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ABSTRACT
Computer systems are routinely deployed in life- and mission-
critical situations, yet in most cases their security, safety or de-
pendability cannot be assured to the degree warranted by the appli-
cation. In other words, trusted computer systems are rarely really
trustworthy.

We believe that this is highly unsatisfactory, and have embarked
on a large research program aimed at bringing reality in line with
expectations. In this paper we describe NICTA’s research agenda
for achieving true trustworthiness in systems. We report on what
has been achieved to date, and what our plans are for the next 3–5
years.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Verification

General Terms
Design, Reliability, Security, Verification

Keywords
Microkernels, L4, embedded systems, trusted systems, formal ver-
ification

1. THE TRUSTWORTHINESS GAP

1.1 Trust is Ubiquitous
Computer systems are an unavoidable part of everyday life. The

vast majority of the population uses email for communication and
web sites for information and commerce; these are accessed by
personal computers, PDAs or phones and are powered by server
systems.

Besides these obvious ways in which we interact with computers,
there is the wealth of embedded systems, which are one or two
orders of magnitude more numerous than servers or PCs. These
range from kitchen appliances and home entertainment systems to
cars, aeroplanes, cash-dispensing machines, the ubiquitous mobile
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phones, smart cards, medical devices, public-security surveillance
equipment and countless others.

With integration comes dependence: as computer systems are
increasingly part of everyday life, everyday life depends increas-
ingly on the correct functioning of these systems. The effects of
faulty operation range from serious nuisance (if the smart card fails
to open the door or the ATM refuses to supply me with cash) to
significant financial loss (if an e-commerce system fails to service
customers, financial systems get hacked or device failures lead to
recalls) to compromise of national security (when secret informa-
tion gets stolen) to loss of life (if heavy machinery or medical de-
vices get out of control).

Whether we like it or not, we put an increasing amount of trust
into an increasing number of computer systems. In a modern ad-
vanced society it is simply no longer feasible to avoid trusting a
large number of computer systems. And in the foreseeable future
this ubiquitous need for trust will only intensify.

1.2 ... But Trustworthiness Isn’t
This is in stark contrast to the trustworthiness (or lack thereof)

of real systems. We are used to laptops crashing and servers being
hacked. We are now getting used to phones crashing and getting
hacked [ABC09]. We hear about hacking ATMs [Nar10], voting
machines [FHF07] and even heart pacemakers [HCF+08].

These are scary scenarios. They all relate to systems we rou-
tinely trust, yet these events demonstrate their lack of trustworthi-
ness. The reality is that trustworthy systems are extremely rare.

Where trustworthiness is important, people have to go to ex-
traordinary lengths to achieve it. A high degree of redundancy
is used in safety-critical components in airplanes [BT93]. Certi-
fication standards for aeronautics [RTC92] and defence [ISO99]
impose extremely onerous requirements on development processes
and testing. Where formal methods are employed [SWDD09] or
required [ISO99], these augment the process and testing require-
ments, without replacing them. In the end, these standards cannot
guarantee safety or security, despite the expense they impose on
developers (estimated at $1,000 per line of code (LOC) for Com-
mon Criterial EAL6 [Har04]). In fact, their emphasis on process
and testing is an admission of imperfection.

In order to achieve an approximation of trustworthiness with tra-
ditional means, and keep costs within limits, developers aim to keep
the amount of code in critical systems as small as possible. This
means that code is written to run stand-alone on bare hardware,
without an operating system. This approach forces developers to
isolate each piece of functionality on separate hardware. This fur-
ther increases cost, not only by increasing the bill of materials for
the additional processors, power supplies, communication ports,
wires etc. It also increases weight, volume, power consumption,
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Figure 1: Trusted system with untrusted legacy components.
Trusted components are dark.

and heat dissipation, which often results in significant secondary
costs.

1.3 Affordable Trustworthiness
The minimalist approach to (an approximation of) trustworthi-

ness is not only costly, it is also fundamentally at odds with in-
creasing functionality requirements.

For example, life-supporting medical devices are moving out of
intensive-care units and the control of well-trained specialist oper-
ators and are becoming wearable, and thus patient-operated. This
implies a need for easy-to-use operator interfaces, which tend to
require complex software stacks.

Similarly, there is a growing demand for financial transactions to
be performed on mobile devices, which run software stacks com-
prising millions of lines of code. In automobiles, sophisticated
driver-assist systems, like electronic vehicle stabilisation, integrate
infotainment with the core propulsion and security functionality.
And national security personnel is increasingly dependent on com-
mercial of-the-shelf (COTS) devices for secure communication.

All these use cases have in common that they require a high de-
gree of trustworthiness, at a cost which is orders of magnitude less
than the current $1k/LOC price tag for serious (yet still far from
perfect) certification regimes. In other words, there is a strong need
for affordable trustworthiness.

Achieving affordable trustworthiness is the long-term goal of
NICTA’s Trustworthy Embedded Systems research agenda. In the
rest of this paper we will outline this agenda, summarise achieve-
ments to date, and detail the research plan for the next four years.

2. TRUSTED SYSTEMS ARCHITECTURE
Real-world trusted systems will have to be able to incorporate

large legacy components. For example, it is not cost-effective to
re-design and -develop GUI stacks, as required for user-friendly
interfaces, from scratch. And even if this was a real possibil-
ity, the resulting code base would be very large, even if unusu-
ally well-designed. Consequently, the cost of making the complete
GUI stack truly trustworthy will remain prohibitive for a long time
hence.

This means that trusted systems need to incorporate large, un-

trusted legacy components. These must not only co-exist, but co-
operate with the critical system components. In other words, we
need a design like the one shown in Figure 1, where a trusted sys-
tem is designed from trusted and untrusted components.

This architecture requires an underlying trusted substrate which
strongly separates the various subsystems. The approach is based
on the idea of a separation kernel [Rus81], which forms the base
of some trusted systems in the military domain [IAD07].

However, a classic separation kernel is insufficient for the needs
of many trusted systems. For example, the scheduling model (based
on cooperative scheduling) is too simplistic for most real-world em-
bedded systems. Furthermore, the separation kernel is focussed
on isolation of several subsystems, effectively emulating a design
where each subsystem runs on a dedicated computing platform, and
communication occurs via a network.

The strong separation model does not fit most real-world em-
bedded systems, where the whole point of including the legacy
components is that they need to cooperate closely with the trusted
components to achieve the overall system mission. This frequently
includes the need for high-bandwidth, low-latency communication
and (secure) access to shared data structures.

The underlying kernel must provide a range of mechanisms
which allow the efficient implementation of a wide range of pos-
sible system designs, ranging from strong isolation to tight (but se-
cure) integration. It requires a high-performance, general-purpose
microkernel, such as L4 [Lie95].

Obviously, the microkernel is always trusted, it is an inevitable
part of the system’s trusted computing base (TCB), and its trust-
worthiness is critical. The microkernel, being a general platform
used in all trusted systems, should be free of any particular system’s
policies. Policies are implemented by a software layer outside the
kernel, but enforced by kernel mechanisms. Note that the kernel
is the only software executing in the most privileged mode of the
hardware.

One practical requirement on the architecture is that it provides
virtual machines, in order to allow running a complete legacy op-
erating system (OS) as part of the software stack, such as the Linux
server shown in Figure 1. The L4 microkernel has been success-
fully used as a hypervisor for para-virtualized Linux systems for
many years [HHL+97, LvSH05], so is potentially a suitable plat-
form.

3. TRUSTWORTHY MICROKERNEL
As the microkernel is a critical (and fully reusable) part of the

overall architecture, we focussed on it first. We had in the past
evolved the L4 microkernel for use in resource-constrained em-
bedded systems [NIC05] without sacrificing the excellent perfor-
mance that is the hallmark of L4; the outcome of that evolution
was NICTA’s L4-embedded kernel.

A pilot project, which formalised parts of the L4 API and in-
vestigated the use of theorem-proving techniques on some part of
the implementation showed that, in principle, formal verification
of such a kernel is feasible [TKH05]. However, we also found that
L4-embedded, as it existed then, was not the most suitable platform
for such work.

There were several main reasons for that conclusion. One was
that the kernel had been designed for portability and high perfor-
mance, but not for verification. For example, it had known prob-
lems where performance had been chose over consistency, simplic-
ity and correctness. In general, the implementation made little at-
tempt to make correctness obvious. The design was not explicit or
well documented, much critical information only existed in peo-
ple’s heads.



Then the kernel was implemented in C++, a language of sig-
nificantly more complexity and ambiguity than C. While some
progress has been made elsewhere on formalising the semantics of
C++ [HT03], we had already come to the conclusion that C was a
better implementation vehicle for the kind of kernel we were look-
ing for, and that the extra effort for formalising C++ was not war-
ranted.

Finally, the kernel API had been designed for flexibility, not for
the requirements of safety- or security-critical systems. For exam-
ple it used globally unique thread names as destination addresses
for message-passing (IPC) operations. Such global names repre-
sent a covert storage channel and should not be used in a security-
oriented design [Sha03]. Also, L4’s approach to management of
kernel resources (while not worse than most other kernels of similar
generality) made it difficult to reason about isolation of processes
running on top of the kernel.

We therefore embarked on a project aimed at designing and im-
plementing a new kernel, dubbed seL4 (“secure embedded L4”).
The kernel was to satisfy the following requirements:

• suitable for use in security- and safety-critical systems, in-
cluding the ability to enforce strong isolation of subsystems;

• suitable for formal verification;

• high performance, specifically an IPC operation should not
be more than 10 % slower than that of the fastest L4 kernel
(which translates into 150–200 cycles per one-way IPC on
an ARM processor).

The first of these requirements was partially met by a new ap-
proach to managing kernel memory. Access to all kernel objects in
seL4 is controlled by kernel-protected capabilities [DVH66]. Fur-
thermore, seL4 does not have a heap, it performs no dynamic mem-
ory allocation once the kernel is fully initialised. Instead, all mem-
ory required by the kernel to implement kernel objects (such as
address spaces, threads and IPC endpoints) must be provided to the
kernel by user-level threads. Hence the kernel will only use mem-
ory on behalf of a user-level activity if that activity possessed the
memory in the first place. This together with the rest of the seL4
design enables strong memory isolation; in particular it is crucial
in ruling out denial-of-service attacks against the kernel or isolated
subsystems.

The formal verification had to proceed concurrently with the de-
sign and implementation of the kernel. This posed additional chal-
lenges, as for well over half of the duration of the project, the verifi-
cation team was chasing a moving target. Very close interaction on
a daily basis between the kernel-design and the verification teams
was essential.

The key to making this work turned out to be a fast-prototyping
approach based around an intermediate representation of seL4: a
Haskell implementation [EKD+07]. This allowed us to follow de-
sign changes quickly with an executable implementation, which
could readily be imported into the theorem prover. The Haskell-
based design was straightforward to (manually) implement in high-
performance C code including the optimisations typical to the L4
family.

The approach lead to the iterative design process shown in Fig-
ure 2. Compared to our previous experience with kernel design and
implementation, as well as cost estimates produced by the SLOC-
Count program [Whe01], we estimate that this process has given
us at least a two-fold productivity increase, besides producing the
formal artefacts essential for the verification effort.

The design and implementation of seL4 was then formally veri-
fied [KEH+09] by means of interactive theorem proving. Specifi-

Design &!
Specify!

Formal!
Model!

High-Performance!
C implementation!

Safety!
Theorem!

Haskell!
Prototype! Proof!

Proof!

Figure 2: Iterative design process of seL4.

cally, we produced a formal proof, machine-checked in the theorem
prover Isabelle/HOL [NPW02], of functional correctness of the im-
plementation. This means that the set of all possible behaviours
of the C code of seL4, according to the operational semantics of
C [WKS+09], is a subset of the behaviours allowed by the specifi-
cation. This makes seL4 the first general-purpose operating-system
kernel formally proved to be functionally correct.

4. BUILDING TRUSTWORTHY SYSTEMS
The verified seL4 microkernel is, of course, only a first step. It

provides a rock-solid foundation for the next phase of our research
agenda. Our aim for the next 3–5 years is to develop approaches
and frameworks which allow the design and implementation of
real-world systems incorporating large legacy subsystems compris-
ing millions of lines of code with strong dependability guarantees
(meaning guarantees of system-wide safety, security or reliability
properties).

Achieving this overall goal will require significant progress in a
number of related areas:

• system architecture combining trusted and untrusted compo-
nents in a way which ensures that untrusted components can-
not interfere with trusted ones;

• information-flow analysis of the microkernel and systems
built on top;

• trustworthy device drivers;

• worst-case execution-time analysis of the microkernel;

• support for multicore platforms;

• ability to ensure non-functional system-wide properties, such
as timeliness or limits on energy use.

4.1 Full-system dependability guarantees
Our approach to constructing trustworthy systems is illustrated

in Figure 3. In the case of a secure system, the design begins with
the specification of required system security properties (here an in-
formation flow-property). In the general case, this may also be a
safety or reliability property such as integrity or fault isolation.

Given this specification, the system’s software architecture (la-
belled ① in Figure 3) is designed such that it achieves the desired
security goal with a TCB. In particular, the architecture description
will specify the components involved, must specify the connections
between the components, and must identify the trusted components
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Figure 3: seL4-based system with multiple independent levels of assurance

as well as any isolation and communication restrictions. The archi-
tecture is designed using existing design methodologies, allowing
existing architecture analysis methods to be used for these high as-
surance systems.

In the architecture, trusted components are those that could cir-
cumvent the reliability or security properties of the system, i.e. the
system’s TCB. In order to maintain the required security or relia-
bility properties, trusted components are expected to behave in a
particular way, and these behavioural requirements are specified as
part of the architecture.

The architecture description is then validated against the system
policy to ensure that it does in fact provide the required properties.
For specific sets of security and safety properties (such as label-
based security policies) we will provide tools that can automate
this analysis and produce formal proofs.

The next step is to provide implementations of the components
specified by the architecture. These components can be OS com-
ponents (drivers, resource management, etc.), middleware compo-
nents (such as naming and communication servers), or application
specific components. The components are either implemented from
scratch or chosen from a library of pre-existing reusable compo-
nents.

For assuring trusted components there are many existing ap-
proaches and much research has investigated component creation.
We will not mandate any particular approach, however, the ap-
proach taken should provide sufficient confidence that the com-
ponents fulfil their requirements. We will then provide a formal
framework into which the given individual assurance can be inte-
grated. One such approach is formal code proof, as was done in the
formal verification of seL4. Another such approach is the synthe-
sis of component implementations from formal specifications, as
demonstrated in our work on device-driver synthesis [RCK+09].
This approach is less resource-intensive than manual proof and can
produce a similar level of assurance.

Finally, given the architecture description and component im-
plementations, we will generate the code required to combine the
component implementations into a running system. This includes
generated glue and communication code as well as initialisation
and bootstrap code (which is responsible for loading and initialis-
ing the required components, creating the appropriate partitions—
shown as ② in Figure 3—and configuring communication channels
as specified by the architecture). This step will be performed auto-
matically by a tool (evolved from our CAmkES project [KLGH07]

that developed a lightweight component framework for embedded
systems) which will also automatically integrate the proofs of ar-
chitecture correctness, component correctness, partition configura-
tion and kernel correctness into one overall statement on the whole
system.

Summarising with reference to Figure 3, our approach will re-
sult in components (the top layer in the diagram, labelled ①) as-
sured to the individual levels that the overall system requires, and a
system architecture shown to enforce the component isolation and
communications requirements (the walls in the diagram, labelled
②). These are composed such that individual component assurance
combines into strong system-level assurance, and are supported by
a platform that provides the system’s execution environment and
isolation guarantees (the seL4 kernel, labelled ③). The important
part is that the separation walls come with a strong foundation that
enables us to ignore non-critical components for assurance pur-
poses.

The approach requires us to solve a number of issues, includ-
ing the formal semantics of components and their composition,
the correct-by-construction generation of glue code, formal anal-
ysis of information flow, and concurrency issues which arise from
the (even in the embedded space) increasingly ubiquitous multi-
core platforms. More detail is available in the project plan for the
Trustworthy Embedded Systems project [ERTO09].

4.2 Device drivers
Device drivers are well known to be the leading hazard to

operating-system (OS) trustworthiness: they are responsible for the
majority of OS failures [GGP06], and have been shown to have 3–7
times the defect density of other OS code [CYC+01].

In a microkernel-based system, such as one based on seL4, de-
vice drivers run in user mode, as normal processes, encapsulated
in their own address space. This encapsulation can be enforced
through hardware mechanisms, such as the memory-management
unit (MMU) and, for devices performing direct memory access
(DMA) an I/O MMU. This approach, if done right, does not im-
pose much overhead [LCFD+05], and allows isolating the rest of
the system from device-driver failures.

While this approach removes a device driver from the TCB of a
subsystem which does not use the device, many devices are essen-
tial to the overall system function, and a system may be unable to
operate correctly if a critical driver fails even temporarily.

We are therefore continuing to work on making the drivers them-



selves reliable. Specifically we are pursuing a number of ap-
proaches, distinguished by the time to practical use.

The first, short-term approach is a change of the established
driver model from a multi-threaded to an event-driven paradigm.
We have shown that this approach avoids several classes of the
most frequent driver bugs by construction [RCKH09]. Drivers de-
signed in this model can co-exist with traditional drivers, easing
adoption. We are working on turning the original proof-of-concept
into a practical framework for driver development [RZH10].

The second, medium-term approach combines driver develop-
ment with hardware “verification” (i.e. testing), re-using the test-
ing code as the actual device driver [LCFD+05]. This approach
is designed to integrate with industrial device-development work-
flows, but eliminates the biggest problem of those workflows: they
develop elaborate testing code during device development, which
contains all the core logic of a device driver, but is discarded once
the device is completed, while the actual driver is developed un-
der time pressure on the basis of second-hand and frequently in-
complete and inaccurate information (contained in the device’s
datasheet).

The third, long-term approach extends our earlier work on driver
synthesis [RCK+09], which generated a high-performance device
driver from a formal spec of the OS interface, a formal spec of the
hardware interface, and a high-level behavioural description of the
device class. The Achilles heel of that work is the impracticality of
obtaining the formal spec of the hardware interface. We are work-
ing on bypassing this problem by automatically extracting the re-
quired specifications from the device design itself, as represented in
a high-level specification language such as SystemVerilog or Sys-
temC or a register transfer level description in Verilog or VHDL.

4.3 Temporal properties
Two kinds of timing issues are relevant to our overall research

agenda: timeliness of execution, as required for real-time systems,
and the security threats created by information leakage through
covert timing channels.

Being able to build real-time systems on top of our microkernel
requires a timing model of the kernel, specifically the knowledge
of the worst-case latencies of all kernel operations which are used
during the steady-state operation of a system. No practical OS ker-
nel for a high-end processor, such as a recent ARM CPU, has such
a timing model with credible latency guarantees. All prior work is
based on over-simplified kernels or simple (and outdated) architec-
tures.

We believe that we can achieve more, despite our kernel being
more complex than some academic toy systems, because we know
more about the kernel. Specifically, the formal verification of seL4
has proved a large number of invariants about the kernel, many of
which are of direct help for solving the worst-case latency problem.
These include termination proofs, limits on iteration counts, and
alignment guarantees.

In the past, worst-case latency analysis has focussed either on
static analysis (requiring information about the internal timings of
the processor which in reality is impossible to obtain) or measure-
ments (which alone cannot give any guarantees). We believe that a
combination of both approaches is the key to a practical, yet sound
solution [PZH07].

The other timing issue regards covert channels. We are working
on analysing the bandwidth of covert timing channels in seL4, as
a precursor to steps which suppress this bandwidth. In this con-
text we are developing an information-theoretical framework for
dealing with covert channels in the kernel, which will help us to
evaluate various mitigation strategies.

Figure 4: Secure access controller connecting a secure terminal
to multiple classified networks.

4.4 Practical applications
We strongly believe that a project like ours will only produce

results of practical use if the techniques developed are applied to
concrete use cases from an early stage. We are therefore actively
engaging with actual or potential end-users of our technology to
build prototype trustworthy devices and use them as drivers for our
research.

One such prototype is a secure access controller which multi-
plexes several networks of different classification on a single con-
nection to a secure terminal, as shown in Figure 4. We have built
such a prototype on seL4 [AGE10], including several Linux sys-
tems running in separate virtual machines as wrappers for legacy
device drivers. We have analysed the TCB of the system and the
feasibility of formally verifying all code which makes up the TCB.
We have also proved the basic security properties of the SAC (un-
der the assumption that the TCB is correct).

5. CONCLUSIONS
We believe that truly trustworthy systems are not only needed,

but that they are achievable within a few years. A first step has
been taken with the formal verification of the seL4 microkernel,
but much more remains to be done.

We have presented NICTA’s research roadmap which aims to de-
liver within the next 3–5 years truly trustworthy systems of real-life
complexity, comprising millions of lines of code, including large,
untrusted legacy components. Their trustworthiness will be estab-
lished with mathematical rigor. Nothing less ought to be good
enough.
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