
The imagination driving Australia’s ICT future.

INTERRUPTS CONSIDERED

HARMFUL

Peter Chubb and Yang Song
first.last@ nicta.com.au

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 1

This work arose after reading Luis Henrique’s critique of threaded interrupts
in RT-PREEMPT [Hen09].
The work was paid for by NICTA. NICTA is funded by the Australian Govern-
ment as represented by the Department of Broadband, Communications and
the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 1-1

The imagination driving Australia’s ICT future.

QUICK HISTORY OF COMPUTING

➜ All I/O originally programmed

➜ Desire for multitasking

➜ . . . Interrupts

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 2

When computing was first invented, all I/O was polled — when you wanted to
get a bit of data, you’d get the machine to wait until the hardware was ready,
then read or write the appropriate registers.
But waiting around for a slow device wastes (expensive) compute time.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 2-1

The imagination driving Australia’s ICT future.

INTERRUPTS

➜ Allow I/O in parallel with computation
➜ Good!

➜ Steal time from main process
➜ Bad!

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 3

So the hardware designers in the 1950s decided to allow a peripheral pro-
cessor to interrupt the central processor when it wanted service. This allows
the central processor to keep doing useful work in parallel with I/O.
However, interrupt servicing steals time from the main task(s). When pe-
ripherals are slow relative to the CPU, that doesn’t matter — the time spent
servicing interrupts is small compared with the time spent on the main task.
But what happens if a peripheral interrupts too often? Or the interrupt service
routine (ISR) takes too long?

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 3-1

The imagination driving Australia’s ICT future.

TRADITIONAL IMPLEMENTATION

INTERRUPTS

MAIN

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 4

In a traditionally arranged UNIX system, an ISR steals time from and runs on
the kernel stack of the process that was running at the time of the interrupt.
ISR time is not accounted for separately, so if there are many interrupts, task
scheduling will be perturbed; while an ISR is running, no other processing
can take place on that processor.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 4-1

The imagination driving Australia’s ICT future.

TRADITIONAL IMPLEMENTATION

➜ Interrupts higher priority than other activities.

➜ Interrupts prioritised — higher priority interrupts can interrupt

lower ones.

➜ Real-time tasks are preempted by interrupt servicing.

➜ Long running ISRs defer work to, e.g., a soft IRQ handler.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 5

Some architectures allow interrupts to be nested, but as they share the same
(small) kernel stack they may not be nested too deeply.
If an ISR needs to run for more than a very short time, it will defer some of its
work, so that other interrupts can be serviced in a timely manner. The driver
we’ll analyse (for the e1000) defers work to a softirq, which is serviced like
any other ISR but at a lower priority than (and therefore interruptible by) any
real hardware interrupt line.
Interrupt handling is the highest priority activity in a traditional system — inter-
fering with real-time tasks, and possibly causing them to miss their deadlines.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 5-1

The imagination driving Australia’s ICT future.

THREADED INTERRUPTS

Wait for Interrupt

SoftIRQ

All interrupts done?

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 6

The way threaded interrupts work is that each interrupt is given a thread.
That thread waits for an interrupt; when the interrupt happens it continues,
services the device, then when it has done all its work, waits for the next
interrupt. Using this approach, a driver can be structured as a state machine,
with interrupts being just one of the events that causes transitions.
Linux puts the softirq handler into a thread as well, prioritised lower than
hardware interrupt threads. This allows threaded interrupts with minimum
change to the existing (legacy) driver structure.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 6-1

The imagination driving Australia’s ICT future.

THREADED INTERRUPTS

➜ Threads can be prioritised against real-time work

➜ Threads can sleep — no longer any need for deferred work
➜ Except in special cases

➜ Easier to program.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 7

One alternative is to put each ISR into a kernel thread. The way this works is
to split the ISR into two parts: a very small and simple stub merely disables
the source of the interrupt (either by talking to the interrupt controller chip
(APIC), or by being part of the driver and talking to the interrupting hardware),
then makes the ISR thread runnable.
A number of operating systems do this, including Solaris 2 [KE95], FreeBSD,
and Tunis [Hol83]. The advantages are that because interrupts are controlled
individually (and so need not block lower priority ones) there is no longer any
need to defer work; the ISR can sleep or be preempted (easing the program-
mer’s burden), and as kernel threads have priorities, the ISR thread can be
prioritised against any real-time tasks.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 7-1

The imagination driving Australia’s ICT future.

THREADED INTERRUPTS

➜ Linux can use threaded ISRs
➜ Doesn’t for e1000.

➜ RT-PREEMPT patch forces threaded ISRs everywhere.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 8

There are two ways to use threaded interrupts in Linux. Recent Linux ker-
nels (since about 2.6.30) have a request threaded irq() call. Also the
softirq handlers run in a separate thread now. However, only a few drivers
use threaded interrupts at present.
Alternatively, an out-of-tree patch RT-PREEMPT [Pre09] makes all interrupts
to be handled as threads (and therefore preemptible).

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 8-1

The imagination driving Australia’s ICT future.

RT-PREEMPT PATCH

➜ Adds many preemption points to kernel
➜ Aims to be fully preemptive

➜ Makes all interrupts have threaded ISRs
➜ So they can be preempted.

➜ So they can be prioritised against real-time tasks.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 9

The main purpose of the RT-PREEMPT patch is to reduce latency for real time
tasks. It does this by introducing new preemption points, including in interrupt
handlers — and if ISRs are preemptible then all interrupt handlers must be
threads.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 9-1

The imagination driving Australia’s ICT future.

TEST BENCH

Target: cyclictest
CPU utilisation
UDP echo (inetd)Load generators

IPbench

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 10

Luis Henriques of Intel [Hen09] evaluated performance for RT-PREEMPT’s
threaded interrupts, and found it poor. We decided to try and find out why: is
this just because of using threaded interrupts, or a feature of the implemen-
tation?
We set up a test system with a few load generators and a target connected
by a low-latency Gigabit switch. The systems were all identical Celeron 2GHz
machines with e1000 Gigabit ethernet adapters, running Debian, with custom
compiled 2.6.31.4 kernels.
We used the ipbench [WM04] to generate an interrupt load. Ipbench is a
configurable network performance suite that can measure throughput and
individual packet latency while running a co-benchmark on the target. In this
case, inetd on the target was configured to echo UDP packets; the load
generators sent 64-byte UDP packets to the target at a set rate, and timed
each one until it returned.
A CPU usage meter and cyclictest [Gle09] were run as co-benchmarks on
the target. Cyclictest is a program that sleeps for a set period of time, and
then measures the time from when it was supposed to wake up to when it is
actually scheduled — it thus acts as a crude real-time latency test.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 10-1

We configured, cyclictest to sleep for 500µs at a time, and to run repeatedly
for 100 000 loops to collect the average and maximum latency time. Cyclictest
ran in the SCHED FIFO real-time scheduling class at a priority higher than any
other threads in the system including interrupts.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 10-2

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 10-3

The imagination driving Australia’s ICT future.

BASELINE PERFORMANCE

 0

 20

 40

 60

 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t (

kp
kt

s/
s)

Load (kpkts/s)

Unmodified Linux Preempt-RT

Without cyclictest

 0

 20

 40

 60

 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 0

 10

 20

 30

 40

 50

 60

C
P

U
 U

til
iz

at
io

n
(%

)

T
hr

ou
gh

pu
t (

kp
kt

s/
s)

Load (kpkts/s)

Unmodified Linux Preempt-RT

With cyclictest
JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 11

You can see from the graphs that when the packet rate starts to increase,
performance sags. RT-PREEMPT performance is very poor; at a 5µs inter-
arrival time, no packets are echoed.
With the much poorer performance of RT-PREEMPT we’d expect more time
available for the real-time process

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 11-1

The imagination driving Australia’s ICT future.

BASELINE PERFORMANCE

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 100 111 125 143 167 200

m
ic

ro
se

co
nd

s

kilo packets per second

Cyclictest max latencies

stdLinux
rtpreempt

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 12

Down to 7µs between packets (143kpps) this seems to be so: cyclictest re-
ports latencies below 200µs.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 12-1

The imagination driving Australia’s ICT future.

BASELINE PERFORMANCE

 0

 10000

 20000

 30000

 40000

 50000

0 100 111 125 143 167 200

m
ic

ro
se

co
nd

s

kilo packets per second

Cyclictest max latencies

stdLinux-1
rtpreempt-1

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 13

But at higher packet rates latency soars to over 20ms.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 13-1

The imagination driving Australia’s ICT future.

WHERE DOES THE TIME GO?

25us

70us

5us

irq_entry

100us

ksoftirq

udp−echo

Standard Linux

20us

15us

155us

10us

irq_entry

irq/21−eth1

sirq−net−rx

udp−echo

200us

RT-PREEMPT

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 14

We ran some traces (using ftrace) on an overloaded system. It’s apparent
that the (non-preemptible) softirq is stealing time from echo (giving poor per-
formance), and also delaying cyclictest.
The softIRQ here processes all the packets queued from the card, allocating
memory for skbuffs, pushing the packets up the TCP/IP stack, and waking
user-space if necessary.
Also, if the softirq is running when the timer interrupt fires, instead of cyclictest
running next, the softirq is continued. This is why there are 20ms latencies —
the softirq for the 5µs load can take a very long time.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 14-1

The imagination driving Australia’s ICT future.

WHERE TO FROM HERE?

➜ Not enough time in UDP Echo

➜ Too much time in softIRQ?

➜ Work on throughput first.

➜ then check latencies

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 15

We decided to attempt to fix the throughput issue first, then revisit the laten-
cies.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 15-1

The imagination driving Australia’s ICT future.

WHERE TO FROM HERE?

Step one
Make echo real-time, same priority as softirq.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 16

So we tried to make echo a real time thread, with the same priority as the
softirq. This should cause better sharing between them. (We also tried to
make it a higher priority, but that caused too little work to be done in the
softIRQ).

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 16-1

The imagination driving Australia’s ICT future.

REAL -TIME USER-SPACE

 0

 10

 20

 30

 40

 50

 60

100 111 125 143 167 200

ki
lo

 p
ac

ke
ts

 p
er

 s
ec

on
d

kilo packets per second

Throughput

stdLinuxThroughput
rtpreempt-rtecho-thru

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 17

The throughput looks a lot better now — even better than the non-threaded
case we had at first.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 17-1

The imagination driving Australia’s ICT future.

REAL -TIME USER-SPACE

10us

200us

15us

20us

305us

irq_entry

irq/21−eth1

udp_echo

sirq−net−rx

udp_echo

550us

irq_entry

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 18

The softIRQ time and user-space time are better balanced now, leading to
better throughput — but too much time is still being spent in the softirq relative
to user-space udp-echo!

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 18-1

The imagination driving Australia’s ICT future.

REAL -TIME USER-SPACE

• Still too much time in softIRQ
➜ packets queued for later dropping

➜ (wasted time)

• restrict work in softirq

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 19

Any work done on packets that will later be dropped is totally useless. So
(following Macpherson [Mac07]) we’ll attempt to reduce the time spend in the
soft IRQ. This should fix some of the cyclictest latency, too.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 19-1

The imagination driving Australia’s ICT future.

RESTRICT WORK IN SOFTIRQ

• cap batch at 32 packets
➜ (or 16 or 64 ...)

• regular preemptions allow echo to make forward
progress

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 20

So we altered the softirq routine in the e1000 driver to process a batch of at
most 32 packets before allowing a preemption. This allows echo to make for-
ward progress. (We also tried 64 packet batches with slightly better through-
put).

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 20-1

The imagination driving Australia’s ICT future.

RESTRICT WORK IN SOFTIRQ

 0

 10

 20

 30

 40

 50

 60

100 111 125 143 167 200

ki
lo

 p
ac

ke
ts

 p
er

 s
ec

on
d

kilo packets per second

Throughput

rtpreempt-rtecho-thru
rtpreempt-batch • Much better

throughput

• But what of
cyclictest
latency?

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 21

As can be seen, the throughput is much improved. But let’s have a look at
the cyclictest latency...

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 21-1

The imagination driving Australia’s ICT future.

RESTRICT WORK IN SOFTIRQ

 0

 10000

 20000

 30000

 40000

 50000

 60000

0 100 111 125 143 167 200

m
ic

ro
se

co
nd

s

kilo packets per second

Cyclictest max latencies

stdLinux
rtpreempt-rtecho

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 22

It’s appalling! 50ms latency!

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 22-1

The imagination driving Australia’s ICT future.

RESTRICT WORK IN SOFTIRQ

Ooops

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 23

Oops indeed.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 23-1

The imagination driving Australia’s ICT future.

RESTRICT WORK IN SOFTIRQ

The machine stalls for 50ms every second
run-balancing in the scheduler

Can’t run a system 100% Real-Time!

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 24

It turns out that to prevent people shooting themselves in the feet, the Linux
scheduler will not allow a 100% real-time load. After each 0.95s it checks to
see if any non-real-tine thread has been scheduled, and if not, it schedules
one (or the idle thread). This theoretically is to allow an administrator to login
in and kill a runaway real-time process.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 24-1

The imagination driving Australia’s ICT future.

HERESY?

• Try running IRQ thread in SCHED NORMAL

• Adjust nice to get good balance

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 25

OK, let’s try running the interrupt thread as a time-share process. In Linux,
decreasing one nice unit means 10% more time. We traced the system and
found that the user-space echo process needs around 1.5 times the time that
the softIRQ does per packet, so we’ll try nice 4 and 5.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 25-1

The imagination driving Australia’s ICT future.

HERESY?

• Standard Linux kernel 2.6.31.4

• Change e1000 driver to:
➜ request threaded interrupt handler

➜ set thread to SCHED NORMAL

➜ no deferred work — no separate softIRQ

➜ nice thread

➜ batch packets — max 32 at a time before preempt() call

• cyclictest only real-time task

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 26

As cyclictest is now the only real time task, run balancing in the scheduled
won’t hurt us. We’ll combine the deferred work into the interrupt thread, and
run it at nice 5, giving a 1.6:1 time ratio between user-space at the default
nice, and the softIRQ thread. Obviously this only works for this application.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 26-1

The imagination driving Australia’s ICT future.

HERESY — BUT IT WORKS !

 0

 20

 40

 60

 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

at
io

n
(%

)

T
hr

ou
gh

pu
t (

kp
kt

s/
s)

Load (kpkts/s)

Unmodified Linux
Preempt-RT

SCHED NORMAL interrupt thread

Without cyclictest

 0

 20

 40

 60

 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

at
io

n
(%

)

T
hr

ou
gh

pu
t (

kp
kt

s/
s)

Load (kpkts/s)

Unmodified Linux
Preempt-RT

SCHED NORMAL interrupt thread

With cyclictest

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 27

Oooooohhhh —- performance is really good. We’re outperforming all of the
previous systems by a large amount.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 27-1

The imagination driving Australia’s ICT future.

HERESY — BUT IT WORKS !

 0

 20

 40

 60

 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

at
io

n
(%

)

T
hr

ou
gh

pu
t (

kp
kt

s/
s)

Load (kpkts/s)

Unmodified Linux
Preempt-RT

SCHED NORMAL interrupt thread

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 28

Let’s have a better look (without cyclictest running). The performance peaks
at around 100kpps, and doesn’t drop under increased load.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 28-1

The imagination driving Australia’s ICT future.

HERESY — BUT IT WORKS !

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 100 111 125 143 167 200

m
ic

ro
se

co
nd

s

kilo packets per second

Cyclictest max latencies

rtpreempt
stdLinux

final

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 29

And cyclictest latencies are reasonable. They about three times the low
packet rate RT-PREEMPT latencies, but do not climb massively under high
packet loads. And investigating and adding additional preemption points will
probably reduce them.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 29-1

The imagination driving Australia’s ICT future.

FUTURE WORK

• automatic nice (or handshaking)

• Test with other loads (e.g., HTTP, NFS, scp)

• Test other drivers.

• Investigate remaining latencies.

• Clean up patches and submit.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 30

So, obviously, the solution we came up with works only for this workload. We
need to provide a mechanism for changing the amount of time given to the
interrupt thread automatically, using some kind of feedback from higher levels
perhaps.
Also we need to look at other systems like this. Network is essentially a
producer-consumer situation, but with no handshaking between producer and
consumer. The way we’re controlling the relative times may be better done
as an explicit handshake.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 30-1

The imagination driving Australia’s ICT future.

FINAL OUTCOME

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 100 111 125 143 167 200

m
ic

ro
se

co
nd

s

kilo packets per second

Cyclictest max latencies

rtpreempt
stdLinux

final

 0

 20

 40

 60

 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

at
io

n
(%

)

T
hr

ou
gh

pu
t (

kp
kt

s/
s)

Load (kpkts/s)

Unmodified Linux
Preempt-RT

SCHED NORMAL interrupt thread

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 31

References

[Gle09] Thomas Gleixner. cyclictest. http://rt.wiki.kernel.org/index.php/ Cyclictest/,
June 2009.

[Hen09] Luis Henriques. Threaded IRQs on Linux PREEMPT-RT. In Inter-
national Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, pages 23–32, Dublin, Ireland, June 2009.
http://www.artist-embedded.org/artist/Overview,1750.html.

[Hol83] R. C. Holt. Concurrent Euclid, The UNIX system, and TUNIS.
Addison-Wesley, 1983.

[KE95] Steve Kleiman and Joe Eykholt. Interrupts as threads. ACM Oper-
ating Systems Review, 29(2):21–26, 1995.

[Mac07] Luke Macpherson. Performing Under Overload. PhD thesis, School
of Computer Science and Engineering, University of NSW, Sydney
2052, Australia, September 2007. Available from publications page
at http://www.disy.cse.unsw.edu.au/.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 31-1

http://rt.wiki.kernel.org/index.php/Cyclictest/
http://www.disy.cse.unsw.edu.au/

[Pre09] PREEMPT-RT website. http://rt.wiki.kernel.org/index.php/ Main Page,
2009.

[WM04] Ian Wienand and Luke Macpherson. ipbench: A framework for dis-
tributed network benchmarking. In AUUG Winter Conference, Mel-
bourne, Australia, September 2004.

JANUARY 25, 2010 INTERRUPTS CONSIDERED HARMFUL . . . 31-2

http://rt.wiki.kernel.org/index.php/Main_Page

