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Abstract. This paper presents a mechanisation of some basic computability the-
ory. The mechanisation uses two models: the recursive functions and the λ-
calculus, and shows that they have equivalent computational power. Results proved
include the Recursion Theorem, an instance of the s-m-n theorem, the existence
of a universal machine, Rice’s Theorem, and closure facts about the recursive
and recursively enumerable sets. The mechanisation was performed in the HOL4
system and is available online.

1 Introduction

This paper describes mechanisation work in one of computer science’s foundational ar-
eas: computability theory. This is the theory of what can and cannot be computed by ab-
stract computing machines, using models such as Turing machines, register machines,
the λ-calculus and the recursive functions. This paper’s focus is on the last two of these
models, mainly because of their simplicity (in the case of the recursive functions), and
because an existing background theory was available (in the case of the λ-calculus).

By showing the computational equivalence of the two models, we gain additional
assurance that their mechanisations are correct. The other standard results, showing
what the models are and are not capable of, further validate the work.

Mechanisation in an area such as this is intellectually satisfying in itself. Addi-
tionally, the development should provide the wherewithal to mechanise computability
arguments where this has not been possible before. For example, Urban, Cheney and
Berghofer’s impressive paper, Mechanising the Metatheory of LF [10] includes an argu-
ment to the effect that the algorithm they have formalised (and shown correct) is indeed
computable. In the absence of a theory of computability, the argument that the rules
of the algorithm are computable is by a combination of careful discussion, suggestive
theorems, and (necessarily un-formalised) human inspection.

Contributions
– The first mechanisation of the λ-calculus as a model of computation, including

standard auxiliary notions such as the Church numerals.
– A mechanised proof of computational equivalence between two different models:

the λ-calculus and the recursive functions.
– Mechanised proofs of a number of standard results from computability theory.
– Discussion of the results and theorem-proving techniques that made the above pos-

sible, including use of: the isomorphism between de Bruijn terms and quotiented
λ-terms, the standardisation theorem, simplification with pre-orders, and bracket
abstraction.



HOL4 Notation and Theorems All statements appearing with a turnstile (`), or as
natural deduction style rules, are HOL4 theorems, automatically pretty-printed to LATEX
from the relevant theory in the HOL4 development. Notation specific to this paper is
explained as it is introduced. Otherwise, HOL4 supports a notation that is a generally
pleasant combination of quantifiers (∀, ∃) and functional programming (λ for function
abstraction, juxtaposition for function application). Hilbert choice is available with the
syntax (εx. P x), meaning “the x such that P holds”. Such a term has an unspecified
value if there is no such x.

The paper also uses the polymorphic option type (α option), with possible values
SOME x and NONE. The THE function maps SOME x to x, and is unspecified on NONE.
The term OPTION_MAP f x returns SOME (f y) when x is SOME y, and NONE when x
is NONE.

Lists are constructed with the infix “cons” function ::. The length of a list ` is writ-
ten |`|. Lists support other standard operations such as MAP.

Availability The sources for the mechanisation described in this paper are available as
part of the standard HOL4 distribution (“Kananaskis-6” release), available from hol.

sourceforge.net.

2 The λ-Calculus: First Steps

This work would not have been possible without earlier mechanisation effort targetting
relevant aspects of the λ-calculus. In particular, it relies on my earlier proof of the
standardisation theorem [3], and Vestergaard’s and my proof [4] that the de Bruijn terms
and their associated notion of β-reduction are isomorphic to the λ-terms (quotiented
name-carrying syntax) with their own notion of β-reduction.

The λ-terms used in this earlier work, and thus in this paper also, are either vari-
ables (v), (left-associating) applications (M � N) or abstractions (λv. M). These are
terms of the object language: the bold lambda is a constructor (which takes a string and
a λ-term as arguments) creating a value of type term within the higher-order logic. In
contrast, the normal lambda of the meta-language creates values in the logic’s func-
tion spaces. Similarly, the variable constructor, denoted with underlining, injects values
from the HOL type of strings into the term type.

These terms are quotiented, and so have equality results such as

(λv. v) = (λu. u)

The free variable function over terms is written FV, and the substitution notation is
M[v := N], meaning the term resulting from substituting term N for the (free) variable
with name v throughout term M.



2.1 Normal Order Reduction

Definition 1. To guarantee that λ-evaluations find normal forms, we use normal order
reduction:

(λv. M) � N →n M[v := N]

M1 →n M2 ¬is_abs M1
M1 � N →n M2 � N

M1 →n M2

(λv. M1) →n (λv. M2)

N1 →n N2 bnf M ¬is_abs M
M � N1 →n M � N2

where the predicate is_abs is true of a term if it is an abstraction.

We are then able to prove that if a term can β-reduce to a β-normal form, then a
(necessarily deterministic) normal reduction will eventually arrive at the same place:

` M →∗β N ∧ bnf N ⇒ M →∗n N

The proof is as per Barendregt [1, §13.2]: in essence, a standard reduction (in the sense
of the standardisation theorem) that reaches a β-normal form must also be normal-
order as such a reduction can’t have ignored a potential redex in its sweep across a
term (outermost, left-to-right). By the standardisation theorem, all β-reductions can
be emulated by a standard reduction, and so all β-reductions to normal forms can be
emulated by normal order reduction.

2.2 Rewriting with β-Equivalence; Bracket Abstraction

In developing the λ-calculus implementations of types such as numbers and de Bruijn
terms, it is critical to be able to prove facts of the form M ≡β M′, stating that M is
β-equivalent to M′. (The β-equivalence relation is the symmetric, reflexive, transitive
closure of the relation that reduces one β-redex.)

The HOL4 simplifier supports rewriting with arbitrary pre-orders, and rewriting
with an equivalence (where we additionally have symmetry) is generally quite pleasant.
One has to provide introduction rules such as

M1 ≡β M2 N1 ≡β N2

M1 ≡β N1 ⇐⇒ M2 ≡β N2

which switches the simplifier from rewriting an equality (boolean equivalence in this
case) to β-equivalence. In addition, one can use the following rewrites

` bnf N ⇒ (M →∗n N ⇐⇒ M →∗β N)

` bnf N ⇒ (M →∗β N ⇐⇒ M ≡β N)

to move to rewriting with ≡β from goals mentioning→∗n and→∗fi.
It’s very important to be able to rewrite with theorems already proved, results such

as (see Section 2.3 below for more on Church numerals and arithmetic)

` cplus � church m � church n →∗n church (m + n)



This theorem is a statement about normal order reduction, not β-equivalence, but the
simplifier is primed by the inclusion theorem:

` M →∗n N ⇒ M ≡β N

and is able to use the above as a rewrite. Because β-equivalence is a congruence, such
rewrites can be applied at any point within a term.

The basic rule governing β-redexes is present too:

(λx. M) � N ≡β M[x := N]

but use of this rule is best avoided because of the possibility that bound variables will
need to be renamed.

One might initially hope not to have to deal with variable renaming in a setting
where the terms are already quotiented with respect to α-equivalence. Indeed, there is
no semantic problem, but rather a pragmatic problem to do with making simplification
as smooth as possible. The problem stems from the abstraction clause of the substitution
rewrite:

` v 6= u ∧ v /∈ FV N ⇒ (λv. M)[u := N] = (λv. M[u := N])

It is not necessarily the case that the bound v will always be fresh with respect to the
particular N. In that situation, the desired rewrite could be made to go through by first
proving

(λv. M) = (λw. M[v := w])

where w was chosen to be suitably fresh. Then this equality could be used to substitute
“equals-for-equals”, and the simplifier would end up simplifying the term

M[v := w][u := N]

before proceeding further.
Implementing this is certainly possible, but would involve writing special-purpose

code in ML that the simplifier could call out to as it traversed a term. It seems cleaner to
use a technique that can work with the simplifier “as is”. Our approach is a procedure
inspired by bracket abstraction. The core theorems are shown in Figure 1. These can
be applied automatically by the simplifier to prove β-equivalence results between terms
with abstractions and terms without.

For example, the original definition of addition on Church numerals is1

` cplus = (λ"m" "n". "m" � "n" � csuc)

but the application of the rewrites above returns the point-free characterisation:

1 Note how we have to pick concrete names, "x" and "y", for the variables that are “bound” at
the object-level. Though x 6= y ⇒ cplus = (λx y. x � y � csuc) is true, any attempt
to define cplus this way would stumble on the requirement to keep x and y apart, and on the
fact that the definition would have (from HOL’s perspective) free variables (x and y) on its
RHS.



` v /∈ FV M ∧ v ∈ FV N ⇒ (λv. M � N) ≡β B � M � (λv. N)
` (λv. B � v) ≡β B

` v ∈ FV M ∧ v /∈ FV N ⇒ (λv. M � N) ≡β C � (λv. M) � N
` v /∈ FV M ⇒ (λv. M) ≡β K � M
` v ∈ FV M ∧ v ∈ FV N ⇒ (λv. M � N) ≡β S � (λv. M) � (λv. N)
` (λx. x) = I

Fig. 1. β-Equivalence rewrites implementing bracket abstraction. As this is β-equivalence, rather
than βη-equivalence, we cannot η-contract freely. However, some η-contractions (as in the sec-
ond rewrite above) are β-valid because the other half of the body is really an abstraction.

` cplus ≡β C � (B � C � (C � B � I)) � csuc

The combinator terms B, C, I, K and S are defined as abstractions, but these definitions
are not unfolded by the simplifier. Instead, the combinatory characterisations are used
as rewrites:

` B � f � g � x ≡β f � (g � x)
` C � f � x � y ≡β f � y � x
` I � x ≡β x
` K � x � y ≡β x
` S � f � g � x ≡β f � x � (g � x)

2.3 Church Arithmetic

Definition 2. It is straightforward to encode numbers and other algebraic types within
the λ-calculus using the method due to Church. For example, the natural numbers can
be injected with the function church, of type num → term, which is defined:

` church n = (λ"z" "s". FUNPOW (APP "s") n "z")

The form APP M is a partial application of the constructor for application terms, and
FUNPOW f n x applies the function f to the x argument n times.

Thus, church 3 expands to

(λ"z" "s". "s" � ("s" � ("s" � "z")))

Definition 3. Having used the same approach to model pairs (with constructor cpair
and projections cfst and csnd), one can then define a recursion combinator:

` natrec =

(λ"z" "f" "n".
csnd

� ("n" � (cpair � church 0 � "z")
� (λ"r".

cpair � (csuc � (cfst � "r"))
� ("f" � (cfst � "r") � (csnd � "r")))))



` cplus � church m � church n →∗n church (m + n)
` cminus � church m � church n →∗n church (m − n)
` cmult � church m � church n →∗n church (m × n)
` 0 < q ⇒ cdiv � church p � church q →∗n church (p DIV q)

` ceqnat � church n � church m →∗n cB (n = m)

` cless � church m � church n →∗n cB (m < n)

` cfst � (cpair � M � N) →∗n M
` csnd � (cpair � M � N) →∗n N

Fig. 2. Theorems specifying the correctness of some of the various Church arithmetic and pair
operations. The cB function takes a HOL boolean and returns the corresponding λ-term (either
(λ"x" "y". "x") for true, or (λ"x" "y". "y") for false).

The underlying recursion returns a pair of the original number and the actual desired
result.

The characterising theorems are quite readable:

` natrec � z � f � church 0 ≡β z
` natrec � z � f � church (SUC n) ≡β

f � church n � (natrec � z � f � church n)

With a combinator of this sort, subtraction can be defined (and verified!) easily. (The
traditional Church definition, which doesn’t use pairing, is much harder to deal with.)

As well as the standard arithmetic operations (see Figure 2), we also need to define
the minimisation operator, here called cfindleast. This is the only place where un-
bounded recursion, in the form of the Y combinator, is required. The introduction rule
for a successful call is:

` (∀ n. ∃ b. P � church n ≡β cB b) ∧ P � church n ≡β cB T ⇒
cfindleast � P � k ≡β

k � church (LEAST n. P � church n ≡β cB T)

The preconditions require that

– the predicate P is total on numeric arguments, and also guaranteed to return a
boolean on all such arguments; and

– the predicate P does indeed return true for at least one number.

The LEAST binder is the HOL analogue of cfindleast.
The k parameter to cfindleast is a continuation that is handed the result of a suc-

cessful search for a number satisfying P. Using a continuation is a method for making
functions that use minimisation strict. In other words, we want to be able to construct
terms including minimisation, and to be sure that if the minimisation loops, then the
whole term will have no β-normal form. The use of a continuation is the standard way



to emulate call-by-value in a normal order setting. This insistence on strictness is con-
sistent with the way we will handle the minimisation operator for recursive functions.

There is also an elimination rule for successful (terminating) cfindleast searches:

` (∀ n. ∃ b. P � church n ≡β cB b) ∧ cfindleast � P � k ≡β r ∧
bnf r ⇒
∃m.

r ≡β k � church m ∧ P � church m ≡β cB T ∧
∀m0. m0 < m ⇒ P � church m0 ≡β cB F

The proof is by complete induction on the number of steps taken to reach the result r.

3 Reflection and the Universal Machine in the λ-Calculus

An important precursor to our computability results is the demonstration that the λ-
calculus can implement itself.

3.1 Church de Bruijn Terms

The Church-style encoding of algebraic types is also possible for the algebraic type that
encodes the “pure” de Bruijn terms (pdb): the type with three constructors dV, dAPP
and dABS, of types num → pdb, pdb → pdb → pdb and pdb → pdb respectively.
As noted above, we already know that the de Bruijn notion of β-reduction is isomorphic
to that of the λ-calculus.

So we begin by defining an injection function from de Bruijn terms into λ-terms
(cDB), along with “constructors” cdV, cdAPP and cdABS. We derive the following char-
acterisations:

` cdV � church n →∗n cDB (dV n)
` cdAPP � cDB M � cDB N →∗n cDB (dAPP M N)

` cdABS � cDB M →∗n cDB (dABS M)

It is vital to be able to interpret de Bruijn terms at this point, rather than some sort of
name-carrying syntax: with de Bruijn terms one does not have to implement variable-
renaming when performing substitutions. Given the baggage of the Church encoding,
the functions and terms developed here are already quite complicated enough without
having to worry about some sort of gensym technology.

By analogy with natrec above, it is now possible to write a termrec recursion
combinator for de Bruijn terms, with the following characterisation:

` termrec � v � c � a � cDB (dV i) ≡β v � church i
` termrec � v � c � a � cDB (dAPP t u) ≡β

c � cDB t � cDB u � (termrec � v � c � a � cDB t)
� (termrec � v � c � a � cDB u)

` termrec � v � c � a � cDB (dABS t) ≡β

a � cDB t � (termrec � v � c � a � cDB t)



With termrec defined, it is straightforward to define a function to implement normal-
order reduction, and another to perform n steps of normal order reduction. With the
minimisation operator, one can then define the function which finds the least n such
that n steps of normal order reduction results in a term in β-normal form. Thus, we
have a computable (and partial!) function for computing β-normal forms, which we
call cbnf_ofk. As with cfindleast, the cbnf_ofk function takes a continuation pa-
rameter to help with strictness. We derive the following characterising theorems:

` bnf_of M = NONE ⇒
bnf_of (cbnf_ofk � k � cDB (fromTerm M)) = NONE

` bnf_of M = SOME N ⇒
cbnf_ofk � k � cDB (fromTerm M) ≡β k � cDB (fromTerm N)

` cbnf_ofk � k � cDB M →∗n t′ ∧ bnf t′ ⇒
∃M′.
bnf_of (toTerm M) = SOME (toTerm M′) ∧ k � cDB M′ →∗n t′

The bnf_of function is the (uncomputable) function in the logic which, using an option
type to encode partiality, returns a term’s β-normal form if it has one. The fromTerm

and toTerm functions are mutual inverses mapping from the λ-terms to the de Bruijn
terms and vice versa.

3.2 The Universal Machine

In order to compare the λ-calculus’s capabilities to what is done in other computational
models, we restrict our attention to functions on natural numbers only. We also index
the computable functions with natural numbers, so that we can define

Φ : num → num → num option

taking parameters specifying the computable function to run, and the argument to run it
on. The restriction to a single parameter for the given function is not significant because
of the existence of standard encodings for lists and pairs of numbers.

The first parameter to Φ requires a bijection between the natural numbers and the
de Bruijn terms. The HOL function dBnum is defined:

` dBnum (dV i) = 3 × i
` dBnum (dAPP M N) = 3 × (dBnum M ⊗ dBnum N) + 1

` dBnum (dABS M) = 3 × dBnum M + 2

(where x ⊗ y is a bijective pairing function on natural numbers). Its inverse, numdB,
is defined by recursion on N.

Definition 4. The Φ function is defined:

` Φ m n =

OPTION_MAP force_num

(bnf_of (toTerm (numdB m) � church n))



The force_num function takes a λ-term and returns n if it is an instance of church n,
and 0 otherwise.

The Φ function gives us a purely HOL-level picture of the λ-calculus’s computational
capabilities, expressed in terms of functions on natural numbers. It will be our target
when we investigate the capabilities of the recursive functions in Section 4 below.

Theorem 1. There exists a λ-term that computes Φ. It is called UM, with characterising
theorems:

` Φ m n = NONE ⇐⇒ bnf_of (UM � church (m ⊗ n)) = NONE

` Φ m n = SOME p ⇐⇒
bnf_of (UM � church (m ⊗ n)) = SOME (church p)

4 The Recursive Functions

The first issue to resolve when modelling the recursive functions is whether to treat
them “shallowly” or “deeply”. This is not an issue that arises with the λ-calculus where
it is natural to want to model the syntax of the calculus, and to then ascribe meaning
to that syntax (a deep embedding). By way of contrast, with the recursive functions it
seems equally natural to want to use the existing functions that exist in HOL, to identify
a subset of those as primitive recursive, to then extend that subset with minimisation and
thereby gain the recursive functions. Unfortunately, one then has to deal with the fact
that the recursive functions are of variable arity, which is difficult to model in HOL’s
unsophisticated type system.

Rather than force the burden onto the type system, we use the type

num list → num

for the primitive recursive functions, and add arity information to the inductive defi-
nition which identifies them. This approach doesn’t treat application of a function to
the wrong number of arguments (a list of the wrong length) as a type-error, but ex-
pects the sanity checking to be enforced through appropriate primrec assumptions
(see Figure 3). The interesting auxiliary constants from that definition are for function
composition (Cn) and primitive recursion (Pr), with characterising theorems:

` Cn f gs ` = f (MAP (λ g. g `) gs)
` Pr b r (0::t) = b t
` Pr b r (SUC m::t) = r (m::Pr b r (m::t)::t)

Apart from all the standard arithmetic that can be shown to be primitive recursive,
we gain confidence in this definition by also proving the famous result about Acker-
mann’s function.

Theorem 2. For any primitive recursive function f , there is an index J such that for all
possible arguments xs, f (xs) is always less than the Ackermann function applied to J
and the sum of the values in xs:



primrec zerof 1 primrec succ 1

i < n
primrec (proj i) n

primrec f |gs| EVERY (λ g. primrec g m) gs
primrec (Cn f gs) m

primrec b n primrec r (n + 2)

primrec (Pr b r) (n + 1)

Fig. 3. The primitive recursive functions. The relation primrec f n is true if f is primitive re-
cursive and behaves “sensibly” on arguments of length n (because HOL functions are total, f will
have a value on lists of other lengths too). The auxiliaries are as follows: zerof is the constant
function returning 0; succ returns the successor of the head of a list; proj is the projection func-
tion on lists; Cn (composition) and Pr (primitive recursion) are described in the main text. The
EVERY auxiliary is from HOL’s theory of lists and checks a predicate holds of every element in a
list.

` primrec f k ⇒
∃ J. ∀ xs. |xs| = k ⇒ f xs < Ackermann J (SUM xs)

The proof closely follows the version of this result in the Isabelle/HOL sources, which
is in turn based on Szasz [8].2

Recursive Functions Adding minimisation to the primitive recursive functions forces
the use of the option type to correctly model partiality. Thus the recursive functions are
all of type

num list → num option

Both the minimisation operation and the composition operator for recursive functions
have rather ugly definitions (see Figure 4). The term minimise f ` is NONE if there
is no value x such that f (x::`) = SOME 0, or if there is some y < x such that
f (y::`) = NONE. Function composition is strict: if any of the functions in the list
gs fails on the provided argument, so too does the composition. Similarly, primitive
recursion: if a recursive call fails on n < m, then the recursive call on m must be held
to fail as well.

The analogue of the primrec constant is recfn. It is an easy induction on the rules
governing primrec to show

` primrec f n ⇒ recfn (SOME ◦ f) n

In the proofs to come, minimisation is only used once. All the other necessary op-
erations were shown to be primitive recursive. This is implicitly a proof of Kleene’s

2 My original proof, in the Kananaskis-6 release, follows Taylor’s more complicated argu-
ment [9]. Thanks to the anonymous referees for the pointer to the proofs in Isabelle/HOL
and by Szasz.



` recCn f gs ` =

(let results = MAP (λ g. g `) gs
in

if EVERY (λ r. r 6= NONE) results then
f (MAP THE results)

else
NONE)

` minimise f ` =

if
∃ n.

f (n::`) = SOME 0 ∧
∀ i. i < n ⇒ ∃m. 0 < m ∧ f (i::`) = SOME m

then
SOME

(εn.
f (n::`) = SOME 0 ∧
∀ i. i < n ⇒ ∃m. 0 < m ∧ f (i::`) = SOME m)

else
NONE

Fig. 4. The composition and minimisation operations for the recursive functions. As with
primrec, these definitions are used in an inductive definition that specifies valid arities.

Normal Form theorem, stating that all recursive functions can be expressed as a compo-
sition of a primitive recursive function, minimisation and one other primitive recursive
function.

5 Computational Equivalence

The “Easy” Direction Given the existence of cfindleast, and the general machin-
ery of the Church numbers, one might imagine it straightforward to prove that the λ-
calculus can implement the recursive functions. However, the journey is beset by a
number of annoyances. First: how to represent the list of arguments the recursive func-
tions expect? Our answer is to use the nlist_of function, which bijectively encodes a
list of natural numbers as a single natural number.

Theorem 3. ` recfn f n ⇒ ∃ i. ∀ `. Φ i (nlist_of `) = f `
(The fact that the theorem quantifies over all ` (rather than just those of length n)

is a consequence of the fact that the definitions of the (primitive) recursive operators
(Pr, Cn etc) actually give them reasonable values on lists of the wrong size. This can be
emulated in the λ-calculus too.)

Proof. The big issue in this proof is the accurate modelling of partiality. For example,
consider the primitive recursion case. By our inductive hypothesis, we have an i and j
which are the indexes of the 0-case function and SUC-case function respectively. If the



argument on which the function is recursing is n, it is necessary to set up a stack of n
pending computations, linked together with continuation arguments. Thus, machine i
is run first, and if it terminates, its result is passed to machine j with varying argument
0. This instance will have a continuation that passes the result onto machine j with
varying argument 1, and so on, all the way up to one final computation: machine j with
arguments n − 1, the result of the previous computation, and a continuation which is
the identity function. With this nesting structure, the constructed λ-term is guaranteed
to loop (fail) if and only if there is a failure in the calls made by the recursive function.

The Hard Direction In the other direction, it is necessary to model the de Bruijn terms
as numbers, and to perform all of the appropriate operations (e.g., finding a redex, per-
forming a substitution) purely arithmetically. Moreover, these operations are all shown
to be primitive recursive, further increasing the complexity of the proofs and definitions.

As an example, the following theorems are the key facts about the form of substitu-
tion on de Bruijn terms (called nsub here) that simultaneously adjusts indices to reflect
the disappearance of an outer abstraction (as happens in β-reduction). The first theorem
states that the new constant pr_nsub really does the right thing with suitably encoded
terms; the second that the constant really is primitive recursive:

` pr_nsub [s; k; t] = dBnum (nsub (numdB s) k (numdB t))
` primrec pr_nsub 3

The complexity in these proofs stem from the fact that we need to perform recur-
sions that are not obviously primitive recursive. Firstly, when recursing over an encoded
term, sub-terms have encodings that are numbers (much) smaller than the enclosing
term, not just one less. Secondly, one also needs to be able to vary the accompanying
parameters, as happens to k in the dABS clause of the definition of the lift function:

` lift (dABS s) k = dABS (lift s (k + 1))

It is folklore that both of these variations do not require anything more than primitive
recursion. Actually achieving them requires the use of primitive recursive functions
that return large lists (encoded as numbers!) of results rather than single numbers. At
the call-site, the calling function can then pick out the result it is really interested in,
and then calculate an even larger list to be its own result.

When all this work within the primitive recursive functions has been done, the min-
imisation operation can be used to define the recursive “β normal form of” function,
with definition:

` recbnf_of =

recCn (SOME ◦ pr_steps)

[minimise (SOME ◦ pr_steps_pred); SOME ◦ proj 0]

The (primitive recursive) pr_steps function takes parameters n and t and performs n
normal order reduction steps on t. The (primitive recursive) pr_steps_pred function
takes parameters n and t and returns 0 if n steps of normal order reduction on t produces
a term in β-normal form.

We are thus able to characterise recbnf_of:



` recfn recbnf_of 1

` recbnf_of [t] =

OPTION_MAP (dBnum ◦ fromTerm) (bnf_of (toTerm (numdB t)))

This leads to

Theorem 4. There exists a recursive function recPhi of type

num list → num option

which emulates Φ:

` recfn recPhi 2

` recPhi [i; n] = Φ i n

6 Computability Theorems

Here we list a number of standard results that can be derived on top of the framework
that has been established. The most complicated proofs are those to do with the recur-
sively enumerable sets, where care is often required to handle computations that may
not terminate.

Definition 5. A recursive set (of natural numbers) is one that a computable function
decides:

` recursive s ⇐⇒
∃m. ∀ e. Φ m e = SOME (if e ∈ s then 1 else 0)

Theorem 5. The empty, finite and universal sets are recursive; recursive sets are closed
under union, intersection and complement.

` recursive ∅
` recursive U(:num)
` FINITE s ⇒ recursive s
` recursive s1 ∧ recursive s2 ⇒ recursive (s1 ∪ s2)

` recursive s1 ∧ recursive s2 ⇒ recursive (s1 ∩ s2)

` recursive (COMPL s) ⇐⇒ recursive s

where U(:num) denotes the universal set of natural numbers, and where COMPL s is
the complement of set s.

Definition 6. A recursively enumerable (r.e.) set is one that is the range of a computable
function

` re s ⇐⇒ ∃Mi. ∀ e. e ∈ s ⇐⇒ ∃ j. Φ Mi j = SOME e

Theorem 6. Alternatively, the r.e. sets are those that are the domains of computable
functions:

` re s ⇐⇒ ∃N. ∀ e. e ∈ s ⇐⇒ ∃m. Φ N e = SOME m



This result requires an implementation of dove-tailing, whereby the machine Mi is run
on arguments 0..n− 1 for n steps, and the results examined for β-normal forms. If the
argument e is not among them, then the process is repeated with parameter n + 1.

Theorem 7. All recursive sets are r.e. The r.e. sets are closed under union and inter-
section. If a set and its complement are r.e., then they are both recursive.

` recursive s ⇒ re s
` re s ∧ re t ⇒ re (s ∩ t)
` re s ∧ re t ⇒ re (s ∪ t)
` re s ∧ re (COMPL s) ⇒ recursive s

Theorem 8. The Halting Problem. Let K be defined as follows (“the machines that
halt on their own indices”):

` K = {Mi | ∃ z. Φ Mi Mi = SOME z}

Then K is r.e. but not recursive. Its complement is not even r.e.

` ¬recursive K
` re K
` ¬re (COMPL K)

Theorem 9. The “s-1-1” theorem. There exists a computable function with index s11
that, when given an encoded pair x ⊗ y, returns the index of a function that computes
the function λ z. Φ x (y ⊗ z). In other words, x is the index of the function to be
partially evaluated with parameter y provided in advance.

` ∀ x y. ∃ fi. Φ s11 (x ⊗ y) = SOME fi ∧ ∀ z. Φ fi z = Φ x (y ⊗ z)

Theorem 10. The Recursion Theorem. If fi is the index of a total function (under-
stood to be computing indices of other functions), then it has a fix-point e such that the
functions with indices f (e) and e are extensionally equal.

` (∀ n. ∃ r. Φ fi n = SOME r) ⇒ ∃ e. Φ (THE (Φ fi e)) = Φ e

(With the λ-calculus to hand, directly using the Y combinator is a much more pleasant
prospect than the route via this theorem, with all its confusions of terms and indices
encoding terms.)

Theorem 11. Rice’s Theorem. Let P be a predicate on functions. The predicate P is
of type (num → num option) → bool and thus considers just the functions’ exten-
sional behaviour. Let indices P be the set of indices of computable functions satisfy-
ing P. Then, if indices P is recursive, that set is either the empty set, or the set of all
numbers.

` recursive (indices P) ⇒ indices P = ∅ ∨ indices P = U(:num)



7 Related Work

Zammit [11, §3] describes a HOL mechanisation of register machines, and shows that
they can compute the recursive functions. He does not show the converse result. He also
develops a Coq mechanisation of the recursive functions, and shows the s-m-n theorem
in that model.

Computable functions of some form are necessarily a part of formalisations of
Gödel’s incompleteness theorems, and so mechanisations of that result by Shankar [7]
and O’Connor [5] include approaches to computability. O’Connor uses the primitive
recursive functions; Shankar uses a ‘pure’ subset of Lisp. Both are concerned with
using their computational models to show that various formula manipulations are com-
putable; neither is (directly) concerned with the limits of what is generally computable.
Similarly, John Harrison’s proof of Gödel’s incompleteness theorem in the HOL Light
system [2] focuses on showing the representability of primitive recursion in the embed-
ded logic.

The Isabelle system comes with a mechanisation of the primitive recursive functions
and a proof that Ackermann’s function is not one of them. The ZF mechanisation is
described in Paulson [6], who followed Szasz [8].

8 Conclusion

There is always more to do. Clearly, it would be appealing to mechanise the more oper-
ational models of computation: Turing and register machines. For the latter, the work by
Zammit may be a good starting point. If register machines are unappealing because of
their general fiddliness, Turing machines are an even more daunting prospect. Nonethe-
less, the completist would clearly want to include both these models.

It would also be fun to attack further results in computability theory. For exam-
ple, the theory of Turing degrees includes a number of classic results, with fascinating
proofs. Alternatively, there is always basic complexity theory. . .

We cannot yet provide an easy route to proofs of computability for complicated
systems with their own elaborate data types (as would be required for the introduction’s
motivating example). Nonetheless, the work done to date has demonstrated that the λ-
calculus provides a good environment for working with rich types (such as the de Bruijn
terms), and for manipulating them in ways known to be computable.
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