
Singleton
A General-Purpose Dependently-Typed Assembly Language

Simon Winwood
NICTA and UNSW

sjw@cse.unsw.edu.au

Manuel Chakravarty
UNSW

chak@cse.unsw.edu.au

Abstract
In this paper we present Singleton, a dependently typed assem-
bly language. Based upon the calculus of inductive constructions,
Singleton’s type system allows procedures abstracting over terms,
types, propositions, and proof terms.

Furthermore, Singleton includes generalised singleton types. In
addition to the primitive singleton types of other languages, these
generalised singleton types allow the values from arbitrary induc-
tive types to be associated with the contents of registers and mem-
ory locations. Along with Singleton’s facility for term and proof
abstraction, generalised singleton types allow strong statements to
be made about the functional behaviour of Singleton programs.

We have formalised basic properties of Singleton’s type system,
namely type safety and a type erasure property, using the Coq proof
assistant.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Logics of programs

General Terms Theory

1. Introduction
The Singleton language attempts to address a gap in the available
languages for certificate-bearing code. Morrisett et al. [9] gives an
elegant translation from a high level language — System F — into
a TAL, thus showing that typed assembly languages are natural cer-
tification logics for programs compiled from high-level languages.
Furthermore, the guarantees provided by the type system of a TAL
typically correspond with the low-level safety properties desired of
the system: well typed programs cannot ‘go wrong’.

However, traditional TALs are restricted to those properties
entailed by type safety. While this includes essential properties
such as memory safety, these properties are not always sufficient.
For instance, while traditional TALs may be able to encode that a
particular address contains the root of a tree, they cannot state that
the tree is balanced.

Based on the calculus of inductive constructions (CiC), Single-
ton’s assertion logic allows programs to abstract over terms in this
logic, including types, terms, propositions, and proofs. Singleton
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also includes a rich type language including generalised singleton
types; these types carry terms in the assertion logic corresponding
to the run-time behaviour of the classified object.

Example 1.1 As an illustrative example of the power of
Singleton’s type system, consider the higher-order function map
with type

map : ∀a b. (a → b) → list a → list b

A traditional TAL may admit an implementation of such a
function, but Singleton allows a program to prove that the output
is actually the result of applying a given function to every element
of the input list; the Singleton type

map :: ∀(a : Set)(b : Set)(f : a → b)(xs : list a).
{a1 : ∀(v : a).{a1 : sgl(v : a),

ra : {t1 : sgl(f v : b)}},
a2 : sgl(xs : list a),
ra : {t1 : sgl(map f xs : list b)}}

states that the map program takes for arguments the logical types a
and b, a function f from a to b, and a list with element type a. The
program also takes as run-time arguments a function pointer in a1
which computes fv for any v, a generalised singleton object in a2
representing the input list, and a return address in ra expecting as
argument map f xs: if the program returns through this address, it
must provide a generalised singleton object representing
map f xs , that is, the contents of t1 will correspond to the result
of mapping f over the elements in xs.

Our original motivation in developing Singleton was in the
context of run-time verification: we wished to establish high-level
properties of the program which are not implied by type safety
alone. In fact, the requirements of run-time verification are more
comparable to those of a traditional verification environment such
as a Hoare-style logic [8].

Such languages, however, typically assume a much looser view
of type safety than run-time verification requires; for example, a
reference monitor is usually type safe, and will not need to modify
arbitrary memory locations.

Singleton is then a compromise between the simplicity of a
typed assembly language and the expressive power of a Hoare
logic. The use of generalised singleton types, types which carry
detailed information about their run-time contents, allows fine-
grained assertions on heap structures; the addition of existential
types allows control over the mutability of objects in the heap.
Other languages, the DTAL of Xi and Harper [15] for example,
typically provide singletons on primitive types, such as the value
of words or the length of arrays; Singleton allows user-defined
singleton types over inductive data types.

In summary, the main contributions of this paper are the follow-
ing



head :: ∀(a : Set)(xs : list a).
{a1 : sgl(xs : list a),
ra : ∀(x : list a)(xs ′ : list a)

(pf : xs = cons x xs ′).{t1 : sgl(x : a)}}
head :

case t1, a1, [hNil @ (a, xs),
hCons @ (a, xs)

]

hNil :: ∀(a : Set)(xs : list a)(pf : xs = nil).
{t1 : 〈word(0)〉,
ra : ∀(x : list a)(xs ′ : list a)

(pf : xs = cons x xs ′).{t1 : sgl(x : a)}}
hNil :

(handle error for empty list)

hCons :: ∀(a : Set)(xs : list a)(x : a)(xs ′ : list a)
(pf : xs = cons x xs ′).
{t1 : 〈word(1), sgl(x : a), sgl(xs ′ : list a)〉,
ra : ∀(x : list a)(xs ′ : list a)

(pf : xs = cons x xs ′).{t1 : sgl(x : a)}}
hCons :

load t1, t1(1)
apply ra, ra, (x , xs ′, pf )
jump ra

Figure 1. A Singleton implentation of the head function. The
argument register a1 contains the input list.

• We introduce the idea of generalised singleton types, that en-
able user-defined singleton types corresponding to arbitrary in-
ductive data types (Section 2).

• We present Singleton, a dependently-typed assembly language,
that includes an assertion logic based on the calculus of induc-
tive constructions (Sections 3 and 4)

• We give an operational and a static semantics for Singleton
(Sections 5 and 6).

• We establish fundamental properties of Singleton’s type sys-
tem; refer for proofs to [14] (Section 7)

We will discuss related work in more detail in Section 8.

2. Singleton by Example
We give two short examples to introduce Singleton and also to
serve as a running example through the remainder of this paper.

2.1 Taking the head of a list
Consider the list data type

Inductive list (t : Set) : Set :=
| nil : list t
| cons : t → list t → list t

and the head function

head :: ∀a. list a → a
head xs = match xs with

nil → error
cons x xs ′ → x

end
where error indicates a runtime error when the list is empty. We
can, of course, make this function total by requiring a proof that xs
isn’t nil ; see Sect. 2.1.4. Fig. 1 gives the Singleton implementation
of this function.

2.1.1 The two types
We claim that the Singleton implementation is somehow related to
head . To see why we can make this claim, consider the type of
head

head :: ∀a. list a → a

and that for head

∀(a : Set)(xs : list a).
{a1 : sgl(xs : list a),
ra : ∀(x : list a)(xs ′ : list a)

(pf : xs = cons x xs ′).{t1 : sgl(x : a)}}
We can read this type as a code block which takes the logical
arguments a and xs , and two run-time arguments in the registers a1
and ra. The register ra contains a reference to a code block with
logical arguments x , xs ′, and pf , and a single register argument,
t1.

Both the type of head and head are polymorphic in the contents
of the list; this is the logical parameter a in the Singleton version.
Similarly, both accept the input list, although in the Singleton
version this occurs both as the logical parameter xs and as the
register argument in a1: the type

sgl(xs : list a)

connects the logical variable xs to the machine register a1; we
discuss what this means in the next section.

Finally, both return a value of type a . In the Singleton case, this
can be seen by examining the type of the return address: if head
returns through this address, it will provide the logical parameters
x and xs ′ representing the head and tail of the list respectively, and
a proof that xs is, in fact, composed of these two values. As with
the argument to head, the head of the list, x , appears as the register
argument t1.

Therefore, we claim that if head returns through the given
return address, then the result in t1 will correspond to the head
of the list xs .

2.1.2 Singleton types
In the previous section we noted that the register a1 somehow
contains the list xs , and the register t1 should contain the value
x when head returns. We now examine more closely the types of
these two registers to see precisely how the argument and result of
head correspond to their Singleton counterparts.

Recall the list argument to head: the generalised singleton type
sgl(xs : list a) represents the logical value xs with logical type
list a; we say that xs is the (logical) value associated with the
singleton type, and similarly for its type, list a .

Objects with singleton type have an underlying object, the type
of which, the representation type, is determined by the value asso-
ciated with the singleton. How this type is determined in general
we leave to Sect. 6.3; here we will focus on the details required for
head .

We start by noting that xs has two possible forms: either it
is nil , or it is cons x xs ′ for some x and xs ′. In the first case,
sgl(nil : list a) is represented by the tuple

〈word(0)〉

that is, the tuple containing the singleton word 0 indicating a nil
node; in the second case, sgl(cons x xs ′ : list a) is represented by
the tuple

〈word(1), sgl(x : a), sgl(xs : list a)〉

that is, the word 1 indicating a cons node, followed by an element
for x and then an element for xs ′.



Thus, depending on the contents of xs , the register a1 may con-
tain a tuple with a single member, or a tuple with three members.
We can then say that the argument in a1 corresponds to the argu-
ment to head , xs , in that the first element of xs is the second entry
in the tuple in a1, the second element of xs is second entry of the
tuple in third entry of this tuple, and so on.

2.1.3 The implementation of head
We now turn our attention to the actual implementation of head. As
noted above, the value associated with a singleton determines the
shape of the representation object. Conversely, by examining this
object, specifically the first element, we can determine the shape of
the associated value: there is a one-to-one correspondence between
the first element of a representation object and the associated value.

Thus, by examining the first element of a list singleton we can
determine whether it is nil or cons x xs ′ for some x and xs ′. In
fact, this is precisely the behaviour of case: the instruction

case t1, a1, [hNil @ (a, xs),
hCons @ (a, xs)]

examines the singleton value in a1 and branches to hNil if the
value associated with a1 is nil and to hCons if the value is cons .
The unpacked singleton value is passed in t1. In both cases we pass
the additional logical arguments a and xs .

In addition to these explicit arguments, the case instruction
passes to the target label any constructor arguments, along with a
proof. This proof states that these additional arguments, applied to
the corresponding constructor, give the associated value.

The logical arguments to hNil are then the two explicit argu-
ments followed by a proof that the list is indeed empty. As this case
is undefined, and will result in some implementation-specific error,
we shall treat it no further.

The hCons case, however, is more interesting. In addition to the
element type and argument list, this code block also accepts the two
arguments to the cons constructor, x and xs ′, along with a proof
that these do actually form xs , namely

pf : xs = cons x xs ′

Furthermore, the type of register t1 is the representation type for
cons x xs ′, that is, a tuple containing the tag 1, an element for x ,
and an element for xs ′. We then load the second entry to get x .

Before we can return to the address in ra we need to communi-
cate to this label the new variables and the new proof; this is done
via the instruction

apply ra, ra, (x , xs ′, pf )

where (x , xs ′, pf ) is an argument sequence, that is, a sequence of
logical arguments and a sequence of type arguments, although in
this case we have no type arguments. This instruction applies the
arguments in this sequence to the code type in ra. After applying
the new variables, we jump to the resulting address.

2.1.4 Aside: a total version of head

Our version of head above raises an error in the case that xs is nil .
If we know that xs is not nil , that is, we have xs = cons x xs ′,
then we can give a total version of head as follows

totalHead :: ∀(a : Set)(xs : list a)(x : list a)(xs ′ : list a)
(pf : xs = cons x xs ′).
{a1 : sgl(xs : list a),
ra : {t1 : sgl(x : a)}}

totalHead :
coerce t1, a1 using pf
project t1, t1
load t1, t1(1)
jump ra

We take advantage of two Singleton-specific instructions in
this implementation of head , coerce and project. Firstly, the
instruction

coerce rd , rs using pf

rewrites the value associated with the singleton in rs with the
equality in pf , placing the result in rd . In our example above, we
have

sgl(xs : list a)
rewrite with pf−−−−−−−−−−→ sgl(cons x xs ′ : list a)

Secondly, the instruction

project rd , rs

extracts the representation of the singleton in rs into rd , when the
shape of the associated value is known. In the above case, we have

sgl(cons x xs ′ : list a)
project−−−−−→ 〈word(1), sgl(x : a), sgl(xs ′ : list a)〉

noting that the destination register of project will have the same
type as if after a case operation. This instruction is thus an opti-
mised version of case: project simply extracts the representation
type for a known value, while case examines an unknown value
and branches to the appropriate label.

2.2 Adding an element to a list
We have seen how to destroy a singleton object: use case if the
shape of the associated value is unknown, and project if the
value is known. In this section we will discuss how to construct
a singleton.

Continuing with our example of lists, the cons procedure
should act like the cons constructor, that is, it should add the given
element to the start of the given list.

If we wish to create a new singleton object, we use the inject
instruction. This operation performs the inverse of project: given
an object of the correct type, it creates a singleton such that the
object represents the singleton. Recall from Sect. 2.1.2 that a cons
term is represented by a triple: the tag 1, the head of the list, and
the tail of the list.

Given the head of the list in a1 and the tail in a2, our implemen-
tation needs to allocate a tuple and initialise the first element with
the word 1 and the remainder with the contents of a1 and a2. The
code is then as follows

cons :: ∀(a : Set)(x : a)(xs : list a).
{a1 : sgl(x : a),
a2 : sgl(xs : list a),
ra : {t1 : sgl(cons x xs : list a)}}

cons :
alloc t1, [word(1), sgl(x : a), sgl(xs : list a)]
ldi t2, 1
store t2, t1(0)
store a1, t1(1)
store a2, t1(2)
inject t1, t1 as sgl(cons x xs : list a)
jump ra

The alloc instruction creates a new, uninitialised tuple with
the given type in t1. We then use the ldi instruction to move the
constant 1 into t2 so we can initialise the first element of the new
tuple. After storing the two arguments, we create the new singleton
using the inject instruction. We then return to the given address.



A, B , v , T ::= Set | Prop | Type
| x | λx : A. B |A B | ∀x : A. B

| Ind(X : A){B̃}
| Ctor(n, A)

| Elim(C , A){B̃}
Υ ::= x1 : A1, . . . , xn : An

Figure 2. The calculus of inductive constructions, used by
Singleton as an assertion logic.

2.3 Discussion
The natural question to ask is: what have we achieved by the extra
type machinery involved in a (type-correct) Singleton program.

Firstly, if the return address is invoked, the contents of the reg-
ister t1 will have the singleton type sgl(x : a); Singleton provides
a logic of partial correctness only, and so the head function may
not return through the given label (calling some other function, for
example) or may not return at all.

Secondly, objects with singleton type have a specific layout:
given the type, we can make strong statements about the contents
of values of this type in the heap.

Finally, any object in the heap retains the type it had before the
invocation of head. Although this is not the same as saying that
the remainder of the heap is unmodified, Singleton’s precise types
imply that either such modifications are trivial (that is, equivalent
to the identity mutation), or the element modified had existential
type and therefore any mutation does not violate invariants about
the particular value of that cell.

3. The Calculus of Inductive Constructions
In this section we summarise the syntax of CiC and briefly justify
its use. Space limitations prevent us from giving a complete treat-
ment of CiC; we direct the reader to Paulin-Mohring [11].

The syntax of CiC is given in Fig. 2. Apart from sorts (Set ,
Prop, and Type) and the usual lambda terms, application, and
(dependent) function spaces, CiC includes inductive datatypes
(Ind(X :A){ ~B}), along with their inhabitants (Ctor(n,A)). Elim-
ination (Elim(C,A){ ~B}) takes apart inductive terms, generalising
recursive functions and structural induction. Following the Coq
system [2], we will use a concrete syntax for inductive types, like
that above for the definition of list.

The CiC has a number of features which make it a good fit as
an assertion logic for Singleton, namely

• dependent types allow a uniform syntax for both terms and
proofs, including their abstraction;

• inductive types give structure to singleton values. A primitive
notion of an inductive type allows Singleton to give rules for
automatically generating this structure;

• separating informative types (that is, those in Set) from non-
informative types (that is, those in Prop) allows the values
associated with singleton types to include proof objects without
a run-time penalty; and

• the construction of a formal model of Singleton in the Coq sys-
tem requires no extra machinery for the assertion logic beyond
that provided by the system.

We shall revisit these first two points in the remainder of this paper,
particularly Sect. 6.3. We direct interested in the final point to the
first author’s dissertation [14].

The typing judgement Υ 
 A : B states that the term A
has type B under the context Υ, while the equivalence relation
A ≡βι B states that the two terms A and B are equivalent under

Initialisation flags
ϕ ::= 0 | 1
Registers
r ::= r1 | . . . | rN

Kinds and machine types
κ, π ::= U | B
σ, τ, ξ ::= α

| word(n)
| sgl(v : T )
| ∃(x : A).τ
| 〈τϕ1

1 , . . . , τϕn
n 〉

| ∀Υ , [∆].Γ
Type contexts
∆, Ω ::= {α1 :: κ1, . . . , αn :: κn}
Register file types
Γ ::= {r0 : τ1, . . . , rn : τn}
Heap types
Ψ ::= {0 : τ1, . . . , n : τn}

Figure 3. Syntactic classes for Singleton: types

β- and iota-reduction (elimination of inductive terms). Both typing
and term equivalence are decidable.

4. Syntax
In this section we present the syntax of Singleton, and discuss some
of the syntactic forms; the remainder are discussed in the following
sections. The various syntactic forms constituting the Singleton
language are shown in Fig. 3 and Fig. 4.

4.1 Types and Values
In this section we discuss the various types supported by Singleton,
along with their value forms. Briefly, kinds classify types into un-
boxed and boxed types, while types classify both word values and
heap values. Heap values are code blocks and tuples of word values,
while word values appear in registers and in tuples. In the remain-
der of this section we will discuss types and their corresponding
values.

Type variables. Type variables refer to variables bound by code
types. We assumeα-equivalence on type variables, renaming where
necessary to avoid capture.

Word types. Word types represent the exact run-time value of
their members. For example, a register with type word(3) will
contain the integer1 3.

The values classified by word types are simply the natural num-
bers, N.

Generalised singletons. Singleton types carry an abstract repre-
sentation of their run-time value as a logical term; the singleton
type sgl(v : T ) classifies objects which correspond to the logical
value v with (logical) type T .

This correspondence between an object of singleton type and
the associated value is through that value’s representation type, a
machine type derived from the constructor and arguments which
form the value; this derivation is discussed in Sect. 6.3.

A singleton value has the form sgl (v : T ) in wv where v
and T are the value and type associated with the singleton. The
word value wv is a reference to the representation object for the
singleton, that is, wv should have the representation type derived
from v ; we shall discuss the structure of this object in Sect. 6.3
with the representation type.

1 For simplicity, we assume unbounded machine words



Arguments sequences and extended labels
Σ ::= (Ã; τ̃)
L ::= N @ Σ

Instructions and instruction sequences
I ::= add rd , r1, r2

| ldi r, n
| move rd , rs
| beq r1, r2, L as x
| apply rd , rs , Σ
| lda r, L
| load rd , rs(n) | store rd , rs(n)
| alloc rd , τ̃
| pack rd , rs as τ hiding v
| unpack rd , rs as x
| inject rd , rs as τ
| project rd , rs
| coerce rd , rs using p

IS ::= I ; IS

| case rd , rs , L̃
| br L | jump r | halt [τ ]

Word values
wv ::= ?τ | N | L | pack v in wv | sgl (v : T ) in wv

Heap values
hv ::= 〈wv1, . . . ,wvn〉 | ΛΥ , [∆].IS

Heaps, register files, and programs
H ::= {0 7→ hv1, . . . , n 7→ hvn}
R ::= {r0 7→ wv1, . . . , rN 7→ wvN }
P ::= (H , R, IS)

Figure 4. Syntactic classes for Singleton: instructions and values

Existential types. Singleton and word types are sometimes too
precise: we may not care about the particular value associated with
a type, only its general shape. The existential type ∃(x : T ).τ then
hides a logical value inside the type τ . In particular, an existential
can hide the value associated with a singleton type.

Example 4.1 We can implement the non-dependent word type by

WORD , ∃(n : nat).word(n).

that is, a word type where the associated value is hidden by an
existential.

Existential types are not limited to hiding logical values (that
is, objects with a type in the sort Set): other logical terms can be
hidden, including proof terms2.

Example 4.2 The type

∃(b : nat)(p : if b > 0 then P else Q).word(b)

that is, a word type with a hidden value along with a (hidden)
proof, can be used to simulate a boolean type. Depending on the
value of b, p is equivalent to a proof of the proposition P or a
proof of Q.

Tuple types. Tuple types are sequences of types classifying se-
quences of corresponding word values in the heap. Tuple types also
track the initialisation status of the tuple contents: each type in the

2 Hiding a proof term is essentially hiding the existence of a proof, as CiC
has the proof-irrelevance property.

sequence has an associated initialisation flag which tracks the ini-
tialisation status of that entry [9]. For clarity, the initialisation flag
may be omitted if it is set.

Values of tuple type occur both as heap values and as word
values; in the heap, a tuple type classifies a sequence of word
values, while as a word value, a tuple type classifies a label. Such
labels then refer to a sequence of values in the heap.

Code types. Program blocks may abstract over both types and
logical terms. The code type ∀Υ , [∆].Γ classifies code blocks
abstracting over the logical variables in Υ and the type variables
in ∆. The term Γ gives the expected types of each register; not all
registers need to have a type.

Example 4.3 The type of a function which doubles the word in t1
and preserves the word in t2, returning to the label in ra is

∀(x : nat), [α :: B].{t1 : word(x ), t2 : α,
ra : {t1 : word(x + x ), t2 : α}

where the logical argument is (x : nat), the type argument is α,
and the register arguments are t1 with word type word(x ), t2
with parametric type α, and the return register ra with the code
type {r1 : word(x + x ), r2 : α}.

Code values reside in the heap and take the form ΛΥ , [∆].IS
where the logical variables in Υ and the type variables in ∆ are
bound in the instruction sequence IS .

Word values may also have code type: extended labels contain
a reference to a heap object, along with an argument sequence
containing a list of logical terms and types which have been applied
to the label. We discuss argument sequences and extended labels
further in Sect. 5.1.

5. Operational Semantics
In this section we present the operational semantics for Singleton,
along with a discussion of the various instructions. We shall focus
our discussion on those instructions which are Singleton-specific.
The remainder, at least operationally, are typical of TALs in gen-
eral; see [14] for more details.

Definition 5.1 The small-step operational semantics of Singleton
are denoted by the following judgement

P 7−→ P ′

where P and P ′ are program states. The semantics are given in
Fig. 5

5.1 Argument Sequences and Extended Labels
Singleton programs may abstract over both logical terms and ma-
chine type. An argument sequence

Σ = (Ã; τ̃)

is used to instantiate any such terms, and is simply a tuple contain-
ing a sequence of logical arguments and a sequence of type argu-
ments. Given two argument sequences Σ and Σ′, Σ _ Σ′ is their
pairwise concatenation.

Argument sequences appear in a number of places in Singleton:
as an argument to the apply operation and as arguments to branch-
ing instructions In addition, some instructions, namely beq and
case, generate argument sequences containing proof terms.

An extended label is a label along with a (possibly empty)
argument sequence. Operationally, extended label values collect the
arguments to a function; partially applying code values complicates
the proof of type erasure, and so the actual substitution occurs only
when the final value is required, that is, when the label is used as a
branch target.



(H ,R, IS0) 7−→ P ′

if IS0 is and P ′ is
move rd , rs ; IS (H , R{rd 7→ R rs}, IS)
add rd , r1, r2; IS (H , R{rd 7→ R r1 + R r2}, IS)
ldi rd , n; IS (H , R{rd 7→ n}, IS)
pack rd , rs as τ hiding o; IS (H , R{rd 7→ pack o in R rs}, IS)
unpack rd , rs as x ; IS (H , R{rd 7→ wv}, IS [x := v ]) when R rs = pack v in wv
alloc r, τ̃ ; IS (H {l 7→ 〈?τ̃0, . . . , ?τ̃|τ̃ |〉},R{r 7→ l @ ()}, IS) when l fresh in H
load rd , rs(n); IS (H , R{rd 7→ ṽn}, IS) when R rs = l @ Σ and H l = 〈ṽ〉
store rs , rd(n); IS (H {l 7→ 〈ṽ{n 7→ R rs}〉},R, IS) when R rd = l @ Σ and H l = 〈ṽ〉
apply rd , rs , Σ ′; IS (H , R{rd 7→ l @ Σ _ Σ ′}, IS) when R rs = l @ Σ
lda rd , L; IS (H , R{rd 7→ L}, IS)

beq r1, r2, L as p; IS
(H , R, IS br ) when (pf : R r1 = R r2) and H |= L@ (pf ) B IS br

and
(H , R, IS [p := pf ]) when (pf : R r1 6= R r2)

br L (H , R, IS) when H |= L B IS
jump r (H , R, IS) when H |= R r B IS
coerce rd , rs using p; IS (H , R{rd 7→ R rs}, IS)
inject rd , rs as sgl(v : T ); IS (H , R{rd 7→ sgl (v : T ) in R rs}, IS)
project rd , rs ; IS (H , R{rd 7→ wv}, IS) when R rs = sgl (v : T ) in wv

case rd , rs , L̃ (H ,R{rd 7→ l @ Σ}, IS) when
R rs = sgl (v : T ) in (l @ Σ)
H l = 〈n, . . .〉
H |= Ln@ (B1, . . . ,Bm , refl equal T v) B IS

Figure 5. Operational semantics for Singleton.

Substitution of logical terms and machine types into the various
syntactic forms is defined in the usual fashion; we thus omit the
definition from this paper. As a shorthand we use

v [x̃ := Ã][α̃ := τ̃ ]

for the sequential substitution for x̃ and α̃ into v . Furthermore,

v [Υ := Ã][∆ := τ̃ ] , v [x̃ := Ã][α̃ := τ̃ ]

where Υ = (x̃ : B̃) and ∆ = {α̃ :: κ̃}.

Example 5.1 Recall our head example from Sect. 2. If we
imagine that head is applied to the list [1, 2, 3], that is, the logical
argument a will be nat while xs will be the above list, then the
case instruction in head is passed two extended labels:

hNil @ (nat , [1, 2, 3])

and

hCons @ (nat , [1, 2, 3])

Execution of the case instruction will find that the list is not
empty, and hence will invoke hCons with the additional arguments
1, [2, 3], and the proof

refl equal (list nat) [1, 2, 3] : [1, 2, 3] = [1, 2, 3]

Because case will branch to hCons, the substitution will be
performed, resulting in the instruction sequence

load t1, t1(1)
apply ra, ra, (1, [2, 3], refl equal (list nat) [1, 2, 3])
jump ra

where x , xs ′, and pf have been substituted accordingly.

Definition 5.2 (Application) The judgement

|= v @ Σ B IS

holds when substituting the arguments in Σ into the code value v
results in the instruction sequence IS .

|= (ΛΥ, [∆].IS)@( ~A;~τ)B (IS [Υ := ~A][∆ := ~τ ])

We extend this to application at an extended label at a heap: given
a heap H , an extended label L = l @ Σ , and an argument
sequence Σ ′, we have

Hl = v |= v@(Σ _ Σ′)B IS

H |= L@Σ′ B IS

Application is rather straightforward: we simply substitute any
arguments for the corresponding variables. Although substitution
may result in a malformed instruction sequence, that is, one con-
taining ill-typed CiC terms, the corresponding static judgement
(Defn. 6.2) ensures that substitution occurs only when it results in
well-formed instruction sequences.

We finish this section by noting that application has no run-time
penalty for a Singleton program. Although substitution seems to
create a copy of an instruction sequence, all types are erased in the
translation from Singleton into machine code and hence all copies
of an instruction sequence are identical after erasure.

5.2 Singleton operations
The singleton operations are perhaps the most novel part of
Singleton; in this section we discuss their semantics. Singleton op-
erations manipulate values of the form sgl (v : T ) in wv , where
wv is the object representing the singleton. We note, however, that
only the case operation examines this value, requiring that it be a
label referring to a tuple with at least one member, and this member
being a word.

Rewriting the associated value. The coerce instruction rewrites
the value associated with the singleton type using a proof of equal-
ity; operationally it is equivalent to a move operation.



Injection and projection. The inject operation creates sin-
gleton values by injecting objects of the representation type; the
project operation does the converse, projecting the singleton type
into the representation type. Operationally, inject and project
simply create and destroy singleton values, respectively.

Case elimination. The case operation eliminates singleton val-
ues. This instruction, given a singleton object, branches depending
on the value associated with the singleton. In addition, case ex-
tracts the representation object from the singleton and passes the
destination label this object, and any constructor arguments and a
proof relating the branch taken with the associated value.

Example 5.2 Recall the case instruction from head.

case t1, a1, [hNil @ (a, xs),
hCons @ (a, xs)]

If the list associated with the type of a1 is nil , then case will
branch to hNil, otherwise case will branch to hCons. In the
former case, the only logical argument generated is the proof

pf : xs = nil

while hCons gets the arguments from the cons constructor,
namely x and xs ′, along with the proof

pf : xs = cons x xs ′

If we are operating over a singleton with associated type T , then
each constructor for T has a corresponding label in the arguments
to case, where the order of the labels corresponds to the order of
the constructors. In general, given the singleton value

sgl (v : T ) in wv

where

v ≡βι Ctor(n, A) B1 . . . Bm

then case will branch to the n-th label. We note that, at run-time,
all values of an inductive type are equivalent to some fully applied
constructor.

The n-th label should refer to a code block with arguments
B1 . . . Bm along with a proof that

v = Ctor(n, A) B1 . . . Bm

Dynamically, this proof is simply the reflexivity of equality at the
value v , recalling that equivalent terms in CiC are indistinguish-
able. The main utility of this proof is to exploit statically, in the
code for this label, that we are in the correct branch, and hence
have discovered the shape of v .

Operationally, this branch target is determined by the represen-
tation object wv . A singleton value eliminated by the case instruc-
tion must have

wv = l @ Σ

for some label l and argument sequence Σ . Furthermore, this label
should point to some tuple in the heap with the tag n; the well-
formedness conditions on singletons ensure that this is the case,
including that this word is equal to the constructor index.

The new instruction sequence IS is obtained by applying the
extended label to B1 . . . Bm , followed by

refl equal T v : v = v

Finally, the value wrapped by the singleton value constructor is
extracted and moved into the destination register.

5.2.1 Existential operations
The existential instructions manipulate values of the form pack v in wv .
The pack operation constructs these values, while the unpack op-

eration extracts the hidden v , substituting into the remaining in-
structions.

Example 5.3 We can implement addition on the non-dependent
words from Eg. 4.1 (adding t1 and t2 with the result in t1) by

unpack t1, t1 as n1

unpack t2, t2 as n2

add t1, t1, t2
pack t1, t1 as WORD hiding n1 + n2

5.2.2 Code operations
The code operations manipulate code values in the heap, along
with labels referring to such values. Only the branching instructions
manipulate code variables directly; the instructions apply and lda
manipulate extended labels only. In our semantics application is
deferred until the value is actually used, that is, when the label is
used as a branch target; thus simplifies the proof of type erasure.

The apply operation applies the given logical arguments to the
code value in the source register, simply appending the arguments
to any existing arguments for that label, while the lda operation
creates a new value with the given label and arguments.

The branching operations, beq, br, and jump, perform the ac-
tual application by substituting the arguments for the corresponding
variables. The beq instruction also substitues a proof of the equal-
ity (or inequality) of the values in the given registers. In all cases,
the result of these substitutions forms the new instruction sequence.

6. Static Semantics
The judgements forming Singleton’s static semantics are given in
Fig. 6. All judgements are modulo CiC equivalence [11]. Again, we
shall concentrate primarily on those which are Singleton-specific.

6.1 Well-formed types
A type is well-formed if all logical terms are well-typed and all type
variables are accounted for. In addition, we insist that the value
associated with a singleton type has sort Set . This allows us to
ignore propositions when constructing the representation type.

We classify types into two kinds, boxed (B) and unboxed (U).
This classification is required primarily to ensure Singleton pro-
grams can be safely garbage collected, although we will not address
garbage collection in this paper.

In essence, a type is boxed if the object it classifies resides on
the heap: tuples, singleton types, and code types are boxed, while
words are unboxed. Existential types inherit the kind of the type
under the existential.

Definition 6.1 (Well-formed types) The judgement

Υ ; ∆ ` τ :: κ

holds when type τ is well-formed with kind κ under the logical
context Υ and type environment ∆.

6.2 Well-formed applications and labels
As noted in Sect. 5.1, at a number of points within a Singleton pro-
gram we may apply both logical and type arguments to code val-
ues. The resulting object is well-formed only when the arguments
are well-formed and match those expected by the target.

Definition 6.2 (Well-formed application) The judgement

Υ ; ∆ ` τ @ Σ B σ

holds whenever the application of the arguments in Σ to the type
τ is valid and results in the type σ, under the logical context Υ
and type context ∆.
We extend this to extended labels and heaps.



Constructing representation types Υ ` ~v ⇓ ~τ Υ ` v ↓ τ

Υ ` ε ⇓ ε
Υ 
 v : T : Set Υ ` ~A ⇓ ~τ

Υ ` v, ~A ⇓ sgl(v : T ), ~τ

Υ 
 v : T : s Υ ` ~A ⇓ ~τ
Υ ` v, ~A ⇓ ~τ

(s ≡βι Prop,Type)

Υ 
 n : nat

Υ ` n ↓ 〈word(n)〉
Υ 
 v : T Υ ` ~B ⇓ ~τ
Υ ` v ↓ 〈word([[n]]), ~τ〉 (T 6≡βι nat , v ≡βι Ctor(n, T )B1 . . . Bm)

Well-formed types and contexts Υ; ∆ ` τ :: κ Υ; ∆ ` Γ Υ; ∆ ` Ψ

α :: κ ∈ ∆

Υ; ∆ ` α :: κ

Υ 
 n : nat

Υ; ∆ ` word(n) :: U

Υ; ∆ ` τi :: κi

Υ; ∆ ` 〈τφ1
1 , . . . , τφn

n 〉 :: B
(i ≤ n)

Υ 
 v : T Υ 
 T : Set

Υ; ∆ ` sgl(v : T ) :: B

Υ 
 Φ Υ,Φ; ∆,Ω ` Γ

Υ; ∆ ` ∀Φ, [Ω].Γ :: B

Γ r = τ Υ; ∆ ` τ :: κ

Υ; ∆ ` Γ
(r ∈ dom(Γ))

Ψ l = τ Υ; ∆ ` τ :: B

Υ; ∆ ` Ψ
(l ∈ dom(Ψ))

Well-formed application Υ; ∆ ` τ@( ~A;~σ)B ξ

Υ; ∆ ` τ@()B τ

Υ; ∆ ` σ :: κ Υ; ∆ ` ∀Φ, [Ω].Γ[α := σ]@(~τ)B ξ

Υ; ∆ ` ∀Φ, [α :: κ,Ω].Γ@(σ, ~τ)B ξ

Υ 
 b : A Υ; ∆ ` (∀Φ, [Ω].Γ)[x := b]@( ~B;~τ)B ξ

Υ; ∆ ` ∀(x : A)Φ, [Ω].Γ@(b, ~B;~τ)B ξ

Initialisation subtype and well-formed values ` σ ≤ τ Υ; ∆; Ψ ` wv : τ Ψ ` hv : τ

` τ ≤ τ
` σ ≤ ω ` ω ≤ τ

` σ ≤ τ ` 〈. . . , τ0, . . .〉 ≤ 〈. . . , τ1, . . .〉

Υ; ∆; Ψ ` n : word([[n]])

Υ; ∆; Ψ ` LB σ ` τ ≤ σ
Υ; ∆; Ψ ` L : τ

Υ 
 v : A Υ; ∆; Ψ ` wv : τ [x := v]

Υ; ∆; Ψ ` pack v in wv : ∃(x :A).τ

Υ 
 v : T Υ ` v ↓ τ Υ; ∆; Ψ ` wv : τ

Υ; ∆; Ψ ` sgl (v : T ) in wv : sgl(v : T )

ε; ε; Ψ ` wvi : τi

Ψ ` 〈 ~wv〉 : 〈~τ〉 (i ≤ | ~wv| and τi initialised)
Υ; ∆; Ψ; Γ ` IS

Ψ ` ΛΥ, [∆].IS : ∀Φ, [∆].Γ

Instruction sequence prefixes and heap membership IS v IS ′ ` IS ∈ H

IS v IS

IS v IS ′[x := p]

IS v beq r1, r2,L as x; IS ′
IS v IS ′[x := v]

IS v unpack rd, rs as x; IS ′
IS v IS ′

IS v I; IS ′ (I not beq, unpack)

Hl = ΛΥ, [∆].IS ′ IS v IS ′[Υ := ~A][∆ := ~τ ]

` IS ∈ H

Well-formed heaps, register files, and programs ` H : Ψ Υ; ∆; Ψ ` R : Γ ` P

Ψ l = τ H l = hv Ψ ` hv : τ

` H : Ψ
(l ∈ dom(Ψ))

Γ r = τ R r = wv Υ; ∆; Ψ ` wv : τ

Υ; ∆; Ψ ` R : Γ
(r ∈ dom(Γ))

` H : Ψ ε; ε; Ψ ` R : Γ ε; ε; Ψ; Γ ` IS ` IS ∈ H
` (H,R, IS)

Figure 6. Singleton static semantics judgements (not including instruction sequences). We construct CiC natural numbers from meta-logical
numbers using [[n]].



Ψ l = τ Υ; ∆ ` τ@(Σ1 _ Σ2)B σ

Υ; ∆; Ψ ` (l@Σ1)@Σ2 B σ

Applications are only relevant for code types, although we allow
the empty argument sequence to be applied to any type. Otherwise,
we apply the arguments from left to right, substituting into the code
type for the corresponding variable. An application is well-formed
only if the logical arguments are of the expected logical type, and
the type arguments are of the expected kind.

Example 6.1 Consider again Eg. 5.1, where we apply head to the
logical arguments nat and [1, 2, 3]. Recall the type of head

∀(a : Set)(xs : list a).
{a1 : sgl(xs : list a),
ra : ∀(x : list a)(xs ′ : list a)

(pf : xs = cons x xs ′).{t1 : sgl(x : a)}}
We shall call this type τhead in the following.
To apply nat , we must show

Υ 
 nat : Set

noting that the first argument, a , has type Set . This holds, and so
we substitute nat for a to get

∀(xs : list nat).
{a1 : sgl(xs : list nat),
ra : ∀(x : list nat)(xs ′ : list nat)

(pf : xs = cons x xs ′).{t1 : sgl(x : nat)}}
To apply [1, 2, 3], we must show

Υ 
 [1, 2, 3] : list nat

as xs has type list nat . Again this holds, and so, letting σhead be

{a1 : sgl([1, 2, 3] : list nat),
ra : ∀(x : list nat)(xs ′ : list nat)

(pf : [1, 2, 3] = cons x xs ′).{t1 : sgl(x : nat)}}
we can derive Υ ; ∆ ` τhead @ (nat , [1, 2, 3]) B σhead.

6.3 Pseudo-elimination judgements
In this section we define auxiliary judgements used to eliminate
singleton values. A representation type is the machine type under-
lying the singleton type, and the elimination candidate describes
the possible forms the value associated with the singleton can take.

6.3.1 Representation types
We have informally introduced the concept of a representation type;
in this section we define it formally.

Definition 6.3 (Representation types) The judgement

Υ ` v ↓ τ
holds when the value v is represented by the type τ under the
logical context Υ .

In general, the representation type for a given value is a tuple
containing the constructor index for that value as a word, followed
by singleton types for those constructor arguments with informative
types (that is, types in the sort Set). Natural numbers, however, are
represented using a word type boxed by a tuple.

Example 6.2 We can construct the representation type for the list
of natural numbers [1, 2, 3], as

Υ ` [1, 2, 3] ↓ 〈word(1), sgl(1 : nat),
sgl([2, 3] : list nat)〉

which matches our description from Sect. 2.1.2.

Example 6.3 The type of lists containing elements which satisfy
some predicate P is

Inductive listP (T : Set)(P : T → Prop) : Set :=
| nilP : listP T P
| consP : ∀(v : T ), P v → listP T P → listP T P

The list corresponding to [1, 2, 3] then has the representation type

Υ ` [1, 2, 3] ↓ 〈word(1), sgl(1 : nat),
sgl([2, 3] : listP nat P)〉

The proofs terms, having sort Prop, do not appear as elements in
the representation type.

6.3.2 Elimination Candidates
Recall from Sect. 2.1.2 that the type of a label argument to case
depends upon the corresponding constructor; the types of hNil and
hCons, for example, are partially determined by their being the
targets for the nil and cons cases, respectively. In this section we
define the elimination candidates for a given .

Definition 6.4 (Elimination candidates) Given a value, v , of
inductive type T , and n , where

Inductive T : Set :=
...
| Cn : ∀(x1 : A1) . . . (xm : Am), T
...

the elimination candidate for v , T , and n is

elims v T n = (Ctor(n, T ) x1 . . . xm ,
(x1 : A1) . . . (xm : Am)
(p : v = Ctor(n, T ) x1 . . . xm))

where the xi and p are chosen to be fresh.

The elimination candidate represents the possible head-normal
forms for the value v , with new variables for the (unknown) con-
structor arguments. The candidate consists of the head-normal
form, which is used to construct the representation type, and a con-
text containing these new variables along with a proof that v equals
the head-normal form, used to construct the target label type.

Example 6.4 The elimination candidates for list T and some
value v are

elims v (list T ) 0 = (nil , ε)
elims v (list T ) 1 = (cons a as, (a : T )(as : list T )

(p : v = cons a as))

where a , as , and p are fresh. The context part of each candidate
gives the extra arguments for the hNil and hCons labels.

Example 6.5 The elimination candidates for listP T P and some
value v are

elims v (listP T P) 0 = (nilP , ε)
elims v (listP T P) 1 = (consP a p as,

(a : T )(p : P a)
(as : listP T P)
(q : v = consP a p as))

where a , as , p, and q are fresh. Note that, unlike the
representation type for listP (see Eg. 6.3), the elimination
candidates are effected by the extra proof term: the environment
portion of elims v (listP T P) 1 includes the proof p.



These operations, and hence singleton types, are defined only
for inductive types without arguments3: constructing useful elimi-
nation candidates for inductive families is rather involved. Support-
ing them is left as future work.

6.4 Well-formed instruction sequences
The judgement for well-formed instruction sequences forms the
heart of the type system for Singleton.

Definition 6.5 (Well-formed instruction sequence) The
judgement

Υ ; ∆; Ψ ; Γ ` IS

holds when the instruction sequence IS is well-formed under the
logical context Υ , type context ∆, heap type Ψ , and register file
type Γ . The rules for this judgement are given in Fig. 7.

Arithmetic operations. The typing rules for arithmetic operations
are more specific than with a traditional TAL as they must track
the operation performed in the type of the target register: in the
addition case, for example, we have that the destination register
has type word(n1 + n2) where n1 and n2 are the word values
corresponding to the two argument registers. The rule for loading
an immediate also produces a word type.

Existential operations. The typing rules for existential types are
straightforward: the pack instruction hides a logical term value in
a type, so we must check that when we substitute the given value
back into the type we get that of the source register. Furthermore,
we must check that value being hidden is well-formed.

The unpack operation performs the opposite operation, obtain-
ing previously hidden values. We abuse α-conversion here so that
the names bound by the existential are identical to the those of the
target variables. Thus, we simply extend the logical and type con-
texts and update the target register with the body of the existential.

Singleton operations. The typing rules relating to singleton op-
erations rely on the auxiliary judgements from Sect. 6.3.

The inject operation constructs a singleton type, and thus
requires that the type of the source register is the representation
type for the target singleton type.

Conversely, the project operation destroys a singleton with
a specific value, and thus simply updates the destination register
with the representation type at that value. Note that this operation
is well-typed only when the representation type exists; in the case
of non-primitive singleton types, this means that the head of the
associated value is equivalent to a constructor.

The coerce operation rewrites the singleton value using a proof
of equality; we must check that the proof is actually an equality,
and that the source register is a singleton with a value equivalent to
the left hand side of the equality. This operation is also defined for
word types; this case is similar to the general singleton case.

The case operation eliminates a non-primitive singleton type
by case analysis: the elimination candidates for this type give all
possibilities for the associated value, introducing new variables for
unknown constructor arguments (see Defn. 6.4). For each elimina-
tion candidate the corresponding label must refer to a code type
which abstracts over the elimination context. Furthermore, the tar-
get register file type must be a subset of the current register context
after updating the destination register with the representation type
for the elimination value.

Code operations. The branching operations require that the tar-
get is fully applied: the br operation is well formed if the given

3 Parameters, that is, arguments to the type which are constant for a given
type are defined; this is the case for T and P for listP T P above.

(extended) label points to a fully-applied code type, the jump op-
eration is similar except that the target label is sourced from a reg-
ister. The beq instruction is slightly different in that the target type
abstracts over an equality proof for the argument words. As usual,
all instructions require the target register file to be a subset of the
current register file.

The apply operation is well formed if the arguments are appli-
cable at the type of the source register; application gives the new
type, which is used to update the destination register.

Similarly, loading a constant label differs from a traditional TAL
only in that the immediate is an extended label. The rule for the lda
operation then updates the target register with the heap type at the
given label, taking into account any arguments.

6.5 Well-formed values and programs
The well-formed value judgements are used to show that register
files and heaps are well-formed, and hence that programs are well-
formed. These judgements are standard, taking into consideration
any extended labels.

Following Hamid et al. [6], a well-formed program requires that
the instruction sequence resides in the heap. This property, required
to show type erasure, is rather more complicated in Singleton than
in a traditional TAL.

Definition 6.6 (Heap suffix membership) The judgement

` IS ∈ H

holds when IS is a suffix of some object in the heap H .

In essence, this judgement states that IS can be obtained from
some code value in the heap H by dropping instructions and in-
stantiating any bound variables.

Definition 6.7 (Well-formed program) The judgement

` P

holds when P is a well-formed program.

This holds when for some heap type Ψ and register file type Γ ,
the heap, register file, and instruction sequence are all well-formed,
and the instruction sequence exists in the heap.

7. Type Safety and Type Erasure
We have developed [14] a machine-checked model of Singleton
in the system Coq, showing both type safety and type erasure
properties. Space constraints require that we only broadly discuss
the proofs of these properties; the Coq scripts for these proofs are
available at

http://www.cse.unsw.edu.au/~sjw/thesis/proofs/

An important lemma in the type-safety proof is the soundness
of the well-formed application judgement; we show the following
progress- and preservation-like lemmas for applications.

Lemma 1 If Ψ ` hv : τ and Υ; ∆ ` τ@ΣB σ then
|= hv@ΣB hv′ for some hv ′.

We note that all CiC terms in hv ′ are well-formed under the
context Υ .

Lemma 2 If Ψ ` hv : τ , and Υ; ∆ ` τ@ΣB Γ, and
|= hv@ΣB IS then Ψ ` IS : Γ.

We show type safety using the usual progress and preservation
lemmas.

Lemma 3 (Progress) If ` (H,R, I) then I = halt [τ ] or
(H,R, I) 7−→ P for some P .

http://www.cse.unsw.edu.au/~sjw/thesis/proofs/


Υ; ∆; Ψ; Γ ` IS

Γ r1 = word(n1) Γ r2 = word(n2)
Υ; ∆; Ψ; Γ{rd 7→ word(n1 + n2)} ` IS

Υ; ∆; Ψ; Γ ` add rd, r1, r2; IS

Υ; ∆; Ψ; Γ{rd 7→ Γ rs} ` IS

Υ; ∆; Ψ; Γ ` move rd, rs; IS

Υ; ∆; Ψ; Γ{r 7→ word([[n]])} ` IS

Υ; ∆; Ψ; Γ ` ldi r, n; IS

Γ rs = 〈. . . , τ 1
n, . . .〉

Υ; ∆; Ψ; Γ{rd 7→ τn} ` IS

Υ; ∆; Ψ; Γ ` load rd, rs(n); IS

Γ rs = τn Γ rd = 〈. . . , τϕn , . . .〉
Υ; ∆; Ψ; Γ{rd 7→ 〈. . . , τ 1

n, . . .〉} ` IS

Υ; ∆; Ψ; Γ ` store rs, rd(n); IS

Υ; ∆ ` τi :: κi
Υ; ∆; Ψ; Γ{r 7→ 〈~τ~0〉} ` IS

Υ; ∆; Ψ; Γ ` alloc r, ~τ ; IS
(i ≤ |~τ |)

τ = ∃(x : T ).ξ Υ 
 v : T Υ; ∆ ` τ :: π Γ rs = ξ[x := v]
Υ; ∆; Ψ; Γ{rd 7→ τ} ` IS

Υ; ∆; Ψ; Γ ` pack rd, rs as τ hiding v; IS

Γ rs = ∃(x :A).τ Υ, x : A; ∆; Ψ; Γ{rd 7→ τ} ` IS

Υ; ∆; Ψ; Γ ` unpack rd, rs as x; IS

Γ rs = τ Υ ` v ↓ τ
Υ; ∆; Ψ; Γ{rd 7→ sgl(v : T )} ` IS

Υ; ∆; Ψ; Γ ` inject rd, rs as sgl(v : T ); IS

Γ rs = sgl(v : T ) Υ ` v ↓ τ
Υ; ∆; Ψ; Γ{rd 7→ τ} ` IS

Υ; ∆; Ψ; Γ ` project rd, rs; IS

Γ rs = sgl(v : T ) Υ 
 p : v = u
Υ; ∆; Ψ; Γ{rd 7→ sgl(u : T )} ` IS

Υ; ∆; Ψ; Γ ` coerce rd, rs using p; IS

Γ rs = word(n) Υ 
 p : n = m
Υ; ∆; Ψ; Γ{rd 7→ word(m)} ` IS

Υ; ∆; Ψ; Γ ` coerce rd, rs using p; IS

Γ rs = sgl(v : T )
Υ; ∆; Ψ ` Li B ∀Φi.Θi Υ ` wi ↓ τi Θi ⊆ Γ{rd 7→ τi}

for i s.t. elims v T i = (wi,Φi)

Υ; ∆; Ψ; Γ ` case rd, rs, ~L
(T 6≡βι nat)

Γ r1 = word(n1) Γ r2 = word(n2)
Υ; ∆; Ψ ` LB ∀(p : n1 = n2).Θ Θ ⊆ Γ

Υ, p : n1 6= n2; ∆; Ψ; Γ ` IS

Υ; ∆; Ψ; Γ ` beq r1, r2,L as p; IS

Υ; ∆; Ψ ` LBΘ Θ ⊆ Γ

Υ; ∆; Ψ; Γ ` br L

Γ r = Θ Θ ⊆ Γ

Υ; ∆; Ψ; Γ ` jump r

Υ; ∆; Ψ ` LB τ
Υ; ∆; Ψ; Γ{r 7→ τ} ` IS

Υ; ∆; Ψ; Γ ` lda r, L; IS

Υ; ∆ ` (Γ rs)@ΣB τ
Υ; ∆; Ψ; Γ{rd 7→ τ} ` IS

Υ; ∆; Ψ; Γ ` apply rd, rs, Σ; IS

Γ r0 = τ

Υ; ∆; Ψ; Γ ` halt [τ ]

Figure 7. Well-formed instruction sequences. Recall that [[n]] is the the logical value corresponding to the natural number n.

Lemma 4 (Preservation) If ` P and P 7−→ P ′ then ` P ′.

Singleton is rather type-heavy, so we show that any well-formed
program can be erased to a simple machine state, such that evalua-
tion of the program is matched by machine transitions.

Theorem 5 (Erasure) If ` P , and P 7−→ P ′ and P erases to the
machine state s, then s steps (in zero or more steps) to some state
s′ such that P ′ erases to s′

We note that the erasure proof is similar to the proofs required
to construct a syntactic FPCC [6] system. The main difference lies
in the multiple machine steps required by the translation of the
case instruction: the FPCC approach requires that each machine
step correspond to some program step.

The case instruction is translated into a computed jump into a
table of branches, one entry for each label argument to case. The
exact steps are (ignoring the register move component): (1) load
the index of the tuple under consideration into a temporary register;
(2) use this address to calculate the address of a branch instruction
inside the array of branches; (3) jump to this computed address;
and (4) branch to the target label.

While we have presented the simpler case instruction, we be-
lieve that it is possible to encode each step as a separate instruction,
allowing a straightforward FPCC proof.

8. Related Work
The type language (TL) of Shao et al. [12] is a variant of the cal-
culus of inductive constructions. TL is intended to be a general-
purpose type language for certified programs. As a specific in-
stance, the authors present λH , a lambda calculus with singleton
words and booleans, conditionals, fixpoints, existentials, and tu-
ples. Existentials hide TL terms, and thus both computational types
and logical terms and proofs. The terms in the computational lan-
guage are outside TL.

TL is used as both the assertion logic and as a language for
encoding computational types, which are simply terms in some
inductive kind. Thus, it is possible to define multiple classes of
computational types; the authors use this to encode their types for
λH and for a CPS-converted language. Furthermore, types built
from existing types need no extra machinery.

We cannot use TL directly to implement Singleton: TL does not
include a facility to eliminate inductive kinds as required to con-
struct representation types. We can, however, construct a similar
system if we make the representation type explicit in the gener-
alised singleton type.

We use something similar in our encoding of Singleton in the
Coq system, described in [14]. The implementation using TL is,
due to impredicativity, somewhat simpler; in particular, abstracting
over types and representation functions is straightforward.

This approach is not without problems: the representation func-
tion can be an arbitrary function, thus making type checking incom-
plete. The representation function does not need to be a single-level



elimination, and so our practice of checking case instructions by
considering all possible constructors will not necessarily yield a
concrete computational type.

Finally, we note that the sgl constructor is not actually required;
we can use f v instead of sgl t f v , that is, we identify a singleton
and its representation type. Unfortunately, these three pieces of in-
formation, the type, the function, and the value, are all required by
the case instruction: we perform case analysis on v , and discover-
ing f and v through unification is, in general, undecidable .

The logical type theory (LTT) of Crary and Vanderwaart [4]
takes a similar approach to TL, using linear LF [3] as the asser-
tion logic rather than CiC; see [4, Sect. 7] for a comparison. The
core computation language of LTT is the higher-order polymorphic
lambda calculus extended with computational products and depen-
dent products over proof kinds and families. The language is in-
stantiated by giving a signature defining the syntax of the assertion
logic and language primitives.

The considerable difference between CiC and LF makes it hard
to compare Singleton in detail to LTT. Assuming a variant of LLT
whose computation language is an assembly language, rather than
a lambda calculus, the main difference to Singleton types is clearly
the lack of inductive types in LTT.

Our treatment of inductive data types is similar to the guarded
recursive datatype constructors of Xi et al.[16]; in particular, they
show how datatype families can be considered as a combination
of recursive, sum, and existential types. Although this approach
generalises our representation types, it requires the addition of
dependent kinds to our type system; whether their approach is
feasible in our system we leave to future work.

Our singleton types are similar to refinement types [1, 5, 13]: the
type { x : T | P } is a refinement of the type T such that P holds,
where x is bound in P . We can simulate such types in Singleton by

Inductive refinement (t : Set)(P : t → Prop) : Set :=
| refinementI : ∀(v : t), P v → refinement t P

Although refinement types subsume our singleton types, in that
the refinement types {x : T | x = v} corresponds to the type
sgl(v : T ), we cannot simply replace singleton types by refinement
types: our use of representation types requires an associated value.
Furthermore, Singleton’s use of explicit proof terms obviates the
need for refinement types as any restrictions can be more conve-
niently encoded as a proof assumption.

Xi and Harper[15] propose a dependently typed assembly lan-
guage (DTAL) with singleton word types and length indexed array
types. The annotations in DTAL are formulas of linear arithmetic;
the typing rules accumulate contexts of refinement types relating to
the variables in these formulas. In addition, code blocks can quan-
tify over variables with refinement type; these variables may appear
in the indicies of word and array types. As with our system, these
indicies limit the mutability of constrained types.

A major difference between DTAL and Singleton lies in the
treatment of proofs: in DTAL proofs are discovered by the type
checker using linear constraint solvers, compared to the explicit
proof-terms found in Singleton. While this reduces the size of type
annotations, it requires type indices to be decidable. In addition,
constraint satisfaction in DTAL is NP-complete, allowing potential
denial-of-service attacks on the type checker. Finally, we note that
DTAL programs can be converted into Singleton programs, assum-
ing the constraint satisfaction solver is certifying.

Harren and Necula [7] give a dependently typed assembly lan-
guage used as a target for their CCured tool [10]. The system is
parameterised by a type policy, which takes the form of a set of
constraints and constants, along with operations for refining sets of

these constraints when given new information. The constants are
used to construct expressions for register types.

This system, unlike Singleton, allows mutable dependent fields.
This comes at a cost, however, as inter-record dependencies are
not allowed: constraints can refer only to the current record. It is
unclear as to whether, and to what extent, constraints can refer to
records contained in the current record. We note that, like DTAL,
type checking requires constraint operations to be decidable.

9. Discussion
While we have given Singleton as an idealised TAL, we believe that
it can be extended to support the usual features, such as a stack, of
an assembly language.

We presented Singleton as a TAL, although we believe the idea
of Singleton is not restricted to low-level languages. We chose
such a language in order to emphasise the difference between
the computational language and the assertion language. However,
higher-level languages are certainly also possible.
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