From a proven correct microkernel to
trustworthy large systems

June Andronick

NICTA*, UNSW

june.andronick@nicta.com.au

Abstract. The sel.4 microkernel was the world’s first general-purpose
operating system kernel with a formal, machine-checked proof of correct-
ness. The next big step in the challenge of building truly trustworthy
systems is to provide a framework for developing secure systems on top
of sell4. This paper first gives an overview of sel.4’s correctness proof,
together with its main implications and assumptions, and then describes
our approach to provide formal security guarantees for large, complex
systems.

1 Introduction

The work presented here aims to tackle the general challenge of building truly
trustworthy systems. The motivation is classic: software is ubiquitous and in use
in systems that are more and more critical. This issue being well-accepted does
not prevent the observation [4] that we routinely trust systems which again and
again demonstrate their lack of trustworthiness.

The approach taken here follows the idea [10] of minimising the amount of
code that need to be trusted, known as the trusted computing base (TCB), i.e.
the part of the system that can potentially bypass security. What is added here is
then to prove that this TCB can actually be trusted, prove that it is implemented
in such a way that it does not bypass security. And by proving, we mean providing
a formal, mathematical proof.

The first step in taking up this challenge has been to concentrate on the
unavoidable part of the TCB: the operating system’s core, its kernel. The kernel
of a system is defined as the software that executes in the privileged mode of the
hardware, meaning that there can be no protection from faults occurring in the
kernel, and every single bug can potentially cause arbitrary damage. The idea
of minimising the TCB applied to kernels led to the concept of microkernels. A
microkernel, as opposed to the more traditional monolithic design of contemporary
mainstream OS kernels, is reduced to just the bare minimum of code wrapping
hardware mechanisms and needing to run in privileged mode. All OS services

* NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT

Centre of Excellence program

are then implemented as normal programs, running entirely in (unprivileged)
user mode, and therefore can potentially be excluded from the TCB. A well-
designed high-performance microkernel, such as the various representatives of the
L4 microkernel family [8], consists of the order of 10 000 lines of code, making
the trustworthiness problem more tractable. The L4.verified project produced,
in August 2009, the world’s first general-purpose microkernel whose functional
correctness has been formally proved: seL4 [6]. Section 2 gives an overview of
this proof, its assumptions, results and implications, and overall effort.

Given this trustworthy foundation, we are now looking at designing and
building large, complex systems, for which formal guarantees can be provided
about their safety, security and reliability. Our vision, together with our on-going
and future work, are described in Section 3.

2 A proven correct OS kernel

The challenges in providing a “formally proven correct, general-purpose micro-
kernel” are multiple, but all mainly come down to building a system that is both
verifiable and suitable for real use. From the formal verification point of view,
complexity is the enemy. From the kernel point of view, performance is the target.
These two diverging objectives have been met by designing and implementing a
new kernel, from scratch, with two teams working together and in parallel on
formalisation and optimisations.

This kernel, called selL4, is a microkernel of the L4 family designed for practical
deployment in embedded systems with high trustworthiness requirements. As
a microkernel, sel.4 provides a minimal number of services to applications:
abstractions for virtual address spaces, threads, inter-process communication
(IPC). One of seL4’s key differentiators is its fine-grained access control, enforced
using the hardware’s memory management unit (MMU). All memory, devices, and
microkernel-provided services require an associated capability [3], i.e. an access
right, to utilise them. The set of capabilities a component possesses determines
what a component can directly access.

The formal verification work aimed at proving the kernel’s functional cor-
rectness, i.e. proving that the kernel’s implementation is correct with respect
to a formal specification of its expected behaviour. Formally, we are showing
refinement: all possible behaviours of the C implementation are a subset of the
behaviours of the abstract specification. For this, we use interactive, machine-
assisted and machine-checked proof, namely the theorem prover Isabelle/HOL [9].

In practice, this was done is several steps, as shown in Figure 1. First, increas-
ingly complete prototypes of the kernel were developed in the functional language
Haskell. On one hand, low-level design evaluation was enabled by a realistic exe-
cution environment that is binary-compatible with the real kernel. On the other
hand, the Haskell prototype could be automatically translated in the theorem
prover as the formal design specification, where the refinement to the abstract
specification could be started. This first refinement step represents a proof that
the design is correct with respect to the specification. Since the Haskell prototype

Isabelle/HOL

| Formal Abstract Specification |

ﬁ Refinement Proof

| Formal Design |

Automatic @ Refinement Proof
Translation
Hardware Haskell .)
Simulator) + (Prototype) |> | Formal C implementation |
T
Manual ! | Automatic
A ImpIementation_I § Translation
\ /7

v

[> | High-Performance C Implementation |

Fig. 1. The sel.4 design process and refinement layers

did not satisfy our high-performance requirement, we then manually translated
it into high-performance C code, giving opportunities for micro-optimisations.
The C code was then translated into Isabelle, using a very precise and faithful
formal semantics for a large subset of the C programming language [6,11,12]. A
second refinement step then proved that the C code, translated in Isabelle, was
correct with respect to the formal design [13].

The refinement being transitive, the two refinement steps give us a formal
proof that the C implementation of sel.4 refines its formal specification.

The main assumptions of the proof are correctness of the C compiler and
linker, assembly code, hardware, and boot code. The verification target was
the ARM11 uniprocessor version of sel.4 (there is also an unverified x86 port
of sel.4). Under those assumptions, the functional correctness proof also gives
us mathematical proof that the selLl4 kernel is free of buffer overflows, NULL
pointer dereferences, memory leaks, and undefined execution. The verification
revealed around 460 bugs, both on the design and implementation. The total
effort amounted to 2.5 person years (py) to develop the kernel and 20 py for the
verification, including 9 py invested in formal language frameworks, proof tools,
proof automation, theorem prover extensions and libraries. More details about
the assumptions, implications and effort can be found in [6,5].

The overall key benefit of a functional correctness proof is that proofs about
the C implementation of the kernel can now be reduced to proofs about the spec-
ification for properties preserved by refinement. The correspondence established
by the refinement proof ensures that all Hoare logic properties of the abstract
model also hold for the refined model. This means that if a security property
is proved in Hoare logic about the abstract model (not all security properties

can be), our refinement guarantees that the same property holds for the kernel
source code.

3 Trustworthy, large systems

The L4.verified project has demonstrated that with modern techniques and
careful design, an OS microkernel is entirely within the realm of full formal
verification. Although verifying programs with sizes approaching 10000 lines
of code is a significant improvement in what formal methods were previously
able to verify with reasonable effort, it still represents a significant limit on the
verification of modern software systems, frequently consisting of millions of lines
of code.

Our vision to verify such large and complex systems comes from the observa-
tion [1] that not all software in a large system necessarily contributes to a given
property of interest. For instance, the user interface of a medical device might
represent a large amount of code, and ideally, the safe delivery of medicine should
not have to rely on it. Similarly, the entertainment system implementation in a
car should not have any impact on the safety of the braking system.

The idea is thus again to minimise the TCB, minimise the amount of code
which the desirable property relies on, to a size where formally verifying its
exact behaviour is still possible. Formally proving that the property holds for the
overall system then consists in proving that it holds for the trusted components,
modelled by their expected behaviours, and proving that the untrusted parts are
isolated, i.e. that nothing needs to be verified about them. The key here is to use
selL4’s access control mechanisms to enforce this isolation between the trusted
and the untrusted parts: what untrusted components can access is determined by
the set of capabilities they hold. Careful choice of initial capabilities distribution
can thus isolate large parts of software to exclude them from the TCB.

Our approach is to develop methodologies and tools that enable developers
to systematically (7) isolate the software parts that are not critical to a targeted
property, and prove that nothing more needs to be verified about them for the
specific property; and (ii) formally prove that the remaining critical parts satisfy
the targeted property.

More precisely, Figure 2 illustrates the different steps our approach proposes.
First, the architecture of the system defines the components needed for the system,
and the capabilities they need to hold. This initial capabilities distribution defines
the partition between trusted and untrusted components, with respect to a desired
property for the system. We have defined a capability distribution language,
called capDL [7], with a formal semantics that enables us to formally describe
what the exact initial distribution is expected to be.

The next step is to prove that, given this initial capability distribution and
the identified partition between trusted and untrusted components, the targeted
property holds on the entire system. To avoid having to reason on the complex,
detailed and low-level capDL description, we first abstract the architecture
description into a simpler, high level security architecture. The aim is to have

Trusted Component @ Trusted
........................ P Component | e
° Behaviour
Component Code
8/;18 ‘Ig.o«g ® Formal
I = T T ——P| Security
gﬁg 'T:‘ N Property
@ Formal Cap @ Security
Distribution Architecture
@ Kernel formal proof of
----------------------- »| Security —1 property
® System Implementation formal proof that source Model
implements destination

Fig. 2. Full-system verification approach for seL.4-based system

the abstraction done automatically, together with a formal proof of refinement.
The property is then proved at this abstract level. The trusted components’
behaviour is modelled as the sequence of kernel instructions they are expected
to perform. At this abstract level, the kernel instructions are described in a
high level security model of the kernel. The untrusted components’ behaviour is
modelled as any instruction authorized by the set of capabilities they hold. The
concurrent execution of all components is modelled as all possible interleavings
of instructions from any component in the system.

The proof of the property implicitly validates the identified partition between
trusted and untrusted components: if the proof succeeds, it means that the
property indeed does not depend on the untrusted components’ behaviours, and
that they will be correctly implemented by any concrete program code. In some
cases, the property may not be proved, revealing some issues in the design that
need to be fixed.

Inspired by sel4’s successful “design for verification” process, we believe that
the design and implementation of the components should be done in parallel in
an iterative process. Although the implementation of the untrusted components
is not constrained, the proof does depend on the trusted components’ behaviour.
Therefore, for the property to hold not only on the abstract level but on the actual
implementation, the trusted components’ code has to be shown correct with
respect to the expected formal behaviour used for the proof. This would follow
and use the refinement approach and framework developed for sel.4 verification.
Similarly, we need to prove that the initial boot code leads to a state satisfying
the expected formal initial capability distribution. This is ongoing work. Finally,
we need to prove that the kernel’s code refines its security model used to model
the trusted components instructions. Building on existing sel.4 refinement layers
(Figure 1), this comes down to adding a layer on the top of the stack and proving
that the formal abstract specification refines the security model (with additional
work to prove that seL4’s access control mechanism indeed ensures isolation). All
of this is ongoing work.

Classitied Networks

A 2 4

sc [

SAC
Ié' Control

User Terminal

Fig. 3. The SAC routes between a user’s terminal and 1 of n classified networks.

The main gain in this vision is that formal guarantees can be made for a large
complex system’s implementation, while ignoring the identified large untrusted
components, leaving only the trusted components to be formally verified.

The first steps of the approach have been demonstrated on a concrete example
system, namely a multilevel secure access controller (SAC) aiming to isolate
networked services of different classification levels, as illustrated in Figure 3.
In this case study the user only needs to access one network at a time, and
selects the network through a web interface provided by the SAC on a control
network interface. The property the SAC must ensure is that all data from
one network is isolated from each of the other networks. While we assume that
the user’s terminal is trusted to not leak previously received information back
to another network, we otherwise assume that all networks connected to the
SAC are malicious and will collude. The SAC is representative of systems with
simple requirements, but involving large, complex components, here a secure
web interface, network card drivers, a TCP/IP stack for the web server, and
IP routing code, any one individually consisting of tens of thousands of lines of
non-trivial code.

The architecture that has been designed for the SAC is represented in Figure 4,
where the user’s terminal is connected to NIC-D, while the SAC is controlled
through a web interface provided on NIC-C, and for simplicity of explanation, we
assume that the SAC only needs to multiplex two classified networks, NIC-A and
NIC-B. The system’s security architecture has been designed to minimise the
TCB to a single trusted component (in addition to the underlying kernel): the
router manager. The router manager is the only component with simultaneous
access to both NIC-A and NIC-B. The aim is that it does never use those accesses
(capabilities) to access NIC-A or NIC-B, but only holds them to grant one or
the other to an untrusted router component in charge of routing between one
network and the user terminal. Another untrusted component, the SAC controller,
provides a web interface to the control network on NIC-C. When the SAC needs

Control Network Confidential Networks

A

+ as
i Router i P
R > S S i
v Manager v

SAC ra—
Controller |q......, - > Router
Timer
Server
v v
Nic-D

------------ » Communication Right User Terminal

— Grant / Create / Delete Rights

Fig. 4. High-level component breakdown of the SAC design. The router man-
ager is the only trusted component in the system, as no other component has
simultaneous access to both NIC-A and NIC-B.

to switch between networks, the SAC controller informs the router manager,
which deletes the running router component and sanitises the hardware registers
and buffers of NIC-D (to prevent any residual information from inadvertently
being stored in it). The router manager then recreates the router, and grant it
access to NIC-D and either NIC-A or NIC-B as required. This allows the router
to switch between NIC-A and NIC-B without being capable of leaking data
between the two.

We therefore only need to trust the router manager’s implementation (approx-
imately 1500 lines of code) not to violate the isolating security policy, but can
ignore the two other large untrusted components, that we implement as Linux
instances, comprising millions lines of code. At least this is what we expect, we
now have to prove it.

For this case study, we first formalised the low level design in capDL, leading
to a detailed description of the initial capability distribution in terms of kernel
objects, as shown in Figure 5. Then we manually abstracted this design into
an abstract security architecture between high level components, as the one in
Figure 4. Doing this step automatically, together with a proof of refinement, is
part of our future work. Finally we have formally shown that with this security
architecture, information cannot flow from one back-end network to another.
Details of the proof can be found in [2].

What remains to be done for this case study is to prove that (1) the router
manager’s code refines its formal behaviour used for the proof; (2) the booting
code leads to the state illustrated in Figure 5. We also need to prove the kernel’s
security model refinement to the code, which in this case would also involve
extending our existing functional correctness proof to the x86 version of sel.4
used for the case study.

RM TCB

CAP | CAP
P RM VSpace

» PD Untyped memory objects
® v :
§ CNODE :
a9 || [cAP : H
; CAP | :
CAP ! pomem e
© |/ [cap »[ASID Pool : R VSpace
CAP : » PD PT
CAPS =i ===ssmmmmermc e neaeees : PDE BTE
CAb SC=E o[T | s [FRAME |
7 8
o PTE :
CAP :
Caps o : () -—-»[FRAME
CAP PDE H
CAP FRAME
-
CAP_+|- -
CAP *|-H- @ Timer TCB
CAP Sy R §,‘ CAP [CAP
CAP AEP als
&1 IRQ
~

%
AEP MLU ,,,,,
Timer 10 Ports
TIMER CHIP

SAC_C TCB

pace

PCl bus config.
10 ports

i

o

SAC_CCS§
%

m
[Rar,

Network Card A Network Card B Data Network Card Control Network Card

= = = =

IOSR = |0Space Root Pointer
IRQR = IRQ register reference
DFRAMES = Device Frames

Fig. 5. Low-level Design

This case study illustrates our vision of how large software systems consisting
of millions of lines of code can still have formal guarantees about certain targeted
properties. This is achieved by building upon the access control guarantees
provided by the verified seL.4 microkernel and using it to isolate components such
that their implementation need not be reasoned about.

Acknowledgments The proof of the SAC mentioned above was conducted almost
entirely by David Greenaway with minor contributions from Xin Gao, Gerwin
Klein, and myself. The following people have contributed to the verification and /or

design and implementation of sel.4 (in alphabetical order): June Andronick,
Timothy Bourke, Andrew Boyton, David Cock, Jeremy Dawson, Philip Derrin
Dhammika Elkaduwe, Kevin Elphinstone, Kai Engelhardt, Gernot Heiser, Gerwin
Klein, Rafal Kolanski, Jia Meng, Catherine Menon, Michael Norrish, Thomas
Sewell, David Tsai, Harvey Tuch, and Simon Winwood.

References

1.

2.

10.

11.

12.

13.

J. Alves-Foss, P. W. Oman, C. Taylor, and S. Harrison. The MILS architecture for
high-assurance embedded systems. Int. J. Emb. Syst., 2:239-247, 2006.

J. Andronick, D. Greenaway, and K. Elphinstone. Towards proving security in the
presence of large untrusted components. In G. Klein, R. Huuck, and B. Schlich,
editors, 5th SSV, Vancouver, Canada, Oct 2010. USENIX.

J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed
computations. CACM, 9:143-155, 1966.

G. Heiser, J. Andronick, K. Elphinstone, G. Klein, I. Kuz, and L. Ryzhyk. The
road to trustworthy systems. In 5th WS Scalable Trusted Comput., Chicago, 1L,
USA, Oct 2010.

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel.4:
Formal verification of an OS kernel. CACM, 53(6):107-115, Jun 2010.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel.4:
Formal verification of an OS kernel. In 22nd SOSP, pages 207-220, Big Sky, MT,
USA, Oct 2009. ACM.

I. Kuz, G. Klein, C. Lewis, and A. Walker. capDL: A language for describing
capability-based systems. In Ist APSys, New Delhi, India, Aug 2010. To appear.
J. Liedtke. Towards real microkernels. CACM, 39(9):70-77, Sep 1996.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proc. IEEE, 63:1278-1308, 1975.

H. Tuch. Formal Memory Models for Verifying C Systems Code. PhD thesis, School
Comp. Sci. & Engin., University NSW, Sydney 2052, Australia, Aug 2008.

H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In
M. Hofmann and M. Felleisen, editors, 34th POPL, pages 97-108, Nice, France,
Jan 2007.

S. Winwood, G. Klein, T. Sewell, J. Andronick, D. Cock, and M. Norrish. Mind
the gap: A verification framework for low-level C. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, 22nd TPHQOLs, volume 5674 of LNCS, pages
500-515, Munich, Germany, Aug 2009. Springer.

