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Abstract. This paper presents a machine-checked high-level security
analysis of seL4—an evolution of the L4 kernel series targeted to secure,
embedded devices. We provide an abstract specification of the seL4 access
control system together with a formal proof that shows how confined
subsystems can be enforced. All proofs and specifications in this paper
are developed in the interactive theorem prover Isabelle/HOL.

1 Introduction

We present a machine-checked high-level security analysis of seL4 [5, 6], an
evolution of the L4 kernel series [12] targeted to secure, embedded devices.

It does not need to be argued that embedded systems have become an integral
part of our lives. They are increasingly deployed in safety- and mission-critical
scenarios. Even relatively simple devices like mobile phones feature millions of
lines of software, installed for various purposes, with varying degrees of assurance,
with diverse resource requirements, and developed on a tight resource budget.
They feature untrusted third-party software components, applications, and even
whole operating systems (such as Linux) that can be installed by the manufacturer,
suppliers and the end user.

Microkernels are a promising approach with renewed industry interest to
improving the security and robustness of such devices. The success of this
approach depends to a large degree on the microkernel’s ability to provide strong
isolation guarantees between components—misbehaviour of a component should
be confined to that component only.

In this paper, we analyse the seL4 kernel primitives and affirm that they are
sufficient to enforce isolation. Moreover, we demonstrate through examples that
the restrictions imposed are pragmatic: The mechanisms can be used in practice.

The main contributions of this work are: (a) to our knowledge, the first
machine-checked specification and first machine-checked proof of a take-grant [13]
(TG) model, (b) making the graph diagram notation that is used for TG analysis
in the literature fully precise, (c) extending classical TG in the seL4 protection
model by using it to control the in-kernel physical memory consumption of
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applications, thereby making it feasible to reason about and control the physical
memory consumption of applications based on the distribution of authority, and
(d) applying the model directly to the seL4 kernel.

All formal definitions, theorems, and examples in this paper are machine-
checked in the theorem prover Isabelle/HOL [15].

This paper is one of the steps towards our longer-term goal of full operating
systems verification. We aim to formally connect the security proof presented here
with the actual kernel implementation in C. All of the seL4 operations map to one
or more of the operations presented in this paper. Many of them, e.g. basic thread
mananagement, translate to no-op, but the authority-relevant operations have
a direct representation in the model presented here. We have so far connected
an abstract operational model of seL4 with a precise executable one [3]. We are
concurrently working on a formal refinement proof between the security model of
this paper and this abstract model and also on the refinement proof between the
executable model and the C implementation [7,8]. The security specification is
ca. 300loc, the abstract one about 3kloc, the executable one 7kloc, the C code
10kloc, and the refinement proof between abstract and executable specification
100kloc. In this paper, we focus on the tip of this iceberg: the high-level aspects
of seL4 security.

2 The seL4 Microkernel

The seL4 (secure embedded L4 ) kernel is an evolution of the L4 microkernel.
It employes a capability [4] based protection system that is inspired by early
hardware-based capability machines such as CAP where capabilities control
access to physical memory, by the KeyKOS and EROS systems [9, 19] with their
controls on dissemination of capabilities, and by the take-grant model [13]. In
this section, we provide an overview of the relevant parts of the seL4 kernel. A
detailed exposition can be found elsewhere [5, 6, 14].

Similar to L4, the seL4 microkernel provides three basic abstractions: threads,
address spaces and inter-process communication (IPC). In addition, seL4 intro-
duces the concept of untyped memory, which represents a region of currently
unused physical memory.

All kernel abstractions and services are provided via named, first-class kernel
objects. Authority over these objects is conferred via capabilities. Any seL4 system
call is a capability invocation. System call arguments can either be data or other
capabilities — authorised users obtain kernel services by invoking capabilities.

A parent capability to untyped memory can be refined into child capabilities
to smaller untyped memory blocks or into other kernel objects via the retype
operation. The creator can then delegate all or part of the authority it possesses
over the object to one or more of its clients. This is done by granting the client a
capability to the object with possibly diminished access rights.

An important part of the seL4 design is that all memory—be it the memory
directly used by an application (e.g. memory frames) or indirectly in the kernel
(e.g. page tables), is fully accounted for by capabilities.
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Fig. 1. Sample System Configuration

At boot time, seL4 preallocates all memory required for the kernel to run—
space for kernel code, data, and kernel stack. As shown in Fig. 1 the remainder
of memory is divided into untyped memory (UM) objects. The rounded boxes
in Fig. 1 stand for threads (OS servers, resource manager), the arrows stand
for capabilities, and the box on the right hand side represents available physical
memory. The initial user-level thread, the resource manager, has full authority
over the UM objects; it is responsible for enforcing a suitable resource management
policy, and for bootstrapping the rest of the system. Behaviour of any application,
the legacy OS server in Fig. 1 for instance, is constrained by the capabilities the
resource manager grants it. Constraining these capabilities appropriately isolates
the legacy OS server from the rest of the system.

By this flexible, delegatable, but still precise accounting of all physical memory
through capabilities in seL4, the question of partitioning hardware resources
becomes a question of capability distribution only. The next sections show how
capability distribution is modelled and controlled.

3 The seL4 Protection Model

In the remainder of this paper, we formally analyse the access control model
of the seL4 kernel. Our goal is to show that it is feasible to implement isolated
subsystems using seL4 mechanisms. An isolated subsystem can be viewed as a
collection of processes or entities encapsulated in such a way that authority can
neither get in nor out. This also means that the subsystem cannot gain access to
any additional physical memory at any time in the future and is thus strongly
spatially separated from the rest of the system.

We start with an example of our requirements, which we carry forward in
the discussion below. Assume there are n distinct subsystems in our system,
namely ss1, ss2 . . . ssn (see Fig. 2). Each subsystem may contain one or more
processes and these processes may have access to other resources or processes.
In Fig. 2 and the following figures, we use shaded rounded boxes to represent
processes and shaded circles to denote resources. We draw arrows between
these numbered entities to denote capabilities. The larger rounded boxes mark
subsystem boundaries.

The resource manager responsible for setting up these subsystems would
like to guarantee that any given subsystem, say ssi, cannot exceed the author-
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Fig. 2. Isolated Subsystems

ity explicitly given to it, and with that, the amount of physical memory and
communication channels1. In other words, after providing all subsystems with
their initial capabilities, the resource manager would like to guarantee that no
entity within ssi can obtain capabilities to an entity in another subsystem unless
these capabilities are already already present in ssi (possibly in another entity of
ssi). Note that we are not restricting the flow of authority within a subsystem—
capabilities can flow freely within a subsystem, but are not allowed to cross the
subsystem boundary.

Our interest is in mandatory isolation: that is, in showing that a subsystem
cannot acquire additional capabilities, rather than it can but does not.

The initial state in which subsystems start executing (state s1), is created
by and hence under the strict control of the resource manager. Derived states
are subsequent states that are affected by the execution of subsystems. To make
strong guarantees, we need to show that subsystem boundaries are not violated in
any derived state. In the formal analysis below, we identify a set of invariants the
resource manager can enforce on s1, such that there is no sequence of commands
that can violate any subsystem boundary.

We begin the analysis by formalising the access control model.

3.1 Formalisation

The system state consists of a collection of kernel objects. We do not make
the usual distinction between active subjects and passive objects. Instead, we
collectively call them entities. Entities are identified by their unique address
which we model as natural numbers: entity_id::nat. An entity contains a set of
capabilities which we define below, and has no additional authority beyond what
it possesses as capabilities:

record entity = caps :: cap set

A capability is a record with two fields: (a) an identifier which names an
entity and (b) a set of access rights which defines the operations the holder is
authorised to perform.

record cap = entity :: entity_id

rights :: rights set

where
1 We do not consider covert timing channels in this paper
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datatype rights = R | W | G | C
The data type rights, defines the four primitive access rights in our model.

Out of these rights, R and W have the obvious meaning. They authorise reading
and writing of information. The G right is sufficient authority to grant a capability
to another entity. The C right models the behaviour of untyped memory objects.
It confers the authority to create new entities.

The state of the whole system consists of two fields:

record state = heap :: entity_id ⇒ entity

next_id :: entity_id

The component heap stores the entities of the system, it maps entity addresses
(entity_id) to entities. The next_id is the next free slot for placing an entity
without overlapping with any existing one.2 This setup allows a simple test to
determine the existence of an entity_id :

is_entity :: state ⇒ entity_id ⇒ bool

is_entity s e ≡ e < next_id s

This test is not present in the kernel implementation itself. In the implementa-
tion, the existence of a capability in the system implies the existence of the entity.
The same is true in our abstract model for well-formed states: the entities stored
in heap contain capabilities, which again contain references to other entities. In
any run of the system, these references should only point to existing entities. We
call such system states sane :

sane s ≡ (∀ c∈all_caps s. is_entity s (entity c)) ∧
(∀ e. ¬ is_entity s e −→ caps_of s e = ∅)

where caps_of s r is the set of all capabilities contained in the entity at address
r in state s, formally caps_of s r ≡ caps (heap s r)3, and all_caps s is the
union of the capabilities over all entities in the state s, formally all_caps s ≡S
e caps_of s e .

Next, we introduce the operational semantics of our model, captured in the
function step’, shown in Fig. 3. The first argument to step’ is the operation to
perform. The second argument is the current system state and the result is the
mutated state after performing the specified operation on the current state.

The first argument of each operation is the entity initiating the operation.
The second argument is the capability being invoked. The third argument for
Create points to the destination entity for the new capability, for Grant it is the
capability that is transported and for Remove the capability that is removed. The
fourth argument to Grant is a mask for the rights of the transported capability.

There are three additional operations in the model that are matched in the
last equation of step’ : NoOp, Read, and Write.
2 An alternative to this model would be to use a partial function for the heap. We

found working with a total function and an explicit, separate domain slightly more
convenient in this case.

3 heap s selects the field heap from record s, (|caps = ∅|) is the record of type entity

containing the empty cap set, and s(|heap := h’ |) is the record s where field heap

is replaced by h’
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step’ :: sysOPs ⇒ state ⇒ state

step’ (Create e c1 c2) s = let newObj = (|caps = ∅|);
newCap = (|entity = next_id s, rights = allRights |);
newSrc = (|caps = {newCap} ∪ caps_of s (entity c2) |)

in (|heap = (heap s)(next_id s := newObj, entity c2 := newSrc),
next_id = next_id s + 1 |)

step’ (Grant e c1 c2 r) s = s(|heap := (heap s)
(entity c1 :=

(|caps = {diminish c2 r} ∪ caps_of s (entity c1) |)) |)
step’ (Remove e c1 c2) s = removeOperation e c1 c2 s

step’ (Revoke e c) s = foldr (removeCaps e) (cdt s c) s

step’ _ s = s

where
removeOperation e c1 c2 s ≡ s
(|heap := (heap s)(entity c1 := (|caps = caps_of s (entity c1) - {c2} |)) |)
removeCaps e (c, cs) s ≡ foldr (removeOperation e c) cs s

cdt :: state ⇒ cap ⇒ (cap × cap list) list

Fig. 3. Single step execution.

As the name implies, NoOp does nothing, and usually is not present in tra-
ditional abstract system models. However, it is included here, because some of
the operations that exist in the seL4 kernel API will not be observable on this
abstract level and thus can only be mapped to NoOp. An example is sending a
non-blocking message to a thread not willing to accept, which will result in a
dropped message. In fact, neither Read nor Write change the abstract system
state either. We include them in this model, because they have preconditions
that are observable on this level and thus might be interesting for later analysis.

The Create operation allocates a new entity in the system heap, creates a new
capability to the new entity with full authority and places this new capability
in the destination entity pointed by c2. The operation consumes resources in
terms of creating the new entity in the heap. So, the subject initiating this call
is required to invoke an untyped capability c1.4 Placing the new capability does
not consume additional resources. Moreover, when performed on a sane state,
the create operation guarantees: (a) the new entity will not overlap with any of
the existing ones and, (b) no capability in the current state will be pointing to
the heap location of the new entity.

The Grant operation adds a capability to the entity pointed to by c1. However,
unlike Create, the added capability is a diminished copy of the existing capability
c2. The diminish function reduces access rights according to the mask specified
in the Grant operation, facilitating an entity to propagate a subset of its own
authority to the receiver.

diminish cap r ≡ cap(|rights := rights cap ∩ r |)

4 The model presented here does not take into account that memory is limited. For
refinement, we introduce non-deterministic failure for operations like Create to mimic
the real behaviour, but do not specify exactly when memory runs out.
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legal :: sysOPs ⇒ state ⇒ bool

legal (NoOp e) s = is_entity s e

legal (Read e c) s = is_entity s e ∧ c ∈ caps_of s e ∧ R ∈ rights c

legal (Write e c) s = is_entity s e ∧ c ∈ caps_of s e ∧ W ∈ rights c

legal (Create e c1 c2) s = is_entity s e ∧
{c1, c2} ⊆ caps_of s e ∧ G ∈ rights c2 ∧ C ∈ rights c1

legal (Grant e c1 c2 r) s = is_entity s e ∧ {c1, c2} ⊆ caps_of s e ∧ G ∈ rights c1

legal (Remove e c1 c2) s = is_entity s e ∧ c1 ∈ caps_of s e

legal (Revoke e c) s = is_entity s e ∧ c ∈ caps_of s e

Fig. 4. Preconditions for executing operations.

Both the Remove and Revoke operations remove capabilities: in the former
case from the entity pointed to by c1 and in the latter case from a whole system.
To facilitate Revoke, the seL4 kernel internally tracks in a capability derivation
tree (cdt) [6] how capabilities are derived from one another with create and grant
operations. We do not model the cdt explicitly at this level, instead we assume
the existence of a function cdt that returns for the current system state and
the capability to be revoked, a list that describes which capabilities are to be
removed from which entities. Given this list, the revoke operation is then just a
repeated call of Remove.

Any operation is allowed only under certain preconditions, encoded by legal,
as defined in Fig. 4. The definition of legal firstly checks if the entity initiating
the operation exists in that system state. Secondly, all the capabilities specified
in the operation should be in the entity’s possession at that state. Finally, the
capabilities specified should have at least the appropriate permissions.

The single step execution function step first checks whether the operation is
legal in the current state and if so, calls step’.

step :: sysOPs ⇒ state ⇒ state

step cmd s = (if legal cmd s then step’ cmd s else s)

Executing a list of system operations is then just repetition of step. Note that
the list of commands is read from right to left here.

execute :: sysOPs list ⇒ state ⇒ state

execute = foldr step

After the kernel bootstraps itself, it creates state s0 with one entity; the
resource manager, which possesses full rights to itself. In the concrete kernel, the
initial state is slightly more complex, containing the resource manager thread
and a number of separate untyped capabilities to cover all available memory.
We have folded these here into s0 ≡ (|heap = [0 7→ {allCap 0}], next_id = 1 |).
The notation [0 7→ {allCap 0}] stands for an empty heap where position 0

is overwritten with an object that has {allCap 0} as its capability set, where
allCap e ≡ (|entity = e, rights = {R, W, G, C} |). Note that this initial state
is sane, and that execution preserves sanity. Formally:

sane s =⇒ sane (execute cmds s)

Thus, all states considered in the analysis below are sane.
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4 Mandatory Isolation of Components

In this section, we show that it is feasible to implement isolated subsystems in
seL4. A subsystem is merely a set of entities related to one another in a certain
way, which we define later. By isolated we mean that none of the entities in the
subsystem ss1 will gain access to a capability to an entity of another subsystem
ss2 if that authority is not already present in ss1. If the authority is already
present, then we show that it cannot be increased. Subsystems can grow over
time and the statement also includes entities that currently do not exist yet.

Our focus is on authority propagation or capability leakages from one sub-
system to another. We start by considering two entities: ex and ey. We write
s ` ex → ey to denote that entity ex has the ability to leak authority to entity
ey in state s.

leak :: state ⇒ entity_id ⇒ entity_id ⇒ bool

s ` ex → ey ≡ gCap ey :< caps_of s ex

where
gCap e ≡ (|entity = e, rights = {G} |), and
c :< S ≡ ∃ c’∈S. entity c = entity c’ ∧ rights c ⊆ rights c’

where the notation c :< S reads the capability set S provides as least as much
authority as the capability c. Based on the operational semantics of our model,
there are two operations that may create such a leak—Create and Grant, and
these are legal only if the entity initiating the operation has a capability to
the entity under consideration with at least grant (G) authority. We therefore
define a subsystem as a set of entities connected by grant capabilities. From the
analysis in Sect. 4.1 we identify a property that is preserved by step and hence
by execute, which can be used to decide whether an entity will be able to leak
to another in the future. Sect. 4.2 then extends this result to show how isolated
subsystems can be implemented using seL4. Sect. 4.3 illustrates how isolated
subsystems are implement in our abstract model, together with a discussion on
how we realised this in the concrete system. The proof is 1200 lines of Isabelle
script. We show here only the essential lemmas and their intuition.

4.1 Conditions for Authority Propagation

The invariant property of the system relating to propagation of authority is the
symmetric, reflexive and transitive closure over the leak relation. Occasionally, the
symmetric closure alone is useful. We call it connected and write s ` ex ↔ ey.

The intuition behind this invariant is the following. We are looking at grant
capabilities only, because these are the only ones that can disseminate authority.
We need the transitive closure, because we are looking at an arbitrary number of
execution steps. We need the symmetric closure, because as soon as there is one
entity in the transitive closure that has a grant capability to itself, it can use
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this capability to invert grant arcs. Given the transitive and symmetric part, the
reflexiveness follows.

Next, we analyse the effect of each operation on the connected relation. Ob-
viously, NoOp, Read and Write do not modify the capability distribution and
therefore cannot affect connected. Similarly, Remove and Revoke remove capabili-
ties and thus cannot connect two disconnected entities. Moreover, if performed
on a sane state, Create cannot connect two existing entities: it introduces a new
non-overlapping entity and connects that to an existing one. The Grant operation,
on the other hand has the potential to connect two existing entities, but only
under restricted conditions: the grant operation can connect two entities only
if they were transitively connected in the state before. Thus, for two existing
entities we proved:

Lemma 1. If two entities of state s are connected after an execution step, they
must have been transitively connected before. Formally:
[[is_entity s ex; is_entity s ey; step cmd s ` ex ↔ ey]]
=⇒ s ` ex ↔∗ ey

Our plan is to first lift Lemma 1 to the transitive and reflexive closure, such
that step cmd s ` ex ↔∗ ey =⇒ s ` ex ↔∗ ey, for any two existing entities
ex and ey, by induction over the reflexive transitive closure. Although we are
considering the connected relationship between existing entities, the proof obli-
gation in the induction step is more general in that it requires us to consider
entities that might have been introduced by the current command. It turns out
that Lemma 1 is not strong enough to get through the induction step, because it
requires both entities to exist in the pre-state. Hence, we break the proof into
two parts: we treat Create separately from all other commands which we call
transporters. For transporters, we proved:

Lemma 2. Transporters preserve connected∗ in sane states:
[[step cmd s ` ex ↔∗ ey; sane s; ∀ e c1 c2. cmd 6= Create e c1 c2]]
=⇒ s ` ex ↔∗ ey

For Create we proved:

Lemma 3. Given entities ex and ez in the state after Create e c1 c2, given
that ex exists in the pre-state s, and given that sane s, we know s ` ex ↔∗ e

if ez is the entity just created, or s ` ex ↔∗ ez otherwise. Formally:
[[step (Create e c1 c2) s ` ex ↔∗ ez; is_entity s ex; sane s ]]
=⇒ if ez = next_id s then s ` ex ↔∗ e else s ` ex ↔∗ ez

Then, by induction over the command sequence, together with Lemma 2 and
Lemma 3 we conclude:

Theorem 1. If two entities in a sane state s are transitively connected after
execution, they already have been transitively connected in s:
[[sane s; is_entity s ex; is_entity s ey; execute cmds s ` ex ↔∗ ey]]
=⇒ s ` ex ↔∗ ey
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By computing the symmetric, reflexive and transitive closure over leak on
state s1—for which there are a number of well known efficient algorithms (for
example [16])—we can predict capability leakages that might happen in future
states. However, this closure is an approximation because of the symmetry
assumption. Without it, the property is not invariant over the grant and create
operations. With this assumption, we might claim that a given subsystem can
gain more authority in the future than what it in fact can if there is no transitive
self-referential grant capability in the system or if there is no create capability
in the system. Although it is possible to build such systems in seL4, and for
small, static systems this might even occur in practise, these are very simple to
analyse and it is unlikely that the approximation will lead to false alarms. For
the majority of systems the invariant and therefore the prediction is precise.

4.2 Subsystems

Formally, we identify a subsystem by any of its entities es and define it as the
set of entities in the symmetric, reflexive, transitive closure of leak :

subSys :: state ⇒ entity_id ⇒ entity_id set

subSys s es ≡ {e i | s ` e i ↔∗ es}

We obtain the entities in a subsystem, using the subSys function, specifying
the current system state and one of the entities in that subsystem. For instance,
in our example the entities of subsystem ss1 in s1 are subSys s1 1 = {1, 2} (see
Fig. 2).

We aim to show that some subsystem, say ss1, cannot increase its authority
over entity e i. To formally phrase this statement, we introduce two more concepts:
the subSysCaps function and the dominates (:>) operator.

subSysCaps s x ≡
S
caps_of s ‘ subSys s x

c :> S ≡ ∀ c’∈S. entity c’ = entity c −→ rights c’ ⊆ rights c

The subSysCaps function initially finds the set of entities in the subsystem,
and then returns the union of all capabilities possessed by the entities in that
subsystem. A capability c dominates a capability set S (c :> S) if S provides at
most as much authority as capability c over the entity c points to.
For isolation to hold we would like to show:

∀ cmds. c :> subSysCaps (execute cmds s1) e1

Where c is the authority currently possessed by the subsystem over some entity.
By using :>, we express that authority currently possessed can never grow, as
opposed to giving a particular fixed value or restricting ourselves to a particular
access right. For isolation to hold we need to show that the above property is
true for all states derived from s1. For a single step of execution we proved:

Lemma 4. Single execution steps do not increase subsystem authority:
[[sane s; is_entity s e1; is_entity s (entity c); c :> subSysCaps s e1]]
=⇒ c :> subSysCaps (step cmd s) e1
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Proof. We begin by noting that no entity that is transitively connected to e1

possesses a capability with more authority than c, formally c :> subSysCaps s es

= ∀ ex. s ` ex ↔∗ es −→ c :> caps_of s ex. Moreover, given that the entity
pointed to by c already exists and the state is sane, the only possibility of
obtaining a more authorised capability is by one of the entities within the
subsystem receiving a capability via a grant operation. However, for such a grant
operation to be legal we see that there should be an entity that can leak to
the subsystem, and hence is connected to the entity that received the capability
and possesses a more authorised capability than c. This is a contradiction to the
assumptions.

This leads us to the final isolation theorem:

Theorem 2 (Isolation of authority). Given a sane state s, a non-empty
subsystem es in s, and a capability c with a target identity e in s, if the authority
of the subsystem does not exceed c in s, then it will not exceed c in any future
state of the system.
[[sane s; is_entity s es; is_entity s (entity c); c :> subSysCaps s es]]
=⇒ c :> subSysCaps (execute cmds s) es

This concludes our isolation proof. The authority that a subsystem collectively
has over another entity cannot grow beyond what is conferred by the resource
manager initially. Going back to our initial example in Fig. 2, this means that
no entity in subsystem ss1 will ever gain more authority than {W} over entity 3.
Moreover, none of these entities will ever gain any authority over entity i.

The statement of Theorem 2 has assumptions about entities existing in state
s before execution. Since the authority bound is over whole subsystems and
not particular entities, the theorem also covers entities that are created during
execution and do not exist in s yet, as long as they belong to a subsystem that
is spanned by an existing entity. Since the Create operation always connects the
new entity to an existing one, we are covered.

What about new subsystems as opposed to new entities, though? The only
way to create new subsystems is to remove grant arcs between entities such that
two parts of an existing subsystem become disconnected. In the state s’ before
that removal, Theorem 2 ensures that none of the two candidates have violated
their authority bounds. In the state directly after removal, authority has only
been removed from the system, so neither subsystem has gained authority. Now
we can apply Theorem 2 again. The problem is merely naming the intermediate
new subsystems and their parentage.

The main conclusion including new subsystems is: no subsystem can gain more
authority than what it already possesses to your resources unless you created it
yourself, in which case it cannot exceed what you gave it.

4.3 Implementing Subsystems

We now show how the isolated subsystems described above are bootstrapped
and implemented in seL4. Recall that after system startup, the initial state s0
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Fig. 5. Subsystem Configuration

contains only the resource manager with full access rights to itself and with the
authority over all the physical memory that is not used by the kernel.

For each of the subsystems the resource manager creates a subsystem resource
manager who is responsible for bootstrapping the rest of that particular subsystem.
This delegation scheme stems from a major application domain of seL4: running
para-virtualised operating systems in each subsystem.

Coupled with the resource manager is a specification language that is used
by the developer to specify which subsystems should be created together with
what authority they should possess and how much physical memory should be
committed to each subsystem. Given below is such a specification:

"ss1" { text {1024 to 4096}; data {4096 to 5120 };
resource {64}; comm {this → "ss2"}; };

"ss2" { text {5120 to 6144}; data {6144 to 10240 };
resource {64}; comm {this → "ss1"}; };

This system would constitute two subsystems: ss1 and ss2, each with authority
to send information to the other—specified by comm {this → ssX}, and access
to 64KB physical, untyped memory (resource {64}). The keywords text and
data specify where to find the text and the data segments of each subsystem
resource manger respectively.

For ss1 and ss2 to be authority isolated, the resource manager should
guarantee ¬ s ` ss1 ↔∗ ss2. This is achieved by construction—there is no
language construct to specify grant authority between subsystems. Note that
the subsystem managers are still free to provide grant authority within the
subsystems. We merely exclude the possibility for authority to leak between
partitions. A small compiler then translates this specification to a sequence of
kernel operations for execution by the resource manager at boot time.

Part (a) of Fig. 5 shows the initial state of our resource manager. The
configuration after creating and populating each entity in accordance with the
above specification is given in part (b) of Fig. 5. However, in this state, both entity
1 and 2 are still connected through the resource manager, hence formally inhabit
the same single subsystem. The final task of the resource manager therefore is to
break these grant arcs—once bootstrapped, the resource manager removes its
own capabilities to entities and exits, thereby arriving at part (c) of Fig. 5. We
call this state s1, the initial state of the untrusted user mode system.
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[Create 0 (allCap 0) (allCap 0), Create 0 (allCap 0) (allCap 0),
Create 0 (allCap 0) (allCap 0), Create 0 (allCap 0) (allCap 0),
Grant 0 (allCap 1) (allCap 1) {G}, Grant 0 (allCap 1) (allCap 2) {W},
Grant 0 (allCap 1) (allCap 3) {C}, Grant 0 (allCap 2) (allCap 2) {G},
Grant 0 (allCap 2) (allCap 1) {W}, Grant 0 (allCap 2) (allCap 4) {C},
Remove 0 (allCap 0) (allCap 1), Remove 0 (allCap 0) (allCap 2),
Remove 0 (allCap 0) (allCap 3), Remove 0 (allCap 0) (allCap 4)]

Fig. 6. Sequence of kernel operations for bootstrapping

One possible sequence of commands the resource manager (entity 0) can
execute to produce s1 is given in Fig. 6 (for convenience shown left to right).
The closed term for initial state is s1 = (|heap = [1 7→ {gCap 1, wCap 2, cCap

3}, 2 7→ {gCap 2, wCap 1, cCap 4}], next_id = 5 |), where gCap e, wCap e, and
cCap e stand for a capability to entity e with G, W, and C rights respectively.

Strictly speaking, there are 5 subsystems in s1, each with one entity, but
only the entities 1 and 2 contain capabilities. They constitute the main two
subsystems. We can now, for example show the following.

Lemma 5. For no sequence of commands can the subsystem 1 gain authority
over entity 4 which stands for the physical memory resources of subsystem 2.
∀ cmds. noCap 4 :> subSysCaps (execute cmds s1) 1

5 Related Work

Harrison et al. [10] first formulated access control analysis in a model known as
HRU and focused on the ability of a subject to obtain a particular authority over
another in some future state. Our analysis differs from HRU in that we focus on
the collective authority possessed by a set of entities.

As mentioned earlier, the take-grant (TG) model [13] is closely related to
the seL4 protection model. The original analysis of de jure access rights on the
TG model [2, 13] already uses the same approximation to model the exposure of
access rights: the transitive, symmetric closure on the given initial graph. Our
model is different to the classic TG model in that it is aimed at reasoning over
the distribution and control of physical resources like memory. We do not use
the take-rule in seL4. This has the advantage of giving each subject control over
the distribution of its authority at the source. Additionally, to better model the
accounting for physical memory, we have added a more complex create rule. Our
proof shows that the desirable properties of TG still hold and can be generalised
to a statement on full subsystems.

Snyder [20] and later Bishop [1] enhanced the TG model by introducing de
facto rules—rules that derive feasible information flow paths given the capability
distribution. They used the term island to denote a maximum take-grant con-
nected subgraph which is similar to our concept of subsystem. The analysis we
presented can be extended easily to de facto rights.

Shapiro [18] applied the diminish-take model—another variant of TG to
capture the operational semantics of the EROS system.
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All formalisations and proofs mentioned in the works above are pen-and-paper
only, mostly using graph diagram notation. Our model and proof are formalised
and machine-checked in Isabelle/HOL, making the argument fully precise. While
we can affirm the previous general results for our model, we did find that graph
diagrams can often be deceptively simple, glossing over subtle side conditions
that the theorem prover enables us to track precisely. Examples of such side
conditions are: new nodes added to the graph cannot overlap with the existing
ones (a condition explicitly tested in the kernel), and the graph cannot have
dangling arcs. The precise statement of our theorem also makes clear that at
each time it covers only existing entities. Although it can be applied inductively
for these situations, the issue does not become apparent in earlier formalisations.

Rushby [17] goes further in providing a formulation of isolation that is called
non-interference. In this paper we only consider access control and propagation of
authority. The non-interference property is stronger: It covers full information flow
and timing channels. While such an analysis on the seL4 design would certainly
be worthwhile, we do not believe that a strong information flow property can be
established by the implementation on current mainstream hardware. Our access
control model on the other hand can be.

6 Conclusions

In this paper, we have presented a machine-checked, high-level security analysis
of the seL4 microkernel. We have formalised an access control model of seL4
in the interactive theorem prover Isabelle/HOL. The formalisation is inspired
by the classical take-grant model, but without the take rule and with a more
complex, realistic, create rule for achieving precise control of memory allocation.
Our formalisation makes the graph diagram notation that is used for this type of
analysis in the literature fully precise.

We have shown, in Isabelle/HOL, that seL4 mechanisms are sufficient to
enforce mandatory isolation between subsystems and that collective authority
of subsystems does not increase. Through an example we have shown that
the restrictions required for isolation are pragmatic, and we have successfully
implemented a resource manager capable of bootstrapping a paravirtualised
Linux kernel [11] on seL4.

Since all memory is controlled directly by capabilities in seL4, isolated sub-
systems are fully spatially separated from one another. The model is general
enough to also allow for explicit information flow across subsystem boundaries via
read/write operations. Our main theorem shows that subsystems can neither ex-
ceed their authority over physical memory nor their authority over communication
channels to other subsystems.

Future work includes the de facto rights analysis which, as mentioned above,
should be easy to add. More importantly future work also includes a formal refine-
ment between the model presented here and our work on the binary compatible
seL4 API model [5]. The aim is to make our security analysis apply directly to
the full C and assembler implementation of seL4 on the ARM11 platform. The
model presented here is a slightly simplified version of the one that we intend
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to use for refinement. The main difference in the refinement model is the use of
non-determinism to indicate potential failures like running out of memory on
object creation.
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