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ABSTRACT
Capabilities provide an access control model that can be used to
construct systems where safety of protection can be precisely de-
termined. However, in order to be certain of the security provided
by such systems it is necessary to verify that their capability dis-
tributions do in fact fulfil requirements relating to isolation and
information flow, and that there is a direct connection to the actual
capability distribution in the system. We claim that, in order to do
this effectively, systems need to have explicit descriptions of their
capability distributions. In this paper we present the capDL capabil-
ity distribution language for the capability-based seL4 microkernel.
We present the capDL model, its main features and their motivations,
and provide a small example to illustrate the language syntax and
semantics. CapDL plays a key role in our approach to development,
analysis, and verification of trustworthy systems.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.4.6 [Op-
erating Systems]: Security and Protection; D.2.4 [Software Engi-
neering]: Software/Program Verification

General Terms
Languages, Design

Keywords
Capabilities, capability distribution, security analysis, seL4, Isabelle

1. INTRODUCTION
Capabilities [1] are a powerful approach to building secure sys-

tems. They provide an access control model that allows system
designers to minimise authority of processes and that can be used
to precisely analyse the protection state of such systems. This is
particularly useful in the presence of security requirements that limit
information flow and impose isolation between system components.
In this paper we motivate the need for, and introduce our specific
approach to, explicit descriptions of the capability distribution in
such systems.
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In a fully capability-based system, all objects, including resources
such as devices and memory, and system objects, such as pro-
cesses and communication channels, are referenced by capabilities –
unique tokens that act both as references and provide access rights
to objects. In order to access an object or perform an operation on
one, a subject must hold a capability to this object, and the capability
must provide sufficient rights for the operation. Capabilities may
be transferred between subjects, meaning that the set of objects
accessible by subjects can change over time. If a subject does not
possess a capability to an object, and cannot ever acquire such a
capability, it will not be able to access the object.

Since objects are only accessed through capabilities, they can
be used to restrict a subject’s access to only those objects that the
subject requires to perform its tasks correctly, but to no others.
This allows systems to be designed according to the principle of
least privilege [9]. Furthermore, the capabilities in a system can be
distributed such that they create distinct isolated subsystems, where
subjects in different subsystems cannot influence or communicate
with each other in any way.1 Besides strict isolation, the capability
model can also be used to create systems that allow limited inter-
subsystem communication over authorised channels. This enables
the construction of systems in which information flow is strictly
controlled.

A capability-based access control model that also provides a suit-
able authority transfer scheme, such as take-grant [6], can be shown
to be safe. This means that all future access rights that a subject may
obtain can be decided by analysing the current system state. Thus,
in order to determine the security of a capability-based system (in
particular with regard to its access and information flow policies)
it is sufficient to analyse its capability distribution, i.e., the distri-
bution of capabilities over all the subjects in the system. Such an
analysis will take into account all possible transformations of the
capability distribution to identify subsystems and the possible infor-
mation flow between them. Given specific access and information
flow requirements, the analysis can be used to determine whether a
system successfully fulfils these requirements [2].

In existing capability-based systems the capability distributions
are implicitly defined by the code that creates objects and transfers
capabilities between subjects at runtime. A security analysis thus re-
quires that the code first be analysed to determine which capabilities
exist, how they are initially set up, and how they are subsequently
propagated throughout the system. Depending on the code, this
could be a complex, and potentially infeasible, process.

We propose that capability-based systems should have an explicit
representation of the system’s capability distribution. While having
such a representation is essential for performing a security analy-

1Providing the system does not contain any side channels that bypass
the capability-based access control.
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Figure 1: The role of capDL in development, analysis, and ver-
ification.

sis or formal security verification of the system, it provides other
useful benefits. A clear description of a system’s desired capability
distribution helps the design and implementation process as well as
debugging and documentation. Debugging of the system is facili-
tated by being able to refer to the expected capability distribution,
as well as by having access to the actual capability distribution of
the system being debugged. A description of a system’s expected
and actual capability distribution can be used to produce clearer and
more complete system documentation.

In this paper we present capDL, a capability distribution language
for seL4 [5], a formally verified capability-based microkernel. The
purpose of capDL is to describe state snapshots of systems running
on seL4.

CapDL plays a central role in our overall vision for develop-
ment, analysis and verification of trustworthy embedded systems
(Figure 1). In this vision, the capDL specification of a system is man-
ually written or generated from a system architecture description (1).
The specification can be combined with component code, glue code
and a bootstrapping process to produce a runnable system image
(2). Alternatively a capDL specification can be dumped from a
running system (3). The capDL specification (whether hand-written,
generated, or dumped) together with behaviour specifications of the
system components serve as input into a security analysis tool that
verifies whether the system architecture fulfils the required security
policy (4). This verification can be further extended with refinement
proofs of the underlying seL4 kernel to prove security properties of
the actual system implementation (5).

In the rest of this paper we first present a brief overview of seL4
in Section 2 followed by a description of the capDL language in
Section 3 and a comparison of capDL with other approaches to
describing capability-based systems in Section 4. CapDL is a work
in progress. In Section 5 we present the current status of this work
and discuss our plans for its future. Finally we conclude in Section 6.

2. OVERVIEW OF SEL4
The seL4 microkernel is a small operating system kernel designed

to be a secure, safe, and reliable foundation for a wide variety
of application domains. As a microkernel, it provides a minimal
number of services to applications. The kernel services are general
enough for composing more complex operating system services that
run as applications on the microkernel. In this way, the functionality
of the system can be extended without increasing the code and

complexity in privileged mode, while still supporting a wide number
of services for varied application domains

Kernel services are provided through a small set of kernel im-
plemented objects whose methods can be invoked by applications.
These objects can only be accessed and manipulated using tamper-
proof capabilities. The operations an application can perform are,
therefore, determined by the set of capabilities the application pos-
sesses. The capabilities are stored in kernel managed memory and
can only be manipulated indirectly through the kernel. Capabilities
can be copied, moved, and sent using seL4’s inter-process commu-
nication (IPC) mechanism. The propagation of capabilities through
the system is controlled by a take-grant-based model.

The set of objects implemented by the kernel can be grouped into
six categories:

Capability Management Capabilities in seL4 are stored in kernel-
protected objects called CNodes. A CNode has a fixed number
of slots which is determined when the CNode is created. Indi-
vidual CNodes can be composed into a CSpace, a set of linked
CNodes. In order to invoke an operation on a capability, that
capability must be stored in an application’s CSpace.

Object and Memory Management The Untyped Memory capa-
bility is the foundation of memory allocation and object cre-
ation in the seL4 kernel. A kernel object is created by invoking
the retype method on an Untyped Memory capability. After
a successful retype invocation a capability to the new object
is placed in the application’s CSpace. Untyped capabilities
can also be used to reclaim retyped memory with the revoke
method.

Virtual Address Space Management A virtual address space in
seL4 is called a VSpace. In a similar way to CSpaces, a
VSpace is composed of objects provided by the microkernel.
The objects for managing virtual memory are architecture
specific. On the Intel IA32 architecture the root of a VSpace
consists of a Page Directory object, which contains references
to Page Table objects, which themselves contain references
to Frame objects representing regions of physical memory.

Thread Management Threads are the unit of application execu-
tion in seL4 and are scheduled, blocked, unblocked etc, de-
pending on the application’s interaction with other threads. A
TCB (thread control block) object exists for each thread and
provides the access point for controlling the thread. A TCB
contains capabilities that define the thread’s CSpace and VS-
pace. Note that multiple threads can share the same CSpace
and VSpace or parts thereof.

Inter-process Communication (IPC) Endpoints (EP) are used to
facilitate inter-process communication between threads. Syn-
chronous Endpoints provide rendezvous-style communication,
allowing the passing of data or capabilities between applica-
tions. When only notification of an event is required (with
no need to send message data), then Asynchronous Endpoints
(AEP) can be used.

Device I/O management Device drivers run as applications out-
side of the microkernel. To support this, seL4 implements I/O
specific objects that provide access to I/O ports, interrupts,
and I/O address spaces for DMA-based memory access.

3. THE CAPDL LANGUAGE
The main purpose of capDL is to describe the capability distribu-

tion of a system running on top of seL4. The language is intended



to be used in several scenarios and has been designed with these
in mind. Initially two separate goals led to the development of the
language.

The first goal was to have a representation of the system that
was suitable for security analysis, which would involve mapping a
capability distribution to a security model and determining whether
it fulfils security requirements. The second goal was to enable
developers to easily specify the desired capability distribution of
their system and provide it as input to a bootstrapping process,
which would automatically create required objects and configure
and populate the appropriate spaces to reflect the specified structure.

For the first goal what is needed is a format for describing a
snapshot of the capability distribution in a system. To be suitable
for security analysis the snapshot must describe which objects ex-
ist in the system and which capabilities they have access to. For
the second goal the specification must be sufficiently detailed to
allow automated code generation. Therefore it needs to include all
information about capability arguments that such implementations
will need. Some of this information will not be relevant for security
analysis. For instance, for a security analysis it is necessary to know
which frames of physical memory a process in the system can ac-
cess via its virtual memory, but it is not necessary to know under
which virtual address each of these physical addresses is visible
to the process. For a concrete implementation of a bootstrapping
component on the other hand, this latter information is crucial.

CapDL allows specifications to be underspecified, that is, to omit
details of objects or capabilities, or whole objects themselves. A key
use for underspecification is in early design and for communication
of system designs. For example, a specification may omit objects
required for bookkeeping during system initialisation, since these
are not necessary to understand the overall system. CapDL also
allows abstraction of specification, which involves creating a new
specification that contains less details, but has equivalent semantics.
For example, to facilitate security analysis we can often abstract a
complex CSpace graph into a single CNode containing all relevant
capabilities — reducing the complexity of analysing a hierarchy of
CNodes, but maintaining the semantics of the original CSpace.

Besides these, the language has several other requirements. For
developers writing manual specifications it is important that sys-
tem specifications are easy to write. Thus the language provides
shorthand for parts that are tedious to enter manually. For exam-
ple, in capDL, large contiguous blocks of untyped memory objects
and capabilities can be specified as ranges, rather than separate en-
tries for each individual object and capability. Likewise commonly
used objects and capabilities can be given meaningful names so
that specifications can act as documentation and reflect intentions
as well as structure. On the other hand, for specifications that are
generated automatically (for example when dumping the state of the
system), shorthand is not appropriate, so the language also has the
option of representing a capability distribution in the most straight-
forward way, without requiring use of more complex shorthand. Of
course, specifications differing only in the use of shorthand should
be equivalent, and in capDL it is possible to show their equivalence.

A capDL specification has two main sections, the objects section,
specifying all the objects in the system, and the capabilities section,
specifying all the capabilities in the system.

The language model reflects the seL4 kernel object model as de-
scribed in Section 2. All seL4 object types are supported by capDL.
Since some types are architecture specific, each capDL specification
must include an architecture declaration, which subsequently limits
the object types that may be used in it.

Capabilities are typed based on the object type that they reference.
A capDL capability includes a reference to the object that it refers
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Figure 2: An example seL4-based system.

to, and, if applicable, capabilities also include a field for the access
rights that the capability bestows. Besides access rights, some
capability types store extra information relating to how the object is
accessed. For example, Endpoint capabilities also store a badge that
is sent during IPCs performed through that capability. These badges
help to identify participants in the communication occurring over
the endpoint.

There are two main classes of objects in capDL: those that are
containers, which store capabilities, and those that are not. Con-
tainer objects include TCBs, CNodes, Page Directories (PD), and
Page Tables (PT). These objects provide a mapping from slots to
capabilities. By default slots are numbered, but can also be explicitly
named to improve clarity. Some containers, such as TCBs, have a
fixed size, while others can be created with arbitrary sizes.

Untyped Memory objects are also containers, but are different to
the others in that they do not store capabilities, but are conceptual
containers for other kernel objects. When a new object is created
by retyping an existing Untyped Memory object, the new object is
contained in (or covered by) that Untyped Memory object. Since Un-
typed Memory objects can be retyped into smaller Untyped Memory
objects, hierarchies of these objects can exist.

Non-container objects are always of a fixed size and include
Endpoints and Frames. Note that, while Frames can be of different
sizes, these sizes are limited by the architecture, and different sized
Frames are conceptually separate object types.

We illustrate the capDL language using a simple example system
shown in Figure 2. This system consists of three components: a
driver component that has access to a network interface (NIC) device
and two client components that communicate with the driver. Each
component runs as a separate process and has its own protected
address space and individual CSpace.

Figure 3 shows a more detailed view of the objects and capa-
bilities used in the system For clarity we show only the network
driver and one client. We see that each component runs a single
thread and therefore contains a single TCB. Each component has a
single-CNode CSpace and a small virtual address space in which
to run. The components have access to endpoints over which they
communicate, and they both share a small region of virtual memory
which they use to transfer packet data. The network driver com-
ponent also has access to NIC interrupts through an asynchronous
endpoint.

A fragment of the corresponding capDL specification is shown in
Figure 4. This specification starts with the objects section (line 1),
which lists all the objects used in the system. Note that all the objects
belonging to a single component are derived from the same Untyped
object (lines 3, 12, and 13). This is not required, but makes it easy
to destroy and clean up after a process by revoking the capability
to the parent Untyped object and making the children inaccessible.
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Figure 3: Capabilities involved in the example system.

This is a common pattern in seL4-based systems, and being able to
specify it is an important feature of the language.

The capability distribution is described in the capabilities section
(line 19) where we place capabilities to the appropriate objects in
the various containers. We show the network driver’s TCB (line
21) and CNode (line 26), and the clients’ CNodes (lines 31 and 32).
Note that the CNodes contain capabilities to the shared endpoints,
but that the capabilities have different badges (lines 27, 31, and
32). This distinguishes the two clients from each other when they
communicate with the driver. We also show the structure of the
network driver’s VSpace (lines 33 and 35) consisting of a Page
Directory, a Page Table and various Frames. While not shown here,
shared memory is created by mapping the same Frame objects into
different VSpaces.

While this example has been kept small in order to keep it simple,
it nevertheless highlights some of the key features of the language
that fulfil our requirements. As we’ve mentioned, it allows short-
hand for ease of writing and reading (for example, in lines 6 and 7
we specify multiple objects in a single statement, then refer to these
objects in lines 37 and 38). It also allows underspecification and
abstraction of capability distributions. In lines 3 to 10, for example,
we leave out details of Untyped object hierarchies: an implemen-
tation of this distribution may actually use a hierarchy of Untyped
objects instead of a single Untyped object to create these objects.
This is useful both for system description and for analysis.

We extend this example to show how capDL supports abstraction
for system analysis. The initial specification shows a detailed pro-
cess description consisting of a TCB, a CSpace, and a VSpace (lines
21 to 23). Figure 5 represents an abstract version of this process
consisting of a single TCB that contains all externally accessible ca-
pabilities (the AEPs for communication and interrupts as well as the
Frames shared with the client processes). Such a TCB is not a valid
seL4 object, however, it may be a valid abstraction of a seL4 process
(if refinement can be proved) and can simplify reasoning about such
processes. Given that capDL has formally defined semantics, we in-
tend to explore the automatic generation of such abstractions. Note
that capDL-based system abstraction and analysis is still a work in
progress, and a full discussion of this is, therefore, outside the scope
of this paper.

4. RELATED WORK
Existing operating systems with capability-based access control

such as KeyKOS [4], EROS [12], and Amoeba [8] do not provide
means to explicitly define capability distributions. Capabilities are

1objects -- The object section starts here
2

3DRIVER_ut = ut {
4DRIVER_tcb = tcb
5DRIVER_cspace = cnode (10 bits)
6DRIVER_code [5] = frame (4k)
7DRIVER_data [11] = frame (4k)
8DRIVER_vspace = pd
9DRIVER_pt = pt
10}
11

12CLIENT1_ut = ut {...}
13CLIENT2_ut = ut {...}
14

15DRIVER_aep = aep
16IRQ_aep = aep
17SHARED_frames [2] = frame (4k)
18

19caps -- The capabilities section starts here
20

21DRIVER_tcb = {
22cspace: DRIVER_cspace
23vspace: DRIVER_vspace
24}
25

26DRIVER_cspace = {
271: DRIVER_aep (RW , badge: 0)
282: IRQ_aep (R)
29}
30

31CLIENT1_cspace = { 1: DRIVER_aep (RW, badge: 1) }
32CLIENT2_cspace = { 1: DRIVER_aep (RW, badge: 2) }
33DRIVER_vspace = { 1: DRIVER_pt }
34

35DRIVER_pt = {
360x0: SHARED_frames [] (RW)
370x2000: DRIVER_code [] (R)
380x7000: DRIVER_data [] (RW)
39}

Figure 4: A capDL specification.

1DRIVER_tcb = {
2: DRIVER_aep (RW, badge: 0)
3: IRQ_aep (R)
4: SHARED_frames [] (RW)
5}

Figure 5: An abstraction of a capDL specification.

distributed by the system code at runtime and thus distribution re-
mains implicit in the code. Coyotos [10] introduced CapIDL [11]
which is a CORBA IDL based language for describing IPC interfaces
of the processes in the system. While the CapIDL interfaces are
related to, and represent, capabilities, the language does not provide
a means for explicitly describing which processes provide and use
which interfaces, so the actual capability distribution is never made
explicit. Language-based capability systems such as E [7] provide a
way to describe capabilities in a programming language (typically as
references to objects), however, as with capability-based operating
systems the capability distribution is implicit in the code, and is
never explicitly presented as with capDL. Higher level architecture
description languages such as AADL [3] do provide a means of
describing an overall system architecture including the components
and their interconnections, however, the abstractions that they op-
erate on are at a much higher level than a capability distribution.
Such architecture descriptions could potentially be mapped down to
a capDL system description given appropriate mappings between
the high-level concepts and the capabilities required to implement
them. Various formal models of capability systems exist such as the
original take-grant model [6]. Their purpose is a formal security



analysis or specification. They are lacking the necessary detail for
system implementation and debugging tools. The advantage of our
approach is the direct connection between analysis and implemen-
tation within one language. The textual capDL language presented
here is one way of representing the underlying model. We have also
developed a binary capDL representation that is used as input to
our system bootstrapper. While it would be possible to use other
languages such as XML to represent capDL specifications, we have
not yet investigated these options.

5. STATUS AND FUTURE WORK
The capDL model has formal semantics in the theorem prover

Isabelle/HOL and we have implemented a compiler for the capDL
language. Besides checking syntactic correctness and consistency
of a specification, the compiler also produces a canonical repre-
sentation of the specification, allowing us to check the equivalence
of specifications that use shorthand. The compiler is flexible and
includes different backends, including one that produces a binary
representation of the specification that can be used as input into a
system bootstrapper, and one that produces a graphical representa-
tion of the capability distribution in the dot format. We also have a
debugging tool that produces a capDL dump of a running system’s
capability distribution. We have implemented an automated boot-
strapper that takes as input the binary variant of capDL and produces
an appropriate capability distribution in a running system.

A new feature that we plan to introduce extends the language
to allow us to specify CSpace manipulation operations (such as
creating, moving and destroying capabilities). These operations will
have a formal semantics and will be used for analysis of system
behaviour. We are also working on integrating capDL into our
overall development and security analysis process as described in
Section 1. This will include a mapping of capDL to the current
security model, as well as automated security analysis tools based
on capDL descriptions.

6. CONCLUSIONS
CapDL is a language for explicitly describing the capability dis-

tribution of a seL4-based system. It plays a key role in our effort to
design, build, analyse, and formally verify trustworthy embedded
systems, tying together work being done by system developers and
formal methods practitioners. We have designed capDL to closely
reflect the seL4 model, and to be flexible enough to allow full and
partial specification of a seL4 capability distribution. CapDL has
also been designed to be easy to write by system designers as well
as to be automatically generated and processed by debugging tools.
The underlying capDL model has a formal semantics, which makes
it suitable as a key element in our system analysis and verification
tool chain. We have developed tools to process capDL specifica-
tions, generate running systems from it, dump system state to it, and
have started work on developing security analyses based on capDL
system descriptions.
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