treatment of in-
kernel virtual memory is different to the high standards in
the rest of our proof where we reason from first principles
and the proof forces us to be complete.

These are not fundamental limitations of the approach, but
a decision taken to achieve the maximum outcome with avail-
able resources. For instance, we have verified the executable
design of the boot code in an earlier design version. For
context switching, Ni et al. [49] report verification success,
and the Verisoft project [3] showed how to verify assembly
code and hardware interaction. Leroy verified an optimising
C compiler [44] for the PowerPC architecture. We have also
shown that kernel VM access and faults can be modelled
foundationally from first principles [42].

Assurance. Having outlined the limitations of our verifica-
tion, we now discuss the properties that are proved.

Overall, we show that the behaviour of the C implemen-
tation is fully captured by the abstract specification. This
is a strong statement, as it allows us to conduct all further
analysis of properties that can be expressed as Hoare triples
on the massively simpler abstract specification instead of a
complex C program. Coverage is complete. Any remaining
implementation errors (deviations from the specification) can
only occur below the level of C.

A cynic might say that an implementation proof only shows
that the implementation has precisely the same bugs that

the specification contains. This is true: the proof does not
guarantee that the specification describes the behaviour the
user expects. The difference is the degree of abstraction and
the absence of whole classes of bugs. In the same notation,
the abstract specification is one third the size of the C code
and works with concepts that are simpler and faster to reason
about. The current level of abstraction is low enough to be
precise for the operational behaviour of the kernel. To analyse
specific properties of the system, one might also introduce
another, even higher level of abstraction that contains only
the aspects relevant for the property. An example is our
access control model of seL4 [11,21].

In addition to the implementation correctness statement,
our strengthened proof technique for forward simulation [14]
implies that bothME andMC never fail and always have
defined behaviour. This means the kernel can never crash or
otherwise behave unexpectedly as long as our assumptions
hold. This includes that all assertions1 in the kernel design
are true on all code paths, and that the kernel never accesses
a null pointer or a misaligned pointer.

We proved that all kernel API calls terminate and return
to user level. There is no possible situation in which the
kernel can enter an infinite loop. Since the interface from user
level to the abstract specification is binary compatible with
the final implementation, our refinement theorem implies
that the kernel does all argument checking correctly and that
it can not be subverted by buggy encodings, spurious calls,
maliciously constructed arguments to system calls, buffer
overflow attacks or other such vectors from user level. All
these properties hold with the full assurance of machine-
checked proof.

As part of the refinement proof between levels MA and
ME , we had to show a large number of invariants. These
invariants are not merely a proof device, but provide valuable
information and assurance in themselves. In essence, they
collect information about what we know to be true of each
data structure in the kernel, before and after each system
call, and also for large parts during kernel execution where
some of these invariants may be temporarily violated and
re-established later. The overall proof effort was clearly
dominated by invariant proofs, with the actual refinement
statements between abstract and executable specification
accounting for at most 20 % of the total effort for that stage.
There is not enough space in this paper to enumerate all the
invariant statements we have proved, but we will attempt a
rough categorisation, show a few representatives, and give a
general flavour.

There are four main categories of invariants in our proof:
low-level memory invariants, typing invariants, data structure
invariants, and algorithmic invariants.

The first two categories could in part be covered by a type-
safe language: low-level memory invariants include that there
is no object at address 0, that kernel objects are aligned to
their size, and that they do not overlap. The typing invariants
say that each kernel object has a well-defined type and that
its references in turn point to objects of the right type. An
example would be a capability slot containing a reference
to a thread control block (TCB). The invariant would state

1One might think that assertions are pointless in a verified
kernel. In fact, they are not only a great help during devel-
opment, they also convey a useful message from the kernel
designer to the verifier about an important invariant in the
code, and as such aid verification.

that the type of the first object is a capability-table entry
and that its reference points to a valid object in memory
with type TCB. Intuitively, this invariant implies that all
reachable, potentially used references in the kernel—be it in
capabilities, kernel objects or other data structures—always
point to an object of the expected type. This is a necessary
condition for safe execution: we need to know that pointers
point to well-defined and well-structured data, not garbage.
This is also a dynamic property, because objects can be
deleted and memory can be re-typed at runtime. Note that
the main invariant is about potentially used references. We
do allow some references, such as in ARM page table objects,
to be temporarily left dangling, as long as we can prove that
these dangling references will never be touched. Our typing
invariants are stronger than those one would expect from
a standard programming language type system. They are
context dependent and they include value ranges such as
using only a certain number of bits for hardware address
space identifiers (ASIDs). They also often exclude specific
values such as -1 or 0 as valid values because these are
used in C to indicate success or failure of the corresponding
operations. Typing invariants are usually simple to state
and for large parts of the code, their preservation can be
proved automatically. There are only two operations where
the proof is difficult: removing and retyping objects. Type
preservation for these two operations is the main reason for
a large number of other kernel invariants.

The third category of invariants are classical data structure
invariants like correct back links in doubly-linked lists, a state-
ment that there are no loops in specific pointer structures,
that other lists are always terminated correctly with NULL,
or that data structure layout assumptions are interpreted
the same way everywhere in the code. These invariants are
not especially hard to state, but they are frequently violated
over short stretches of code and then re-established later —
usually when lists are updated or elements are removed.

The fourth and last category of invariants that we identify
in our proof are algorithmic invariants that are specific to
how the seL4 kernel works. These are the most complex
invariants in our proof and they are where most of the proof
effort was spent. These invariants are either required to prove
that specific optimisations are allowed (e.g. that a check can
be left out because the condition can be shown to be always
true), or they are required to show that an operation executes
safely and does not violate other invariants, especially not the
typing invariant. Examples of simple algorithmic invariants
are that the idle thread is always in thread state idle, and
that only the idle thread is in this state. Another one is
that the global kernel memory containing kernel code and
data is mapped in all address spaces. Slightly more involved
are relationships between the existence of capabilities and
thread states. For instance, if a Reply capability exists to
a thread, this thread must always be waiting to receive a
reply. This is a non-local property connecting the existence
of an object somewhere in memory with a particular state
of another object somewhere else. Other invariants formally
describe a general symmetry principle that seL4 follows: if
an object x has a reference to another object y, then there
is a reference in object y that can be used to find object x
directly or indirectly. This fact is exploited heavily in the
delete operation to clean up all remaining references to an
object before it is deleted.

The reason this delete operation is safe is complicated.

Here is a simplified, high-level view of the chain of invariants
that show an efficient local pointer test is enough to ensure
that deletion is globally safe:

(1) If an object is live (contains references to other objects),
there exists a capability to it somewhere in memory. (2)
If an untyped capability c1 covers a sub-region of another
capability c2, then c1 must be a descendant of c2 according
to the capability derivation tree (CDT). (3) If a capability
c1 points to a kernel object whose memory is covered by an
untyped capability c2, then c1 must be a descendant of c2.

With these, we have: If an untyped capability has no chil-
dren in the CDT (a simple pointer comparison according to
additional data structure invariants), then all kernel objects
in its region must be non-live (otherwise there would be
capabilities to them, which in turn would have to be children
of the untyped capability). If the objects are not live and
no capabilities to them exist, there is no further reference
in the whole system that could be made unsafe by the type
change because otherwise the symmetry principle on refer-
ences would be violated. Deleting the object will therefore
preserve the basic typing and safety properties. Of course
we also have to show that deleting the object preserves all
the new invariants we just used as well.

We have proved over 150 invariants on the different spec-
ification levels, most are interrelated, many are complex.
All these invariants are expressed as formulae on the kernel
state and are proved to be preserved over all possible kernel
executions.

5. EXPERIENCE AND LESSONS LEARNT

5.1 Performance
IPC performance is the most critical metric for evaluation

in a microkernel in which all interaction occurs via IPC. We
have evaluated the performance of seL4 by comparing IPC
performance with L4, which has a long history of data points
to draw upon [47].

Publicly available performance for the Intel XScale PXA
255 (ARMv5) is 151 in-kernel cycles for a one-way IPC [43],
and our experiments with OKL4 2.1 [51] on the platform we
are using (Freescale i.MX31 evaluation board based on a 532
MHz ARM1136JF-S which is an ARMv6 ISA) produced 206
cycles as a point for comparison—this number was produced
using a hand-crafted assembly-language path. The non-
optimised C version in the same kernel took 756 cycles. These
are hot-cache measurements obtained using the processor
cycle counter.

Our measurement for seL4 is 224 cycles for one-way IPC in
an optimised C path, which is approaching the performance of
optimised assembly-language IPC paths for other L4 kernels
on ARM processors. This puts seL4 performance into the
vicinity of the fastest L4 kernels.

At the time of writing, this optimised IPC C path is not
yet in the verified code base, but it is within the verifiable
fragment of C and is not fundamentally different from the
rest of the code.

5.2 Verification effort
The overall code statistics are presented in Table 1.
The project was conducted in three phases. First an initial

kernel with limited functionality (no interrupts, single ad-
dress space and generic linear page table) was designed and
implemented in Haskell, while the verification team mostly

Haskell/C Isabelle Invariants Proof
LOC LOC LOP

abst. — 4,900 ∼ 75
exec. 5,700 13,000 ∼ 80

110,000

impl. 8,700 15,000 0
55,000

Table 1: Code and proof statistics.

worked on the verification framework and generic proof li-
braries. In a second phase, the verification team developed
the abstract spec and performed the first refinement while
the development team completed the design, Haskell pro-
totype and C implementation. The third phase consisted
of extending the first refinement step to the full kernel and
performing the second refinement. The overall size of the
proof, including framework, libraries, and generated proofs
(not shown in the table) is 200,000 lines of Isabelle script.

The abstract spec took about 4 person months (pm) to
develop. About 2 person years (py) went into the Haskell
prototype (over all project phases), including design, docu-
mentation, coding, and testing. The executable spec only
required setting up the translator; this took 3 pm.

The initial C translation was done in 3 weeks, in total the
C implementation took about 2 pm, for a total cost of 2.2 py
including the Haskell effort.

This compares well with other efforts for developing a new
microkernel from scratch: The Karlsruhe team reports that,
on the back of their experience from building the earlier
Hazelnut kernel, the development of the Pistachio kernel cost
about 6 py [17]. SLOCCount [68] with the“embedded”profile
estimates the total cost of seL4 at 4 py. Hence, there is strong
evidence that the detour via Haskell did not increase the
cost, but was in fact a significant net cost saver. This means
that our development process can be highly recommended
even for projects not considering formal verification.

The cost of the proof is higher, in total about 20 py. This
includes significant research and about 9 py invested in formal
language frameworks, proof tools, proof automation, theorem
prover extensions and libraries. The total effort for the seL4-
specific proof was 11 py.

We expect that re-doing a similar verification for a new
kernel, using the same overall methodology, would reduce
this figure to 6 py, for a total (kernel plus proof) of 8 py. This
is only twice the SLOCCount estimate for a traditionally-
engineered system with no assurance. It certainly compares
favourable to industry rules-of-thumb of $10k/LOC for Com-
mon Criteria EAL6 certification, which would be $87M for
seL4, yet provides far less assurance than formal verification.

The breakdown of effort between the two refinement stages
is illuminating: The first refinement step (from abstract to
executable spec) consumed 8 py, the second (to concrete spec)
less than 3 py, almost a 3:1 breakdown. This is a reflection
of the low-level nature of our Haskell implementation, which
captures most of the properties of the final product. This is
also reflected in the proof size—the first proof step contained
most of the deep semantic content. 80% of the effort in
the first refinement went into establishing invariants, only
20 % into the actual correspondence proof. We consider this
asymmetry a significant benefit, as the executable spec is
more convenient and efficient to reason about than the C level.
Our formal refinement framework for C made it possible
to avoid proving any invariants on the C code, speeding

up this stage of the proof significantly. We proved only
few additional invariants on the executable spec layer to
substantiate optimisations in C.

The first refinement step lead to some 300 changes in the
abstract spec and 200 in the executable spec. About 50 % of
these changes relate to bugs in the associated algorithms or
design, the rest were introduced for verification convenience.
The ability to change and rearrange code in discussion with
the design team (to predict performance impact) was an
important factor in the verification team’s productivity. It is
a clear benefit of the approach described in Sect. 2.2 and was
essential to complete the verification in the available time.

By the time the second refinement started, the kernel had
been used by a number of internal student projects and the
x86 port was underway. Those two activities uncovered 16
defects in the implementation before verification had started
in earnest, the formal verification has uncovered another 144
defects and resulted in 54 further changes to the code to aid
in the proof. None of the bugs found in the C verification
stage were deep in the sense that the corresponding algorithm
was flawed. This is because the C code was written according
to a very precise, low-level specification which was already
verified in the first refinement stage. Algorithmic bugs found
in the first stage were mainly missing checks on user supplied
input, subtle side effects in the middle of an operation break-
ing global invariants, or over-strong assumptions about what
is true during execution. The bugs discovered in the second
proof from executable spec to C were mainly typos, misread-
ing the specification, or failing to update all relevant code
parts for specification changes. Simple typos also made up a
surprisingly large fraction of discovered bugs in the relatively
well tested executable specification in the first refinement
proof, which suggests that normal testing may not only miss
hard and subtle bugs, but also a larger number of simple,
obvious faults than one may expect. Even though their cause
was often simple, understandable human error, their effect
in many cases was sufficient to crash the kernel or create
security vulnerabilities. Other more interesting bugs found
during the C implementation proof were missing exception
case checking, and different interpretations of default values
in the code. For example, the interrupt controller on ARM
returns 0xFF to signal that no interrupt is active which is
used correctly in most parts of the code, but in one place
the check was against NULL instead.

The C verification also lead to changes in the executable
and abstract specifications: 44 of these were to make the
proof easier; 34 were implementation restrictions, such as
the maximum size of virtual address space identifiers, which
the specifications should make visible to the user.

5.3 The cost of change
An obvious issue of verification is the cost of proof main-

tenance: how much does it cost to re-verify after changes
made to the kernel? It obviously depends on the nature of
the change, specifically the amount of code it changes, the
number of invariants it affects, and how localised it is. We are
not able to quantify such costs, but our iterative verification
approach has provided us with some relevant experience.

The best case are local, low-level code changes, typically
optimisations that do not affect the observable behaviour.
We made such changes repeatedly, and found that the effort
for re-verification was always low and roughly proportional
to the size of the change.

Adding new, independent features, which do not interact in
a complex way with existing features, usually has a moderate
effect. For example, adding a new system call to the seL4
API that atomically batches a specific, short sequence of
existing system calls took one day to design and implement.
Adjusting the proof took less than 1 pw.

Adding new, large, cross-cutting features, such as adding
a complex new data structure to the kernel supporting new
API calls that interact with other parts of the kernel, is
significantly more expensive. We experienced such a case
when progressing from the first to the final implementation,
adding interrupts, ARM page tables and address spaces.
This change cost several pms to design and implement, and
resulted in 1.5–2 py to re-verify. It modified about 12% of
existing Haskell code, added another 37 %, and re-verification
cost about 32 % of the time previously invested in verification.

The new features required only minor adjustments of ex-
isting invariants, but lead to a considerable number of new
invariants for the new code. These invariants have to be pre-
served over the whole kernel API, not just the new features.

Unsurprisingly, fundamental changes to existing features
are bad news. We had one example of such a change when
we added reply capabilities for efficient RPC as an API op-
timisation after the first refinement was completed. Reply
capabilities are created on the fly in the receiver of an IPC
and are treated in most cases like other capabilities. They
are single-use, and thus deleted immediately after use. This
fundamentally broke a number of properties and invariants
on capabilities. Creation and deletion of capabilities require
a large number of preconditions to execute safely. The opera-
tions were carefully constrained in the kernel. Doing them on
the fly required complex preconditions to be proved for many
new code paths. Some of these turned out not to be true,
which required extra work on special-case proofs or changes
to existing invariants (which then needed to be re-proved
for the whole kernel). Even though the code size of this
change was small (less than 5% of the total code base), the
comparative amount of conceptual cross-cutting was huge.
It took about 1 py or 17% of the original proof effort to
re-verify.

There is one class of otherwise frequent code changes that
does not occur after the kernel has been verified: implemen-
tation bug fixes.

6. RELATED WORK
We briefly summarise the literature on OS verification.

Klein [40] provides a comprehensive overview.
The first serious attempts to verify an OS kernel were

in the late 1970s UCLA Secure Unix [67] and the Provably
Secure Operating System (PSOS) [24]. Our approach mirrors
the UCLA effort in using refinement and defining functional
correctness as the main property to prove. The UCLA project
managed to finish 90% of their specification and 20% of
their proofs in 5 py. They concluded that invariant reasoning
dominated the proof effort, which we found confirmed in our
project.

PSOS was mainly focussed on formal kernel design and
never completed any substantial implementation proofs. Its
design methodology was later used for the Kernelized Secure
Operating System (KSOS) [52] by Ford Aerospace. The
Secure Ada Target (SAT) [30] and the Logical Coprocessor
Kernel (LOCK) [55] are also inspired by the PSOS design
and methodology.

In the 1970s, machine support for theorem proving was
rudimentary. Basic language concepts like pointers still
posed large problems. The UCLA effort reports that the
simplifications required to make verification feasible made
the kernel an order of magnitude slower [67]. We have
demonstrated that with modern tools and techniques, this is
no longer the case.

The first real, completed implementation proofs, although
for a highly idealised OS kernel are reported for KIT, con-
sisting of 320 lines of artificial, but realistic assembly instruc-
tions [8].

Bevier and Smith later produced a formalisation of the
Mach microkernel [9] without implementations proofs. Other
formal modelling and proofs for OS kernels that did not
proceed to the implementation level include the EROS ker-
nel [57], the high-level analysis of SELinux [5,29] based on
FLASK [60], and the MASK [48] project which was geared
towards information-flow properties.

The VFiasco project [36] and later the Robin project [61]
attempted to verify C++ kernel implementations. They
managed to create a precise model of a large, relevant part
of C++, but did not verify substantial parts of a kernel.

Heitmeyer et al [33] report on the verification and Common
Criteria certification of a “software-based embedded device”
featuring a small (3,000 LOC) separation kernel. They show
data separation only, not functional correctness. Although
they seem to at least model the implementation level, they
did not conduct a machine-checked proof directly on the
C-code.

Hardin et al [31] formally verified information-flow proper-
ties of the AAMP7 microprocessor [53], which implements
the functionality of a static separation kernel in hardware.
The functionality provided is less complex than a general
purpose microkernel—the processor does not support online
reconfiguration of separation domains. The proof goes down
to a low-level design that is in close correspondence to the
micro code. This correspondence is not proven formally, but
by manual inspection.

A similar property was recently shown for Green Hills’
Integrity kernel [28] during a Common Criteria EAL6+ certi-
fication [27]. The Separation Kernel Protection Profile [38] of
Common Criteria shows data separation only. It is a weaker
property than full functional correctness.

A closely related contemporary project is Verisoft [2], which
is attempting to verify not only the OS, but a whole soft-
ware stack from verified hardware up to verified application
programs. This includes a formally verified, non-optimising
compiler for their own Pascal-like implementation language.
Even if not all proofs are completed yet, the project has suc-
cessfully demonstrated that such a verification stack for full
functional correctness can be achieved. They have also shown
that verification of assembly-level code is feasible. However,
Verisoft accepts two orders of magnitude slow-down for their
highly-simplified VAMOS kernel (e.g. only single-level page
tables) and that their verified hardware platform VAMP is
not widely deployed. We deal with real C and standard
tool chains on ARMv6, and have aimed for a commercially
deployable, realistic microkernel.

Other formal techniques for increasing the trustworthiness
of operating systems include static analysis, model checking
and shape analysis. Static analysis can in the best case only
show the absence of certain classes of defects such as buffer
overruns. Model checking in the OS space includes SLAM [6]

and BLAST [34]. They can show specific safety properties of
C programs automatically, such as correct API usage in de-
vice drivers. The terminator tool [15] increases reliability of
device drivers by attempting to prove termination automati-
cally. Full functional correctness of a realistic microkernel is
still beyond the scope of these automatic techniques.

Implementations of kernels in type-safe languages such as
SPIN [7] and Singularity [23] offer increased reliability, but
they have to rely on traditional “dirty” code to implement
their language runtime, which tends to be substantially bigger
than the complete seL4 kernel. While type safety is a good
property to have, it is not very strong. The kernel may still
misbehave or attempt, for instance, a null pointer access.
Instead of randomly crashing, it will report a controlled
exception. In our proof, we show a variant of type safety for
the seL4 code. Even though the kernel deliberately breaks
the C type system, it only does so in a safe way. Additionally,
we prove much more: that there will never be any such null
pointer accesses, that the kernel will never crash and that the
code always behaves in strict accordance with the abstract
specification.

7. CONCLUSIONS
We have presented our experience in formally verifying

seL4. We have shown that full, rigorous, formal verification
is practically achievable for OS microkernels with very rea-
sonable effort compared to traditional development methods.

Although we have not invested significant effort into op-
timisation, we have shown that optimisations are possible
and that performance does not need to be sacrificed for ver-
ification. The seL4 kernel is practical, usable, and directly
deployable, running on ARMv6 and x86.

Collateral benefits of the verification include our rapid
prototyping methodology for kernel design. We observed
a confluence of design principles from the formal methods
and the OS side, leading to design decisions such as an
event-based kernel that is mostly non-preemptable and uses
interrupt polling. These decisions made the kernel design
simpler and easier to verify without sacrificing performance.
Evidence suggests that taking the detour via a Haskell pro-
totype increased our productivity even without considering
verification.

Future work in this project includes verification of the
assembly parts of the kernel, a multi-core version of the
kernel, as well as application verification. The latter now
becomes much more meaningful than previously possible:
application proofs can rely on the abstract, formal kernel
specification that seL4 is proven to implement.

Compared to the state of the art in software certification,
the ultimate degree of trustworthiness we have achieved is
redefining the standard of highest assurance.

Acknowledgements
We thank Timothy Bourke, Timothy Roscoe, and Adam
Wiggins for valued feedback on drafts of this article. We
also would like to acknowledge the contribution of the former
team members on this verification project: Jeremy Dawson,
Jia Meng, Catherine Menon, and David Tsai.

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

8. REFERENCES
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,

R. Rashid, A. Tevanian, and M. Young. Mach: A new
kernel foundation for UNIX development. In 1986
Summer USENIX, pages 93–112, 1986.

[2] E. Alkassar, M. Hillebrand, D. Leinenbach,
N. Schirmer, A. Starostin, and A. Tsyban. Balancing
the load — leveraging a semantics stack for systems
verification. JAR, 42(2–4), 2009.

[3] E. Alkassar, N. Schirmer, and A. Starostin. Formal
pervasive verification of a paging mechanism. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Alg. for
the Construction and Analysis of Systems (TACAS),
volume 4963 of LNCS, pages 109–123. Springer, 2008.

[4] J. Alves-Foss, P. W. Oman, C. Taylor, and S. Harrison.
The MILS architecture for high-assurance embedded
systems. Int. J. Emb. Syst., 2:239–247, 2006.

[5] M. Archer, E. Leonard, and M. Pradella. Analyzing
security-enhanced Linux policy specifications. In
POLICY ’03: Proc. 4th IEEE Int. WS on Policies for
Distributed Systems and Networks, pages 158–169.
IEEE Computer Society, 2003.

[6] T. Ball and S. K. Rajamani. SLIC: A specification
language for interface checking. Technical Report
MSR-TR-2001-21, Microsoft Research, 2001.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility, safety and performance in the
SPIN operating system. In 15th SOSP, Dec 1995.

[8] W. R. Bevier. Kit: A study in operating system
verification. IEEE Transactions on Software
Engineering, 15(11):1382–1396, 1989.

[9] W. R. Bevier and L. Smith. A mathematical model of
the Mach kernel: Atomic actions and locks. Technical
Report 89, Computational Logic Inc., Apr 1993.

[10] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux
as a case study: its extracted software architecture. In
ICSE ’99: Proc. 21st Int. Conf. on Software
Engineering, pages 555–563. ACM, 1999.

[11] A. Boyton. A verified shared capability model. In
G. Klein, R. Huuck, and B. Schlich, editors, 4th WS
Syst. Softw. Verification SSV’09, ENTCS, pages
99–116. Elsevier, Jun 2009.

[12] P. Brinch Hansen. The nucleus of a multiprogramming
operating system. CACM, 13:238–250, 1970.

[13] D. Cock. Bitfields and tagged unions in C: Verification
through automatic generation. In B. Beckert and
G. Klein, editors, VERIFY’08, volume 372 of CEUR
Workshop Proceedings, pages 44–55, Aug 2008.

[14] D. Cock, G. Klein, and T. Sewell. Secure microkernels,
state monads and scalable refinement. In O. A.
Mohamed, C. Muñoz, and S. Tahar, editors, 21st
TPHOLs, volume 5170 of LNCS, pages 167–182.
Springer, Aug 2008.

[15] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko,
and M. Y. Vardi. Proving that programs eventually do
something good. In 34th POPL. ACM, 2007.

[16] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve.
Secure virtual architecture: A safe execution
environment for commodity operating systems. In 16th
SOSP, pages 351–366, Oct 2007.

[17] U. Dannowski. Personal communication.

[18] W.-P. de Roever and K. Engelhardt. Data Refinement:
Model-Oriented Proof Methods and their Comparison.
Number 47 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1998.

[19] P. Derrin, K. Elphinstone, G. Klein, D. Cock, and
M. M. T. Chakravarty. Running the manual: An
approach to high-assurance microkernel development.
In ACM SIGPLAN Haskell WS, Sep 2006.

[20] D. Elkaduwe, P. Derrin, and K. Elphinstone. Kernel
design for isolation and assurance of physical memory.
In 1st IIES, pages 35–40. ACM SIGOPS, Apr 2008.

[21] D. Elkaduwe, G. Klein, and K. Elphinstone. Verified
protection model of the seL4 microkernel. In
J. Woodcock and N. Shankar, editors, VSTTE 2008 —
Verified Softw.: Theories, Tools & Experiments, volume
5295 of LNCS, pages 99–114. Springer, Oct 2008.

[22] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and
G. Heiser. Towards a practical, verified kernel. In 11th
HotOS, pages 117–122, May 2007.

[23] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. C. Hunt, J. R. Larus, and S. Levi. Language
support for fast and reliable message-based
communication in Singularity OS. In 1st EuroSys Conf.,
pages 177–190, Apr 2006.

[24] R. J. Feiertag and P. G. Neumann. The foundations of
a provably secure operating system (PSOS). In AFIPS
Conf. Proc., 1979 National Comp. Conf., Jun 1979.

[25] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and
P. Tullmann. Interface and execution models in the
Fluke kernel. In 3rd OSDI. USENIX, Feb 1999.

[26] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In 19th SOSP, Oct 2003.

[27] Green Hills Software, Inc. INTEGRITY-178B
separation kernel security target version 1.0. http:
//www.niap-ccevs.org/cc-scheme/st/st vid10119-st.pdf,
2008.

[28] Greenhills Software, Inc. Integrity real-time operating
system.
http://www.ghs.com/products/rtos/integrity.html, 2008.

[29] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and
C. W. Skorupka. Verifying information flow goals in
security-enhanced Linux. Journal of Computer Security,
13(1):115–134, 2005.

[30] J. T. Haigh and W. D. Young. Extending the
noninterference version of MLS for SAT. IEEE Trans.
on Software Engineering, 13(2):141–150, 1987.

[31] D. S. Hardin, E. W. Smith, and W. D. Young. A robust
machine code proof framework for highly secure
applications. In ACL2’06: Proc. Int. WS on the ACL2
theorem prover and its applications. ACM, 2006.

[32] G. Heiser. Hypervisors for consumer electronics. In 6th
IEEE CCNC, 2009.

[33] C. L. Heitmeyer, M. Archer, E. I. Leonard, and
J. McLean. Formal specification and verification of data
separation in a separation kernel for an embedded
system. In CCS ’06: Proc. 13th Conf. on Computer and
Communications Security, pages 346–355. ACM, 2006.

[34] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with Blast. In SPIN’03, Workshop
on Model Checking Software, 2003.

http://www.niap-ccevs.org/cc-scheme/st/st_vid10119-st.pdf
http://www.niap-ccevs.org/cc-scheme/st/st_vid10119-st.pdf
http://www.ghs.com/products/rtos/integrity.html

[35] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro.
Reducing TCB size by using untrusted components —
small kernels versus virtual-machine monitors. In 11th
SIGOPS Eur. WS, Sep 2004.

[36] M. Hohmuth and H. Tews. The VFiasco approach for a
verified operating system. In 2nd PLOS, Jul 2005.

[37] Iguana. http://www.ertos.nicta.com.au/software/kenge/
iguana-project/latest/.

[38] Information Assurance Directorate. U.S. Government
Protection Profile for Separation Kernels in
Environments Requiring High Robustness, Jun 2007.
Version 1.03. http://www.niap-ccevs.org/cc-scheme/pp/
pp.cfm/id/pp skpp hr v1.03/.

[39] ISO/IEC. Programming languages — C. Technical
Report 9899:TC2, ISO/IEC JTC1/SC22/WG14, May
2005.

[40] G. Klein. Operating system verification — an overview.
Sādhanā, 34(1):27–69, Feb 2009.

[41] G. Klein, P. Derrin, and K. Elphinstone. Experience
report: seL4 — formally verifying a high-performance
microkernel. In 14th ICFP, Aug 2009.

[42] R. Kolanski and G. Klein. Types, maps and separation
logic. In S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, editors, Proc. TPHOLs’09, volume 5674 of
LNCS. Springer, 2009.

[43] L4HQ. http://l4hq.org/arch/arm/.

[44] X. Leroy. Formal certification of a compiler back-end,
or: Programming a compiler with a proof assistant. In
J. G. Morrisett and S. L. P. Jones, editors, 33rd POPL,
pages 42–54. ACM, 2006.

[45] J. Liedtke. Improving IPC by kernel design. In 14th
SOSP, pages 175–188, Dec 1993.

[46] J. Liedtke. Towards real microkernels. CACM,
39(9):70–77, Sep 1996.

[47] J. Liedtke, K. Elphinstone, S. Schönberg, H. Härtig,
G. Heiser, N. Islam, and T. Jaeger. Achieved IPC
performance (still the foundation for extensibility). In
6th HotOS, pages 28–31, May 1997.

[48] W. B. Martin, P. White, A. Goldberg, and F. S. Taylor.
Formal construction of the mathematically analyzed
separation kernel. In ASE ’00: Proc. 15th IEEE Int.
Conf. on Automated software engineering, pages
133–141. IEEE Computer Society, 2000.

[49] Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify
realistic system code: Machine context management. In
Proc. TPHOLs’07, volume 4732 of LNCS, pages
189–206. Springer, Sep 2007.

[50] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. Springer, 2002.

[51] OKL4 web site. http://okl4.org.

[52] T. Perrine, J. Codd, and B. Hardy. An overview of the
kernelized secure operating system (KSOS). In
Proceedings of the Seventh DoD/NBS Computer
Security Initiative Conference, pages 146–160, Sep 1984.

[53] Rockwell Collins, Inc. AAMP7r1 Reference Manual,
2003.

[54] J. M. Rushby. Design and verification of secure systems.
In 8th SOSP, pages 12–21, 1981.

[55] O. Saydjari, J. Beckman, and J. Leaman. Locking
computers securely. In 10th National Computer
Security Conference, pages 129–141, Sep 1987.

[56] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor:
A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In 16th SOSP, pages
335–350, Oct 2007.

[57] J. S. Shapiro, D. F. Faber, and J. M. Smith. State
caching in the EROS kernel—implementing efficient
orthogonal peristence in a pure capability system. In
5th IWOOOS, pages 89–100, Nov 1996.

[58] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A
fast capability system. In 17th SOSP, Dec 1999.

[59] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: Three case studies. In 1st EuroSys Conf.,
pages 161–174, Apr 2006.

[60] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. The Flask security
architecture: System support for diverse security
policies. In 8th USENIX Security Symp., Aug 1999.

[61] H. Tews, T. Weber, and M. Völp. A formal model of
memory peculiarities for the verification of low-level
operating-system code. In R. Huuck, G. Klein, and
B. Schlich, editors, Proc. 3rd Int. WS on Systems
Software Verification (SSV’08), volume 217 of ENTCS,
pages 79–96. Elsevier, Feb 2008.

[62] H. Tuch. Formal Memory Models for Verifying C
Systems Code. PhD thesis, UNSW, Aug 2008.

[63] H. Tuch. Formal verification of C systems code:
Structured types, separation logic and theorem proving.
JAR, 42(2–4):125–187, 2009.

[64] H. Tuch, G. Klein, and G. Heiser. OS verification —
now! In 10th HotOS, pages 7–12. USENIX, Jun 2005.

[65] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and
separation logic. In M. Hofmann and M. Felleisen,
editors, 34th POPL, pages 97–108, Jan 2007.

[66] US National Institute of Standards. Common Criteria
for IT Security Evaluation, 1999. ISO Standard 15408.
http://csrc.nist.gov/cc/.

[67] B. J. Walker, R. A. Kemmerer, and G. J. Popek.
Specification and verification of the UCLA Unix
security kernel. CACM, 23(2):118–131, 1980.

[68] D. A. Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount/, 2001.

[69] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. In 5th
OSDI, Dec 2002.

[70] S. Winwood, G. Klein, T. Sewell, J. Andronick,
D. Cock, and M. Norrish. Mind the gap: A verification
framework for low-level C. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, Proc. TPHOLs’09,
volume 5674. Springer, 2009.

[71] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. HYDRA: The kernel of a
multiprocessor operating system. CACM, 17:337–345,
1974.

http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/
http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/
http://www.niap-ccevs.org/cc-scheme/pp/pp.cfm/id/pp_skpp_hr_v1.03/
http://www.niap-ccevs.org/cc-scheme/pp/pp.cfm/id/pp_skpp_hr_v1.03/
http://l4hq.org/arch/arm/
http://okl4.org
http://csrc.nist.gov/cc/
http://www.dwheeler.com/sloccount/

	Introduction
	Overview
	seL4 programming model
	Kernel design process
	Formal verification

	Kernel Design for Verification
	Global variables and side effects
	Kernel memory management
	Concurrency and non-determinism
	I/O
	Observations

	seL4 Verification
	Abstract specification
	Executable specification
	C implementation
	Machine model
	The proof

	Experience and Lessons Learnt
	Performance
	Verification effort
	The cost of change

	Related Work
	Conclusions
	References

