
Virtualizing Embedded Systems – Why Bother?

Gernot Heiser
NICTA and University of New South Wales

Sydney, Australia
gernot@nicta.com.au

ABSTRACT
Platform virtualization, which supports the co-existence of
multiple operating-system environments on a single physical
platform, is now commonplace in server computing, as it can
provide similar isolation as separate physical servers, but
with improved resource utilisation.

In the embedded space, virtualization is a new develop-
ment, which is likely to become more widespread in the next
few years. Unlike the server world, where virtualized sys-
tems typically run multiple copies of the same (or similar)
operating systems, most uses of virtualization in the em-
bedded space are heterogenous, combining different classes
of operating systems: an RTOS for traditional embedded
real-time programming, and a fully-featured (“rich”) oper-
ating system to support complex applications such as user
interfaces.

We provide a number of examples of present or likely use
cases of virtualization in embedded systems, and explain the
motivation and benefits, as well as some of the differences
to server-style virtualization.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

General Terms
Design, Reliability, Security

Keywords
Virtual machines, hypervisors, virtualization, safety, secu-
rity, processor consolidation

1. INTRODUCTION
Virtualization has proved to be a game-changer in the

server space, fundamentally because it enables better re-
source usage through co-locating services, while maintain-
ing strong quality-of-service (QoS) isolation. Resources here

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2/11/06 ...$10.00.

refers not only to the computing platform per se (CPU,
memory etc.) but also plant infrastructure and electric en-
ergy required for powering computers and air conditioners.

There are secondary benefits of virtualization which are
becoming increasingly important, such as ease of checkpoint-
ing whole systems, migrating services between geographi-
cally distributed centres, replay for debugging, the ability
to run old versions of an operating system (OS) to support
legacy software.

In addition, virtualization is used increasingly on desk-
tops. Usually, the main motivation is to provide access to a
second OS, usually for running applications not available on
the user’s primary OS. Other uses include low-level system
development, and sandboxing of potentially dangerous code.

At a first glance, none of the above virtualization use
cases seem to have any relevance to embedded systems. Yet
there is increasing interest in virtualization in the embed-
ded world [Hei08], including end-user deployments. In this
paper we look at what drives the uptake of virtualization in
embedded devices. We examine in detail three kinds of vir-
tualization uses: consumer-electronics (CE) devices, where
virtualization is used to co-locate real-time environments
with desktop-like OSes that provide a high-level program-
ming environment for applications, devices where virtualiza-
tion is used to provide an isolated environment for safety- or
security-critical components, and cars, where virtualization
is used to integrate infotainment with automotive control
and convenience functionality.

2. VIRTUALIZATION USE CASES

2.1 Consumer Electronics
Presently, the most developed use cases of embedded vir-

tualization are in consumer electronics (CE) devices, espe-
cially the biggest of all (in terms of global revenue): the
mobile phone. The first virtualized phone, the Motorola
Evoke, went on sale in April 2009 [Hei09].

The driver for virtualization in this device (and most other
CE use cases) is the co-existence of multiple OS environ-
ments. Running multiple OSes is also a main motivation for
the adoption of virtualization in the server space. The big
difference is that in servers, the OSes are either the same or
of a similar nature (fullly-featured, feature-rich OSes such
as Linux or Windows). In contrast, virtualization on CE
devices typically combines vastly different OSes, such as a
“rich” OS (eg. Android or Windows) and a simple real-time
OS (RTOS).

The reasons behind such a heterogenous design are the

combination of real-time requirements on the one hand, and
growing functionality (and hence complexity) on the other
hand, which is typical for many CE devices.

RTOS

Baseband
Software

Apps

Processor

Figure 1: Old-style phone design.

Mobile phones are a good example of this. They have
grown from simple voice-communication devices to personal
computers in the pocket. This immense growth of func-
tionality (and software complexity) necessitated a change in
system design. Only a few years back, the standard design of
a (feature-rich by the standards of the day) phone consisted
of a general-purpose processor (typically complemented by
a DSP and possibly other accelerators) under the control of
an RTOS. The RTOS supported the real-time operation of
the radio software (called the baseband stack), as well as an
application programming environment for the user-visible
functionality (dialler, address book, rudimentary internet
applications), as shown in Figure 1.

The growth in user-visible applications lead to smart-
phones, characterised by the existence of PC-like applica-
tions, such as web browsers and full-featured email clients,
and, most importantly, the ability to download and install
a wide range of “apps”. This turned the phone into an open
platform, similar to a PC. And, in order to support the de-
velopment of apps (by now there are hundreds of thousands),
it required a feature-rich OS with a standardised and famil-
iar programming interface (API).

Apps Processor

RTOS

Baseband
Software

Rich OS

Apps

Baseband Processor

Figure 2: Smartphone design.

As shown in Figure 2, the typical design of a smart-
phone uses two separate processors, a baseband processor
which runs an RTOS supporting the radio protocol soft-
ware, and an application processor, which runs a rich OS
(Linux/Android, Symbian, iOS or Windows) and provides
the open environment for the numerous apps.

There is an intermediate design, enabled by virtualization,

as shown in Figure 3. This design is suitable for lower-end
smartphone-like devices, which run a rich OS but do not re-
quire the processing power (and energy use) of two separate
processors. It uses a single processor (core), which a hypervi-
sor presents to software as two separate (virtual) processors,
one for the baseband, the other for the application stack.

The above-mentioned Motorola Evoke used this design: A
single ARM926 processor, designed as a baseband processor
and clocked at around 200MHz, runs the Linux and BREW
OSes in separate virtual machines, provided by the OKL4
microkernel acting as a hypervisor.

Processor

Hypervisor

RTOS + Baseband stack

BREW
apps

Linux OS

Linux apps

BREW OS

App VM Baseband VM

Figure 3: Virtualized phone design as in the Mo-
torola Evoke.

The designers of the Evoke made good use of the fact
that the two OS environments, although in different virtual
machines, shared the same physical processor: They em-
ployed the fast communication mechanisms provided by the
OKL4 microkernel to allow media players hosted on Linux
to use the BREW rendering engines [Hei09]. Communica-
tion overheads would have been much higher if the OSes ran
on separate physical processors, probably too high to share
rendering engines.

Processors used in contemporary smartphones have the
baseband and application cores integrated on a single chip,
which eliminates most of the cost advantage of the design of
Figure 3. However, this does not spell the end of virtualiza-
tion for phones, to the contrary. The increased processing
power available on phones, and the trend for phones (and
tablets) to replace PCs, creates new drivers for the uptake
of virtualization technology.

Phones and tablets are increasingly replacing laptops as
devices of choice used for remotely accessing enterprise IT
systems, as well as for personal information, connectivity
and entertainment. However, people prefer to use a device of
their choice, rather than a standard-issue (and locked-down)
business phone or tablet, and they are certainly disinclined
to carry two similar devices, one for personal and the other
for business use.

Virtualization can be used to support a “bring your own
device” (BYOD) scenario, where an employee can own (and
mostly control) a device but still access the enterprise system
securely [DoCo06,OKL10]. In the BYOD approach, two sep-
arate logical phones, private and business, exist on a single
physical one, as depicted in Figure 4. Each runs in its own

Apps Processor

Hypervisor

Enterprise
apps

Open OS

Personal
apps

Personal Virtual Phone Enterprise Virtual Phone

Trusted OS

Figure 4: Personal and work phones integrated on
a single physical device.

virtual machine on the physical phone hardware. The busi-
ness phone is under control of enterprise IT staff, and con-
figured for the needs of the enterprise, while the owner has
full control over the personal phone. Virtualization-enforced
isolation keeps enterprise data safe, even if the user installs
a malicious app on the personal phone. And in turn, the
user’s private data is out of reach of the business phone.

2.2 Secure Communication Devices
The above BYOD phone/tablet use case is an example

of the use of virtualization for security. A slightly different
design is presently prototyped for more sensitive national-
security use cases. The idea is to make secure communi-
cation devices less expensive by basing them on standard
commercial designs. As indicated in Figure 5, this approach
uses virtualization to provide a secure environment with a
minimal trusted computing base (TCB). This environment
houses critical components which implement a secure voice-
over-IP communication channel. It uses crypto software to
allow secure transmission of voice calls over the untrusted
phone software [OKL11].

Apps Processor

Hypervisor

Open OS

Personal
apps

Personal Virtual Phone

Secure
Comms
Apps
(VoIP,…)

Secure
Comms VM

Minimal
OS env.

Shared
Resource
VMs

Driver
.

Figure 5: Secure communication on standard phone.

The main difference to the BYOD use case is that instead

of supporting two complete systems, this design only isolates
the minimal (security-critical) functionality, and relies on
the standard environment to handle the (encrypted) data.
The secure environment does not require much of an OS,
mostly some support libraries; the code executes on bare
(virtual) hardware. This keeps the attack surface small.

2.3 Medical devices
Many other virtualization use cases are a result of the in-

creasing functionality (and, as a result, complexity) of many
security- or safety-critical devices. Examples are medical de-
vices, payment systems and cars.

Life-supporting medical devices used to be bulky, expen-
sive and located in hospitals and clinics, where they were op-
erated by specialists with years of training. Increasingly such
devices are wearable or implanted, which means that they
must be operated remotely (requiring sizeable and complex
communications software) or by the patient (requiring easy
and intuitive user interfaces). In either case, the critical, life-
supporting function must co-exist with large and complex
software stacks, often including complete multi-million-line
OSes (like Linux or Windows). Such software is inevitably
buggy and thus unreliable, and must therefore be prevented
from unduly interfering with the life-supporting software.

Processor

Hypervisor

Rich OS

GUIs etc

Life
Support

RTOS

Figure 6: Patient-operated medical device with
graphical user interface (GUI).

Isolation could be achieved by physical separation with
a simple connection (eg. a serial line), but this approach is
expensive, effectively doubling the system cost. A better
alternative is to co-locate both parts onto one (single- or
multi-core) processor, and achieve the isolation by putting
the parts into separate virtual machines, as shown in Fig-
ure 6.

Conceptually, this design is similar to the one of Fig-
ure 5: it also tries to minimise the amount of trusted code.
The same general structure, a small, critical subsystem co-
existing with a large, untrusted software stack, appears in
many modern designs. An example are payment systems,
which are increasingly part of a larger (frequently mobile)
system.

2.4 Cars
Automotive software presents another case for virtualiza-

tion, for yet different reasons. The standard approach to
automotive electronics used to be to provide a separate mi-

crocontroller for each function. With the proliferation of
control and convenience functionality, this is quickly becom-
ing really expensive, as each of these electronic control units
(ECUs) needs power supplies and at least one communi-
cation interface, and must be packaged to withstand heat,
water, grease, acid and vibrations. The balance-of-system
cost can easily be an order of magnitude higher than the
cost of the basic microprocessor and memory components.

This issue has been partially addressed by the move to
protected multi-tasking operating systems, in particular AU-
TOSAR [AUTO], which supports implementing multiple
functions on a single ECU. However, AUTOSAR is very
much designed for traditional automotive control and con-
venience functions, and does not support the growing area
of infotainment, which requires interaction with CE devices
and standards. Moreover, the two domains are becoming
increasingly integrated: for example, information on road
conditions obtained through the infotainment system is used
to adjust engine and steering behaviour (eg. an “electronic
stability program” reacts to road conditions).

Processor

Hypervisor

Infotainment OS

Virtual Bus

Infotainment
apps

AUTOSAR

Virtual Bus

Automotive
apps

Figure 7: Integration of infotainment and con-
trol/convenience functions in cars.

Virtualization supports a safe integration of the infotain-
ment and the classic automotive worlds, by providing an
automotive OS (such as AUTOSAR) on the same ECU as
one (or several) CE OSes (Linux or Windows), plus a gate-
way which converts the different communication standards,
as shown in Figure 7 [HH08]. The benefits of this approach
are significant, in terms of reduced hardware cost as well
as overall system complexity. As a consequence, the first
deployments of virtualized ECUs are not far off (expected
in 2012). Similar issues, and possible solutions, exist in the
world of aerospace, although deployment there is likely to
take longer.

3. HARDWARE SUPPORT
The importance of virtualization in server and desktop

computing has resulted in the introduction of architectural
support [UNR+05]. Intel includes their architectural sup-
port in their Atom processors, which are aimed at use in
high-end embedded systems. The mobile embedded space is
these days dominated by ARM processors. The importance
manufacturers put on virtualization can be seen in the fact

that late last year ARM announced their own architectural
support [ARM10]. Hardware implementations are expected
for 2012. Vendors of other processor architectures are also
working on virtualization extensions to their architectures.

These extensions have in common that they support full
virtualization, enabling the execution of unmodified native
OS binaries in a virtual machine. Without such extensions,
an OS must be modified (“para-virtualized”) in order to run
in a virtual machine, an expensive (in terms of engineering
cost) and error-prone procedure. Hardware extensions can
also help to reduce the run-time overhead of virtualization,
by significantly reducing the frequency of hypervisor invoca-
tions (although this is a lesser issue in embedded processors,
where very low overheads are achievable even without hard-
ware support [HL10]).

4. CONCLUSIONS
Virtualization in embedded devices is happening. It is al-

ready deployed in some CE domains, and will soon appear
elsewhere, especially the automotive sector. Fundamentally
its attraction is the ability to support the co-existence of
vastly different subsystems at reduced overall system cost.
Typically, virtual machines are used to support unprotected
RTOSes together with high-level rich OSes, vertical-specific
OS and communication standards together with CE stan-
dards, and security- or safety-critical subsystems together
with large, complex application stacks. Processor manufac-
turers are working on providing hardware support in order
to reduce the cost of virtualization.

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

5. REFERENCES
[ARM10] ARM Architecture Group. Virtualization

Extensions Architecture Specification, 2010. URL
http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0406b_
virtualization_extns/index.html.

[AUTO] AUTOSAR. http://www.autosar.org.

[DoCo06] NTT DoCoMo and Intel Corp. Open and secure
terminal initiative (OSTI) architecture
specification. http://www.nttdocomo.co.jp/
english/corporate/technology/osti/, Oct
2006.

[Hei08] G. Heiser. The role of virtualization in embedded
systems. In 1st WS Isolation & Integration Emb.
Syst., pages 11–16, Glasgow, UK, Apr 2008.
ACM SIGOPS.

[Hei09] G. Heiser. The Motorola Evoke QA4: A case
study in mobile virtualization. White paper,
Open Kernel Labs, Jul 2009.
http://www.ok-labs.com/_assets/image_
library/evoke.pdf.

[HH08] A. Hergenhan and G. Heiser. Operating systems
technology for converged ECUs. In 6th Emb.
Security in Cars Conf. (escar), Hamburg,
Germany, Nov 2008. ISITS.

[HL10] G. Heiser and B. Leslie. The OKL4 Microvisor:
Convergence point of microkernels and
hypervisors. In 1st APSys, pages 19–24, New
Delhi, India, Aug 2010.

[OKL10] Open Kernel Labs. Open Kernel Labs unveils
SecureIT mobile for building secure smartphones.
http://www.ok-labs.com/releases/release/open-
kernel-labs-unveils-secureit-mobile-for-building-
secure-smartphones, Oct
2010.

[OKL11] Open Kernel Labs. OK Labs and Fixmo to
deliver mobile security for military, government,
and enterprise.
http://www.ok-labs.com/releases/release/open-
kernel-labs-and-fixmo-collaborate-to-deliver-
mobile-security-solution, Feb
2011.

[UNR+05] R. Uhlig, G. Neiger, D. Rodgers, F. C. M.
Martins, A. V. Anderson, S. M. Bennett,
A. Kägi, F. H. Leung, and L. Smith. Intel
virtualization technology. IEEE Comp.,
38(5):48–56, May 2005.

