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Abstract. Last year, the NICTA L4.verified project produced a formal
machine-checked Isabelle/HOL proof that the C code of the seL4 OS
microkernel correctly implements its abstract implementation. This papers
gives a brief overview of the proof together with its main implications
and assumptions, and paints a vision on how this verified kernel can be
used for gaining assurance of overall system security on the code level for
systems of a million lines of code or more.

1 L4.verified

Last year, we reported on the full formal verification of the seL4 microkernel
from a high-level model down to very low-level C code [7].

To build a truly trustworthy system, one needs to start at the operating
system (OS) and the most critical part of the OS is its kernel. The kernel is
defined as the software that executes in the privileged mode of the hardware,
meaning that there can be no protection from faults occurring in the kernel,
and every single bug can potentially cause arbitrary damage. The kernel is a
mandatory part of a system’s trusted computing base (TCB)—the part of the
system that can bypass security [11]. Minimising this TCB is the core concept
behind microkernels, an idea that goes back 40 years.

A microkernel, as opposed to the more traditional monolithic design of
contemporary mainstream OS kernels, is reduced to just the bare minimum of
code wrapping hardware mechanisms and needing to run in privileged mode.
All OS services are then implemented as normal programs, running entirely
in (unprivileged) user mode, and therefore can potentially be excluded from
the TCB. Previous implementations of microkernels resulted in communication
overheads that made them unattractive compared to monolithic kernels. Modern
design and implementation techniques have managed to reduce this overhead to
very competitive limits.

A microkernel makes the trustworthiness problem more tractable. A well-
designed high-performance microkernel, such as the various representatives of

?
NICTA is funded by the Australian Government as represented by the Department of Broadband,

Communications and the Digital Economy and the Australian Research Council through the ICT

Centre of Excellence program



the L4 microkernel family, consists of the order of 10,000 lines of code. We have
demonstrated that with modern techniques and careful design, an OS microkernel
is entirely within the realm of full formal verification.

The approach we used was interactive, machine-assisted and machine-checked
proof. Specifically, we used the theorem prover Isabelle/HOL [10]. Formally,
our correctness statement is classic refinement: all possible behaviours of the C
implementation are already contained in the behaviours of the abstract specifi-
cation. The C code of the seL4 kernel is directly and automatically translated
into Isabelle/HOL. The correctness theorem connects our abstract Isabelle/HOL
specification of kernel behaviour with the C code. The main assumptions of the
proof are correctness of the C compiler and linker, assembly code, hardware, and
boot code. The verification target was the ARM11 uniprocessor version of seL4.
There also exists an x86 port of seL4 with optional multi-processor and IOMMU
support.

The key benefit of a functional correctness proof is that proofs about the C
implementation of the kernel can now be reduced to proofs about the specification
if the property under investigation is preserved by refinement. Additionally, our
proof has a number of implications, some of them direct security properties that
other OS kernels will find hard to claim. If the assumptions of the verification
hold, we have mathematical proof that, among other properties, the seL4 kernel
is free of buffer overflows, NULL pointer dereferences, memory leaks, and un-
defined execution. There are other properties that are not implied, for instance
general security without further definition of what security is or information flow
guaranties that would provide strict secrecy of protected data. A more in-depth
description of high-level implications and limitations has appeared elsewhere [6,5].

2 A Secure System with Large Untrusted Components

There are at least two dimensions in which work on the seL4 microkernel could
progress from this state: The first is gaining even more assurance, either by
working on the assumptions of the proof, e.g. by using a verified compiler [9] or
verifying the assembly code in the kernel, or by proving more properties about
the kernel such as a general access control model [3,2]. The second dimension
is using the kernel and its proof to build large high-assurance systems. Below I
explore this second dimension and try to convey a vision of how large, realistic
high-assurance systems can feasibly be built with code-level formal proof.

The key idea is the original microkernel idea that is also widely explored in
the MILS (multiple independent levels of security and safety) space [1]: using
system architectures that ensure security by construction, relying on basic kernel
mechanisms to separate trusted from untrusted code. Security in these systems
is not an additional feature or requirement, but fundamentally determines the
core architecture of how the system is laid out, designed, and implemented. This
application space was one of the targets in the design of the seL4 kernel.

The basic process for building a system in this vision could be summarised as
follows (not necessarily in this order):



Fig. 1. Secure Access Controller (SAC)

1. Architect the system on a high level such that the trusted computing base is
as small as possible for the security property of interest.

2. Map the architecture to a low-level design that preserves the security property
and that is directly implementable on the underlying kernel.

3. Formalise the system, preferably on the architecture level.
4. Analyse, preferably formally prove, that it enforces the security property.

This analysis formally identifies the trusted computing base.
5. Implement the system, with focus for high assurance on the trusted compo-

nents.
6. Prove that the behaviour of the trusted components assumed in the security

analysis is the behaviour that was implemented.

The key property of the underlying kernel that can make the security analysis
feasible is the ability to reduce the overall security of the system to the security
mechanisms of the kernel and the behaviour of the trusted components only.
Untrusted components will be assumed to do anything in their power to subvert
the system. They are constrained only by the kernel and they can be as big and
complex as they need to be. Components that need further constraints on their
behaviour in the security analysis need to be trusted to follow these constraints.
They form the trusted components of the system. Ideally these components are
small, simple, and few.

In the following subsections I demonstrate how such an analysis works on an
example system, report on some initial progress we had in modelling, designing,
formally analysing, and implementing the system, and summarise the steps that
are left to gain high assurance of overall system security.

The case study system is a secure access controller (SAC), depicted in Figure 1.
It is a small box with the sole purpose of connecting one front-end terminal to
either of two back-end networks one at a time. The back-end networks A and
B are assumed to be of different classification levels (e.g. top secret and secret)
and potentially hostile and collaborating. The property the SAC should enforce
is that no information may flow through it between A and B. Information is
allowed to flow from A to B through the trusted front-end terminal. The latter
may not be a realistic assumption for a real system; the idea is merely to explore
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Fig. 2. SAC Architecture

system architectures for the SAC, not to build a multi-level secure product with
a secure front-end terminal.

2.1 Architecture

Figure 2 shows the high-level architecture of the system. The boxes stand for
software components, the arrows for memory or communication channel access.
The main components of the SAC are the SAC Controller (SAC-C), the Router
(R), and the Router Manager (RM). The Router Manager is the only trusted
user-level component in the system. The system is implemented on top of seL4
and started up by a user-level booter component. The SAC Controller is an
embedded Linux instance with a web-server interface to the front-end control
network where a user may request to be connected to network A or B. After
authenticating and interpreting such requests, the SAC Controller passes them
on as simple messages to the Router Manager. The Router Manager receives such
switching messages. If, for example, the SAC is currently connected to A, there
will be a Router instance running with access to only the front-end data network
card and the network card for A. Router instances are again embedded Linuxes
with a suitable implementation of TCP/IP, routing etc. If the user requests a
switch to network B, the Router Manager will tear down the current A-connected
Linux instance, flush all network cards, create a new Router Linux and give it
access to network B and the front end only.

The claim is that this architecture enforces the information flow property.
Each Router instance is only ever connected to one back-end network and all
storage it may have had access to is wiped when switching. The Linux instances



are large, untrusted components in the order of a million lines of code each. The
trusted Router Manager is small, about 2,000 lines of C.

For this architecture to work, there is an important non-functional requirement
on the Linux instances: we must be able to tear down and boot Linux in acceptable
time (less than 1-2 seconds). The requirement is not security-critical, so it does
not need to be part of the analysis, but it determines if the system is practical.
Our implementation achieves this.

So far, we have found an architecture of the system that we think enforces the
security property. The next sections explore design/implementation and analysis.

2.2 Design and implementation

The main task of the low-level design is to take the high-level architecture
and map it to seL4 kernel concepts. The seL4 kernel supports a number of
objects for threads, virtual memory, communication endpoints, etc. Sets of these
map to components in the architecture. Access to these objects is controlled by
capabilities: pointers with associated access rights. For a thread to invoke any
operation on an object, it must first present a valid capability with sufficient
rights to that object.

Figure 3 shows a simplified diagram of the SAC low-level design as it is
implemented on seL4. The boxes in the picture stand for seL4 kernel objects,
the arrows for seL4 capabilities. The main message of this diagram is that it
is significantly more complex than the architecture-level picture we started out
with. For the system to run on an x86 system with IOMMU (which is necessary
to achieve untrusted device access), a large number of details have to be taken
care of. Access to hardware resources has to be carefully divided, large software
components will be implemented by sets of seL4 kernel objects with further
internal access control structure, communications channels and shared access
need to be mapped to seL4 capabilities, and so forth.

The traditional way to implement a picture such as the one in Figure 3 is
by writing C code that contains the right sequence of seL4 kernel calls to create
the required objects, to configure them with the right initial parameters, and to
connect them with the right seL4 capabilities with the correct access rights. The
resulting code is tedious to write, full of specific constants, and not easy to get
right. Yet, this code is crucial: it provides the known-good initial capability state
of the system that the security analysis is later reduced to.

To simplify and aid this task, we have developed the small formal domain-
specific language capDL [8] (capability distribution language) that can be used
to concisely describe capability and kernel object distributions such as Figure 3.
A binary representation of this description is the input for a user-level library in
the initial root task of the system and can be used to fully automatically set up
the initial set of objects and capabilities. Since capDL has a formal semantics
in Isabelle/HOL, the same description can be used as the basis of the security
analysis. It can also be used to debug, inspect and visualise the capability state
of a running system.
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Fig. 3. Low-Level Design



For further assurance, we plan to formally verify the user-level library that
translates the static capDL description into a sequence of seL4 system calls. Its
main correctness theorem will be that after the sequence of calls has executed,
the global capability distribution is the one described in the original description.
This will result in a system with a known, fully controlled capability distribution,
formally verified at the C code level.

For system architectures that do not rely on known behaviour of trusted
components, such as a classic, static separation kernel setup or guest OS virtuali-
sation with complete separation, this will already provide a very strong security
argument.

The tool above will automatically instantiate the low-level structure and access-
control design into implementation-level C code. What is missing is providing
the behaviour of each of the components in the system. Currently, components
are implemented in C, and capDL is rich enough to provide a mapping between
threads and the respective code segments that implement their behaviour. If the
behaviour of any of these components needs to be trusted, this code needs to
be verified — either formally, or otherwise to the required level of assurance.
There is no reason component behaviour has to be described in C — higher-level
languages such as Java or Haskell are being ported to seL4 and may well be
better suited for providing assurance.

3 Security Analysis

Next to the conceptual security architecture of the SAC, we have at this stage
of the exposition a low-level design mapping the architecture to the underlying
platform (seL4), and an implementation in C. The implementation is running
and the system seems to perform as expected. This section explores how we can
gain confidence that the SAC enforces its security property.

The capDL specification corresponding to Figure 3 is too detailed for this
analysis. It contains information that is irrelevant for a security analysis, but is
necessary to construct a running system. For instance, for security we need to
know which components share virtual memory, but we do not necessarily need
to know under which virtual address these shared areas are available to each
component. Instead, we would like to conduct the analysis on a more abstract
level, closer to the architecture picture that we initially used to describe the SAC.

In previous work, we have investigated different high-level access control
models of seL4 that abstract from the specifics of the kernel and reduce the
system state to a graph where kernel objects are the nodes and capabilities
are the edges, labelled with access rights [3,2]. We can draw a simple formal
relationship between capDL specifications and such models, abstracting from
seL4 capabilities into general access rights. We can further abstract by grouping
multiple kernel objects together and computing the capability edges between
these sets of objects as the union of the access rights between the elements of
the sets. With suitable grouping of objects, this process results in Figure 4 for
the SAC. The figure shows the initial system state after boot, the objects in



Fig. 4. SAC Abstraction

parentheses (R) and (R-mem) are areas of memory which will later be turned
into the main Router thread and its memory frames using the create operation,
an abstraction of the seL4 system call that will create the underlying objects.

This picture now describes an abstract version of the design. We have cur-
rently not formally proved the connection between this model and the capDL
specification, neither have we formally proved that the grouping of components is
a correct abstraction, but it is reasonably clear that both are possible in principle.

The picture is simple enough to analyse. If we proceed with a simple informa-
tion flow analysis based solely on the capabilities in Figure 4, we would have to
conclude that the system is not secure: the component RM possess read/write
capabilities to both network A and B and therefore, without further restriction,
information may flow between A and B. Of course, RM is the trusted component
in the architecture — specifically we trust that it will not transport information
between A and B —, and the security analysis should take its behaviour into
account.

Details on our experience with this analysis will appear elsewhere, below I
only give a short summary.

For a formal analysis, we first need to formally express the behaviour of RM
in some way. In this case, we have chosen a small machine-like language with
conditionals, jumps, and seL4 kernel calls as primitive operations. Any other
formal language would be possible, as long as it has a formal semantics that can
be interleaved with the rest of the system. For all other components, we specify
that at each system step, they may nondeterministically attempt any operation

— it is the job of the kernel configured to the capability distribution in Figure 4
to prevent unwanted accesses.

To express the final information flow property, we choose a label-based security
approach in this example and give each component an additional bit of state:
it is set if the component potentially has had access to data from NIC A. It is



easy to determine which effect each system operation has on this state bit. The
property is then simple: in no execution of the system can this bit ever be set
for NIC B. This state-based property is slightly weaker than a non-interference
based approach [4], because it ignores indirect flows.

Given the behaviour of the trusted component, the initial capability distri-
bution, and the behaviour of the kernel, we can formally define the possible
behaviours of the overall system and formally verify that the above property is
true. This verification took a 3-4 weeks in Isabelle/HOL and less than a week to
conduct in SPIN, although we had to further abstract and simplify the model to
make it work in SPIN.

4 What is Missing?

With the analysis described so far, we do not yet have a high-assurance system.
This section explores what would be needed to achieve one.

The main missing piece is to show that the behaviour we have described in a
toy machine language for the security analysis is actually implemented by the
2,000 lines of C code of the Router Manager component. Most of these 2,000 lines
are not security critical. They deal with setting up Linux instances, providing
them with enough information and memory, keeping track of memory used etc.
Getting them wrong will make the system unusable, because Linux will fail
to boot, but it will not make it break the security property. The main critical
parts are the possible sequence of seL4 kernel calls that the Router Manager
generates to provide the Linux Router instance with the necessary capabilities to
access network cards and memory. Classic refinement as we have used it to prove
correctness of seL4 could be used to show correctness of the Router Manager.

Even with this done, there are a number of issues left that I have glossed over
in the description so far. Some of these are:

– The SAC uses the unverified x86/IOMMU version of seL4, not the verified
ARM version. Our kernel correctness proof would need to be ported first.

– We need to formally show that the security property is preserved by the
existing refinement.

– We need to formally connect capDL and access control models. This includes
extending the refinement chain of seL4 upwards to the levels of capDL and
access control model.

– We need to formally prove that the grouping of components is a correct,
security preserving abstraction.

– We need to formally prove that the user-level root task sets up the initial
capability distribution correctly and according to the capDL specification of
the system.

– We need to formally prove that the information flow abstraction used in the
analysis is a faithful representation of what happens in the system. This is
essentially an information flow analysis of the kernel: if we formalise in the
analysis that a Read operation only transports data from A to B, we need to



show that the kernel respects this and that there are no other channels in
the system by which additional information may travel. The results of our
correctness proof can potentially be used for this, but it goes beyond the
properties we have proved so far.

5 Conclusion

In this paper I have not aimed to present finished results, but instead to convey a
vision of how one can use a formally verified kernel like seL4 to achieve code-level
security proofs of large-scale systems. I have presented some initial, completed
steps in this vision, and have shown that even if there is clearly still quite some
way to go, there appears to be a feasible path to such theorems.

In an ideal world outcome, the complex proofs such as the information flow
analysis based on a precise machine model, could be done once and for all for a
given platform, and remaining proofs for specific systems and architectures could
be largely or even fully automated: trusted components could be implemented
in high-level languages with verified runtimes and compilers, abstractions for
security analysis could be derived automatically with minimal user input and
automatic correctness proofs, and the security analysis itself could be conducted
fully automatically by model checking, potentially exporting proofs. This would
mean such systems could be implemented with fairly low cost and extremely high
assurance.

Even in a less ideal outcome, high levels of assurance could already be gained.
Not all steps have to be justified by formal proof. Once trusted components and
protection boundaries are clearly identified, the behaviour of a small trusted
component could be assured by code review or testing, or abstractions for the
security analysis could be done manually without proof. There is already value in
merely following the process and only doing a high-level analysis. In our case study,
we found security bugs mainly in the manual, but rigorous abstraction process
from low-level design to high-level security model. What the proof provides is
assurance that the analysis is complete, at the level of abstraction the theorem
provides.
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