
Secure Microkernels, State Monads and Scalable
Refinement

David Cock1, Gerwin Klein1,2, and Thomas Sewell1

1 Sydney Research Lab., NICTA?, Australia
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{david.cock|gerwin.klein|thomas.sewell}@nicta.com.au

Abstract. We present a scalable, practical Hoare Logic and refinement
calculus for the nondeterministic state monad with exceptions and failure
in Isabelle/HOL. The emphasis of this formalisation is on large-scale ver-
ification of imperative-style functional programs, rather than expressing
monad calculi in full generality. We achieve scalability in two dimensions.
The method scales to multiple team members working productively and
largely independently on a single proof and also to large programs with
large and complex properties.
We report on our experience in applying the techniques in an extensive
(100K lines of proof) case study—the formal verification of an executable
model of the seL4 operating system microkernel.

1 Introduction

This paper touches on three main topics: the verification of a secure operating
system microkernel, the state monad as used in Haskell progams, and formal
refinement as the verification technique in the correctness proof.

The main motivation for our work is the first of these three. In the larger
context, we are aiming to design and fully formally verify the seL4 microkernel
down to the level of its ARM11 C implementation. The seL4 microkernel [4,6] is
an evolution of the L4 familiy [15] for secure, embedded devices. As described
elsewhere [5], the design of seL4 involved building a binary compatible prototype
of the kernel in the programming language Haskell which subsequently was
automatically translated into Isabelle/HOL to arrive at a very detailed, executable
formal model of the kernel. This operational model is inherently state based, and
the corresponding Haskell program makes extensive use of the state monad to
express the corresponding state transformations. The model is low level in the
sense that it uses data types such as 32 bit wide finite machine words, models
the heap memory of the eventual C program explicitly as part of its state, and
mutates typical pointer data structures such as doubly linked lists on that heap.

Complementing this executable model is a still operational, but more abstract
specification of the functional behaviour of seL4. This more abstract model
?

NICTA is funded by the Australian Government as represented by the Department of Broadband,

Communications and the Digital Economy and the Australian Research Council.

uses nondeterminism to leave details unspecified and uses, for instance, abstract
functions instead of explict pointer representations (although it still makes use
of references on many occasions, e.g. to model the user-visible sharing behaviour
of particular data structures).

This paper presents the main techniques we used in verifying that the exe-
cutable model correctly implements its abstract specification. It should be noted
explicitly that we did not aim for maximum generality and theoretical depth in
either the formalisations or the techniques. Instead, we focused on simplicity, easy
applicability, and most importantly scalability of the methods. As a microkernel,
seL4 is neither nicely modular, nor does it implement a nicely self contained
abstract algorithm. Compared to other verifications, the main challenge was to
deal with a highly complex, intermingled set of low-level data structures with high
reliance on global invariants exploited in various optimisations. The size of the
specifications, with about 3K lines of Isabelle definitions on the abstract and 7K
lines on the concrete side, implies a massive proof effort which we aimed to spread
over multiple people working concurrently, with as little need for interaction and
coordination as possible.

In summary, this paper can be seen as a study on how far you can get with
the simplest possible methods. It is our hypothesis that it was precisely this
simplicity that enabled us to achieve this large-scale verification.

The contributions of this paper are as follows.

– We formalise the nondeterministic state monad with exceptions and failure
in Isabelle/HOL. This subsumes the state monad with exceptions that is
commonly used in Haskell.

– We present a Hoare Logic and refinement calculus on the above, both simple
yet scalable and practical.

– We report on our experience in applying the above to a binary compatible,
executable model of seL4 microkernel translated from Haskell.

The following sections provide detail on each of these in turn.

2 State Monads

A state monad allows a pure functional model of computation with side effects.
For result type ’a and state type ’s, the associated monad type (abbreviated
(’s, ’a) state-monad) is ’s ⇒ ’a × ’s. That is, a function from previous state
to next state together with a computation result. A pure state transformer is
typically denoted by the one-valued return type unit ie. ’s ⇒ unit × ’s.

All monads define two constructors, here called return and bind. For the state
monad they are defined as follows:

return :: ’a ⇒ (’s,’a) state-monad
return a ≡ λs. (a, s)

bind :: (’s,’a) state-monad ⇒ (’a ⇒ (’s,’b) state-monad) ⇒ (’s,’b) state-monad
bind f g ≡ λs. let (v , s’) = f s in g v s’

2

Note that as Isabelle/HOL is simply typed, it is not possible to straightfor-
wardly define the monad type constructor as in Haskell, defining return, bind and
associated syntax once, and thereby proving results generically about the class
of monadic types. The solution that we adopt is to instantiate for specific monad
constructors, e.g., return :: ’a ⇒ ’a state-monad .

The constructor return simply injects the value a into the monad type, passing
the state unchanged, whilst bind sequentially composes a computation f, and a
computation g (a function from the return type of f). The expression bind f g
is abbreviated as a >>= b. To allow concise description of longer computations,
we define a do syntax in a similar fashion to Haskell:

f >>= g ≡ do x ← f ; g x od

A state monad also defines two additional constructors: get and put, the primitive
state transformers (here () is the sole element of type unit):

get :: (’s, ’s) state-monad put :: ’s ⇒ (unit , ’s) state-monad
get ≡ λs. (s, s) put s ≡ λ-. ((), s)

The constructors of all monads must obey the following three laws, which we
have instantiated and proved for each monad instance:

return x >>= f = f x return bind
m >>= return = m bind return
(m >>= f) >>= g = m >>= (λx . f x >>= g) bind assoc

The simple state monad is able to model sequential computations with
side-effects, but does not provide good notation for non-local flow control (e.g.
exceptions). A straightforward way to model try-catch-style exceptions is to
instantiate the state monad using the sum type ’e + ’a (for result type ’a and
exception type ’e) in place of the simple result type. Every component in the
monad now returns either Inr a in case of success, or Inl e in case of failure
with exception e. To complete the model we require a new bind constructor,
bindE which propagates exceptions, and the catch constructor to embed the error
monad into the non-error state monad.

lift f g ≡ case v of Inl e ⇒ throwError e | Inr v’ ⇒ f v’

bindE f g ≡ f >>= lift g

catch f handler ≡ do x ← f ;
case x of Inl e ⇒ handler e | Inr b ⇒ return b

od

In formulating an abstract behavioural model, it is convenient to express com-
putation nondeterministically. This is readily modelled as an extension of the state
monad by allowing each computation to return a (possibly empty) set of value-
state pairs: ’s ⇒ (’a × ’s) set, and redefining bind as λs.

⋃
{g a s’ | (a,s’) ∈ f s}.

This formulation has a drawback however: The obvious way to model failure, fail
≡ λs. {}, admits the existential statement: “For all states s, not all paths fail”.
What we desire, however, is the universal statement “For all states s, no path
fails”, which cannot be expressed as a simple predicate on the state set, as the
failure case ({}) is dominated in the union by the non-failure case. One solution

3

is to append a failure flag which is propagated separately, and which dominates
non-failure in bind. This leads us to the following definitions:

return a ≡ λs. ({(a, s)}, False)
bind f g ≡ λs. (

S
fst ‘ (λ(x , y). g x y) ‘ fst (f s),

True ∈ snd ‘ (λ(x , y). g x y) ‘ fst (f s) ∨ snd (f s))

In addition to the state monad constructors get and put, we define select
and alternative to perform nondeterministic actions. Constructor select is a
nondetermistic return, and takes a set of values, while alternative executes one of
the two computations passed as arguments.

get :: (’s,’s) nd-monad put :: ’s ⇒ (unit ,’s) nd-monad
get ≡ λs. ({(s, s)}, False) put s ≡ λ-. ({((), s)}, False)

select :: ’a set ⇒ (’s,’a) nd-monad fail :: (’s,’a) nd-monad
select A ≡ λs. (A × {s}, False) fail ≡ λs. ({}, True)

The nondeterminism inherent in the model allows us to model input conve-
niently: do x ← select InputAction; f x od. We use fail to indicate catastrohpic
failure in the kernel (e.g. a kernel panic). It is part of the proof to show that
these are never triggered.

3 Hoare Logic on State Monads

The Hoare triple {|P |} f {|Q |} is a predicate on the computation f, stating that if
the precondition P holds before executing f, then the precondition Q will hold
afterwards. For the nondeterministic state monad, the basic hoare triple also
needs to take into account the return value and is defined as follows:

{|P |} f {|Q |} ≡ ∀ s. P s −→ (∀ (r , s’)∈fst (f s). Q r s’)

Note that the postcondition Q is a binary predicate while P is unary. For the
state monad with exceptions, we define:

{|P |} f {|Q |}, {|R|} ≡ {|P |} f {|λr s. case r of Inl a ⇒ R a s | Inr b ⇒ Q b s|}

This specifies a seperate postcondition for the exception and non-exception cases.
All of the following rules have a natural expression for the state-exception monad
in terms of this augmented Hoare triple.

To build a calculus for reasoning about monadic computations, we first state
and prove axiomatic rules for the basic constructors:

{|λs. P () x |} put x {|P |} put-wp {|λs. P s s|} get {|P |} get-wp
{|P x |} return x {|P |} return-wp

Constructor bind requires a more complicated family of rules, to capture the
interaction of the pre- and post-conditions of composed computations:

∀ x . {|B x |} g x {|C |} {|A|} f {|B |}
{|A|} f >>= g {|C |}

seq

4

Note that the seq rule does not lose information in the universal quantifier. The
intermediate predicat B can always be made strong enough to describe result
values of f and preconditions on the parameter of g precisely.

Finally, to complete the basic calculus we introduce a weakening rule, to
substitute arbitrary preconditions. The analogous rule holds or postconditions.

{|Q |} f {|R|} ∀ s. P s −→ Q s

{|P |} f {|R|}
weaken

Similar rules can be created for the absence of failure in the computation.

4 Verification Condition Generator

As usual in Hoare Logic, reasoning within this calculus can be substantially
automated by the use of a verification condition generator (VCG) if we phrase
our structural Hoare rules in weakest-precondition (WP) form. The rules given
for put, get and return in Sect. 3 are weakest-precondition rules. As an example,
consider the following definition of the modify constructor, and the proof of its
associated weakest precondition rule:

modify f ≡ do s ← get; put (f s) od

We wish to show {|λs. P () (f s)|} modify f {|P |}. Before invoking the VCG, we
unfold definitions until the goal is phrased in terms of known operations. The
VCG then produces the following proof steps automatically.

It starts by applying the weaken rule to replace the concrete precondition
with a schematic3 precondition, ?Q, and an implication. We get two new goals:

1 . {|λs. ?Q |} do s ← get; put (f s) {|P |}
2 . ∀ s. P () (f s) −→ ?Q

The VCG now repeatedly tries to apply one from its set of WP rules. The
rule for the bind operator will match the current goal, because its postcondition
is fully general (matching the concrete P) and the precondition, that might
be concrete in the rule, matches the schematic precondition that we have just
created in the goal. If the WP set is constructed correctly, the goal will alway
remain in this form and for every operator there will be one rule that matches.
In our example, the VCG would apply seq, put-wp, and get-wp in turn, which
leaves the user with only the implication introduced at the first step. This is a
HOL formula, free of both monad and Hoare syntax:

1 . ∀ s. P () (f s) −→ P () (f s)

Here, the goal is trivial, because the precondition we set out to prove was the
weakest precondition. We could now add this new WP rule for modifiy to the set
available to the VCG, to avoid having to unfold the definition of modify in the
future. In this manner we progressively build the calculus towards a higher and
higher level of abstraction. So far, our use of the VCG is fairly standard.
3 Schematic variables in Isabelle stand for terms that can be instantiated (as opposed

to free variables that need to remain fixed in proofs).

5

Note that, if we add rules that are not strictly weakest-precondition, we do
not affect the soundness of the VCG, we simply take the risk that the implication
goal produced may be false, indicating that our rules need to be strengthened.

The weakest-precondition rules mentioned so far all apply to an arbitrary
postcondition. For elementary functions like put, get and modify, rules of this
form are easily stated. In principle such a rule can be stated for any of the
monadic functions we use. In practice, however, the preconditions in these rules
will be of exponential term size with respect to the complexity of the operator.
The tractable solution we have found is to supply the VCG instead with Hoare
triples that have specific postconditions and manually simplified preconditions.
In principle these can still be weakest precondition rules, however this is not
normally the case. An example is set-ep-valid-objs:

{|λs. valid-objs s ∧ valid-ep v s|} set-endpoint ep v {|λrv s. valid-objs s|}

The set-endpoint function replaces the state of an endpoint found at a given
pointer location. The valid-objs predicate in the postcondition is one of our global
invariants, and establishes that all objects satisfy certain validity criteria. Clearly
for this to be maintained we need the additional information that the endpoint
value being inserted satisfies the validity criteria for endpoints, valid-ep. This is
not the weakest possible precondition, as it globally asserts in valid-objs that the
endpoint about to be replaced is valid, which is unnecessary. The precise weakest
precondition would be tedious to define, and the too-strong precondition will
always be true in practice.

Hoare triples with specific postconditions complicate the VCG as additional
efforts must be made to connect the postconditions available to the one that is
needed. To illustrate this problem, consider the scenario in which we wish to
establish valid-objs after a pair of endpoint updates.

{|λs. valid-objs s ∧ valid-ep v s ∧ valid-ep v’ s|}
do set-endpoint p v ; set-endpoint p’ v’ od
{|λrv . valid-objs|}

The VCG can divide the problem using seq and apply set-ep-valid-objs to
the Hoare triple for the second update. The postcondition for the first update will
then be λrv s. valid-objs s ∧ valid-ep v’ s. To apply set-ep-valid-objs again,
the VCG must use the conjunction lifting rule.

{|P |} f {|Q |} {|P’ |} f {|Q’ |}
{|λs. P s ∧ P’ s|} f {|λrv s. Q rv s ∧ Q’ rv s|}

conj-lift

The conjunction operator is one of a family of first order logic operators that have
a VCG lifting rule. Conjunction, disjunction, universal and existential operators
have lifting rules, but the negation operator does not. Implication is dealt with
by reducing to a disjunction and negation, after which the negation must be
dealt with explicitly.

By default the VCG will use only the conj-lift lifting rule and will use it
only conservatively, that is, only when one of its assumptions can immediately
be resolved using an available rule. If asked, the VCG can use any of these rules

6

aggressively, that is, whenever possible. Conjunction occurs in our postconditions
regularly and other operators rarely, thus this facility has been found sufficient.

The motivation for this restricted behaviour is pragmatism with respect to
the interactive proof process. Our hypothesis is that it is more helpful for the
VCG to be conservative, manipulating postconditions only when it knows it is
making progress and stopping otherwise, than to be aggressive and occasionally
return to the user an unexpected or counterintuitive interactive state. The above
behaviour loosely conforms to this policy.

The VCG is not limited to Hoare triples. Rules for absence of failure as
mentioned in Sect. 3 can be similarly automated within the same tool.

5 Refinement Calculus

The ultimate objective of our proof effort is to prove the refinement property [3]
between abstract and concrete processes. For our purposes, a process is defined
by an initialisation function which sets up the total state with reference to some
external state, a step function which reacts to an event, and a finalisation function
which retreives the external state.

record process = Init :: ’external ⇒ ’state set
Step :: ’event ⇒ (’state × ’state) set
Fin :: ’state ⇒ ’external

The execution of a process from a starting external state through a series of input
events results in a set of external states at that point.

steps δ ≡ foldl (λS j . δ j ‘‘ S)
execution A s js ≡ Fin A ‘ steps (Step A) (Init A s) js

One process is refined by another if its execution over the same input events
always results in a set of states that is a subset of those produced by the other.

A v C ≡ ∀ js s. execution C s js ⊆ execution A s js

Refinement is commonly proven by establishing forward simulation, a property
which implies it. To prove forward simulation we introduce a relation state-relation
which connects the states of the two processes. We must show that the relation is
established by Init, that it is maintained if we advance the systems in parallel, and
that it is sufficient to equate the external state. The ;; operator in this definition
is relation composition.

fw-sim state-relation C A ≡ (∀ s. Init C s ⊆ state-relation ‘‘ Init A s)
∧ (∀ j . state-relation ;; Step C j ⊆ Step A j ;; state-relation)
∧ (∀ s s’ . (s, s’) ∈ state-relation −→ Fin C s’ = Fin A s)

To address our scalability concerns, we wish to decompose the refinement
problem into smaller subproblems and transfer the refinement statement to the
state monad. The simplest way to do this is to scale the forward simulation down
to component functions. The corres predicate captures forward simulation over
a single concrete monadic function and its abstract counterpart. It takes three
additional parameters. The relation R must apply to any possible return values.

7

The preconditions P and P’ restrict the input states, allowing use of information
such as global invariants.

corres R P P’ m m’ ≡ ∀ (s, s’)∈state-relation. P s ∧ P’ s’ −→
(∀ (r’ , t’)∈fst (m’ s’). ∃ (r , t)∈fst (m s). (t , t’) ∈ state-relation ∧ R r r’)
∧ (snd (m’ s’) −→ snd (m s))

Note that the outcome of the monadic computation is a pair of result and
failure flag. The last part of the corres statement above is stronger than strictly
needed for refinement. It states that failure on the concrete m’ implies failure on
the abstract m. This means we only have to show absence of failure on the most
abstract level and get absence of failure on all concrete levels by refinement.

The key property of corres is that it decomposes over the bind constructor
through the corres-split rule.

corres-split:
corres r’ P P’ a c ∀ rv rv’ . r’ rv rv’ −→ corres r (R rv) (R’ rv’) (b rv) (d rv’)

{|Q |} a {|R|} {|Q’ |} c {|R’ |}
corres r (P and Q) (P’ and Q’) (a >>= b) (c >>= d)

Similar splitting rules exist for other common monadic constructs such as
bindE, catch and conditional expressions. There are standard results for the
elementary monadic functions. An example is:

corres-return:
r x y

corres r (λs. True) (λs. True) (return x) (return y)

The corres predicate also has a weakening rule, similar to the Hoare Logic.

corres-precond-weaken:
corres r Q Q’ f g ∀ s. P s −→ Q s ∀ s. P’ s −→ Q’ s

corres r P P’ f g

Proofs of the corres property take a common form. Firstly the definitions of the
terms under analysis are unfolded and the corres-precond-weaken rule is used.
Like in the VCG, this allows the syntactic construction of a precondition which
suits the proof. The various splitting rules are used to decompose the problem,
in some cases with carefully chosen return value relations. Preexisting results are
used to solve the component corres problems. Some of these preexisting results,
such as corres-return, require compatibility properties on their parameters.
These are typically established using information from previous return value
relations. The VCG eliminates the Hoare triples, bringing preconditions assumed
in corres properties at later points back to preconditions on the starting states.
Finally, the precondition that was actually used must be proved a consequence
of the one that was originally assumed.

6 Case Study – The seL4 Microkernel

In this section, we give an overview of the seL4 microkernel, its two formalisations
in Isabelle/HOL, some of the properties we have proved on them, and our

8

experience in this verification. With about 10,000 lines of C code, 7,500 lines
of executable model and 3,000 lines of abstract Isabelle/HOL specification, the
kernel is too large for us to provide any kind of useful detail in a conference paper,
or even just a comprehensive overview of its formalisation. We do not attempt to
do so; instead we provide a very high level view of its functionality, and show
bits and pieces of the formalisation to give an impression of the general flavour.

6.1 Overview

As mentioned in the introduction, seL4 is an evolution of the L4 microkernel
family. The main difference to L4 is that it is entirely capability based, unifying
all resource accounting and access control into a single mechanism.

All kernel abstractions and system calls are provided via named, first-class
kernel objects. Authorised users can obtain kernel services by invoking operations
on kernel objects. Authority over these objects is conferred via capabilities only.
System call arguments can either be data or other capabilities. Similar to L4,
seL4 provides three basic abstractions: threads, address spaces and inter-process
communication (IPC). In addition, seL4 introduces an abstraction, untyped
memory (UM), which represents a region of currently unused physical memory.

An important part of the seL4 design is that all memory—be it the memory
directly used by an application (e.g. memory frames) or indirectly in the kernel
(e.g. page tables), is fully accounted for by capabilities. A parent capability to
untyped memory can be refined into child capabilities to smaller sized untyped
memory blocks or into other kernel objects via the retype operation on UM
objects. The creator can then delegate all or part of the authority it possesses
over the object to one or more of its clients. Untyped capabilities can be revoked.
This removes all corresponding child capabilities from clients and prepares the
memory spanned by that capability for retyping.

These mechanisms make seL4 a highly flexible microkernel supporting a
number of practical application scenarios. A simple one is running a full legacy
guest OS (e.g. Linux) next to a critical, trusted communications stack. Another
one is to provide full separation between components at multiple different security
levels with strict controls on explicit information channels between them.

6.2 Formalisation

We now give a very brief introduction to the formalisation of seL4. We begin
with the state space of the abstract model.

This state is embedded into a process modelling machine execution of which
we only make the kernel execution precise. User mode is free to mutate any
user-accessible part of the state. The transitions for kernel execution are defined
by nondeterministic monadic functions as presented in the previous sections. The
triggers for these transitions are timer interrupts, kernel trap instructions (user
level kernel calls), page faults, and user-level faults. We collect all of these in the
data structure event that is shared with the executable level:

9

datatype syscall = Send | Wait | SendWait | Identify | Yield

datatype event = SyscallEvent syscall | UnknownSyscall nat |
UserLevelFault nat | TimerInterrupt | VMFaultEvent vptr bool

The type syscall models user level calls (sending/replying to IPC, identifying
capabilities, yielding the current time slice). The other events are machine
generated. Arguments to system calls are read from machine registers in binary
form and decoded for further processing. This decoding phase is fully precise in
the abstract specification, and therefore very similar on the executable and the
abstract level. It is a major part of the programmer visible API specification. In
fact, typical kernel reference manuals describe almost exclusively this syntactic
part, and only sketch the semantics of the system. The latter is the bulk of the
specification in our case.

The abstract state space of seL4 is a record with the following components.

record state = pspace :: obj-ref ⇀ kernel-object
cdt :: cte-ptr ⇀ cte-ptr
cdt-revokable :: cte-ptr ⇒ bool
cur-thread :: obj-ref
machine-state :: machine-state

datatype kernel-object = CapTable cap-ref ⇀ cap | TCB tcb |
Endpoint endpoint | AsyncEndpoint async-ep | Frame

The whole state space declaration is about 200 lines of Isabelle definitions,
we mention only the salient points. The pspace component models the kernel-
accessible part of memory. In this abstract view, it is a partial function from
object references (machine words) to kernel objects. Separately from this, we
model the capability derivation tree (CDT) in two components. The mapping
database is the data structure that keeps track of the parent/child relationship
between capabilities. It is realised as a partial function from child capability table
entry (CTE) locations to parent CTE locations, i.e., a tree of CTE locations. In
this model4, there are two types of of kernel objects that can store capabilities:
cap tables and thread control blocks (TCBs). A CTE location is fully determined
by the location of the kernel object (an obj-ref) and a position within that kernel
object (a cap-ref). As mentioned, cap tables store capabilities. TCBs back the
kernel accounting for threads, synchronous and asyncronous endpoints are the
kernel objects that back IPC and Frame objects stand for user data frames.
The remaining two components of the global state are a pointer to the TCB of
the current thread and the machine context (register state, for instance). We
currently do not model the machine context in detail, but instead have a set of
axiomatised functions like loadRegister/storeRegister on type machine-state.

Since the machine context is the main part of the shared outside-observable
part of the two models, we have proved during refinement that the observable
effect of reads, writes, cache flushes, TLB flushes, etc. is the same on both

4 We present a slightly simpler, earlier version of the model here. The current version
also contains interrupt tables and page table data structures.

10

levels. In the next step of refinement, to C, we plan to eliminate these remaining
straightforward axioms and provide a direct model for the machine context.

In the concrete, executable model our abstract view of the CDT, as well as
the abstract state of cap tables and other kernel objects vanish. Instead, they
are encoded in much more detail. The CDT, for instance, becomes a doubly
linked list together with a number of flags for level information, stored in machine
words within CTEs. On the other hand, we gain a number of additional state
components backing data structures that were not necessary on the abstract level.
These are: a table of scheduling ready queues (indexed by a priority byte), and a
scheduler action which effectively points to the next thread’s TCB.

record kernel-state = ksPSpace :: pspace
ksReadyQueues :: 8 word ⇒ ready-queue
ksCurThread :: 32 word
ksSchedulerAction :: scheduler-action
ksMachineState :: machine-state

On the C level, ksPSpace corresponds to the heap and ksMachineState to
the machine context as it does on the abstract side. The rest are global pointer
variables. This means, the executable model is close to the final implementation.

For refinement, we need to define the process datatypes of the models. The
executable model has a single entry point callKernel which handles the event type
defined above. It is fairly natural then to define the Step component of the process
datatype as the outcome of this nondeterministic monadic operator. Likewise,
the Init component is based on resetting the state to the default newKernelState
and then running the initKernel function. The Fin component is simply the
ksMachineState projection. The abstract process is defined similarly.

The refinement property can then be proven from corres properties and Hoare
triples. Firstly, we establish that our global invariant collections invs and invs’
are invariants of the respective processes.

{|λs. s = new-kernel-state|} init-kernel entry frames offset kFrames {|λrv . invs|}
{|invs|} call-kernel e {|λrv . invs|}, {|λrv . invs|}

{|λs. s = newKernelState|} initKernel entry frames offset kFrames {|λrv . invs’ |}
{|invs’ |} callKernel e {|λrv . invs’ |}, {|λrv . invs’ |}

Secondly, we establish that all elements of the Init sets are related.

(new-kernel-state, newKernelState) ∈ state-relation

corres dc (λs. s = new-kernel-state) (λs. s = newKernelState)
(init-kernel entry frames offset kFrames)
(initKernel entry frames offset kFrames)

Finally we establish that the main execution steps correspond.

corres (intr ⊕ dc) invs invs’ (call-kernel event) (callKernel event)

From these we can establish forward simulation, which implies refinement. The
statements above are slightly simplified versions of our theorems which involve
more preconditions on machine behaviour.

11

6.3 Properties

We now give a description of some of the properties and invariants we proved on
these two formalisations in addition to the main refinement theorem that states
the concrete level is a correct implementation of the abstract specification.

One of the first properties proved on both levels was that all system calls
terminate. Since HOL is a logic of total functions, this is a necessary condition
to write down the kernel behaviour. The proof for most of the kernel was
straightforward, we had initially only one complex, mutually recursive case: the
delete operation that removes capabilities. We have since transformed it into a
statically bounded recursion such that we can guarantee the absence of stack
overflows will at runtime.

The main invariant of the kernel is simple: all references in the kernel, be it in
capabilities, kernel objects or other data structures always point to an object of
the expected type. This is a dynamic property as memory can be re-typed during
runtime. Despite its simplicity, it is the major driver for almost all other kernel
invariants. Exceptions are low-level invariants like address 0 is never inhabited
by any object, or objects are always aligned to their size.

The main validity predicates (such as valid-objs and valid-ep mentioned previ-
ously) are liftings of the well-typedness criterion above to the entire heap, thread
states, scheduler queues and other state components. An example of a more
complex invariant, that we required to prove that well-typedness is preserved,
is: A kernel object k1 contains a reference to kernel object k2 if and only if
there exists a (possibly transitive) reference back from k2 to k1. This symmetry
condition can be used to conclude that if an object contains no references itself,
there will be no dangling references to it in the rest of the kernel. It would
therefore be safe to remove such an object once capability references are checked.
To avoid inefficient object state checks, we additionally observe: If an object is
live (contains references to other objects), there exists a capability to it.

Testing for capabilities is much easier, because they are tracked explicitly in
the CDT. CDT-related properties are:

Linked List. The doubly linked list structure is consistent (back/forward point-
ers are implemented correctly), the lists always terminate in NULL, and the
list together with the additonal tags correctly implements a tree. This is a
basic shape property.

Chunks. If two CTEs point to the same memory location, they have a common
ancestor and all entries between them in the CDT point to this same memory
location. This ensures various tests in the kernel can be implemented locally.

Cap Parency. If an untyped capability c1 covers a sub-region of another capa-
bility c2, then c1 must be a descendant of c2 according to the CDT.

Object Parency. If a capability c1 points to a kernel object whose memory is
covered by an untyped capability c2, then c1 must be a descendant of c2.

All of these together ensure that memory can be retyped safely and with minimal
local checks: if an untyped capability has no children, then all kernel objects in
its region must be non-live (otherwise there would be capabilities to them, which

12

in turn would have to be children). If the objects are not live and no capabilities
to them exist, there is no further reference in the whole system that could be
made unsafe by the type change.

This example is the most complex chain of invariants we had to create for a
single operation. Other operations, such as IPC and scheduling have their own,
but simpler requirements.

6.4 Experience and Lessons Learned

The total effort for the refinement proof described here was ca. 100K lines of
Isabelle/HOL and 5 person years. The proof lead to over 100 changes in each
of the two specifications. The majority of the changes were for ease of proof:
slight re-arrangement of code, avoidance of unnecessary optimisations, local tests
instead of global assumptions. The majority of actual bugs were typographical
and copy & paste errors that slipped through prior testing. Unsurprisingly,
there were far more of these simple mistakes on the abstract level than on the
executable one. The abstract level was only type checked, never run, since it is
not executable. We found on the order of 10 conceptual problems and oversights
which would have lead to crashes or security exploits—as would have most of
the typos. These were mainly missing checks on user input, subtle side effects in
the middle of operations, or (rarely) too-strong assumptions on what is invariant
during execution. Security attacks became apparent via invariant violations.

We found that the kernel programming team usually knew the invariants
precisely and used them for optimisations. In fact, the developers were often
able to articulate clearly why a certain property should hold or why a certain
test was unnecessary. A number of the security breaches mentioned above were
discovered during these discussions with the developers. On the other hand, it
was the formal proof that forced us to have the discussion in the first place.

In terms of lessons learned, we confirm the usual observation that the more
abstract the easier, and the less assumptions on global state the easier. In this
light, it was expected that the low-level CDT and the large, concrete initialisation
phase of the kernel belonged to the more unpleasant parts of the proof.

After an initial full proof of refinement was achieved, we found that new
features could be added with reasonable effort. This depends on how independent
the new feature is from the rest of the system. If it uses its own data structure
that is not accessed anywhere else, the effort is largely proportional to the size
of the feature. If, on the other hand, it is highly intermingled with the rest of
the system, a factor of the size of the kernel times the size of the feature is to
be expected. For instance, adding multiple capability arguments to system calls
(as opposed to one only) was easy, with about 2 person weeks of effort, although
it concerned changes fairly deep in IPC message decoding and transfer. On the
other hand, we hypothesise that the effort for the whole verification so far was
quadratic in the size of the kernel. Since in a microkernel almost every basic
feature relies on properties of almost all other features (IPC, TCBs, CTEs, CDT
are all highly connected), proving preservation of a new invariant on one feature
will involve significant work not only on this, but on all other features in the

13

kernel as well. The refinement proof itself remains linear in the size of the kernel.
With more modular code, one would expect independent data structures and
therefore invariant proofs of a size proportional to the code.

Another observation concerns invariant discovery. We began with a simple
invariant that was needed for the refinement proof (well-typedness) and let that
drive the invariant discovery process. In hindsight it would, after a short initial
phase, have probably been more effective to just write down all the invariants
that we suspected we would need in one go. At multiple points we hoped to
get away with a simpler formulation, but then were caught out halfway through
the kernel by a particular operation after several thousand lines of proof. We
then ended up with the complex, precise form anyway. The lesson is: in such a
complex system, the simple formulation is unlikely to succeed. Take the precise
formulation instead, even if it looks like more work initially. As mentioned above,
a good source of invariants is the development team.

In terms of proof engineering and the methods presented in this paper, we
believe we have achieved our goal of scalability. Up to four people worked on
this proof concurrently and independently without much conflict. We estimate
that for code of this size (10K lines of C code) a team with more than five or six
persons would need a more serious effort in planning and synchronisation.

Once the framework and the invariants are set up, and more importantly once
the kernel is well understood, the proof is not too hard and should be readily
repeatable. We see potential for more automation in the refinement proof and in
exploratory automatic invariant proofs. Simple invariants can often be stated and
proved automatically for many functions at a time. This could automatically be
tried for a set of basic properties before manual proof starts. We have developed
first steps in this direction, but have not made it the focus so far.

In conclusion, code verification on this level of detail and size of code is
entirely feasible with current theorem proving technology.

7 Related Work

Earlier work on OS verification includes PSOS [7] and UCLA Secure Unix [19].
Later, KIT [1] describes verification of process isolation properties down to object
code level, but for an idealised kernel far simpler than modern microkernels.
The VeriSoft project [9] is attempting to verify a whole system stack, including
hardware, compiler, applications, and a simplified microkernel VAMOS. The
VFiasco [13] project is attempting to verify the Fiasco kernel, another variant
of L4 directly on the C++ level. The Coyotos [17] kernel is being designed for
verification, but it is unclear how much progress has been made. Craig [2] provides
a number of high-level OS kernel formalisations in Z, but does not attempt any
machine-checked proofs which at this size of specification we consider a necessity.

The House and Osker kernels [11] (in Haskell) and the Hello kernel [8] (in
Standard ML) demonstrated that modern functional languages can be used to
develop bare metal implementations of operating systems. In contrast to that,
we see our Haskell implementation of the kernel as a prototype only.

14

Other approaches to translating Haskell into Isabelle include [10,12,14]. Since
none of the approaches were able to parse our code base, we use an own translator.
For the work presented here, we need to assume correctness of this translator. In
the longer term, this is not needed, because the final theorem will be a refinement
theorem between the abstract Isabelle model and the C program. We have already
invested significant effort into modelling C precisely [18].

Our treatment of Hoare Logic on monads is much less general than the one
of Mossakowski et al. [16]. We do not make assertions part of the program which
in our setting would provide barriers for splitting up the same proof among
multiple persons. As mentioned before, we trade generality for simplicity, and for
lighweight infrastructure with an emphasis on scalability.

8 Conclusion

We have presented simple, but effective techniques for reasoning about state-based
functional programs and for proving formal refinement on them. Although we
have not aimed at full generality, we are convinced that the combination of basic
monads we used covers a wide range of practical programs in languages such as
Haskell or ML. Our case study has shown that it is practical to fully formally
verify programs of thousands of lines of code at this level.

The salient points of our Hoare Logic are that it is simple enough to be
automated effectively; but despite its simplicity, expressive enough to be easily
applicable. Our extension of classic refinement to the nondeterministic state
monad is formally largely straightforward, and the calculus presented is not
complete. Again, the main point is that it is engineered such that a large-scale
proof can be effectively divided up into mostly independent parts. Classical
step-wise refinement calculi do not necessarily work well within this paradigm
and often require window reasoning and other complex context tracking.

The case study we report on constitutes the formal, fully machine-checked
verification of a binary-compatible executable model of seL4. Binary compatible
means that the corresponding Haskell program, together with a hardware simu-
lator, can execute normal, compiled user-level ARM11 binaries that would run
unchanged on bare hardware. This includes low-level hardware feedback: cache
flushes, TLB loads, etc. To our knowledge, this is the first such verification of an
OS microkernel of this size and complexity.

Although the verification reported on here reaches a level of detail far greater
than that usually present when a software system is claimed to be verified, we
refrain from calling seL4 itself “fully formally verified” yet. Our goal is to take
the verification from the executable model down to the level of C code, compiled
and running on hardware.

Acknowledgements We thank the other current and former members of the
L4.verified and seL4 teams, Michael Norrish, Jia Meng, Catherine Menon, Jeremy
Dawson, Simon Winwood, Harvey Tuch, Rafal Kolanski, David Tsai, Andrew Boy-
ton, Kai Engelhardt, Kevin Elphinstone, Philip Derrin and Dhammika Elkaduwe
for their help and support.

15

References

1. W. R. Bevier. Kit: A study in operating system verification. IEEE Transactions
on Software Engineering, 15(11):1382–1396, 1989.

2. I. D. Craig. Formal Models of Operating System Kernels. Springer, 2007.
3. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof

Methods and their Comparison. Number 47 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1998.

4. P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty. Running
the manual: An approach to high-assurance microkernel development. In Proc.
ACM SIGPLAN Haskell WS, Portland, OR, USA, Sept. 2006.

5. D. Elkaduwe, P. Derrin, and K. Elphinstone. A memory allocation model for an
embedded microkernel. In Proc. 1st MIKES, pages 28–34, Sydney, Australia, 2007.

6. K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards a practical,
verified kernel. In Proc. 11th Workshop on Hot Topics in Operating Systems, page 6,
San Diego, CA, USA, May 2007.

7. R. J. Feiertag and P. G. Neumann. The foundations of a provably secure operating
system (PSOS). In AFIPS Conf. Proc., 1979National Comp. Conf., pages 329–334,
New York, NY, USA, June 1979.

8. G. Fu. Design and implementation of an operating system in Standard ML. Master’s
thesis, Dept. of Information and Computer Sciences, Univ. Hawaii at Manoa, 1999.

9. M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the correctness
of operating system kernels. In Proc. 18th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’05), pages 1–16, Oxford, UK, 2005.

10. T. Hallgren, J. Hook, M. P. Jones, and R. B. Kieburtz. An overview of the
Programatica Tool Set. High Confidence Software and Systems Conference, 2004.

11. T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach. A principled approach
to operating system construction in Haskell. In ICFP ’05: Proceedings of the
tenth ACM SIGPLAN international conference on Functional programming, pages
116–128, New York, NY, USA, 2005. ACM Press.

12. W. L. Harrison and R. B. Kieburtz. The logic of demand in Haskell. Journal of
Functional Programming, 15(6):837–891, 2005.

13. M. Hohmuth and H. Tews. The VFiasco approach for a verified operating system.
In Proc. 2nd ECOOP Workshop on Programm Languages and Operating Systems,
Glasgow, UK, Oct. 2005.

14. B. Huffman, J. Matthews, and P. White. Axiomatic constructor classes in Is-
abelle/HOLCF. In J. Hurd and T. F. Melham, editors, TPHOLs, volume 3603 of
LNCS, pages 147–162. Springer, 2005.

15. J. Liedtke. On µ-kernel construction. In 15th ACM Symposium on Operating
System Principles (SOSP), December 1995.

16. T. Mossakowski, L. Schröder, and S. Goncharov. A generic complete dynamic logic
for reasoning about purity and effects. In J. Fiadeiro and P. Inverardi, editors,
Fundamental Approaches to Softeware Engineering (FASE 2008), volume 4961 of
LNCS, pages 199–214. Springer, 2008.

17. J. Shapiro. Coyotos. www.coyotos.org, 2006.
18. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In M. Hof-

mann and M. Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, page 12, Nice, France, Jan. 2007.

19. B. Walker, R. Kemmerer, and G. Popek. Specification and verification of the UCLA
Unix security kernel. CACM, 23(2):118–131, 1980.

16

www.coyotos.org

