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ABSTRACT
We revisit the device-driver architecture supported by the majority
of operating systems, where a driver is a passive object that does
not have its own thread of control and is only activated when an
external thread invokes one of its entry points. This architecture
complicates driver development and induces errors in two ways.
First, since multiple threads can invoke the driver concurrently, it
must take care to synchronise the invocations to avoid race condi-
tions. Second, since every invocation occurs in the context of its
own thread, the driver cannot rely on programming-language con-
structs to maintain its control flow. Both issues make the control
logic of the driver difficult to implement and even harder to under-
stand and verify.

To address these issues, we propose a device-driver architecture
where each driver has its own thread of control and communicates
with other threads in the system via message passing. We show
how this architecture addresses both of the above problems. Un-
like previous message-based driver frameworks, it does not require
any special language support and can be implemented inside an
existing operating system as a kernel extension. We present our
Linux-based implementation in progress and report on preliminary
performance results.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Input/Output; B.4.2 [Input/Output
and Data Communications]: Input/Output Devices
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Device drivers in most operating systems (OSs) today are passive
objects. A driver constitutes a collection of entry points that are in-
voked by the OS when it needs to perform an I/O or a configuration
transaction or deliver an interrupt notification to the driver. The
driver does not have its own thread of control, but rather executes
in the context of external OS threads. Even if the driver creates one
or more helper threads to perform auxiliary tasks, the main logic of
the driver is still invoked from external threads.

The passive model enables the OS to efficiently communicate
with the driver via simple function calls. However it suffers from
serious drawbacks that complicate driver development and lead
to errors. First, modern OS kernels are multithreaded, hence the
driver must be prepared to handle concurrent invocations by multi-
ple threads. Concurrency management accounts for approximately
20% of all driver bugs [10]. Second, since every driver invocation
occurs in the context of its own thread, the driver must maintain
its execution state across invocations using state variables. This
makes the control logic of the driver difficult to implement and even
harder to understand and verify—the phenomenon known as stack
ripping [1]. As discussed in Section 3, approximately 10% of driver
bugs are related to stack ripping.

To address these issues, we propose a device-driver architecture
where the driver has its own thread of control. Communication be-
tween the driver thread and other OS threads occurs via message
passing. The driver/OS interface consists of a set ofmailboxes
where each mailbox is used for a particular type of request. The
OS sends an I/O request or an interrupt notification to the driver
by placing it into the appropriate mailbox. The driver receives the
request by performing a blocking wait on one or more mailboxes.
The driver notifies the OS about a completed request via a reply
mailbox.

In contrast to the passive architecture, where the driver can be
invoked at any time, an active driver determines when it can process
the next request itself. Since the driver handles all requests in the
context of its own thread, it does not have to worry about thread
synchronisation.

An active driver is structured as a sequential program with ex-
plicitly defined control flow. The state of the program is automat-
ically maintained by the compiler, resulting in much clearer code.
Furthermore, the order in which the driver handles OS requests is
explicit in the structure of the program. In contrast, a passive driver
is merely a collection of functions without any indication of the
order in which these functions are invoked.

Some types of drivers lend themselves naturally to multiple con-
current control flows. For example, receive and transmit paths of
a network driver are largely independent and can be implemented
using two parallel threads. Our architecture allows such multi-
threaded drivers. Unlike multithreading in passive drivers, this kind
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Figure 1: Architecture of the active driver framework for Linux.
The lollipop connector represents the passive driver interface con-
sisting of entry points.

of multithreading captures the control structure of the driver and
does not lead to stack ripping. In addition, driver threads are sched-
uled cooperatively, thus avoiding most of the problems related to
thread synchronisation.

In order to evaluate the proposed architecture, we are implement-
ing an active driver framework and sample drivers for Linux. Our
framework transparentlly integrates active drivers into the Linux
driver stack. To this end, it associates an adapter with each driver,
which exports a conventional passive interface to the Linux kernel
and translates invocations received through this interface into mes-
sages to the driver (Figure 1). This architecture allows active device
drivers to co-exist with conventional passive drivers.

The improved programming model should not come at the cost
of performance. In our previous work [10], we showed that re-
quest serialisation does not noticeably affect the performance of
the majority of drivers. For the remaining few drivers that can ben-
efit from parallel request processing on a multicore system, we are
working on an extension of the active architecture where multiple
driver threads can run and receive OS requests concurrently. This
extension is beyond the scope of this paper.

Another potential source of performance overhead is message-
based communication, since sending a message between two
threads is much more expensive than invoking a driver entry point.
Existing mechanisms in the Linux kernel do not allow efficient im-
plementation of the communication semantics required by active
drivers. We describe our implementation of a high-performance
message-passing mechanism for Linux in Section 5 and present ini-
tial performance evaluation in Section 6.

This paper makes three contributions. First, we identify and
analyse two types of device-driver architecture: passive and ac-
tive drivers. While both types have been used in the past, no
systematic comparison between them has been undertaken. Sec-
ond, we propose an active device-driver architecture that addresses
the shortcomings of the passive architecture. Unlike previous ap-
proaches, this architecture does not rely on programming-language
extensions, thus eliminating a major barrier to its adoption by main-
stream OSs. Third, we present an implementation and initial evalu-
ation of an active driver framework for Linux that does not require
any special compiler support nor modifications to the existing ker-
nel code.

2. RELATED WORK
The work presented here is a follow-up to our previous research

on the Dingo driver architecture [10]. Dingo reduces the amount
of concurrency in drivers by serialising driver invocations. In order
to avoid performance degradation due to serialisation, all blocking
operations must be rewritten using completion chaining, which ex-

acerbates the stack ripping problem. Dingo addresses the problem
by introducing a C language extension that allows writing event-
driven programs using the sequential style. In contrast, the active
device-driver architecture proposed here addresses both the concur-
rency and the stack-ripping problem without requiring any special
language support.

Previous studies of driver errors [4, 10] identified concurrency
as a major source of software defects in drivers. Adya et al. [1]
studied the stack-ripping problem in the context of arbitrary event-
driven programs and proposed a user-level runtime framework that
avoids stack ripping.

In the context of device drivers, stack ripping was studied by
Chandrasekaran et al. [3]. They consider stack ripping as an in-
herent property of event-driven programs and do not attribute it to
the specific device-driver architecture supported by current OSs.
They point out that stack ripping complicates static analysis of
the driver control flow and propose a new programming language,
called Clarity, that enables more effective static analysis for drivers.

A device-driver architecture where a driver has its own thread
of control was introduced by Dijkstra [5] for the THE OS. How-
ever, this approach was not adopted by mainstream OSs. Re-
search systems that support active drivers include Singularity [6]
and RMoX [2]. Similarly to Clarity and Dingo, these systems rely
on programming language support for threading and communica-
tion.

User-level device-driver architectures [8, 9] encapsulate each
driver in a separate process with its own thread of control, which
puts them in perfect position to support active drivers. Instead of
doing so, they provide runtime environments that simulate the pas-
sive programming model for user-level drivers.

3. PROBLEMS WITH PASSIVE DRIVERS

3.1 Concurrency
Multithreaded programming is inherently error-prone. The ker-

nel environment imposes additional constraints that further compli-
cate concurrency management. For example functions invoked by
the kernel in the interrupt context are not allowed to perform block-
ing operations, since blocking in the interrupt context can lead to a
deadlock.

Figure 2 shows a fragment of the RTL8169 Ethernet controller
driver for Linux. Thetx_timeout entry point (line 1) is invoked
by the networking code when a packet transmission fails to com-
plete within a reasonable period, indicating a hardware lock-up.
The driver handles this request by resetting the device, which in-
volves blocking operations, such as waiting for an interrupt from
the device. Thetx_timeout function is invoked from the timer
interrupt handler and hence should not block. Therefore, instead
of calling thereset function directly, it schedules this function
for execution in the context of a kernel worker thread (line 3), thus
introducing another concurrent activity that the driver must handle.

Another problem is related to the use of kernel locking prim-
itives. Since the driver is embedded into the OS kernel, it must
be aware of the context in which each entry point is invoked,
i.e., which locks are held by the kernel and which locks can be
safely acquired by the driver. In the RTL8169 driver example, the
reset function must be synchronised with other driver functions
that modify the network interface configuration, such asopen and
close. The implementation in lines 5–11 leverages an existing
kernel lock used to serialise all network interface re-configurations.
The kernel holds this lock when invoking theopen andclose
entry points. By acquiring the same lock in line 6, thereset
function avoids race conditions with other configuration functions.



1void tx_timeout(struct net_device *dev){
2 ...
3 schedule_work(reset_work);
4}
5void reset(struct work_struct *work){
6 rtnl_lock();
7 if (!netif_running(dev)) goto unlock;
8 <reset the device>
9unlock:

10 rtnl_unlock();
11}
12int open(struct net_device *dev){
13 <initialise the device>
14}
15int close(struct net_device *dev){
16 <shut down the device>
17}

Figure 2: A fragment of the RTL8169 Ethernet controller driver for
Linux.
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Figure 3: Ethernet driver interface state machine.

Coordinating multiple concurrent activities while coping with
the constraints of the kernel environment has proved an impossi-
ble challenge for most driver developers. Concurrency errors are
particularly common in corner-case scenarios, e.g., when the driver
receives a hot unplug notification while handling a suspend request.

3.2 Control-flow management
Device drivers are stateful objects, i.e. the driver’s reaction to a

request depends on the history of previous requests and responses.
When implementing the driver, the developer determines various
sequences of requests that the driver must handle and how the driver
responds to these sequences. In a sequential program, these sce-
narios can be directly encoded using programming language con-
structs and can be later analysed by following the program struc-
ture. In contrast, a driver comprised of entry points invoked from
external threads must maintain its control flow using explicit state
variables. The resulting driver implementation does not fully cap-
ture the developer’s intention and is hard to understand and main-
tain.

The state machine in Figure 3 describes some possible sequences
of Ethernet driver invocations in Linux. Thetx_timeout func-
tion can be invoked in both states 1 and 2. In state 2, the network
interface is active and thetx_timeout function must perform a
device reset. In state 1, the interface is inactive andtx_timeout
must behave as a no-op.

The high-level structure of the driver in Figure 2 does not provide
any information about sequences of commands that the driver can
handle. In particular, there is no indication that a close request must
always follow an open, while a timeout notification can be handled
in any state. All three operations are implemented as driver entry
points and can, in principle, occur in any order.

Digging deeper into the implementation, we observe that the
reset function performs thenetif_running check in line 7
before resetting the device. Thenetif_running kernel API
checks whether the network interface is in the active state. It re-
turns a non-zero value in state 2 and zero in state 1. A similar

check could be performed by using a driver state variable to keep
track of the interface status.

In effect, the driver correctly implements the reset logic de-
scribed above; however, due to stack ripping, this logic is spread
across different parts of the driver. Understanding the driver logic
requires an in-depth knowledge of the communication protocol be-
tween the driver and the OS. This complicates driver development
and leads to errors. Our earlier study showed that errors related to
the ordering of driver-OS interactions, including situations when
the driver does not correctly handle a sequence of OS requests or
invokes OS function in the wrong order, constitute approximately
10% of all driver errors [10].

4. THE ACTIVE DRIVER ARCHITEC-
TURE

4.1 Scheduling and communication
The proposed device-driver architecture extends the OS kernel

with two new abstractions: cooperative domains and mailboxes.
A cooperative domain is a collection of one or more threads.

Threads inside the domain are scheduled cooperatively with respect
to each other, i.e., only one of them can be runnable at any given in-
stance. The cooperative domain is scheduled preemptively with the
rest of the kernel, i.e., a domain thread can run concurrently with
other kernel threads and other cooperative domains. A cooperative
domain is created with one initial thread. Additional threads can be
spawned at runtime.

A mailbox is a message-based communication medium. Mes-
sages are typed objects implemented as C structures. A mailbox
is declared to only accept a particular type of message. Multiple
message instances can be queued in the mailbox and delivered in
the FIFO order.

Mailboxes can be of three types. Incoming mailboxes are used
to send messages from normal kernel threads to threads inside a
cooperative domain. Outgoing mailboxes are used to send message
from the domain to the kernel. Internal mailboxes are used for
communication among threads inside the domain. A mailbox is
associated with a cooperative domain at creation time.

Message exchange occurs using two main operations. TheSEND
operation places a message in a mailbox. The sending thread con-
tinues without blocking. TheWAIT operation takes references to
one or more mailboxes and blocks until a message arrives to one
of these mailboxes. It returns a reference to the mailbox contain-
ing the message. When a thread becomes blocked in aWAIT call,
another thread from the same domain can be made runnable. Mul-
ticast communication is currently not supported, i.e., at most one
thread can be waiting on a mailbox.

4.2 The active driver architecture
An active driver occupies its own cooperative domain. When

the driver is being instantiated, the active-driver runtime framework
creates a new cooperative domain and calls the main function of
the driver in the context of the domain’s initial thread. The driver
can spawn additional cooperative threads and set up mailboxes for
communication among them at runtime.

The active driver architecture is supported by a runtime frame-
work implemented as a kernel extension. An active driver must
register a pointer to its main function and the list of devices that it
can handle with the framework. Once a supported device has been
detected, the framework creates a new cooperative domain and runs
the driver’s main function in the context of its initial thread. The
driver can spawn new cooperative threads at runtime and create in-
ternal mailboxes for communication among internal threads.



1int main (void * arg) {
2 ...
3 while (1) switch (state) {
4 case state_closed: /* state 1 */
5 mb = WAIT(open, tx_timeout, ...);
6 if (mb == open) {
7 <initialise the device>
8 SEND(open_complete, status = 0);
9 state = state_open;

10 };
11 break;
12

13 case state_open: /* state 2 */
14 mb = WAIT(close, tx_timeout, ...);
15 if (mb == tx_timeout) {
16 <reset the device>
17 } else if (mb == close) {
18 <shut down the device>
19 SEND(close_complete, status = 0);
20 state = state_closed;
21 };
22 break;
23 };
24};

Figure 4: An active implementation of the RTL8169 driver.

The framework creates an interface adapter (Figure 1) for each
interface of the driver. Most drivers support at least two interfaces
(and hence need two adapters): a device-class interface that the
driver implements in order to allow the rest of the OS to use the
device and a bus-transport interface used to communicate with the
device over an I/O bus, such as USB or PCI.

The device-class interface adapter receives I/O requests from the
OS and translates them into messages to the driver. Depending on
request type, the adapter either blocks the calling thread waiting for
a reply message from the driver or returns control to the kernel im-
mediately. Requests that can occur in the primary interrupt context
and are therefore not allowed to block are delivered to the driver as
an asynchronous notification, i.e., a message that does not require
a response message.

The bus-transport interface adapter accepts bus transfer request
messages from the driver and translates them into corresponding
bus transactions. It also translates interrupt notifications from the
device into messages to the driver.

4.3 Example
Figure 4 shows a fragment of an active version of the RTL8169

controller driver that implements the behaviour shown in Figure 3.
The only entry point exported by the driver ismain; all interactions
between the driver and the OS occur via messages.

When in state 1 (line 4), the driver accepts open and timeout
requests by waiting on the corresponding mailboxes (line 5). If
an open request arrives (line 6), the driver initialises the device,
sends a completion notification back to the OS, and moves to state 2
(lines 7–9). If a timeout request arrives, the driver simply ignores
this request and waits for the next message. In state 2, the driver
accepts close and timeout requests (line 14). It handles a timeout
by resetting the device (line 16). In response to a close request, the
driver shuts down the device and returns to state 1 (lines 18–20).

This implementation is more verbose than the original (passive)
one. It explicitly specifies the control flow of the driver and lists
requests that the driver handles in every state. While this results
in an increased amount of code, this code is easier to understand
and validate than the shorter passive version. For example, if the
driver developer forgets to handle thetx_timeout request in ei-
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Figure 5: Message throughput and aggregate CPU utilisation over
8 CPUs for varying number of clients.

ther state 1 or state 2, the omission can be detected by inspecting the
list of mailboxes that the driver listens to in every state. In addition,
since all driver operations are serialised, it does not contain any of
the synchronisation complexity of the original implementation.

The switch statement provides a natural way to structure state-
machine-based code. Every case of the switch describes how the
driver behaves in a particular state. In contrast, in a passive driver
this information is spread across multiple entry points.

5. IMPLEMENTATION
We are implementing support for active device drivers along with

several sample drivers for Linux. The critical component of the
active driver infrastructure is the scheduling and communication
mechanism.

Our implementation associates amessage queue and amessage
dispatcher with each cooperative domain. When a Linux thread
sends a message to a mailbox associated with the domain, the mes-
sage is placed on the queue. If the driver is currently idle, the
dispatcher is invoked. It inspects the first message on the queue,
locates its target mailbox, and checks if there is a thread waiting
on this mailbox. If so, it makes this thread runnable. The thread
runs for some time before terminating or blocking on aWAIT op-
eration. At this point, the dispatcher is invoked again. It marks the
current thread as stopped and chooses the next runnable thread by
inspecting the message queue.

6. PRELIMINARY EVALUATION
We evaluate the performance of the initial implementation of

the message passing mechanism on a machine with 2 quad-core
1.5GHz Xeon CPUs. In the first set of experiments, we measure
the communication throughput by sending a stream of messages
from a Linux thread to a thread inside a cooperative domain. This
simulates streaming of UDP packets through a network driver. The
achieved throughput is2·10

6 messages/s with both threads running
on the same CPU and1.2 · 10

6 messages/s with the two threads as-
signed to different CPU cores on the same chip. To put these num-
bers in context, a Gigabit NIC can send up to10

5 1Kbyte packets
per second. Hence, we expect message passing to introduce less
than 8% CPU overhead without affecting the network throughput
for such drivers.

Second, we run the same experiment with varying number of
Linux threads distributed across available CPU cores (without en-
forcing CPU affinity), with each Linux thread communicating with
the Dingo thread through a separate mailbox. As shown in Figure 5,



we do not observe any noticeable degradation of the throughput or
CPU utilisation as the number of clients contending to communi-
cate with the single server thread increases (the drop between one
and two client threads is due to the higher cost of inter-CPU com-
munication).

Third, we measure the communication latency between a Linux
thread and an active driver thread running on the same CPU by
bouncing a message between them in a ping-pong fashion. The
average measured roundtrip latency is 1.8 microseconds. For com-
parison, the roundtrip latency of a Gigabit network link is at least
55µs [7].

7. CONCLUSION
We proposed an active device driver architecture that simplifies

concurrency management and eliminates stack ripping in drivers.
Our ongoing research focuses on validating this architecture by ap-
plying it to develop high-performance drivers for a wide range of
devices.
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