Published in Formal Aspects of Computing. The final publication is available at www.springerlink.com

On the Limits of Refinement-Testing
for Model-Checking CSP

Toby Murray!?3

LOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
2NICTA, Australia

3School of Computer Science and Engineering, UNSW, Sydney, Australia

toby.murray@nicta.com.au

Abstract. Refinement-checking, as embodied in tools like FDR, PAT and ProB, is a popular approach for
model-checking refinement-closed predicates of CSP processes. We consider the limits of this approach to
model-checking these kinds of predicates.

By adopting Clarkson and Schneider’s hyperproperties framework, we show that every refinement-closed
denotational predicate of finitely-nondeterministic, divergence-free CSP processes can be written as the
conjunction of a safety predicate and the refinement-closure of a liveness predicate. We prove that every safety
predicate is refinement-closed and that the safety predicates correspond precisely to the CSP refinement
checks in finite linear observations models whose left-hand sides (i.e. specification processes) are independent
of the systems to which they are applied.

We then show that there exist important liveness predicates whose refinement-closures cannot be ex-
pressed as refinement checks in any finite linear observations model M, divergence-strict model MY or
non-divergence-strict divergence-recording model M#, i.e. in any standard CSP model suitable for rea-
soning about the kinds of processes that FDR can handle, namely finitely-branching ones. These liveness
predicates include liveness properties under intuitive fairness assumptions, branching-time liveness predi-
cates and non-causation predicates for reasoning about authority. We conclude that alternative verification
approaches, besides refinement-checking, currently under development for CSP should be further pursued.

Keywords: Refinement-testing, expressiveness, CSP, model-checking, hyperproperties.

1. Introduction

Since the introduction [Ros94, RGG195] of the FDR model-checking tool [GGHT05] in the early-to-mid
1990s, the process algebra CSP [Hoa85, Ros97] has remained a popular formalism in which complex systems
can be modelled, and their adherence to certain correctness conditions automatically proved with FDR (and
other, more recent, tools such as PAT [SLD09] and ProB [LF08]). The CSP/FDR approach differs from other

Correspondence and offprint requests to: Toby Murray



2 Toby Murray

model checking approaches because, rather than testing whether a system satisfies a predicate expressed in
a logic separate from the language used to model the system, FDR tests CSP refinement assertions. These
are assertions that involve the system being analysed and assert that the system, or some CSP process that
involves it, refines some specification, which is also written in CSP. These CSP refinement assertions express
predicates about the system being checked, such that a refinement assertion holds if and only if the system
satisfies the predicate that the assertion expresses.

A CSP refinement assertion is a statement of the form

P;M Qu

where P and @ are CSP processes and M is a denotational semantic model of CSP. P is referred to as the
left-hand-side, or specification process, of the refinement check, while @ is referred to as the right-hand-side,
or system, of the refinement check. In this paper, we restrict our attention to the standard denotational
semantic models M of CSP [Ros08, Ros09], which represent a process by various sets of linear behaviours
that it can exhibit. The model M might record multiple kinds of behaviours of processes, such as recording
traces as well as stable-failures. This statement asserts that for each kind of behaviour recorded by M, all
behaviours of this kind that M records as being able to be exhibited by @), M also records as being able to
be exhibited by P. In general, if M records k different kinds of behaviours, we may denote the representation
of a process R in M by the sets M,[R],..., My[R], where M;[R] is the set of R’s behaviours of the ith
kind that M records. We then have that for any processes P and @

When M records just a single kind of behaviour, we write simply M[P] to denote P’s representation in M.
As a simple example, to assert that some system System never performs any of the events in some set A,
one simply tests the refinement

CHAOSs_ o T System. (2)

Y is the set of all visible events and T denotes CSP’s traces model [Hoa80]. For some set of events B C X,
CHAOSp is the most general process that performs events only from the set B. The traces model T records
just a single kind of behaviour, namely all finite sequences of visible events that a process can perform. Such
sequences are called traces. Hence, by (1), this refinement holds iff T[System] C T[CHAOSs_4], i.e. iff
every sequence of visible events performed by System can be performed by CHAOSs_ 4. Since the latter
performs all sequences of events that don’t contain any A-events, this refinement holds iff the former never
performs any A events, as required.

This basic approach, in which predicates of systems are expressed as refinement checks to be carried
out automatically by FDR, has proved remarkably successful. In particular, CSP refinement-checking has
been used to express predicates as diverse as safety properties [Low96], deadlock-freedom [Ros97, Chap-
ter 13], determinism [Laz99], refinement-closed formulations of noninterference [Low07] (and variations
thereof [ML09]), responsiveness [RSR04], certain forms of non-causation [MLO07], and certain kinds of tempo-
ral properties [LMCO01, Low08] including certain liveness properties like the LTL property ¢ e, which asserts
that the event e must eventually occur.

Most, if not all, of the examples from the previous paragraph involve predicates that can be expressed as
refinement checks in which the left-hand side of the test is independent of the system to which the predicate
is being applied. Such refinement checks can be written in the form

Spec Eaq G(System) (3)

where Spec is a specification process for the predicate being tested (e.g. CHAOSx_ 4 in (2) above), System
is the system to which the predicate is being applied and G(_) is a CSP contezt, i.e. a CSP process expression
parameterised by System (e.g. the identity expression as used in (2), or perhaps an expression that runs
multiple copies of System in parallel as in [Low09]). Such refinement checks are generally much easier for
FDR (and similar tools such as PAT [SLD09] and ProB [LF08]) to carry out than the remaining checks
for which the left-hand side depends on System. This is because the left-hand side of any refinement check
must usually be normalised (although approaches exist that partially avoid this e.g. [SLD09, ACHT10])
and the complexity of normalisation is (in the worst-case) exponential in the state space of the process
being normalised. When the left-hand side of a refinement check depends on the system being analysed, the
complexity of model-checking by refinement-testing can become exponential in the size of the system being
checked. (In contrast, the complexity of a refinement check is linear in the state space of its right-hand side.)



On the Limits of Refinement-Testing for Model-Checking CSP 3

It is easily shown that all predicates that can be expressed as refinement checks of the form (3) are
refinement-closed in the model M, meaning that whenever they hold for a CSP process P, they must hold
for all processes @ for which P C 4 Q. This is formally defined as follows.

Definition 1 (Refinement-Closed in M). A predicate Pred is refinement-closed in the model M iff for
all CSP processes P

Pred(P) =V Q. P Cyr Q= Pred(Q).

To see that any predicate Pred expressed as (3) must be refinement-closed in M, consider some process P
such that Pred(P). Then the refinement Spec C ¢ G(P) must hold. Consider some process ) that refines P,
i.e. where P Cpq Q. It is the case that for any CSP context G(_) and model M, if P T @ then G(P) C g
G(Q) [Ros09, Ros08]. Hence, we have Spec Ty G(P) Caq G(Q). Because refinement is transitive, we must
have that Spec C ¢ G(Q) and so Pred(Q) must hold. Hence, Pred must be refinement-closed in M.

From the above two paragraphs, one can conclude that refinement-testing is best suited for model-checking
predicates that are refinement-closed in some CSP model M. In this paper, we consider the limits of using
refinement-testing to model-check refinement-closed predicates of CSP processes. In particular, we consider
the entire set of all refinement-closed denotational predicates that can be defined for a finitely nondetermin-
istic, divergence-free (FNDF) CSP process System and the question as to which of these predicates can, and
cannot, be expressed as refinement checks. We restrict our attention to predicates of systems that are finitely
nondeterministic, since FDR can handle only finitely nondeterministic processes, and divergence-free, since
divergence is almost always an incorrect behaviour for a system to exhibit and so a system that is divergent is
normally ipso facto incorrect. We also restrict our attention to a fragment of CSP that excludes termination
and sequential composition, for simplicity, and for which the set ¥ of visible events is finite, as required by
FDR.

Note however that we do not necessarily restrict our attention to just finitary refinement checks [Ros04],
which are those that are finite state when the system being analysed is finite state; although any refinement
check that is not finitary cannot be directly checked by FDR. This is because, like e.g. Roscoe [Ros05a]
before us, we are primarily interested in the limits of which predicates can be expressed as refinement checks
in the CSP language. Any predicate that is to be expressed as a practical refinement check will naturally
require a finite encoding, but exploring which predicates can and cannot be expressed finitely is beyond the
scope of this paper.

We begin in Section 2 by presenting an overview of the fragment of CSP used in this paper, and the
hierarchies [Ros09, Ros08] of standard denotational semantic models for CSP. With the aid of the topmost
element of the simplest of these hierarchies, namely the denotational model £ [Ros08, Ros09] of the hierarchy
of finite linear observations models, we define the set Pred that contains all of the predicates (refinement-
closed and otherwise) that can be defined over the FNDF CSP processes in any standard denotational model
for CSP.

Then in Section 3, we show how the problem of expressing the refinement-closed members of Pred can
be decomposed into the two smaller problems of expressing those members of Pred that involve safety and
those that are the refinement-closures of predicates that involve liveness, respectively. We do so by making
use of Clarkson and Schneider’s hyperproperties framework [CS08, CS10] to show that the entire set of
predicates Pred can be understood by distinguishing those predicates that involve safety from those that
involve liveness. In particular, we define the completed linear observations (CLO) hyperproperties and show
that each predicate from Pred can be identified with a unique CLO hyperproperty. Clarkson and Schneider’s
distinction between safety and liveness hyperproperties is then adapted to distinguish the safety and liveness
CLO hyperproperties, and hence the safety and liveness predicates from Pred.

We show that, when M is a finite linear observations model, all refinement checks of form (3) express
safety predicates. We adapt Clarkson and Schneider’s proof, that every hyperproperty can be expressed as
the intersection of a safety and a liveness hyperproperty, to show that each predicate Pred € Pred can be
expressed as the conjunction of a safety predicate Preds and a liveness predicate Predy, respectively. We show
that when Pred is refinement-closed in some model M, Pred; may be replaced by its M-refinement-closure,
RC p(Predy,), i.e., in this case, Pred = Preds N RC p(Predy,). Unlike Predy,, RC aq(Predy,) is guaranteed to
be refinement-closed in M, and so is more likely to be amenable to being expressed as a feasible refinement
check, i.e. one whose left-hand-side is independent of the system being analysed, for FDR to carry out.
Hence, the problem of how to express Pred as a refinement check can be decomposed into the two smaller



4 Toby Murray

problems of how to express Predg, a safety predicate, and RC x((Predy,), the refinement-closure of a liveness
predicate, respectively as refinement checks.

Then, in Section 4, we show that every safety predicate Preds € Pred can be expressed as a refinement
check of form (3) in the model FL (i.e. where M = FL). This result implies (a) that all safety predicates
are naturally refinement-closed in FL, and (b) that the safety predicates and the predicates that can be
expressed as refinement checks of form (3) with M a finite linear observations model, are one and the same.
We conclude that refinement-checking is well suited to expressing safety predicates.

However, we then consider predicates RC a¢(Predy) that are the refinement-closures of liveness predi-
cates Pred, in Section 5. These predicates include those liveness predicates Pred, that are (already naturally)
refinement-closed. We show how refinement checking in models that record divergence can be used to verify
certain refinement-closed liveness predicates that are violated by the presence of a finite number of infinite
traces and finite behaviours. However, we then show that there exist useful RC a(Predr) that do not fall
into this category and cannot be expressed as refinement checks for FDR to carry out in any standard CSP
model suitable for reasoning about finitely-branching processes, i.e. only those processes that FDR is able
to support.! We extend a previous result of Roscoe from [Ros05a], to provide a general characterisation of
certain predicates that cannot be expressed as CSP refinement checks in any such model of CSP. We show
that these predicates include simple refinement-closed LTL properties that express liveness under intuitive
notions of fairness, refinement-closed branching-time liveness predicates, as well as simple refinement-closed
non-causation conditions for reasoning about authority [Mil06] in systems of interacting agents; however,
these are surely only a tiny fraction of the set of all such predicates. This leads us to conclude that refinement-
checking is not as well suited to expressing the refinement-closures of liveness predicates, and thus has real
limitations for expressing arbitrary refinement-closed predicates.

In light of this result, in Section 6, we consider future and related work and sketch some other prospects
for mechanically proving these kinds of refinement-closed predicates that cannot be tested via refinement-
checking, including approaches based on automatically identifying certain strongly connected subgraphs
within the labelled transition system that represents a system’s operational semantics (see e.g. [Ros01,
SLDWO08, Liu09]), as well as those based on interactive theorem proving (see e.g. [[R05, IR08]). Finally, we
conclude in Section 7.

2. CSP

In this section we give a brief overview of CSP as relevant to this paper (further details can be found
elsewhere, e.g. [Ros97, Ros09, Ros08]), and define the set that contains all denotational predicates that can
be defined for FNDF processes.

CSP is a process algebra for describing and reasoning about concurrent systems. CSP’s syntax describes
systems of concurrently executing processes that perform atomic events drawn from the set X; these processes
communicate with each other by synchronising on the performance of common events. In this paper, we
restrict our attention to a fragment of CSP in which the set ¥ of events is finite, which is necessary in order
to allow systems to be checked with FDR. Our fragment of CSP also excludes termination and sequential
composition, for simplicity.

2.1. Syntax

CSP has a rich syntax for describing processes. The primitive process STOP can perform no activity and
represents deadlock. For an event a € ¥, the process a — P can perform the event a and then behave like
the process P. For a set of events A C ¥, the process 7a : A — P, is initially willing to perform all of the
events from the set A. The environment has the choice of which event z € A will be performed. Once a
particular event, v € A, has been performed, 7a : A — P, behaves like the process P, with the identifier a
bound to the value x that was chosen.

Note that the “—” operator binds tighter than all others.

CSP allows multi-part events to be defined, where a dot is used to separate each part of an event. The

1 As explained in Section 2.4, these are those models that record finite behaviours and possibly divergences (whether divergence-
strict or not [Ros05b]) but don’t record other infinite behaviours.



On the Limits of Refinement-Testing for Model-Checking CSP 5

“?” and “!” operators are then used to offer specific sets of events by pattern-matching on the structure of
multi-part events. Suppose we define the set of events {plot.z.y | z,y € N}. Then the process plot?z?y —
STOP offers its environment all of the events from the set {plot.xz.y | x,y € N}, whilst the process
plot?z : {1,...,5}!3 = STOP offers all events from {plot.z.3 | = € {1,...,5}}.

The process P [0 ) can behave like either the process P or the process ) and offers its environment the
initial events of both processes, giving the environment the choice as to which process it behaves like. If the
environment chooses an initial event of P, P [ Q) goes on to behave like P, and similarly for ). The process
P M @ can also behave like either P or ) but doesn’t allow the environment to choose which; instead,
it makes this choice internally. It therefore nondeterministically offers its environment the initial events of
either P or @ (but not both). The “” operator is often used, therefore, to model nondeterminism.

The “M” operator extends naturally to sets of processes. If S is a set of processes, [ 1.5 behaves like the

process that nondeterministically chooses one of the processes P € S to behave like, and then behaves like
whichever process it chose. When the set X is finite, a process is finitely nondeterministic when it never uses
an [ ] (or an equivalent operator from outside the fragment of CSP considered in this paper) over an infinite
set of processes. Processes that are not finitely nondeterministic cannot, of course, be readily model-checked.
For this reason, recall that we restrict our attention in this paper to predicates of finitely nondeterministic
processes.

The process P > Q may behave like either P or Q. It can refuse to behave like P but cannot refuse to
behave like Q). P > @@ might be initially willing to behave like P, however this offer is inherently unstable: at
any time, P > @) can perform some internal activity and transition to a state in which only the initial events
of ) are offered.

P\ A denotes the process obtained when P is run but all occurrences of the events in A are internalised,
and occur as internal activity, and so are hidden from its environment. The environment cannot observe the
occurrence of these events and is, therefore, prevented from synchronising on them.

The process P b} () behaves like P if the boolean condition b is true and like ) otherwise.

The process P[Y1:--2Yn [z, ... x,] behaves like the process P except that, for all i« € {1,...,n}, it
performs the event y; whenever P performs the event x;.

The process P || @Q runs the processes P and @ in parallel forcing them to synchronise on all events from

A
the set A. If S is a finite set of processes, then the process || S runs each process from S in parallel, forcing
A
them all to synchronise on all events from the set A.

The process P ||| @ runs P and @ in parallel with no synchronisation (and, hence, no communication)
between the two. We say that P and @) are interleaved here. For a finite set S of processes, | | ‘ S interleaves
each process from S.

A process diverges when it performs an infinite amount of internal activity without performing a visible
event from Y. If we take the process P = a — P that continually performs the event a¢ and then we internalise
the occurrence of a using the hiding operator, arriving at the process P\ {a}, we see that P\ {a} diverges
immediately because each occurrence of a results in P\ {a} performing some internal activity and P can
perform an infinite number of as. The primitive process div diverges immediately and, for our purposes, is
equivalent to the process P\ {a} above. A process that never diverges is said to be divergence-free. Recall
that, because divergence is almost always considered ipso facto to be an incorrect behaviour, in this paper
we restrict our attention to predicates of divergence-free processes.

The process CHAOS 4 is the most nondeterministic, divergence-free process that performs events from
the set A, for which A C X. This process may be defined, for our purposes, as follows.

CHAOS 4 = I_IA,CA?a : A" — CHAOS 4.

Note that since {} C A, CHAOS 4 can always deadlock immediately.
2.2. Notation
We use the following notation. Sequences are written between angle-brackets, so the sequence that contains

the first 3 natural numbers is written (0,1,2). Let s and ¢ be sequences. Then s "t denotes the sequence
obtained by concatenating s and t. We write s < ¢ to mean that s is prefix of ¢, i.e. s <t< Ju.s u="1.



6 Toby Murray

We write s < t when s is a strict prefix of ¢, 4.e. when Ju . s"u =1t A u # (). We write s A to denote the
sequence obtained by removing from s all elements that are not members of the set A.

When using multi-part events, the notation {|cy.ca. .. .. ck[} denotes the set of events whose first k& com-
ponents are respectively ¢1,¢a. .., ¢c. So {plot]} = {plot.z.y | z,y € N} and {plot.1}} = {plot.1.y | y € N}
using the example from the previous subsection.

If X is a set, then P(X) denotes the powerset of X. We use “—” to denote set difference, so that if X
and Y are sets, then X — Y denotes the set obtained by removing all Y-elements from X.

For this paper, we write CSP to denote the set that contains all finitely nondeterministic, divergence-free
(FNDF) CSP processes.

2.3. The Finite Linear Observations Models and the model FL

A number of denotational semantic models have been defined for CSP. Each of these represents a process
by some set of linear behaviours that it can exhibit. By linear, we mean that each behaviour contains only
information that could be obtained from observing a single execution of the process (and so, for instance,
contains no branching). The simplest models are the finite linear observations models. A finite linear ob-
servations model is one that records only finite linear behaviours of a process. The traces model 7 [Hoa80],
stable-failures model F [Ros97, Section 8.4] and the refusal-traces model RT [Muk93] (also known as the
refusal-testing model) are examples of finite linear observations models, as is the model FL [Ros09], which is
explained shortly. The failures-divergences model F¥ [BR85] (but traditionally denoted N, see e.g. [Ros97]),
however, is not a finite linear observations model, since it also records divergences, which are not finite
behaviours.

The finite linear observations models form a natural hierarchy, according to the following ordering. One
model M’ is greater than or equal to another M, written M < M/, iff for every two processes P and Q

(V1<i<j. Mi[P]=MQ]) = (V1<i<k.M;[P]=MQ])

where j and k are the numbers of different kinds of behaviours recorded by M’ and M respectively,
and M;[P] denotes the set of behaviours of the ith kind recorded by model M (and similarly for M’).
In other words, M =< M’ iff M’ distinguishes every pair of processes distinguished by M. It is the case
that whenever P C ¢ Q and M < M’, then P C Q. The models in this hierarchy already mentioned are
ordered as follows:

TFIRI XFL.

This hierarchy also contains other models besides those mentioned here. However, Roscoe has shown that,
due to the constraint placed on any standard model of CSP that it be a congruence [Ros09], if M is any
model of this hierarchy other than 7, the traces model, then F < M, i.e. M must be at least as powerful
as the stable-failures model F [Ros09, Lemmas 7.3 and 7.4].

The topmost element of the hierarchy of finite linear observations models, i.e. the most powerful such
model, is the model FL [Ros09, Ros08]. FL records finite behavioural sequences of form (4). That is, for any
CSP process P, FL[P] is a set of behaviours of the form

(Ao, a0, Av,a1,..., Ap_1,0n_1,A). (4)

This sequence represents that the process in question can perform the trace (ag,aq,...,a,—1) of visible
events from ¥; each A; indicates the events that the process was observed to be able to stably accept after
performing the trace {(ag,...,a;—1). A process stably accepts the set of events A C ¥ when it is in a stable
state, from which no internal activity can occur, in which each event a € A is available and no other events
are available in this state. Each A; in (4) is a generalised acceptance, being either: a set of visible events,
indicating that the process was observed to stably accept this set of events at this point; or the special
symbol e, which is used to indicate that no stability was observed at this point even if the process being
observed actually stabilised (i.e. reached a stable state) here.2 When A; # e we of course have that a; € A;,
forall0<i<n-—1.

2 We refer the reader to Roscoe [Ros09, Section 3.1] for a justification of why standard denotational models of CSP purposefully
avoid positively observing instability.



On the Limits of Refinement-Testing for Model-Checking CSP 7

Consider the process P where
P=a— STOPUOb— STOP.

Initially, P can accept a and b, i.e. P can accept the set of events {a,b}. Hence, ({a,b}) € FL[P]. From
its initial state, P can perform a and then deadlock (i.e. accept no events, and so accept {}). Hence,
({a,b},a,{}) € FL]P]. P can also perform b from its initial state and then deadlock, so {({a, b}, b, {}) € FL]P]
too. FL[P] also contains all behaviours in which some of the acceptances in the above behaviours are replaced
by e, since any observer who observes P performing the above behaviours is not required to observe P’s
stability at any time. FL[P] contains no other behaviours.

On the other hand, if we define @) so that

Q=a—STOPMb— STOP,

then @ can initially accept just a, or it can initially accept just b, but it cannot initially accept both events at
once. Hence, FL[Q] contains the sequences ({a}), ({b}), ({a},a,{}), ({b},b,{}) and all sequences in which
some acceptances in one of these sequences is replaced by e.

Finally, consider R defined as

R=a— STOP>b— STOP.

From its initial state, R can perform the event a. However, recall that a is only unstably available here
because R can also perform some internal activity from this state to reach a (stable) state in which only b is
available. Hence, a cannot be observed to occur from a stable state and so the only behaviours of FL[R] in
which a occurs are (e,a,{}) and (e, a,e). FL[R] also contains the behaviour ({b}) since R can be observed
to initially enter a stable state from which just b is available. Besides those behaviours already listed, FL[R]
contains just (e) and those behaviours obtained by replacing zero or more acceptances in ({b},b,{}) by e.

Letting F' abbreviate FL[P] for some process P, we have that F satisfies the following healthiness
conditions [Ros08], customarily presented as axioms. Here, s and ¢ denote sequences of the form of (4),
including both those that end in a generalised acceptance A; as well as those that end in an event a; as
necessary; a denotes an event from ¥ and A denotes a generalised acceptance.

FLO. F is non-empty: specifically (o) € F.

FL1. F is prefix-closed: if s"t € F and s ends in a generalised acceptance, then s € F'.

FL2. F is closed under observing less stability: if s"(A) "t € F, then s”(e)"t € F too.

FL3. All proper acceptances can be realised: if s”(A) € F' and A # e, then, for alla € A, s" (A, a,e) € F.

For a divergence-free process P, we have that P can always stabilise, so
Vse FL[P] .Vt.s=t" (o) = JAC Y .t"(A) € FL]P]. (5)

Let M be a finite linear observation model, where necessarily M =< FL, and let k denote the number
of different kinds of behaviour recorded by M, so that each process P is represented in M by the k sets
M[P],..., Mg[P]. Then M can be defined in terms of k relations, r1,..., 7%, each of whose domain is the
set of all behaviours that F£ might record of any CSP process, such that for any CSP process P, M;[P] is
the relational image of FL[P] under the relation r; [Ros09], i.e.

M [P]l={t | se€ FLIP] Asr;t}.

Consider the stable-failures model [Ros97, Section 8.4]. This model records two kinds of behaviours,
namely traces and stable-failures. A process P is therefore represented in this model by two sets, which are
usually denoted traces(P) and failures(P) respectively. traces(P) is just P’s representation in the traces
model 7 and is simply the set of all sequences of visible events from ¥ that P can perform. failures(P)
contains P’s stable-failures, each of which is a pair (s, X) that represents that P can perform the trace of
events s and reach a stable state in which none of the events in the set X C ¥ can be performed. We may
define traces(P) as the relational image of FL[P] under the function #r, which gives the sequence of events
performed in any finite linear observation (which is necessarily of the form (4)) so that

tr({(Ao, ao, A1, a1, ..., An—1,an-1,4n)) = (a0, a1, ..., an—1). (6)
traces(P) is then the relational image of FL[P] under tr, i.e.
traces(P) = {tr(s) | s € FL[P]}. (7)



8 Toby Murray

We may do similarly to obtain failures(P) from each member of FL[P] by defining the relation f that,
for each behaviour s € FL[P], relates it to every stable-failure of P that can be observed when P is observed
to perform s. For ease of notation, we define the relation f in the form of a function such that, for each
element s of its domain, f(s) is the set of elements in f’s codomain that are related to s under f.

fls™ (o)) = {},

c T ®)
F(5™(An) = {(tr(). X) | X T2~ A,).

Note that all behaviours s that end in a e-acceptance are related to no stable-failures. This is because, when
P is observed to exhibit such an s, P is not observed to stabilise after performing the sequence of events tr(s),
and so no stable-failure can be observed here. With f suitably defined, failures(P) is simply the relational
image of FL[P] under f, i.e.

failures(P) = U{f(s) | s e FL[P]}. (9)

Let G(—) be a CSP context. Then it is the case that for any process P, for each behaviour s € FL[G(P)],
there exists a finite set ® of behaviours from FL[P] that give rise to s, such that for all processes @,
o C FL[Q] = s € FLIG(Q)] [Ros09, Ros08]. Let M be a finite linear observations model, so M < FL, that
records k different kinds of behaviours and let ¢ be an arbitrary behaviour in some M;[G(P)] for 1 < i < k.
Because M, [G(P)] can be defined as the relational image of FL[G(P)] under some relation r;, the presence
of t in M;[G(P)] can be inferred from the presence of a single corresponding behaviour s € FL[G(P)],
where s r; t, such that for all processes @, ¢t € M;[G(Q)] whenever s € FL[G(Q)]. Combining this with
the previous result, we have that for all CSP processes P, CSP contexts G(_), finite linear observations
models M and all ¢ € {1,...,k}, where k denotes the number of different kinds of behaviours recorded
by M,

Vte M,[GP)] .30 C FL[P].¥Q . ® C FL[Q] = t € M[G(Q)]. (10)

This result becomes important later on.

Observe that our characterisation of the stable-failures model F in (7) and (9) above, in terms of the
model FL, is necessarily dependent on the value of 3, the set of all visible events. In particular, because
the function f above depends on ¥, the value of failures(P) depends on ¥ since different values for ¥ yield
different values for failures(P). One might say, then, that each model M, for which M =< FL, has not just
a single interpretation in terms of FL£ but actually has an interpretation in terms of FL for every X.

For any denotational CSP model M, if one extends the set ¥ by adding new events, processes that were
equivalent in M before ¥ was extended remain equivalent afterwards [Ros09, Ros08]. This fact will become
important later on, when we will adopt a common technique for proving that certain predicates can be
expressed in terms of refinement checks that involves extending the set ¥ of visible events.

Finally, for two processes P and @, when traces(P) = traces(Q), we say that P and @ are traces-equivalent
(i.e. their representations are equivalent in the traces model 7) and write P =5 Q.

2.4. More Elaborate Kinds of Model and Standard Models that FDR might
Reasonably Support

At least three other hierarchies of models exist, besides the hierarchy of finite linear observations models,
that each mirror the structure of the hierarchy of finite linear observations models. The failures-divergences
model [BR85] belongs to one of these other hierarchies. Each of the models in one of these other hierarchies
extends a corresponding model from the hierarchy of finite linear observations models by recording not only
finite behaviours but also some kind of infinite behaviours.

The failures-divergences model F¥ (traditionally denoted A) is part of the hierarchy of divergence-strict
models. Given a finite linear observations model M, one can obtain its divergence-strict counterpart M¥ by
augmenting M so that it also records those finite incomplete behaviours after which a process may diverge
(called divergences), under the assumption that once a process can diverge it can do anything at all [Ros08].
The failures-divergences model F¥ is the divergence-strict counterpart of the stable-failures model F, and,
besides recording failures, records those traces after which a process may diverge. FLV is the divergence-strict
counterpart of FL. As well as recording the finite linear observations of a process of form (4), it also records



On the Limits of Refinement-Testing for Model-Checking CSP 9

a second set of finite linear observations, which are those directly after which the process can diverge. This
second set of divergences contains finite linear observations of form (4), each of whose final acceptance A,
is necessarily e, since a process does not, and so cannot be observed to, stabilise when it diverges.

Besides having a divergence-strict counterpart MY, each finite linear observations model M also has a
non-divergence-strict divergence-recording counterpart M#. M# is similar to M¥ except that it dispenses
with the divergence-strict assumption, i.e. it does not assume that once a process can diverge, it can do
anything at all.

Divergence-strict models MY, and non-divergence-strict divergence-recording models M# are appropri-
ate for reasoning only about processes whose operational semantics are finitely branching [Ros08], which
includes all finitely nondeterministic processes. While other hierarchies of models exist that are capable of
reasoning about processes that are not finitely branching, they offer no extra power for reasoning about pro-
cesses that are finitely branching. Because FDR cannot handle processes whose operational semantics are not
finitely branching, we say that the only standard denotational models for CSP that FDR might reasonably
support are the finite linear observations models M, divergence-strict models M¥ and non-divergence-strict
divergence-recording models M#.

For FNDF processes P € CSP and Q € CSP, if FL[P] = FL[Q] then P and Q will also be identified
in every other standard denotational model for CSP, even those that FDR cannot reasonably support. This
does not imply, however, that we can limit our attention in this paper to refinement checks expressed only in
finite linear observations models. As we will see in Section 5, certain refinement-closed predicates that can
be expressed as refinement checks whose left-hand side is independent of the system being analysed, require
the refinement check to be performed in a model that records divergences, for instance.

When considering whether a predicate can be expressed as a refinement check, we therefore will consider
all standard models of CSP that FDR might reasonably support as defined above.

2.5. The Denotational Predicates of FNDF CSP Processes

Recall that, when considering what sorts of predicates about processes can be expressed as CSP refinement
checks, we restrict our attention to predicates of FNDF processes (i.e. those from the set CSP).

We may identify a predicate with the set of processes that satisfy it [Ros05a]. A process may in turn be
identified by its representation in a semantic model. FNDF processes P € CSP may of course be identified,
without loss of fidelity, by their representation FL[P] in the model FL. This leads to the following definition
of a denotational predicate of FNDF processes.

Definition 2 (FNDF Predicate). A predicate Pred of FNDF processes P € CSP is a set of sets FL[P].

For every (FNDF) process P € CSP, FL[P] € Pred iff P satisfies the predicate that Pred represents. We
call a denotational predicate of FNDF CSP processes, an FNDF predicate for short. We will often abbreviate
FL[P] € Pred by Pred(P).

The set Pred contains all FNDF predicates:

Pred = P({FL[P] | P € CSP}).

The complement Pred € Pred of an FNDF predicate Pred € Pred is defined as
Pred = {FL[P] | P € CSP A FL[P] ¢ Pred}.

For any predicate Pred € Pred, we of course have that
VP € CSP . Pred(P) < —Pred(P).

Any predicate of finitely nondeterministic, divergence-free processes that is expressible in any standard
denotational model for CSP is, of course, captured by some Pred € Pred.

Note that Pred contains predicates that are not refinement-closed in any CSP model M. An example
is the predicate Predgr. that asserts that the system can perform the event e € 3 at some point, but need
not perform e during every execution®. Predgp . is defined as

Predgr. = {FL[P] | 3s€ FL[P] . tr(s)| {e} # ()} (11)

3 This subscript is designed to suggest the corresponding CTL [CES86] formula.



10 Toby Murray

To see that Predgr . is not refinement-closed in any CSP model M, it is enough to observe that Predgg (e —
STOP M STOP) but = Predgr.(STOP), noting that e — STOP M STOP Ty STOP in every CSP
model M.

As stated earlier, in this paper we concentrate on predicates that are refinement-closed in some CSP
model M, since predicates that are otherwise cannot usually be expressed as refinement checks that are
feasible for FDR to easily carry out. Lemma 3 (below) shows that any predicate that is refinement-closed in
M is also refinement-closed in every CSP model M’ that is finer than M, i.e. for which M =< M’. When
considering refinement-closed predicates of divergence-free processes, we may restrict our attention to those
predicates that are refinement-closed in finite linear observations models M. By Lemma 3, all such predicates
are refinement-closed in FL.

Lemma 3. Let M and M’ be denotational models of CSP such that M < M’ and let Pred be a predicate
that is refinement-closed in M. Then Pred is refinement-closed in M.

Proof. Let M, M’ and Pred be as stated and consider an arbitrary process P such that Pred(P). Consider a
process @ such that P C ¢ Q. Then, since M < M’ it follows that P E 4 Q. Since Pred is refinement-closed
in M, Pred(Q) must hold. Thus, by Definition 1, Pred is refinement-closed in M’'. [J

3. Hyperproperties: Understanding the FNDF Predicates

In this section, we show how the set Pred of FNDF predicates may be understood in terms of Clarkson and
Schneider’s hyperproperties [CS08, CS10] framework. Doing so sheds light on the subset of those predicates
that are refinement-closed and allows us to decompose the problem of how to express such predicates as
refinement checks into two smaller problems.

We first define the set of completed linear observations (CLO) predicates, and show that each FNDF
predicate from Pred is equivalent to one from this set, and vice versa.

We then show that each CLO predicate may be identified with a hyperproperty from the class of CLO
hyperproperties, which is a specific instantiation of Clarkson and Schneider’s hyperproperties notion (ex-
plained shortly). Clarkson and Schneider distinguish two kinds of hyperproperties, namely the safety and
liveness hyperproperties, and show that every hyperproperty can be expressed as the conjunction of a safety
hyperproperty and a liveness hyperproperty [CS10]. We show how to adapt their definitions and results to
distinguish safety CLO hyperproperties from liveness CLO hyperproperties, which allows us to define the
safety and liveness FNDF predicates respectively, and show that every FNDF predicate Pred € Pred can
be expressed as the conjunction of a safety FNDF predicate Preds and a liveness FNDF predicate Predy,,
so that Pred = Predg N Predy,.

When Pred is refinement-closed in some finite linear observations model M, Pred; may be replaced
in this equality by its M-refinement-closure, RC pq(Predy) (defined later), meaning that Pred = Predg N
RC apm(Predy,). Unlike Predr, RCa(Predy) is guaranteed to be refinement-closed in M, and is therefore
likely to be easier to express as an efficient refinement check for FDR*. This allows us to decompose the
problem of how to express refinement-closed FNDF predicates as refinement checks, into the two smaller
problems of (a) how to express the safety FNDF predicates as refinement checks, and (b) how to express the
FNDF predicates that are the M-refinement-closure of liveness predicates as refinement checks. We consider
these problems in turn in Sections 4 and 5 respectively.

3.1. The Completed Linear Observations Predicates

The connection between hyperproperties and the FNDF predicates is more easily seen by first converting the
FNDF predicates to an intermediate representation, which we call the completed linear observations (CLO)
predicates.

A completed observation of a divergence-free process is either an observation that ends in deadlock (which
is necessarily finite), or one that is infinite. Any other observation is necessarily incomplete because, following
such an observation, the process being observed can always perform further visible activity (because it is
divergence-free).

4 No such transformation is required for Predg since, as we will prove in Section 4, all safety predicates are refinement-closed.



On the Limits of Refinement-Testing for Model-Checking CSP 11

The observations of form (4) recorded by FL that end in deadlock are precisely those in which the final
acceptance is the empty set, indicating that the process has reached a stable state from which no events can
occur and so has deadlocked. These are all behaviours of the form

<A07a07A17a17-'~7An—1aan—17{}>' (12)

Let DLO denote the set of all such deadlocked linear observations.

As hinted at earlier, while FL£ doesn’t explicitly record infinite behaviours, for finitely nondeterministic
processes P, the finite behaviours in FL[P] contain enough information to allow one to accurately infer P’s
infinite visible behaviours [Ros08, Section 3]. These infinite visible behaviours are naturally of the form

<A07a07A17a17--~7An7an-~-> (13)

Let ILO denote the set of all such infinite linear observations. Then we can define the set, denoted Z[P],
containing P’s infinite linear observations of form (13) as the closure of FL[P] [Ros08, Section 3]:

I[Pl ={s€ILO | Vt<s.te FL[P]}. (14)

Let CLO = DLO U ILO be the set of completed linear observations. Then we may define the completed
linear observations C[P] that an FNDF process P € CSP may exhibit as follows.

c[P] = (FL[P] UZ[P]) N CLO.

It turns out that an FNDF process P € CSP may be characterised equally well by C[P] as it is by
FL[P]. The following lemma proves this.

Lemma 4. For any FNDF processes P and @,
(FL[P] = FL[Q]) < (C[P] = C[Q])-

Proof. Suppose we have two FNDF processes P and Q. We prove (FL[P] # FL[Q]) < (C[P] # C[Q))-

We begin with the reverse implication. Suppose C[P] # C[Q] and, without loss of generality, that C[P]
contains a behaviour s that is absent from C[@]. If s is a finite behaviour, then s ends in deadlock and so
is present in FL[P] but not FL[Q]. In this case, FL[P] # FL[Q]. On the other hand, if s is an infinite
behaviour, then s being absent from FL[Q] but not from FL[P] implies that some finite prefix ¢ of s must
be present in FL[P] but not FL[Q]. Hence, again, FL[P] # FL[Q].

We now show the forwards implication. Suppose FL[P] # FL[Q] and, without loss of generality, suppose
that FL[P] contains a behaviour s that FL[Q] does not. Then if s € CLO (i.e. s ends in deadlock) the
claim follows trivially. On the other hand, if s ¢ CLO and, so FL[P] N CLO = FL[Q] N CLO, then
s € FL[P] — CLO. So let s = (Ag, ao, A1,01,. .., An_1,an_1, Ayn) for some n > 0. We have that A4, # {}.

We claim that s must have an infinite extension ¢t € Z[P] for which s < t. Suppose otherwise for a
contradiction. Then because P is divergence-free, by Axiom FL3 and (5), it must be the case that P inevitably
deadlocks when (or following when) s is observed. This implies that P has some deadlock observation
u € FL[P] for which: s < w or, if last(s) = e, u is identical to s except that last(u) = {}. However, this
implies that v € FL[Q] since FL[P]NCLO = FL[Q]NCLO. By Axiom FL1 or FL2, this implies s € FL[Q].
This is a clear contradiction. Hence, s must have an infinite extension ¢ € C[P].

So let ¢ be an infinite extension of s. Because s ¢ FL[Q], by Axiom FL1, Vv . s < v = v ¢ FL[Q].
Hence, because s < t, t ¢ Z[Q]. So t ¢ C[Q] but ¢ € C[P]. Hence, C[P] # C[Q] as required. [

It is natural, therefore, to consider the set of CLO predicates, defined as follows.
Definition 5 (CLO Predicate). A CLO predicate is a set Pred’ of sets C[P], where P € CSP.

As for FNDF predicates, for every (FNDF) process P € CSP, C[P] € Pred’ iff P satisfies the predicate
that Pred’ represents.

It follows from Lemma 4 that every FNDF predicate Pred is equivalent to some CLO predicate Pred’
and vice-versa, in the sense that

VP e CSP . FL[P] € Pred < C[P] € Pred'. (15)

Theorem 6. The relation defined by the notion of equivalence from (15) is a bijection.



12 Toby Murray

3.2. Hyperproperties

By Theorem 6, we may replace any FNDF predicate Pred by the equivalent CLO predicate Pred’ and vice-
versa. We now show that every CLO predicate and, hence every FLO predicate, is equivalent to a unique
member of the class of CLO hyperproperties, and vice-versa.

Clarkson and Schneider recently introduced the notion of a hyperproperty [CS08, CS10] to capture a
broad class of security predicates, across a range of formalisms, that includes traditional safety and liveness
properties, as well as information flow predicates and various other kinds of predicate. The concept of a
hyperproperty is, therefore, necessarily very general; its general definition is made meaningful by instantiating
it within a particular semantic framework. Here, we present the general definitions and then show how they
may be instantiated in the context of completed linear observations. When instantiated this way, each
hyperproperty corresponds to a unique CLO predicate and vice-versa.

In the general definition of a hyperproperty, a system is represented by a non-empty set of infinite
sequences of states o. We call each of these sequences an execution of the system. Any completed finite
execution of a system that ends in some state o is represented by the infinite sequence obtained from the
finite one by infinitely stuttering the final state o. The set of all such infinite-length executions is denoted W;.
The set of all partial (incomplete) executions, which are finite sequences of states o, is denoted Ug,,.

Certain constraints may be imposed on the representation of a valid system. Hence, the set Rep denotes
the set containing all valid system representations. Each member of Rep is therefore a non-empty set of
infinite executions that represents a valid system.

A hyperproperty HProp for system representation Rep is then a set of systems from Rep. Each system
from Rep is present in HProp iff it satisfies the predicate that HProp represents. The set of all hyperproperties
for system representation Rep is then P(Rep). The hyperproperty true (which every system satisfies) is of
course Rep and the hyperproperty false (which no system satisfies) is {}.

Each CLO predicate Pred is trivially mapped onto a corresponding hyperproperty by mapping each
CLO s € C[P] € Pred onto a corresponding infinite execution. Each state o of an infinite execution is either:

e apair (4,a) whereae X and (ACX Aa€ A)VA=e, or
e the symbol dl (for “deadlock”).

Then each CLO is mapped onto an infinite sequences of states o as follows.

e A deadlocked observation (Ag,aq,A1,a1,...,An—1,an-1,{}) corresponds to the infinite execution
((Ag,ap), (A1, A1), ..., (An—1,an—1),dl,dl,...), in which the final dl state is stuttered infinitely, and vice-
versa.

e An infinite observation (Ag,ao,A1,a1,...,Ap,apn...) corresponds to the infinite execution

((Ag,ap), (A1,a1),...,(An,ay),...), and vice-versa.

For each FNDF process P € CSP, let £[P] denote the unique set of infinite executions o that corresponds
to C[P] in this way. The set Rep of valid system representations is then defined as

Rep ={&€[P] | P e CSP}.

Hence, every CLO predicate Pred corresponds to a hyperproperty for this system representation Rep and vice-
versa. We call such a hyperproperty a CLO-hyperproperty. By Theorem 6, every FNDF predicate corresponds
to a unique CLO hyperproperty and vice-versa.

3.3. Safety Hyperproperties: Capturing the Safety Predicates

Clarkson and Schneider distinguish two kinds of hyperproperty, namely the safety and liveness ones. The
definition of each kind mirrors the standard definitions for safety and liveness properties [AS85]. Intuitively,
a safety property asserts that something (bad) never occurs, while a liveness property asserts that something
(good) must occur [Lam77, AS85]. Liveness properties have the characteristic that any incomplete observation
of a system can always be extended so as to satisfy any liveness property [VVKO05, AFKS88, AL91]. Each of
these ideas are captured in the context of hyperproperties as follows.

Clarkson and Schneider define the set Obs of all observations that could be made of any system in a finite
amount of time, while allowing the observer to restart the system at any point while it is being observed to



On the Limits of Refinement-Testing for Model-Checking CSP 13

observe multiple finite executions of the system®. Each observation is therefore a finite set of finite executions
from Wg,.

Obs = P (Wp,),

where P (X)) denotes the set of all finite subsets of X.
Given an observation M € Obs and a set T of finite or infinite executions, we say that M is a prefix of T,
written M < T, when the observation M can be made of T', i.e.

M<T& (VseM.3teT.s<t).

Under this definition, 7" can of course contain new executions not in M as one would expect.
The set Obs(Rep) contains all observations that could be made of any valid system. Hence,

Obs(Rep) ={M | M € Obs A 3Sys € Rep . M < Sys}.

Then a safety hyperproperty is one that asserts that something bad can never happen. This bad thing is
necessarily an observation M € Obs(Rep). Once this bad thing has occurred, the hyperproperty is violated
forever; no further action by the system can undo the violation. This leads naturally to the following definition
from [CS10], which parallels the standard definition for safety properties [AS85].

Definition 7 (Safety Hyperproperty for system representation Rep). A hyperproperty HProp is a
safety hyperproperty for system representation Rep iff

YV Sys € Rep . Sys ¢ HProp =
( 3M € Obs(Rep) . M < Sys A (VSys' € Rep . M < Sys' = Sys' ¢ HProp) ).

Observe that each finite (i.e. partial or deadlocked) observation of form (4) can be trivially mapped onto
a finite sequence of states ¢ in which dl is always the last element if it is present. Each member of the
set Obs(Rep) of observations of valid systems then simply corresponds to a unique finite set M C FL[P]
of partial and deadlocked observations that can be exhibited by some FNDF process P € CSP. Then some
observation M € Obs(Rep) is a prefix of a system Sys € Rep iff the finite set M’ of finite linear observations
that corresponds to M can be exhibited by the system Sys’ € CSP for which C[Sys’] corresponds to Sys,
i.e.

M < Sys & M’ C FL[Sys'].

This allows us to define when some CLO predicate Pred corresponds to a safety CLO hyperproperty.
This occurs when

YV Sys € CSP . C[Sys] ¢ Pred =
(3IM . |M|eNAMC FL[Sys] A (VSys' € CSP . M C FL[Sys'] = C[Sys'] ¢ Pred) ).

Hence, we call such a CLO predicate a safety CLO predicate.

Applying Theorem 6, we may define the safety FNDF predicates, namely those FNDF predicates that
are each equivalent, under (15), to a unique safety CLO predicate, and vice-versa. This is done as follows,
recalling that we write Pred(Sys) to mean FL[Sys] € Pred.

Definition 8 (Safety FNDF Predicate). An FNDF predicate Pred € Pred is a safety FNDF predicate
iff
V Sys € CSP . =Pred(Sys) =
(3IM.|M|eNAMCFL[Sys] A (¥ Sys' € CSP . M C FL[Sys'] = —Pred(Sys")) ).

Clarkson and Schneider show that every safety hyperproperty is subset-closed, which intuitively implies
that it should be refinement-closed. Later, in Section 4, we will prove that every safety predicate is, indeed,
refinement-closed.

The predicate true = {FL[P] | P € CSP} (that every process in CSP satisfies) is trivially a safety

5 Equivalently, allowing the observer to run a finite number of copies of the system in parallel.



14 Toby Murray

predicate®. As is the predicate false = {} (that no process in CSP satisfies). Each may be expressed as
refinement checks, as follows. We have that for all processes P € CSP

FL[P] € true & CHAOSs, Cx. P.
Similarly for false, recalling that div ¢ CSP, we have that for all processes P € CSP,
FL[P] € false & div Cz P,

since FL[div] = {(e)} and, since P is divergence-free, P must be able to initially reach a stable state, so
for some A C X, (A) € FL[P], but (A4) ¢ FL[div]. Hence, for all processes P € CSP, this refinement check
can never be satisfied and so accurately captures false as required.

Other predicates that one intuitively considers to express notions of safety are naturally safety predicates.
Perhaps the simplest example is the predicate expressed by the refinement check in (2), which is a safety
predicate because any process P € CSP violates it iff P has some behaviour s € FL[P] in which tr(s)
contains an A-event. Similarly, the condition of deadlock-freedom is also a safety predicate”, because any
process P € CSP that violates this condition has some behaviour s € FL[P] where s € DLO, i.e. s is
a deadlocked observation of form (12). Similar arguments can be made to show that all of Lowe’s n-ary
failures predicates [Low09], including all known refinement-closed noninterference [GM82] predicates (such
as Lowe’s RCFNDC [Low07] and Roscoe’s Lazy Independence [Ros97, Section 12.4]), certain formulations of
responsiveness [RSR04, Low09], determinism [Ros97, Laz99] and certain non-causation predicates [ML07],
are also safety predicates.

All of the predicates mentioned in the previous two paragraphs can be expressed as CSP refinement
checks of form (3), where System is the process to which the predicate is being applied and M is a finite
linear observations model, i.e. M < FL. The following theorem proves, in fact, that all predicates that may
be expressed as this sort of refinement check are safety predicates.

Theorem 9. Let Pred be a FNDF predicate. If there exists a specification process Spec, CSP context G(_)
and finite linear observations model M such that, for all processes P € CSP,

Pred(P) < Spec Ty G(P)
then Pred is a safety predicate.

Proof. Let Pred be an FNDF predicate and Spec, G(—) and M be as stated in the theorem. We show that
Pred is a safety predicate.

There are two cases to consider. Either Pred is true (i.e. is satisfied by every process P € CSP) or
not. If Pred = true then the claim follows trivially from the arguments above. Otherwise, there exists some
process P € CSP for which FL[P] ¢ Pred. Let P be any FNDF process for which FL[P] ¢ Pred. Then
we must have that, Spec Zrq G(P). Let k be the number of different kinds of behaviour recorded by M
and, for all processes @, let @’s representation in M be given by the k sets M;[Q], ..., My[Q]. Then we
must have that there exists some i, where 1 < ¢ < k, and some behaviour ¢ such that ¢ € M;[G(P)] but
t ¢ M;[Spec]. From (10), we can conclude that there exists a finite set ®, where ® C FL[P], such that for
all processes Q € CSP, ® C FL[Q] = t € M,;[G(Q)], i.e.

® C FLIQ] = Spec Zas G(Q).
Let M = ®. Then |M| € N, M C FL[P] and
VQ e CSP. M C FL[Q] = FL[Q] ¢ Pred.
Hence, since P is any process for which —Pred(P), by Definition 8, Pred is a safety predicate. []

This result implies that every property expressible in Lowe’s bounded positive fragment [Low08] of LTL,
which excludes the eventually and until operators and restricts the use of negation, is also a safety predicate,
since Lowe has shown that all such properties can be expressed as refinement checks of the form Spec Cry P,
where P is the system being analysed and RT recall is CSP’s refusal-traces model [Muk93], which is a finite
linear observations model. This resonates with earlier results regarding which LTL formulae represent safety
properties [Sis94, Lat03].

6 As we will see later it is also a liveness predicate.
7 Like true, deadlock-freedom also turns out to be liveness predicate as well.



On the Limits of Refinement-Testing for Model-Checking CSP 15

We conjecture that, in practice, the majority of predicates that have been tested using CSP refinement
assertions in FDR are safety predicates. This is because one very often performs CSP refinement assertions
in finite linear observations models like 7, F or RT. The use of more elaborate models, such as those that
record divergence, is very often restricted to checking that some system is divergence-free before going on
to test more interesting predicates via refinement checks in finite linear observations models. There are, of
course, examples where this has not been the case, notably refinement checks that have been used to test
certain liveness properties, e.g. [Ros05a, Section 5] and [Low08, Section 6.2].

3.4. Liveness Hyperproperties: Capturing the Liveness Predicates

A liveness hyperproperty is one such that any incomplete observation can always be extended so as to
satisfy it. This is captured by the following definition [CS10], which parallels the standard definition for
liveness [AS85].

Definition 10 (Liveness Hyperproperty for system representation Rep). A hyperproperty HProp
is a liveness hyperproperty for system representation Rep iff

VM € Obs(Rep) . 3Sys’ € Rep . M < Sys’ A Sys’ € HProp.

Note that this definition allows M to contain observations that end in deadlock. However, observe that
any such M € Obs(Rep) cannot be extended so as to satisfy the liveness property that asserts that in every
behaviour, some event e must occur infinitely often (i.e. which might be written in LTL [Pnu77] as O e).
Hence, in order to ensure that (J¢ e is a liveness CLO hyperproperty, we need to restrict our attention
to those M in the above definition that contain only executions that correspond to those partial finite
observations, in which deadlock has not been observed.

Let PLO denote the set of partial linear observations, which contains all behaviours of form (4) that
are not present in DLO, the set of all linear observations of form (12) ending in deadlock. Then any CLO
predicate corresponds to a liveness hyperproperty under the restriction introduced in the previous paragraph
iff

VM.V Sys € CSP.|M| e NAMC FL[Sys] N PLO =

35ys' € CSP . M C FL[Sys'] A C[Sys'] € Pred. (16)

Naturally, we call such CLO predicate, a liveness CLO predicate.
This leads straightforwardly to the following definition of a liveness FNDF predicate.

Definition 11 (Liveness FNDF Predicate). An FNDF predicate Pred € Pred is a liveness FNDF pred-
icate iff
VM .V¥Syse CSP . |M| e NAM C FL[Sys] N PLO =
JSys’ € CSP . M C FL[Sys'] A Pred(Sys’).

Under this definition, the LTL property O ¢ e is a liveness predicate, as is the weaker property (e that
asserts that e must eventually occur in every execution, as well as the other LTL properties involving the ¢
and the until operators that are normally considered to express so-called “unbounded” liveness conditions.
The property of deadlock-freedom (which, recall, is a safety predicate) is also a liveness FNDF predicate,
since any set of partial observations can always be extended so that deadlock need never occur.

Oe and [J¢Oe may each be expressed as refinement checks in the failures-divergences model FV. For
instance, we have that [Low08] for all processes P € CSP

Predye(P) < e —divCry P\ (2 —{e}), (17)

where, for any LTL formula ¢, Pred, denotes the predicate that expresses ¢.® This refinement check fails
iff P can either: (1) perform an infinite sequence of non-e events, in which case P\ (X — {e}) will be able
to diverge initially which the specification e — div cannot; or (2) deadlock before performing e, in which
case P\ (X — {e}) will be able to stably refuse e initially which the specification cannot. Similarly, letting

8 This idea is formalised later on in Section 5.3.



16 Toby Murray

Repeats, = e — Repeats, be the process that continually performs the event e, for all processes P € CSP
we have that [Low08]

Predq o (P) < Repeats, Cry P\ (Z — {e}). (18)

Equations (17) and (18) of course imply that these LTL properties are refinement-closed in 7V and, when
applied to divergence-free processes, are also refinement-closed in F and, hence, FL as well.

While we stated earlier that all safety predicates are refinement-closed?, the same is not true of liveness
predicates. In particular, the predicate Predgg . defined in (11), which asserts that the event e occurs during
some execution of the system, is not refinement-closed, as noted earlier; however, it is a liveness predicate.

3.5. Decomposing FNDF Predicates

Clarkson and Schneider show that every hyperproperty for system representation Rep can be expressed as
the intersection of a safety and liveness hyperproperty for Rep respectively. This parallels the well-known
analogue of this result for safety and liveness properties [AS85]. Theorem 12 is a straightforward adaptation
of their result, and states that every FNDF predicate Pred can be expressed as the intersection of a safety
FNDF predicate Preds and a liveness FNDF predicate Predy,.

Theorem 12. Let Pred be an FNDF predicate from Pred. Then there exists a safety FNDF predi-
cate Preds € Pred and a liveness FNDF predicate Pred; € Pred such that

Pred = Predg N Predy,

The proof of this result is a direct adaptation of that for Theorem 5 from [CS10, Appendix D]. Because
of its similarity to the proof from which it was adapted, it has been omitted from the main body of this
paper and appears in Appendix A.

We would like to apply this result to allow us to decompose the problem of expressing an arbitrary
FNDF predicate Pred as a refinement-check, into two smaller problems: one involving expressing Predg (or
some adaptation of it) as a refinement-check and the other involving expressing Predy, (or some adaptation
of it) as a refinement check, such that the conjunction of the two checks can be used to test Pred. The
left-hand-side of each of these hypothetical refinement checks must be independent of the process to which
it is being applied, in order for it to be practical. Hence, the predicate that each refinement check tests for
must be refinement-closed in some CSP model that FDR might support, and so (when applied only to FNDF
processes) must be refinement-closed in some finite linear observations model M.

As we will prove later in Section 4, all safety predicates Predg are naturally refinement-closed. However,
the same is not true for all liveness predicates Predy,, as shown earlier. It turns out, though, that when Pred
is refinement-closed in some finite linear observations model M, we may replace Pred; in Theorem 12 by a
variation of Pred that is refinement-closed in M. This variation is known as Pred;’s M-refinement-closure
and is simply the predicate that holds for a process P when Pred; holds for all of P’s refinements, under
C am [Low07]. This idea is defined formally as follows.

Definition 13 (M-Refinement-Closure of a Predicate). Let Pred € Pred be an FNDF predicate.
Then the M-refinement-closure of Pred is the FNDF predicate RC x(Pred) € Pred such that

VP e CSP . RCpy(Pred)(P) <V Q € CSP . P Ca Q = Pred(Q).

To illustrate this with an example, consider the predicate Predgr. from (11), which we saw earlier is
not refinement-closed in any standard CSP model M. Let P = d — STOP M e — STOP. Predgr.(P)
holds since P clearly has an execution in which e can occur. Let M be a standard CSP model and consider
RC p(Predgr ), which holds for P iff Predgr . holds for all of P’s M-refinements. In every such model M,
P C i d— STOP, which clearly fails Predgg .. Hence, it must be that =“RC y(Predgr.)(P).

For any predicate Pred, RC a(Pred) is refinement-closed in M. Also, for any Pred € Pred,
RC p(Pred) C Pred. When Pred is itself refinement-closed in M, it is straightforward to show that
Pred = RC pq(Pred).

Theorem 14 follows from Theorem 12 and shows how we may decompose refinement-closed FNDF pred-
icates into two predicates that are each refinement-closed.

9 This result will be proved later in Section 4.



On the Limits of Refinement-Testing for Model-Checking CSP 17

Theorem 14. Let Pred be an FNDF predicate from Pred that is refinement-closed in some finite linear ob-
servations model M. Then there exists a safety FNDF predicate Preds and a liveness FNDF predicate Predy,
such that

Pred = Preds N RC p(Predy,).

Proof. Let Pred and M be as stated. Applying Theorem 12, let Preds and Predy, be safety and liveness FNDF
predicates respectively, such that Pred = Pred N Pred,. Then it suffices to show that Pred sNRC pq(Predy,) =
Preds N Predy,. It is the case that RCxq(Predy) C Predy, hence we have that Predg N RC a(Predy) C
Predg N Predy,. We prove the reverse containment, i.e. that Predg N Pred;, C Preds N RC apq(Predy,), by
contradiction.

Suppose this containment doesn’t hold, i.e. that there exists some FNDF process P such that FL[P] €
PredsN Predy, but FL[P] ¢ Preds N RC a(Predy). Then it follows that FL[P] € Preds and FL[P] € Predy,
but FL[P] ¢ RC am(Predy,). Then ~RC pq(Predr)(P) and so P must have some M-refinement, @, such that
—Predr,(Q). Hence, it must be that —Pred(Q). Note that because FL[P] € Preds and FL[P] € Predy,
Pred(P) holds. Because Pred is refinement-closed in M this creates a clear contradiction, as required. [

From Theorem 14, we may decompose the problem of how to express refinement-closed predicates as
refinement checks, into the two separate problems of (a) how to express safety predicates as refinement checks,
and (b) how to express the refinement-closures of liveness predicates as refinement checks, respectively. We
consider these problems in turn in the following two sections.

4. Expressing Safety Predicates as Refinement Tests

In this section, we consider to what degree safety predicates can be expressed as CSP refinement checks. As
we will see, it turns out that all safety predicates are, in fact, refinement-closed, and can be expressed in the
form of CSP refinement assertions in FL£ whose left-hand-side is independent of the system being analysed.
We present a constructive proof of this result.

A direct corollary of this result is that all safety predicates are refinement-closed in FL. This result also
allows us to conclude that the safety predicates, and the predicates that can be expressed as refinement
checks of the form Spec C ¢ G(P) in some finite linear observations model M, are one and the same.

We have already shown how the safety predicates true and false can be expressed as FL refinement
assertions. We now show that for every other safety predicate Pred there exists a specification process Spec
and CSP context G(_) such that

VP e CSP . Pred(P) < Spec Czz G(P).

Let Pred be a safety predicate. We show how to construct Spec and G(—). In order to do so, we first
need to capture Pred via some mathematical encoding around which we can frame the resulting refinement
test. Adapting Roscoe [Ros05a, Definition 2.4 and proof of Theorem 2.1], we may capture Pred via a set of
refutations. Let P be some process that fails Pred. Then, by Definition 8, there exists some finite set M such
that M C FL[P] and for all Q € CSP, whenever M C FL[Q], =Pred(Q). We call M a refutation of Pred
for P. Any safety predicate Pred may, therefore, be characterised by a set S of such finite sets M, such that
for every process P € CSP for which —Pred(P), S contains a refutation M for P, and S contains nothing
that isn’t a refutation for some such P.

Given such a set S, we then have

VP e CSP . (Pred(P) <YM € S. M ¢ FL[P]).

Our strategy is therefore, given such a set of refutations S that characterises Pred, to build a refinement
check Spec Czr G(P) that asserts the statement on the right-hand side of this bi-implication.

We begin by considering a single refutation M € S and the problem of building a refinement check to
assert that M ¢ FL[P]. We build a testing context Testps(—) such that Testps(P) exhibits a behaviour from
the set U (whose value we fix later on) iff P exhibits all behaviours in M. We then build a specification Spec
that performs all behaviours except those in U, so that

Spec Cxp Testy(P) < M € FL[P].



18 Toby Murray

@:Pﬂc/m|IEZQ—AiHD?l‘IE()—Ai—)diV h
T:ix €Xg— A4
(P
J SR R €T meAl
I x:ix€Xg— A
Sort-A
N\ J

Fig. 1. Testing for when P stably accepts A;: C offers all z € ¥y — A;; when P performs x € X9 — A;, C performs ¢ while
other events of P are left unchanged; this means that C' accepts X iff P accepts A;. Each box represents the process labelled
in its top-left corner, and contains its sub-processes. Dotted lines indicate renamings and dashed lines indicate corresponding
acceptances.

To test that M ¢ FL[P] for all M € S, we can assert that no member of U is present in |, g FL[ Test r1 (P)].
This holds iff

Spec Tz I_IMeS Test g (P).

Hence, letting G(_) = |_|Mes
Note that since S will not generally be finite, for an arbitrary FNDF process P, the process G(P) will in
general be infinite state even when P is itself finite. Hence, the construction we present here is not finitary,
and so cannot be directly applied without any further effort to produce a practical refinement check for
FDR, or similar tools, for each safety predicate. Fortunately, this is not its purpose, which is instead to
demonstrate that all safety predicates can be expressed as CSP refinement checks in the model FL.

Testpr(—), we can then arrive at our result.

Example. We will use the safety predicate of determinism as a running example to help explain the con-
struction of the process Testp;(—). A CSP process is deterministic when it can never both perform and refuse
to perform some event at the same time. Hence, each refutation for this safety predicate is a set that contains
two behaviours:

1. s” (e, e, ), in which some event e is performed after some incomplete behaviour s, and
2. s"(A), where e ¢ A, in which e is refused at this same point.

For illustration, when considering the example of determinism, we will use the refutation M = {(e, e, ), ({}}}.

Returning to the general case, to build Test s (_), it is useful to first consider just a single element s € M.
s is necessarily of the form (4), i.e. s = (Ag, a0, A1,a1,...,An_1,an-1,Ay). Consider any non-e acceptance
A; from s and the process @Q that represents P after P has performed the trace of events (aq, ...,a;—1) that
precede A; in s. We want to build a context Ts(_) such that T,(Q) exhibits some behaviour iff @ can stably
accept A;.

We will make use of the following result, which is due to Bill Roscoe!?. We will need to extend the set ¥
of visible events. Let ¥y be the initial set of visible events before ¥ is extended. Extend ¥ by adding a fresh
event ¢, so ¥ = X U{c}. Then consider P[¢/z | x € ¥y — A;]. This is the process that behaves like P except
that each non A; event x is renamed to ¢. Then the process C = P[¢/z |z € ¥ — A;] O 72 : ¥g — A; — div
stably accepts X iff P stably accepts A;: when P accepts any set that contains some event from Xy — A;,
then C must accept some Y U {c} for some Y C ¥, and vice-versa; when P accepts any set that doesn’t
contain all of A;, C' won’t accept the entirety of 3y and vice-versa. Figure 1 depicts this arrangement.

We extend this argument to show how to build a context Ts(_) such that P exhibits s iff T5(P) exhibits
the related behaviour u(s) € U (where we define the function u shortly), i.e.

u(s) € FLIT,(P)] & s € FL[P].

10 Private communication, 4th February 2010, regarding F£ and full abstraction.



On the Limits of Refinement-Testing for Model-Checking CSP 19

(Q((Ai,a;) t, P) )
4 P )
[ - Te) o T ER— . a;
c toc.y Yy € Xg— A4
L el notrenamed.z |- : & € A;
- ~ - j/

Fig. 2. Dynamic renaming: a; is renamed to b; each event y € ¥ — A; is renamed to ¢; each event x € A; is left unchanged.

The context Testps(-) is then defined in terms of Ts(—) as we will see.
For now, suppose all acceptances A; in s are non-e ones. Then, we define u(s) (for these s) as follows,
where we extend ¥ again with two new fresh events b and endmark, so that ¥ = 3y U {b, ¢,endmark}.

u((A;, ai> At) = <EO U {b}7 b) “u(t),
u((A4;)) = (3o U {b, endmark}, endmark, 3).

Notice that, when A; is not the last acceptance in s, we have T, (P) stably accept XgU{b} iff P stably accepts
A; (rather than having T (P) stably accept just 3¢ as before). We have T (P) apply a renaming operation to
P that renames a; to itself and to the new event b. This allows the event that follows the acceptance ¥oU{b}
in u((4;,a;)) to be b rather than a;. This will become important later on. The event endmark is used to
mark the point in u(s) just before the final acceptance (which must be ) occurs; its purpose will become
clear when we define the specification process Spec later on. Similarly, the purpose of offering ¥g U {b} when
endmark is offered will also become clear later on.

The context Ts(—) needs to perform the above renaming dynamically, since each A; in s could be different
from A;_ ;. This can be achieved as follows. We further extend the set of events ¥ by adding the events
notrenamed.z, tob.z and toc.x for every event @ € Xj. Then we construct the process Q(s, P), defined as

Q(s, P) = (P[[notrenamed.x, tOb'x7t°C'w/x,x,x | z € 3] || R(S)> [[b’ &2 [tob.x, toc.z, notrenamed.z | € Xg],
X

where X = {|notrenamed, tob, toc[} and the process R(s) is defined as
R((A;,a;)"t) = tobla; — R(t) O notrenamed?z : A; - STOP O toc?y : ¥y — A; — STOP,
R((A;)) = notrenamed?xz : A; — STOP Otoc?y : Xy — A; — STOP.

In Q(s, P), a renaming is applied to P that renames every event x € ¥ that P might perform, so that for
each z € %, whenever P could have performed z, P[notrenamed.z, tob.z,toc.z /. 4 4 | x € Y] can now perform
notrenamed.z, tob.z and toc.x. The process R(s) is used to control which of these events that this renamed
P performs by having the renamed P synchronise with R(s) on all such events. The outer renaming ensures
that whenever the combination of the renamed P and R(s) performs a tob.z or toc.z event, Q(s, P) performs
b or ¢ respectively. When the combination performs a notrenamed.x event, Q(s, P) performs x. In this way,
when R permits a tob.x event to occur, P performs x but x is effectively renamed to b. The same is true for
toc.x and c¢. When R permits a notrenamed.z event, P performs x and, effectively, no such renaming occurs
(since notrenamed.z is renamed back to x).

At any time, R allows the renamed P to perform all notrenamed.x events where x € A; and allows the
renamed P to perform all toc.y events where y € g — A;. This has the effect of allowing P to always perform
all of its events from ¥ while renaming any from 3y — A; to ¢. When A; is followed by some event a;, R
allows the renamed P to also perform tob.a;. This effectively causes a; to be renamed to itself and to b. Only
if the renamed P performs tob.a; (in which case P has performed a; and this has been renamed to b), does
R allow further activity. This is depicted in Figure 2.

Example. In the case of determinism, if we consider the element ({}) (the other will be considered shortly)
from the refutation M = {(e,e, @), ({})} chosen earlier for illustration, we see that Q(({}), P) is the process



20 Toby Murray

that behaves like P except that every event other than those from {}, i.e. every event that P might perform,
is renamed to c.

Returning to the general case, to form Ty(P), we then place Q(s,P) in parallel with a process O(s),
whose job it is to offer ¥y — A; at each point other than when endmark is being offered, so that at these
points Ts(P) offers the entirety of g U {b} or 3¢ (depending on whether A; is not the final acceptance in
s) iff P offers A;. O(s)’s job is also to offer ¥y U {b,endmark} at the appropriate time and, for reasons that
will become clear later on, to continue to offer £ U {b,endmark} whenever the b it is offering at one of these
times gets performed. We further extend ¥ by adding, for each event x € 3¢ U {b}, a new event offer.xz. We
then define Ts(P) as

ZQU{Z),C}

T,(P) = (Q(S,P) [ 0(s)> [ /offer.c | z € S U {b}],

where the process O(s) is defined as
O({Aia;) " t) = b — O(t) O %z : By U {c} — STOP O offer?y : o — A; — STOP,

O((4;)) = endmark — (?z : g U {c} — STOP O offer?y : ¥y — A; — STOP) O
offer?z : Xo U {b} — (O(s) €z = b} STOP).

We have this process offer the events from ¥y — A; by having it perform each of them, x € ¥y — A;, as
offer.z. We do the same for the events Yo U {b}. We then rename each offer.z to x. O(s) must synchronise
with Q(s, P) so that it knows the point in s that P is up to. We therefore have it synchronise with Q(s, P)
on events from X U {b, c}, always allowing Q(s, P) to perform all such relevant events. When the final
acceptance A; in s is reached, O(s) allows T,(P) to offer only ¥ U {b, endmark}. If endmark is performed, it
has T, (P) offer X iff P offers A;, in accordance with the definition of u(s) above.

We have, then, that for all s that contain no e-acceptances,

u(s) € FL[Ts(P)] < s € FL[P].

Example. In the case of our example element ({}) from the determinism refutation chosen earlier, O({{})),
after performing endmark offers the event offer.y, for all y € ¥, as well as the other events it offers. This
means that Ty (P) is the process that initially offers (X U {b,endmark}). After it performs endmark, it
offers all events in ¥y but also offers the event c exactly when P offers any event from ¥y. In other words,
Tqyy(P) exhibits the behaviour (Xo U {b, endmark}, endmark, ¥o) = u({{})) precisely when P exhibits ({})
as required.

Returning to the general case, we now extend this to handle e-acceptances in the arbitrary behaviour s.

To do so, we need to decide on the value of u({e,a;)), i.e. on what we want T5(P) to exhibit when P
is observed to perform the event a; but no stability is observed before a; occurs. Note that it might not be
possible for P to stabilise before a; occurs, since a; might be able to occur in P only from unstable states.
In this case, Ts(P) will not be able to stabilise before P performs a;. We therefore complete the definition
of u(s) as follows, extending the set ¥ further by adding the fresh event d, to obtain

u((e, a;)"t) = (o,d) u(t),
u((e)) = (X0 U {b, endmark}, endmark, o).

When P exhibits (e, a;), we have Ts(P) perform the event d (which will involve renaming a; to d) but
don’t require T5(P) to stabilise first. We use a fresh event d here, rather than b as before, to distinguish this
case from the earlier one, in which T(P) is required to stabilise and accept the entirety of o U {b} before
it performs b.

The final clause of u above (for u((e))) places no requirement on P, since any process can always exhibit
(e). P is guaranteed to stabilise, however, since it is divergence-free. We can therefore construct Ts(P) here
so that it stabilises, offers Xo U {b, endmark}, and then, after performing endmark, offers the entirety of ¥
(with each of these offers being made by O(s) if necessary). This is done simply to maintain uniformity with
the definition of u({A;)) for simplicity.



On the Limits of Refinement-Testing for Model-Checking CSP 21

We need to extend Q(s, P) to allow for the extra renaming involving the new event d that is implied by
the completed definition of u(s) above. Therefore, we redefine Q(s, P) as

Q(S,P) =

P[[notrenamed.a:,tob.a:,toc.a:,tod.ac/Lx717$ | z € o] || R(S)> [[b’ ) d’x/tob.x, toc.z, tod.z, notrenamed.z | € Y],
X

where X = {Jnotrenamed, tob, toc, tod[}.
R(s) is then completed by defining

R({e,a;)"t) = todla;, — R(t),
R({e)) = STOP.
Example. In the case of our running example for the determinism predicate, if we consider the other

element (e, e, o) of the refutation M = {(e, e, e), ({})} chosen earlier, we see that Q((e, e, ®), P) is the process
that can perform only the event d, and can do so only if P can perform the event e.

Returning to the general case, we redefine T,(P) so that Q(s, P) now synchronises with O(s) on d as
well, obtaining

T,(P) = (Q(S,P) I O(s)> [ offer. | € So U {b}].

SoU{b,c,d}
We then complete the definition of O(s) by defining
O((e,a;)"t) =d — O(t),
O({e)) = endmark — offer?z : X9 — STOP O offer?x : Xy U {b} — (O((e)) x = b} STOP).

Notice that the second clause here has O(s) offer {offer.x | = € Xy} after performing endmark, which will
cause T (P) to offer ¥ after performing endmark as required by the completed definition of u(s) above.
Hence, we have that for all s,

u(s) € FL[Ts(P)] < s € FL[P].

Example. In the case of the example element (e, e, o) from the determinism refutation chosen earlier,
O((e, ¢, o)) is the process that performs d, then endmark and then offers the required events as defined above.
This means that T, . ey (P) is the process that exhibits the behaviour (e, d, ¥oU{b, endmark}, endmark, ¥o) =
u((e, e, ®)) exactly when P exhibits (e, e, e), as required.

Returning to the general case, we can now define the entire set U that contains all behaviours u(s).

_ ~ v = (3¢ U{b,endmark},endmark,¥X¢) An > —1A
U—{<A0=“07~-7Anv“n> VIvo<i<n. (Ai=SoUfbY Ads=b)V (A —e Aai=d)["

Note that (3¢ U {b,endmark}, endmark, ¥¢) € U, which is necessary for when s has length just 1, as it does
for instance for the element ({}) of the determinism refutation discussed above.
We then build a specification Spec that roughly exhibits all behaviours other than those from U, as

Spec = (Tx : To U {b} — (Specdx = b CHAOSy)) M
(M s ensmancy) sy 2 2 X = (Specda = d+ CHAOSg) ) 1

(endmark — (I—]Xep(z)izo?x X = C’HAOSZ) O%:3U{b} — C’HAOSZ) .

Spec is designed so that T (P) exhibits no behaviours from U iff Spec C g Ts(P). Spec contains three clauses
(one per line) separated by “M”s. Perhaps the most important is the last line, which allows Spec to, after
offering ¥y U {b,endmark} and then performing endmark, exhibit all stable acceptances except 3. This is
because the only acceptance that can follow endmark in any behaviour from U is ¥, and ensures that Spec
never performs any behaviour from U. The previous two lines allow Spec to exhibit all behaviours that could
be exhibited by Ts(P). At any time, if T5(P) exhibits some behaviour that has no extensions in U, then Spec
evolves to CHAOSSy to allow Ts(P) to behave arbitrarily from that point on.



22 Toby Murray

Hence, we have that
s ¢ FL[P] < Spec Cze To(P).

Returning our attention now to the refutation M in which s is contained, we now extend this to test if
P can perform all s € M. Recall that |M]| is necessarily finite. Consider the process Testys(P), defined as

Testrr(P) = I T,(P).
oU{b,endmark} seM

Testpr(P) runs | M| copies Ts(P) in parallel, one for each s € M. Each copy must synchronise with the
others on the events in ¥y U {b,endmark} but may perform other events freely. This means, at any point,
Test pr(P) can stably accept XU {b} iff one Ts(P) can stably accept g U{b} and the others can each stably
accept X U {b} or Xg U {b,endmark}. Testp;(P) can stably accept 3¢ U {b, endmark} just when each T,(P)
can. Since d can occur freely, Testp;(P) can perform d whenever any Ts(P) can.

This should explain why we defined u(s) to have each Ts(P) offer £o U {b} whenever it can perform
endmark, and to continue to make this offer after performing b at this point. The reason is because, suppose
some T, (P) has reached the point at which it can perform endmark, some other T5(P) may not yet have
reached the point at which it can perform endmark; but all T5(P)s must synchronise on all events from
Yo U{b} (plus endmark). Hence, those that reach their endmark before the others need to continue to offer
3o U{b} and must continue to offer these events when they perform b at this point (since, when one of them
performs b here, the b has been synchronised on by the other Ts(P)s, some of whom might not yet have
reached their endmarks).

The effect of this parallel composition is that Testys(P) can perform some behaviour from U iff each
T,(P) can perform a behaviour from U. Hence, we have that

M & FL[P] < Spec Cxe Testp(P).

Example. In the case of the running example involving determinism, for which we chose the refu-
tation M = {(e,e, @), ({})}, we see that Testp;(P) is the parallel composition of two processes,
T3y (P) and Tiq ¢y (P), synchronising on o U {b,endmark}. Recall that Ty} (P) exhibits the behaviour
(X0 U {b,endmark}, endmark, ¥o) precisely when P exhibits ({}), and that T, .+ (P) exhibits (e,d, ¥ U
{b, endmark}, endmark, ¥¢) exactly when P exhibits (e, e, o). When P can exhibit each of these behaviours,
Testpr(P) will be able to initially perform (e, d). Only at this point does T(, . ey (P) offer ¥ U {b, endmark},
while T{1}y(P) is still in its initial state. The two can now synchronise and will proceed in lock-step, resulting
in Testpr(P) then performing (3¢ U {b,endmark}, endmark, £y). We see then that Testys(P) can perform
the entire behaviour (e,d, ¥ U {b,endmark}, endmark, ¥y), which is present in U, precisely when each of its
sub-processes can perform a behaviour from U, as required.

Returning to the general case, as stated earlier we can assert that M & FL[P] for all M in the set S of
refutations that characterises the safety predicate Pred being expressed here by testing that

Spec Cxr I_lMeS Test pr(P).
The context G(_) is then defined for all arguments P as

G(P) = |_|Mes Test pr(P),

which gives us our result.

Theorem 15. Let Pred € Pred be a safety predicate. Then there exists a specification process Spec and
CSP context G(_) such that

VP € CSP . Pred(P) < Spec Cxr G(P).
It follows that all such Pred are refinement-closed in FL.
Corollary 16. Let Pred € Pred be a safety predicate. Then Pred is refinement-closed in FL.

Taken together with Theorem 9, Theorem 15, implies that the safety predicates, and the predicates that
can be expressed as refinement checks of the form Spec C ¢ G(P) in some finite linear observations model M,
are one and the same.



On the Limits of Refinement-Testing for Model-Checking CSP 23

Theorem 17. Let Pred be a FNDF predicate from Pred. Then Pred is a safety predicate iff there exists a
specification process Spec and CSP context G(_) and a finite linear observations model M such that

VP e CSP . Pred(P) < Spec Cyp G(P). (19)

Proof. Let Pred be an FNDF predicate. Suppose we can find Spec, G(=) and M such that (19) is satisfied.
Then by Theorem 9, Pred is a safety predicate. Alternatively, suppose Pred is a safety predicate. Then by
Theorem 15, we can find Spec and G(=) and choose M = FL, such that (19) is satisfied. [

5. Expressing the Refinement-Closures of Liveness Predicates as Refinement
Tests

We now consider to what degree the refinement-closures of liveness predicates can be expressed as refinement
tests. Recall that the M-refinement-closure of a liveness predicate Predy, is denoted RC aq(Predr) and is
simply the predicate that asserts that Pred; must hold for all M-refinements of a process. Recall also that
when Pred;, is refinement-closed in M, that Pred;, = RC a(Predy). Hence, the set of predicates that are
the refinement-closures of liveness predicates includes all liveness predicates that are refinement-closed in
some finite linear observations model M.

Theorem 17 implies that if any such predicate RC aq(Predy) (other than those, like true and deadlock-
freedom, that are also safety predicates) is to be expressed as a refinement test whose left-hand side doesn’t
depend on the system being analysed, the refinement test will have to be performed in some model that is
not a finite-linear observations model, i.e. in some M¥ or M# that records divergence. This explains why
the refinement-closed predicates Predq . and Predm ., from Section 3.4, must be expressed as refinement
checks in the failures-divergences model, FY.

We first consider a class of liveness predicates that includes predicates such as Pred . and Predq .. We
call this class of predicates the class of liveness infinite traces predicates and show that each such predicate
can be captured by a refinement check in the model FL¥, the divergence-strict counterpart of F£. This
implies that all such predicates are refinement-closed in FL¥ and so, when applied to FNDF processes, are
refinement-closed in FL (and so equivalent to their FL-refinement-closures). To our knowledge, this class
includes many (although not all, see e.g. [Ros05a, Section 5]) of the liveness predicates that have been
captured as refinement checks in the literature to date, besides those like deadlock-freedom that are also
safety predicates.

However, we then show that there exist important refinement-closed liveness predicates that do not fall
into this category and cannot be expressed as refinement checks in any standard CSP model suitable for
reasoning about the kinds of processes that FDR can support.

5.1. Expressing Liveness Infinite Traces Predicates as Refinement Checks

The tests for Pred¢ . and Predq . work by essentially building a CSP context G(_) that turns infinite traces
that violate the predicate into divergences, which can then be detected by building a specification Spec
that doesn’t exhibit these divergences and testing for refinement in a divergence-recording model like FVY.
This technique works only because whenever these predicates are violated by the presence of some infinite
behaviour s € ILO, where s = (Ag, ag, A1,a1,...,An,ay...), (such as those s in which all a; are not e in
the case of Predq ) they are also violated by the presence of each infinite behaviour ¢ € ILO in which some
acceptances A; in s are replaced by e. Such predicates are indifferent to the information contained in the
acceptances A; in infinite behaviours and, as such, the only infinite behaviours they care about are a system’s
infinite traces, of the form (ag,a,...,an,...). As such, we call these predicates infinite traces predicates.
More formally, we define an infinite traces predicate to be one that is, like a safety predicate, violated by a
process exhibiting a finite number of behaviours but, unlike a safety predicate, these behaviours can include
infinite traces as well as finite linear observations. That is, any process that violates such a predicate does so
because it exhibits two finite sets M and N of behaviours, where M is a finite set of finite linear observations,
as in a safety predicate, and N is a finite set of infinite traces from X, the set of all infinite sequences of
events from X. We refer to infinite traces predicates that are liveness predicates as liveness infinite traces



24 Toby Murray

predicates. We formally define infinite traces predicates below, and show that all such predicates can be
expressed as refinement checks in the model F£Y.

Recall that the infinite behaviours, Z[P], of an FNDF process P can be calculated by taking the closure
of FL[P] as given by (14). Lifting the function ¢r from (6), that given a linear observation s € FL[P]
returns the sequence of events performed in that observation, from finite linear observations to infinite linear
observations in the obvious way, we may define the set of P’s infinite traces itraces(P), as

itraces(P) = U {tr(s)}. (20)

seZ[P]
With this we can now formally define the infinite traces predicates.

Definition 18 (Infinite Traces Predicate). An FNDF predicate Pred € Pred is an infinite traces pred-
icate iff
vV Sys € CSP . = Pred(Sys) =
AM,N .|M|eNA|N|eNAM C FL[Sys] AN C itraces(Sys) A
(VSys' € CSP . M C FL[Sys] A N C itraces(Sys') = —Pred(Sys’))

Observe that every safety predicate is trivially an infinite traces predicate. Observe also that Pred¢ . and
Predn ¢ . are both liveness infinite traces predicates: each is a liveness predicate, and each is also an infinite
traces predicate. We conjecture that, in practice, most liveness predicates (that are not safety predicates)
that have been tested using refinement checks in divergence-recording models are liveness infinite traces
predicates. However, we do note that there exist liveness predicates that have been expressed as refinement
checks in the literature that are not liveness infinite traces predicates. A good example are predicates that
are violated by the presence of an infinite number of finite traces of events, which Roscoe [Ros05a, Section
5] has shown how to express as refinement checks in FY, the failures-divergences model.

We show that every infinite traces predicate for FNDF processes can be expressed as a CSP refinement
check in the model }'ﬁ“, and hence that every liveness infinite traces predicate can be as well. Recall that
FLY is the divergence-strict counterpart of FL£. As well as recording a process’s finite linear observations, it
also records those partial linear observations that necessarily end in a e-acceptance after which the process
can diverge, and assumes that once a process can diverge it can exhibit any behaviour at all.

As in Section 4, the refinement check that we construct is not in general finitary. Let Pred be a liveness
infinite traces predicate. As before, we encode Pred by a (possibly infinite) set S of refutations. Each refu-
tation is now a pair (M, N) € S of two finite sets, the first of which contains finite linear observations and
the second of which contains infinite traces.

Note that the set M here is identical in nature to the refutations considered in Section 4, so we can
basically reuse that existing construction to test when each of these behaviours in M can be exhibited. So
we concentrate, for now, on building a testing context Test2y(_) that diverges immediately iff the system
to which it is applied can exhibit each of the infinite traces from N. We will then have that for every FNDF
process P € CSP

N & itraces(P) <& CHAOSy, C o Test2y(P),

recalling that, for a set A C ¥, CHAOS 4 is the most general divergence-free process that performs events
from A. This can then be combined with the previous construction to produce a refinement check for Pred.

Let P be an FNDF process and let n € N be the size of the (necessarily finite) set N. Then let sorted(N) =
(S0, ..., 8n—1) be the sequence of infinite traces from N sorted under the lexicographic order. We will have
Test2n(P) run n copies of P in parallel, one for each of the sequences s; in sorted(N), along with a scheduler
process that regulates which copy of P can perform which events at which time. The scheduler will repeatedly
have each copy of P perform an event in turn, always allowing the ith copy (numbered from 0) to perform
only the first event in its sequence s;. Once this event is performed, the event is removed from the front
of s;, and then the scheduler moves onto the next copy of P. Test2x(P) hides all occurrences of these
events from the environment, however, so that they occur as internal activity. For each sequence s;, let
si = (@;,0,@;,1, - ..). This means that Test2y(P) will be able to diverge iff the composition of the Ps and the
scheduler can perform (ag o, .., an-1,0,@i1,s---;An-11;--.), i.e. iff, for all ¢, the ith copy of P can perform
its corresponding infinite trace s;. Otherwise, Test2y(P) will simply deadlock.

In order to distinguish the events of each copy of P, Test2y(P) applies a renaming so that the ith copy



On the Limits of Refinement-Testing for Model-Checking CSP 25

of P performs each of its events a as i.a. Thus we need to extend the alphabet ¥ of events as before. Recall
that 3y denotes the original set of events before it was extended. We extend ¥ by adding to it the fresh
event i.x for every event x € Xy, for all ¢ € {0,...,n — 1}. We then define Test2x(_) for argument P as

Test2y(P) = (<|

where the scheduler process Sched is defined as

Sched(i,m, (Soy .-y Siy---s8n—1)) = ilhead(s;) — Sched((i + 1) mod n,n, (sg, ..., tail(s;), ..., Sn—1)),

110, -1} Pli®/e | 2 € EO]]> !Sched(o,n, sorted(N))) \ %,

where, for an arbitrary non-empty sequence s, head(s) gives the first element of the sequence and tail(s)
gives the remainder of the sequence following its first element.

We now combine this with the previous construction for safety predicates from Section 4 to produce
a refinement check that fails precisely when the process P can perform all finite behaviours in M and all
infinite traces in N. The basic idea will be to run the safety predicate testing context Testys(P) until we
reach the point at which all behaviours in M have been exhibited. We will then hand-over control to the
context Test2x(P) to test for the occurrence of all behaviours in N via divergence.

The handover will be signalled by the occurrence of the event endmark. We define a monitor process that
runs alongside Testys(P) waiting for endmark to occur. Recall that Testy;(P) is designed so that it stably
accepts Yo after performing endmark precisely when P has performed every behaviour in M. Hence, after
synchronising with Testps(P) on endmark, the monitor process then also offers the entirety of g, so that
the combination accepts ¥g here iff Testp(P) does. Once some event from ¥ is performed, the monitor
process hands control over to Test2y(P) to test for divergence.

The combination of the monitor process and the testing contexts already defined we denote Test3(ns,n)(P)
and define as

T@Sﬁg(]\/[,N)(P) = TestM(P) H MN(P),
YoU{endmark}

where the monitor context My (_) is defined as
My (P) =7x: Xy — My (P)Oendmark =7z : 3o — Test2n(P).

Notice that we need to have the monitor process continually offer the entirety of ¥, before endmark is
performed, because it synchronises with Test s (P). Doing so ensures that it continually offers the entirety of
YoU{endmark} until endmark is performed. Since this is precisely the set of events with which it synchronises
with Testy;(P), this ensures that it does not interfere with Test s (P).

To test for when P can exhibit every behaviour from M and N, we modify the previous specifica-
tion Spec from Section 4 to allow it to stably accept ¥ after performing endmark, but then to evolve to the
process CHAOSy, the most general divergence-free process. However, it will specifically allow divergence
to occur, by evolving to div, when ¥ is not stably accepted following endmark. In this way, the refinement
check will fail precisely when P exhibits every behaviour from M and then Test2y(P) diverges, in which
case P has also exhibited every behaviour from N, and —Pred(P) must be true.

We define the new specification process Spec2 as

Spec2 = (Tx : Bo U {b} — (Spec24x = b+ CHAOSy)) N

(l—lXGP(Ef{endmark})7(20U{b})?x : X — (Spec2«z = d* CHAOSE)> M

(endmark - (|‘| 72 X — div) 0% : S U {b} — div O % : 5y — CHAOSZ> .

We then have that
=(M C FL[P] AN C itraces(P)) < Spec2 Eppe Test3n,ny(P)-

XeP(T)-S0

As before, we can lift this to the entire set of refutations S, by testing whether Spec2 Tz

|_|(M N)es Test3(n,ny(P). Thus, we have that

Pred(P) < Spec2 Crpu [ Test3(nr,ny (P).

(M,N)eS



26 Toby Murray

Letting G(-) =1

(MN)eS Test3(nr,n)(—) and Spec = Spec2, we then arrive at our result.
Theorem 19. Let Pred € Pred be an infinite traces predicate. Then there exists a specification process Spec
and CSP context G(_) such that

VP e CSP . Pred(P) & Spec C o0 G(P).
This implies, of course, that every liveness infinite traces predicate can also be expressed in this way.

Corollary 20. Let Pred € Pred be a liveness infinite traces predicate. Then there exists a specification
process Spec and CSP context G(_) such that

VP e CSP . Pred(P) < Spec C g G(P).

It follows that all such Pred are refinement-closed in F£¥ and, when applied only to FNDF processes,
are also refinement-closed in FL.

Corollary 21. Let Pred € Pred be an infinite traces FNDF predicate. Then Pred is refinement-closed in
FL and FLY.

Hence, any such predicate Pred is equivalent to RC z,(Pred), its FL-refinement-closure.

As mentioned earlier, Roscoe [Ros05a, Section 5] has shown another class of liveness predicates that can
be expressed as refinement checks in a standard divergence-recording model. These are the liveness predicates
that are violated by the presence of an infinite number of finite traces, which Roscoe shows can be expressed
in the failures-divergences model F¥, and so can naturally also be captured by checks in FLY. We leave open
the question as to what other kinds of liveness predicates can be expressed as refinement checks in standard
divergence-recording models of CSP, like FLV.

5.2. A Class of Predicates that Cannot be Expressed as Refinement Checks for FDR

Having showed that all liveness infinite traces predicates (which are equivalent to their refinement-closures)
can be expressed as refinement checks, we now demonstrate that there exist other useful liveness predicates
whose refinement-closures cannot be expressed as a refinement check at all, in any finite linear observations
models M, divergence-strict models MY and non-divergence-strict divergence-recording models M#. Recall,
from Section 2.4, that these encompass are all models suitable for reasoning about the kinds of processes
FDR can support, and that for this reason we refer to these models as those standard CSP models that FDR
might reasonably support. Theorem 22 below, which generalises an earlier result of Roscoe [Ros05a, p. 106],
characterises one such class of predicates that cannot be expressed in the form of refinement checks in any
such model.

Let Pred be an FNDF predicate (e.g. Pred = RC aq(Predy,) for some liveness predicate Predy,) from Pred
that we wish to express as a refinement check. For most of this paper, we have concentrated on refinement
checks whose left-hand side is independent of the system to which Pred is being applied. In order to ensure
maximum generality, however, Theorem 22 considers all refinement checks that one might construct to
express Pred, including those whose left-hand side is not independent of the system being analysed. Any
such refinement check (including all of those considered so far) that expresses Pred can be defined in terms
of two CSP contexts, F'(_) and G(_), and a CSP model M such that

VP e CSP . Pred(P) < F(P) Ty G(P).

For tests whose left-hand side is independent of the system being analysed, the context F'(_) simply ignores
its argument. If no two contexts F(_) and G(_) and no CSP model M can be found such that the above
statement holds, then Pred cannot be expressed as a refinement check in any such model M.

Theorem 22. Let M be a finite linear observations model, a divergence-strict model or a non-divergence-
strict divergence-recording model and let Pred € Pred be an arbitrary FNDF predicate. If there exists an
infinite decreasing (under C o) sequence (B,, | n € N) of FNDF, trace-equivalent processes, and a single
FNDF process B* that is the limit of this sequence (i.e. for all relevant i, M;[B*] = U, cy Mi[Bn]), where
Vn € N. B* =5 B, A Pred(B,,) but =Pred(B*), then no refinement-test F(P) Cq G(P) exists that can
express Pred(P) for arbitrary P € CSP.



On the Limits of Refinement-Testing for Model-Checking CSP 27

Proof. Suppose the conditions of the theorem. We use proof by contradiction. Suppose there is a refinement
test of the form F(P) Caq G(P) that expresses Pred(P) for all P € CSP. Let k be the number of different
kinds of behaviour recorded by M and the representation of an arbitrary process P in M be denoted
M;[P],..., My[P]. Then we have that V1 < i < k . M;[B*] = U,cny M:[Bn]. We must have Vn €
N . F(B,) Cyp G(By) but F(B*) Ly G(B*). Then G(B*) must have some behaviour b € M, [G(B*)] —
M;[F(B*)] for some i € {1,...,k} that F(B*) does not. Hence, Vn € N. b ¢ M,;[F(B,)], and so

VneN.b¢ MG(Bn)]. (21)

Observe that b cannot be a divergence since B* is trace-equivalent to every B, and, for any FNDF
process P, the divergences of G(P) depend only on P’s traces and divergences. This means that the ith kind
of behaviour recorded by M cannot be divergences and so must be some kind of finite observations. Then
from (10), it follows that there exists some finite set ® from M ;[B*] that gives rise to the behaviour b €
M;[G(B*)]. Because ® is finite, for some sufficiently large choice of n we must have that ® C M;[B,]
and, by (10) therefore, b € M;[G(B,)]. This contradicts (21) above. Hence, Pred is not expressible as a
refinement check in M. [J

When Theorem 22 holds for some Pred for all finite linear models M, divergence-strict models MY and
divergence-recording non-divergence-strict models M#, then no refinement check can exist that can express
Pred for any standard CSP model that FDR might reasonably support, as defined in Section 2.4. We now
present some examples of useful liveness predicates whose refinement-closures fall into this category.

5.3. Liveness Properties under Strong and Weak Event Fairness

The first examples of liveness predicates whose refinement-closures cannot generally be expressed as re-
finement checks involve certain liveness properties under fairness assumptions [AFK88, LPS81, VVKO05].
These liveness predicates are in-fact naturally refinement-closed, and so we need not explicitly consider their
refinement-closures here (since they are equivalent to them). We show that these refinement-closed predicates
cannot be expressed as refinement checks in standard CSP models that FDR might reasonably support, as
defined above.

A fairness assumption implicitly restricts the infinite behaviours that a process can perform by forbidding
all of those that would be judged to be unfair, i.e. all those that violate the fairness assumption. Fairness
usually means that “if a choice is possible sufficiently often, then it is sufficiently often taken” [AFKSS]. It
is often useful to make fairness assumptions when testing liveness properties of systems, in order to rule out
unfair behaviours that might unfairly violate the liveness property in question.

For instance, let P be the process P = Repeats, ||| e = STOP where, recall, Repeats, = a — Repeats, is
the process that repeatedly performs the event a. Consider the question as to whether P satisfies the liveness
property ¢ e that asserts that, in every execution of P, the event e must eventually occur. P clearly does
not satisfy this property because P can perform an infinite number of as without performing e. However,
many intuitive notions of fairness would say that this infinite behaviour is unfair and hence that, under any
of these notions of fairness, P should in fact satisfy ¢ e.

Two such fairness notions that are sometimes used in the context of event-based formalisms like CSP are
those of strong event fairness and weak event fairness [Lam00, PV01, SLDWO08]. These concepts specialise
the notions of strong and weak fairness [Lam77] respectively, applying them to the occurrence of events.
Weak event fairness asserts that an event that is continually available occurs infinitely often. Strong event
fairness asserts that an event that is available infinitely often occurs infinitely often; it naturally implies
weak event fairness.

We will show that no refinement check for FDR exists that can express simple liveness properties like () e
under these fairness assumptions.

Like liveness properties, these fairness assumptions are often expressed in LTL. In [Low08], Lowe presents
a fragment of LTL that is suitable here for expressing liveness and fairness properties. We consider a subset
of this fragment that expresses formulae ¢ of the form

¢u=ce | availablee | pAD | oV | p=¢ | O | O

Here, e is an event from X. The formula e asserts that the event e is (guaranteed to be) the first visible
event the process performs. available e asserts that whenever the process stabilises before performing its



28 Toby Murray

first visible event, the event e is available. available e does not, and cannot, assert that the process must
stabilise before performing its first visible event. This is because no standard CSP denotational semantic
model distinguishes, for instance, the processes d - STOP O e — STOP and (d - STOP O e — STOP) >
(d = STOP O e — STOP) [Ros08]. The former must of course satisfy any sane definition of available e
and, hence, so should the latter; however, the latter is not guaranteed to stabilise before performing its first
visible event. The boolean connectives have their usual meanings, as do the temporal operators ¢ ¢ and O ¢,
which assert that the property ¢ is eventually and always true respectively.

Using this fragment of LTL, one may express strong and weak event fairness in the usual way
(see e.g. [Lam00, PV01, SLDW08]).!!

Definition 23 (Strong and Weak Event Fairness). Strong event fairness, denoted SEF, is defined as

SEF = A (O¢available e = O ¢ e).
ecy

Weak event fairness, denoted WEF', is defined as

WEF = /\ (O Oavailable e = OO €).
e€X

A liveness property ¢ under a fairness assumption ¢ is naturally captured by the property ¢ = ¢r.
For instance, the property that asserts that the event e eventually occurs under the assumption of strong
event fairness is the property SEF = (e.

Lowe defines the semantics of this fragment of LTL in CSP’s refusal-traces model RT, which recall is
a finite linear observations model. These semantics are defined in terms of a satisfaction relation P = ¢
that defines when an FNDF process P satisfies an LTL formula ¢. = is defined in terms of RT[P], P’s
representation in RT. These semantics are defined such that for all ¢, if P = ¢, then Q | ¢ for every
process @ such that P Cry Q. Hence, each property ¢ is refinement-closed in RT .

These semantics can be lifted straightforwardly to the model FL to define, for each formula ¢, the FNDF
predicate Predy from Pred such that

VP e CSP. P = ¢« Predy(P).

By Lemma 3, Predy will of course be refinement-closed in R and FL since ¢ is refinement-closed in RT
and RT <X FL.

We refer the reader to Lowe [Low08] for a formal presentation of the semantics of this fragment of
LTL, as well as to [MurlO, Chapter 6], which contains a thorough treatment of the semantics of these
fairness assumptions as well as a more traditional presentation of the Lowe’s LTL semantics as judgements
over individual linear executions, and instead illustrate the semantics of our fairness properties with some
representative examples from which the results of this section are directly derived.

Consider the process P, where P =a — P O b — P.In P, both a and b are always stably available, hence
under the assumption of either strong or weak event fairness, infinite executions in which only a occurs, or
only b occurs, are unfair. Thus, both events should occur infinitely often in every fair execution under either
fairness assumption. Hence, Pred wgr—nos(P), Predspr—gous(P) and similarly for a.

On the other hand, consider the process @@ where @ = a — Q M b — Q. Observe that () can reach a
stable state, before performing its first visible event, from which b is not available. This means that @ has
the infinite execution ({a},a,{a},a,...) in which b is never stably available. This infinite execution is not
unfair under either fairness assumption, then, because, while b never occurs, b is also never stably available.
Hence = Predsgr=¢(Q), "Pred wgr=¢(Q) and similarly for a. This makes sense if one recalls that these
properties are all refinement-closed, since @ is refined by the process R = a — R in which b need never
occur. It indicates that our notions of fairness do not forbid one branch of an internal choice being ignored
forever, in line with our expectations about refinement.

Finally, consider the process T where T' = a — T > b — T. The operational semantics of the ‘“>”

11 Many previous treatments (e.g. [PV01, Puh03, Puh05, SLDWO08, Liu09]) of these fairness assumptions that are syntactically
identical to ours have defined available e without requiring that e be stably available (meaning that, unlike our interpretation, it
would be satisfied by the process e — STOP > STOP in which e is available only from an unstable state). This causes problems
that our treatment of available e avoids [Murl0] but means that these fairness properties have slightly different interpretations
here than their predecessors.



On the Limits of Refinement-Testing for Model-Checking CSP 29

operator imply that 7' can initially perform a; however a can be performed only from an unstable state
and T can also initially perform some internal activity and transition to a stable state from where it can
perform only b. Hence, a is available in T only from unstable states. It is not the case that, whenever T'
stabilises before performing its first visible event, a must occur. Hence, = Predayaiiable o (7). Thus T has the
infinite behaviour ({b},b,{b},b,...). As above, this behaviour is fair under either fairness assumption and so
—Pred wepr=0¢o(T) and = Pred spr— ¢ o (T). However, Predayailable »(T') does hold. Hence, the (only) infinite
behaviour (e, a, e, a,...) in which b never occurs necessarily satisfies [Javailable b, and so is considered unfair
under either fairness assumption'?. Thus Pred wrr—p¢b(T) and Predsgr-o5(T) both hold.

With these examples, we can construct a sequence of processes and invoke Theorem 22 to prove that
no CSP refinement test exists that can express even simple liveness properties like ¢ e and [J¢ e under the
assumptions of strong or weak event fairness, respectively.

Corollary 24. No refinement test in any standard CSP model that FDR might reasonably support
(as defined in Section 2.4) can express the predicates Predspr—¢e, Predwgr—oe, Predsgr—noe and
Predwer=0¢e-

Proof. Let
B*=a— B*Mb— B,
Boza—>Bol>b—)Bo,
B,=a—B,_1Mb— B,_q1,for k > 0.

Then, in all finite-linear, divergence-strict and non-divergence-strict divergence-recording models B* is indeed
the limit of the decreasing sequence (By, Bi,...), and B* is trace-equivalent to each B,. Observe that
Pred wrr—nobs(Bo) and so Vn . Pred wgr—nob(Bn) and, hence, Vn . Pred wgr—¢b(Br) too. However,
—Predsgr=¢p(B*) and, hence, ~Pred sgr=n¢s(B*) too. Note finally that, for any FNDF process P and
liveness property ¢ from our fragment of LTL, Pred wgp=(P) = Predsgr=¢(P). The result then follows
by Theorem 22. []

5.4. Refinement-Closed Branching-Time Liveness Predicates

A second class of liveness predicates whose refinement-closures cannot be expressed as refinement checks are
certain branching-time predicates. By branching-time'3, we mean those predicates like Predgr . from (11)
that assert that some condition is satisfied on at least one execution of the system.

Recall that Predgr . is not refinement-closed in any CSP model M. Hence, it is not equivalent to its M-
refinement-closure, RC pq(Predgr.), for any such M. We will show that RC y(Predgr.) cannot generally
be expressed as a refinement check in standard CSP models that FDR might reasonably support, as defined
in Section 2.4. For each choice of M, the predicate RC r(Predgr.) may be different, i.e. for two different
CSP models M and M’, RC p(Predgr ) and RC pp (Predgr ) might be different from each other!?. Tt is
therefore necessary to decide in which M-refinement-closures of Predgr . we are interested (i.e. to determine
what values M can sensibly take here).

For FNDF predicates Pred, we may restrict our attention to their refinement-closures in finite linear
observations models. This is because, in Definition 13, the process @ is necessarily divergence-free. Hence,
when M is a finite linear observations model, then for all FNDF predicates Pred € Pred, RC a(Pred) =
RC pu(Pred) = RC py#(Pred). Therefore, when considering RC a¢(Pred) for some any FNDF predicate Pred,
we can restrict our attention to those M that are finite linear observations models.

Furthermore, it turns out that, for any predicates Pred, if —Pred(STOP) holds, then RCr(Pred) = {},
i.e. its refinement-closure in the traces model T is very often useless. This is because, when —Pred(STOP)
holds, RC'r(Pred) = false, the predicate that is satisfied by no processes. To see why, observe that for any
process P, P Ty STOP. When —Pred(STOP), then for all processes P, “RC7(Pred)(P) must hold. Hence,

12 This can be confirmed by examining Lowe’s semantics [Low08]. Further discussion about this matter can be found in [Mur10,
Section 6.1], to which we refer the interested reader.

13 This name is inspired by similar usage in e.g. [CS10].

14 Lemma 29 in Appendix A shows that when M < M/, it is the case that for any Pred € Pred, RC x((Pred) C RC 5 (Pred).



30 Toby Murray

for predicates Pred that are not satisfied by STOP, when considering RC s (Pred), we may further restrict
our attention to those M that are finite linear observations models other than 7.

Note that = Predgr .(STOUP), since STOP never performs the event e. The following corollary proves that
for all finite linear observations models M other than T, Predgg ’s M-refinement-closure, RC rq(Predgre.),
cannot be expressed as a refinement check in any standard CSP model that FDR might reasonably support,
as defined in Section 2.4.

Corollary 25. Let M be a finite linear observations model other than 7. Then no refinement test in any
standard CSP model that FDR might reasonably support (as defined in Section 2.4) can express the predicate
RC pq(Predgr.).

Proof. Let B* and (B,, | n € N) be as in Corollary 24 and consider the predicate Predggp. Then, since B*
is refined by the process Repeats, in every finite linear observations model M, for all such models M

—\RCM(PT’GdEF b)(B*)

Also, for all finite linear observations models M other than 7, we have VQ . By Eaoq Q = Predgrs(Q).
Hence, for all such models M, RC r((Predgrp)(Bo). It follows that, for all such models M,

Vn € N.RCum(Predgrs)(Br).
The result then follows by Theorem 22. []

5.5. Refinement-Closed Non-Causation

In earlier work [Murl0], we considered the problem of testing non-causation predicates for FNDF CSP pro-
cesses, in order to reason about authority [Mil06] in systems of interacting agents. Imagine a process System
that represents a system comprising a number of agents. Each agent has an alphabet of events A C 3 in
whose occurrence in System it is involved. Then the authority of each agent includes those effects that the
agent can cause to occur in System, by performing events from its alphabet A

As a simple example, consider the effect that is “the event e can occur” and the question as to whether the
agent whose alphabet is A causes this effect in System. Suppose e can occur in System (or else this question
would be meaningless), i.e. that Predgg .(System) holds. Then one way to decide this question is to examine
the system in the counterfactual [Lew73] case in which the agent with alphabet A is prevented from acting,
and see whether e can occur here. This counterfactual case is captured by the process System || STOP,

A

in which we force all events in A to synchronise with the process STOP to prevent any of them from
occurring, which we abbreviate System | 4. If e cannot occur in System | 4, i.e. if = Predgr .(System | 4), then
we say that the agent with alphabet A causes e in System, in accordance with Lewis’ notion of causation by
counterfactual dependence [LewT3].

Hence, we have that the effect “the event e can occur” is caused in System by the agent whose alphabet
is A iff

Predgr .(System) A ~Predgr .(System |4).

This allows us to define when this effect is not caused by the agent with alphabet A, i.e. the non-causation
of this effect by this agent, as

Predgr .(System) = Predgr .(System |4).

We may of course generalise this approach to arbitrary effects by identifying each effect with the predicate
that holds for all systems in which the effect is present. Hence, each predicate Pred € Pred captures an
effect, and we can talk about effects and predicates interchangeably. This leads to the following general
definition for non-causation.

Definition 26 (Non-Causation). In a system System, the agent whose alphabet is A, does not cause the
effect captured by the predicate Pred € Pred iff

Pred(System) = Pred(System | 4).
This is captured by the FNDF predicate denoted NC(A, Pred) from Pred defined as
NC(A, Pred) = {FL[|P] | P € CSP A (Pred(P) = Pred(P|a))}.



On the Limits of Refinement-Testing for Model-Checking CSP 31

We have shown [Mur10] that this general definition for non-causation is able to capture a range of kinds
of authority, including delegable, non-delegable, revocable and single-use authority, as well as the notions of
defensive correctness and defensive consistency [Mil06].

NC(A, Pred) is not, in general, refinement-closed. This can be seen by considering the system System =
a—b— STOP Mb— STOP that comprises two agents with alphabets A = {a} and B = {b} respectively
and asking the question as to whether the agent with alphabet A causes b to be able to occur (i.e. the effect
captured by the predicate Predggy) in System. Since System |4 = STOP b — STOP, Predgr »(System | 4)
holds and so non-causation clearly holds here. However, letting System’ = a — b — STOP, we see that
System Caq System” in every CSP model M. Non-causation doesn’t hold for System’, since System’ |4 =
STOP and —Predgr,(STOP). Hence, NC(A, Predgr) cannot be refinement-closed and so is not generally
equivalent to its refinement-closure.

Note that for certain effects like Predgr., the traces refinement-closure of non-causation,
e.g. RC+(NC(A, Predgre)), is not usually very sensible. Consider, for instance, the process System =
a - b — STOP > b — STOP and let A = {a}. For all finite linear observations models M other
than 7T, it is the case that for all M-refinements System’ of System, Predgry(System’|4) holds and so
NC(A, Predgryp)(System’) holds. Hence, for all such M, RC((NC(A, Predgry))(System) holds. However,
System Cr a — b — STOP and clearly —=Predgry((a — b — STOP)|4), since (a — b — STOP) |4 =
STOP. Hence, "NC (A, Predgr)(a — b — STOP) and so “RC(NC (A, Predgrsp))(System). We conclude,
therefore, that the traces refinement-closure of non-causation is not generally very useful.

For this reason, following the discussion in Section 5.4, when considering the refinement-
closures RCp(NC(A, Pred)) of non-causation predicates NC(A, Pred), we restrict our attention to those
M that are finite linear observations models other than 7.

We show that even when Pred is a simple effect like Predgr e, RC p(NC(A, Pred)) cannot be expressed as
a refinement check in any standard CSP model that FDR might reasonably support, as defined in Section 2.4,
when M is a finite linear observations model other than 7.

Corollary 27. Let M be a finite linear observations model other than 7. Then no refinement test in any
standard CSP model that FDR might reasonably support (as defined in Section 2.4) can express the predicate
RCM(NC(A, PredEFe)).

Proof. Let P* = ¢ — b — STOP ||| B* and P, = ¢ — b — STOP ||| B, for all n € N, where B* and
(B, | n € N) are defined as in Corollary 24, and consider the predicate RC p((NC({c}, Predgrys)). Then,
since B* is refined by the process Repeats, in every finite linear observations model M, P* is refined by
¢ — b— STOP ||| Repeats, in every such model M. The latter clearly doesn’t satisfy NC({c}, Predgry).
So, for all finite linear observations models M, we have that

RO sm(NC({c}, Predgrs))(P*).

Also, recall from Corollary 25 that, for all finite linear observations models M other than T, we have
Vn € N . RCpm(Preders(By)). Observe that for all n € N, P, [y = B,. Hence, for all finite linear
observations models M other than 7, we must have that Vn € N . RCy(Preders)(Pn () Let n be a
natural number, M be some finite linear observations model other than 7 and @ be some FNDF process such
that P, Ty Q. Then P, |f,p Em @ gep and so Predgry(Q |{c)) must hold, and so NC({c}, Predgrs)(Q)
holds. Hence,

Vn e€N.RCum(NC({c}, Predgrsp))(Pr).
The result then follows by Theorem 22. [

5.6. Refinement-Testing the Negation of a Non-Refinement-Testable Predicate

We have shown, by repeatedly applying Theorem 22, that a number of predicates Pred (such as Pred =
RC p(Predgr.)) cannot be expressed as refinement tests in any standard CSP model that FDR might
reasonably support, as defined in Section 2.4. For lack of a better term, we call any such predicate a non-
refinement-testable predicate. One way that one might work around the inability to express one of these
predicates Pred as a refinement test, might be to try to express Pred’s complement, Pred, instead. One might
then apply the resulting refinement test to decide Pred by simply negating whatever result the refinement
test yields.




32 Toby Murray

However, we now show that this strategy is unlikely to work very well, at least for the Preds considered
in this section to which Theorem 22 can be applied, since the complement Pred of any such predicate Pred
cannot be refinement-closed in any standard CSP model M that FDR might reasonably support. Hence,
Pred cannot be expressed as a refinement test whose left-hand side is independent of the system to which
Pred is being applied. This holds regardless of whether Pred is refinement-closed, thus further illustrating
the limits of refinement checking for deciding these kinds of predicates.

Theorem 28. Let M, Pred, B* and (B,, | n € N) be as described in Theorem 22. Then Pred cannot be
refinement-closed in M.

Proof. Suppose the conditions of the theorem. Then —Pred(B*) but Pred(B,,) for all n € N. Let n be any
member of N. Then

Pred(B*) N =Pred(B,) A B* Cy By,.

Hence, Pred cannot be refinement-closed in M. [

6. Future and Related Work

From the previous section, we conclude that there exist useful refinement-closed predicates that are beyond
the reach of refinement-testing to feasibly decide. We now consider future and related work, and sketch
out some alternative approaches that might be used to mechanically decide these sorts of refinement-closed
predicates.

6.1. Model-Checking Approaches Analysing Strongly Connected Subgraphs

We saw that refinement-closed liveness properties like SEF = { e cannot be expressed as CSP refinement
checks for FDR. We conjecture that existing work (such as [Ros01, SLDWO08, Liu09]) on testing liveness
properties by examining a system’s operational semantics [Ros97, Chapter 7] could probably be adapted to
allow one to automatically verify these kinds of liveness properties. We sketch one such possibility, based on
the work in [Liu09].

The standard explicit-state, automata-based approach [VW86] to testing liveness properties expressed
as LTL formulae ¢ against a system’s operational semantics A involves first constructing [WVS83] a Biichi
automaton [Biic62] B that corresponds to the LTL formula —¢, i.e. a Biichi automaton that accepts those
and only those infinite behaviours that violate the liveness property ¢. One then constructs the product
A x B of A and B, which is a Biichi automaton that accepts all infinite behaviours that can be exhibited by
A that are accepted by B. Then the liveness property ¢ is satisfied by the system iff the language recognised
by A x B is empty. This occurs precisely when A x B contains no reachable non-trivial strongly connected
subgraph (SCS) that is accepting, i.e. an SCS that contains a node (sa, sg), where naturally sa and sg are
states of A and B respectively, for which sg is an accepting state of B.

Recall that testing a liveness property ¢y, (e.g. ¢ €) under a fairness assumption ¢ (e.g. SEF) is equiva-
lent to testing the property ¢r = ¢r, (e.g. SEF = {e). Hence, one way to test liveness under fairness using
this standard approach involves building a Biichi automaton B that corresponds to the formula —(¢r = ¢r.)
and then computing A x B as usual. However, the construction of B usually scales poorly with the size of
the LTL formula to which it corresponds (in the worst case, scaling exponentially). Recall that the fairness
assumptions from Section 5, namely SEF and WEF from Definition 23, involve a conjunction over every
event in . Previous work by others [SLDWO08, Liu09] examining the application of this approach using the
SPIN model checker [Hol03] with similar fairness assumptions, indicate that it is unlikely to work well when
Y. contains more than a few events, and is therefore infeasible here.

This problem is avoided in the PAT [Liu09] model-checking tool for CSP, by constructing B to correspond
to just the formula —¢;. The accepting SCSs of A x B then correspond to all infinite behaviours of A that
violate ¢y, whether fair or unfair. Unfair infinite behaviours that violate ¢ are then pruned away by
algorithmically identifying all fair SCSs of the product that (correspond to infinite behaviours that) satisfy
the fairness assumption ¢ . All infinite behaviours of the system then satisfy ¢ = ¢ iff none of these fair
SCSs are accepting.

Adapting this approach therefore requires one to be able to identify whether the infinite behaviours



On the Limits of Refinement-Testing for Model-Checking CSP 33

Fig. 3. The operational semantics A of P=a — P> b— STOP.

captured by an SCS of some product A x B satisfy our fairness assumptions SEF and WEF. We briefly
sketch how to do so.

Let S be a non-trivial SCS in the product A x B of a system’s operational semantics A and a Biichi
automaton B. Let Ng and Eg be the sets of states and edges respectively of S. When sa and sy are states

of A, we write sp — s'y to mean that from state sa the system can transition to state s’y by performing
the event x from XU {7}, where 7 is the special event used to represent internal activity [Ros97, Chapter 7.
We also write s — to mean that there exists a state sy of A such that so — s/,. Then for each node
(SAaSB) € NSv let

stableStates((sa,sB)) = {s'a | sa(—=)*s'a A sy A=}

denote the set of states sy reachable from sa in the system’s operational semantics under zero or more
T-transitions such that each s/, is stable.
Then for each (sa,sB) € Ng, let

availableBvents((sa, sB)) = {e | e € ¥ AV s/, € stableStates((sa,sB)) - S —}

denote the set that contains those events e that are available from every 7-reachable stable state s’y in the
system’s operational semantics from s . Then, let

sometimesAvailableBvents(S) = U, sp)ens availableEvents((sa, sB)),

alwaysAvailableEvents(S) = (5, sp)ens availableEvents((sa, sB)),

be the sets that contain those events that are sometimes and always respectively stably available at some
point during S. Let performedEvents(S) be the set of events performed in S, i.e.

performedEvents(S) = {e | e € £ A 3(sa,sB), (Sa, ) € Ns . ((sa,sB),¢,(sh,s5)) € Es}.
Then we conjecture that S satisfies SEF iff
sometimesAvailableEvents(S) C performedFEvents(S).
Similarly, we conjecture that S satisfies WEF' iff
alwaysAvailableEvents(S) C performedEvents(.S).

For example, consider the process P = a — P> b — STOP. Under our LTL semantics from Section 5,
P = WEF = { b and similarly for SEF. P’s operational semantics A is depicted in Figure 3. The product A x
B of A and the Biichi automaton B that corresponds to the formula — ¢ b, has just a single state that has a
single transition, namely a self-loop labelled with a. A x B has just one non-trivial SCS, which we denote S;
S is, in fact, the entire automaton. S is accepting.

By the above definitions, we have that sometimesAvailableEvents(S) = alwaysAvailableEvents(S) = {b},
but that performedEvents(S) = {a}. We see that {b} Z {a}. This indicates that, under the conjectures
above, none of the behaviours captured by this SCS that violate the liveness property ¢ e, satisfy either of
these fairness assumptions. Hence, under these conjectures, none of the behaviours present in A that violate
¢ e satisfy SEF or WEF'. This is, of course, consistent with P satisfying WEF = (b and SEF = {b.

It can be observed that all of the predicates that we have proved in this paper cannot be tested by
automatic refinement checking, involve detecting the presence of certain infinite behaviours that are not
infinite traces. This can be seen by examining Theorem 22 and noting that what sets B* there apart from
each Bj must be some infinite behaviour that is not an infinite trace (since B* is trace-equivalent to each
By).

As implied by the discussion above, model-checking algorithms based on identifying certain SCSs within
the operational semantics of a system are appropriate for testing predicates that involve detecting certain
infinite behaviours (see e.g. [Ros01]). Hence, we conjecture that it might be possible to adapt pre-existing



34 Toby Murray

SCS-based techniques more generally to detect infinite behaviours that cannot be observed using refinement-
checking, i.e. those infinite behaviours that are not infinite traces and so cannot be detected by mapping
them onto corresponding divergences. This might allow one to model-check predicates that cannot otherwise
be tested using refinement-checking.

6.2. Mechanised Logical Proof

Besides automated model-checking approaches, one potential avenue would be to analyse these predicates
by using mechanised logical proof directly over the FL model, with the aid of mechanical theorem proving
technologies. The CSP-Prover [IR05, IR08] tool could be particularly useful here.

CSP-Prover is a collection of theory libraries and proof tactics for the Isabelle [Pau94] proof assistant.
CSP-Prover encodes many of CSP’s standard denotational semantic models as Isabelle theories, allowing one
to write CSP processes and prove semantic refinement between them using Isabelle’s interactive theorem
proving interfaces. CSP-Prover has also been used to reason about CSP’s denotational semantic models
themselves [IR06, SRI09].

We conjecture that one could extend CSP-Prover to allow one to state and prove FNDF predicates of CSP
processes. Doing so would first require the F£ model to be formalised in CSP-Prover. Given [IR06, SRI09]
that a number of other models, including the stable-failures and stable-revivals [Ros09] models, have been
formalised in CSP-Prover, we expect that formalising the FL£ model should be a relatively straightforward
task of adapting these existing encodings. Having formalised the F£ model, one would then likely identify
a number of key lemmas and results to be proved, regarding each kind of predicate one was interested in
proving, that would assist generally in proving these predicates.

We conclude, therefore, that further work on these alternative approaches, besides refinement checking,
would be very helpful in trying to allow one to verify a wider range of predicates of CSP processes than can
currently be checked using FDR.

6.3. Other Related Work

This work is closely related to that of Roscoe [Ros05a], who considered what sorts of predicates could
be expressed using refinement checks in the failures-divergences model F¥. Our work extends Roscoe’s
because we consider refinement checks in any standard CSP model that FDR might reasonably support, as
defined in Section 2.4 (including, of course, the failures-divergences model). Unlike Roscoe, however, we’ve
focused mainly on predicates that are refinement-closed in some CSP model M, since predicates that are
otherwise cannot usually be expressed as efficient refinement checks as explained earlier. Our work also differs
from Roscoe’s because we have been able to characterise the total set of denotational predicates of FNDF
CSP processes that one might want to test in terms of safety and liveness (via Clarkson and Schneider’s
hyperproperties [CS10] framework). This allows one to gain an intuitive understanding of those predicates
for which refinement checking is most likely to be most useful (for instance, the safety ones as shown earlier
in Section 4).

In [Low09], Lowe considers the problem of how to express n-ary failures predicates as finitary refinement
checks for FDR to carry out. These are predicates Predy of the form

Predy(P) =V f1,..., fn € failures(P) . R(f1,..., fn),

where R is an n-ary relation on stable-failures. Such a predicate Pred is of course equivalent to the FNDF
predicate Pred where

VP e CSP . Pred(P) < Vby,....by € FLIP] .V i, fn . (V1<i<n.fi € f(b:)) = R(f1-.., fa),

where f is as defined in (8). Hence, every m-ary failures predicate is violated by the presence of a finite
set M (where |M| = n) of FL behaviours. This means that every n-ary failures predicate is a safety FNDF
predicate. In fact, every n-ary failures predicate is equivalent to an n-hypersafety predicate [CS10], namely
a safety predicate for which the size of the set M from Definition 8 is always bounded by n.



On the Limits of Refinement-Testing for Model-Checking CSP 35

There do exist safety predicates, however, that are not n-hypersafety predicates. An example (due to
Gavin Lowe) is Pred defined as follows, where #(t) denotes the length of the trace ¢,

VP e CSP . Pred(P) &
Vn . Vity...ty € traces(P) . (V1 <i<n.#(t;) >1) = Si<i<n#(t: | {a}) > n?/6.

Lowe [Low09] focused on producing finitary refinement checks for n-ary failures properties, namely those
for which the left- and right-hand sides are always finite state whenever the system being analysed is finite-
state. In contrast, our focus has been on general refinement checks, whether finitary or otherwise. (Indeed, the
refinement check constructed in the proofs of Theorems 15 and 19 are certainly not finitary.) This is because
we are interested in the limits of expressiveness. An obvious avenue for future work would consider how to
adapt Lowe’s results and techniques from [Low09] to produce finitary refinement checks for safety predicates,
and to characterise those safety predicates and liveness predicates that can, and cannot, be expressed in the
form of finitary refinement checks.!®

As mentioned earlier, Lowe [Low08] has also shown how to construct finitary refinement checks to test
properties expressed in the bounded, positive fragment of LTL. Lowe shows that such predicates can be
expressed as refusal-traces refinement checks of the form Spec Try P where P is the system to which
the predicate is being applied. As discussed before, such predicates are, therefore, necessarily safety FNDF
predicates.

Leuschel et al. have also considered the problem of expressing certain LTL properties as refinement
checks [LMCO01]. Their results are more general than Lowe’s [Low08]. However, unlike Lowe’s, their refinement
checks involve placing the system being analysed on the left-hand side, and so are less practical to carry
out (since the complexity of refinement checking can be exponential in the size of the left-hand side, as
explained earlier). In this paper, we have focused on refinement checks whose left-hand side is independent
of the system being analysed, in order to avoid this problem.

7. Conclusion

We have shown that the entire set of denotational predicates for finitely-nondeterministic, divergence-free
CSP processes can be understood in terms of those that involve safety and those that involve liveness.
We saw that refinement-closed predicates may be written as the conjunction of a safety predicate and
the refinement-closure of a liveness predicate. We proved that refinement checking can express all of the
safety predicates, and certain liveness predicates violated by infinite traces, but that there exist important
liveness predicates whose refinement-closures cannot be expressed as refinement checks in standard CSP
models that tools like FDR might support. Refinement-checking therefore has real limitations for model-
checking arbitrary refinement-closed predicates of CSP processes. We conclude that further development on
verification techniques for CSP, besides refinement checking, should be pursued in order to allow a wider
range of predicates of CSP processes to be verified.

Acknowledgements

Thanks to Bill Roscoe and Gavin Lowe for useful discussions about the hierarchy of CSP models. Bill
Roscoe also provided useful information on how to use CSP contexts to test for stable acceptances. This
paper builds and extends upon work in my D.Phil. thesis [Mur10], which was supervised by, and benefited
from the feedback of, Gavin Lowe, to whom I'm grateful. I would also like to thank Gavin Lowe and the
anonymous reviewers, who provided very valuable feedback on earlier drafts of this paper.

References

[ACH*10] Parosh Abdulla, Yu-Fang Chen, Luk4s Holik, Richard Mayr, and Tom4§ Vojnar. When simulation meets antichains.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’10), volume 6015 of Lecture Notes
in Computer Science, pages 158—-174. Springer, 2010.

15 Tt seems natural to suspect that perhaps only the n-hypersafety predicates [CS10] can be expressed as finitary refinement
checks in finite-linear observations models, a conjecture that Gavin Lowe made to the author in private communication.



36

[AFKSS]
[AL91]
[AS85]

[BR85]

[Biic62]

[CES86]

[CS08]
[CS10]
[GGHT05]
[GM82]
[Hoa80]
[Hoa85]

[Hol03]
[IRO5]

[TRO6]

[IROS]
[Lam77)

[Lam00)
[Lat03)]

[Laz99]
[Lew73]
[LFOS]
[Liu09]

[LMCO1]

[Low96]

[Low07]
[Low08]

[Low09]

[LPS81]

[Mil06]

[MLO7]

Toby Murray

Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in languages for distributed programming.
Distributed Computing, 2(4):226-241, 1988.

Martin Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical Computer Science, 82(2):253~
284, 1991.

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21(4):181-185, October
1985.

Stephen D. Brookes and A. W. Roscoe. An improved failures model for communicating processes. In Proceedings of
the 198/ Carnegie-Mellon University Seminar on Concurrency, volume 197 of Lecture Notes in Computer Science.
Springer, 1985.

J. R. Biichi. On a decision method in restricted second order arithmetic. In Proceedings of the 1st International
Congress on Logic, Methodology, and Philosophy of Science, pages 1-11. Stanford University Press, 1962.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Programming Languages and Systems (TOPLAS), 8(2):244—
263, 1986.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In Proceedings of the 21st IEEE Computer Security
Foundations Symposium (CSF ’08), pages 51-65, 2008.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security, 2010. To appear.
Preprint available at: http://www.cs.cornell.edu/fbs/publications/Hyperproperties.JCS.pdf.

Paul Gardiner, Michael Goldsmith, Jason Hulance, David Jackson, Bill Roscoe, Bryan Scattergood, and Philip
Armstrong. Failures-Divergences Refinement: FDR2 User Manual. Formal Systems (Europe) Ltd, 2005.

Joseph A. Goguen and José Meseguer. Security policies and security models. In Proceedings of the 1982 IEEE
Symposium on Security and Privacy (SP ’82), pages 11-20, 1982.

C. A. R. Hoare. A model for communicating sequential processes. In R. M. McKeag and A. M. Macnaughten,
editors, On the Construction of Programs, pages 229-254. Cambridge University Press, 1980.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

Gerard J. Holzmann. The SPIN model checker: Primer and reference manual. Addison-Wesley, 2003.

Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. In Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2005), page 108.
Springer Verlag, 2005.

Yoshinao Isobe and Markus Roggenbach. A complete axiomatic semantics for the CSP stable-failures model. In
Proceedings of the 17th International Conference on Concurrency Theory (CONCUR ’06), volume 4137 of Lecture
Notes in Computer Science, pages 158-172. Springer, 2006.

Y. Isobe and M. Roggenbach. CSP-Prover: A proof tool for the verification of scalable concurrent systems. Journal
of Computer Software, Japan Society for Software Science and Technology (JSSST), 25(4):85-92, 2008.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering,
3(2):125-143, March 1977.

Leslie Lamport. Fairness and hyperfairness. Distributed Computing, 13(4):239-245, 2000.

Timo Latvala. Efficient model checking of safety properties. In Proceedings of the 10th International Conference
on Model checking software (SPIN’03), pages 74—88. Springer-Verlag, 2003.

Ranko S. Lazié. A Semantic Study of Data Independence with Applications to Model Checking. D.Phil. thesis,
Oxford University Computing Laboratory, 1999.

David Lewis. Causation. Journal of Philosophy, 70(17):556-567, 1973.

Michael Leuschel and Marc Fontaine. Probing the depths of CSP-M: A new FDR-compliant validation tool. In For-
mal Methods and Software Engineering, Proceedings of the 10th International Conference on Formal Engineering
Methods (ICFEM ’08), pages 278-297. Springer, 2008.

Yang Liu. Model Checking Concurrent and Real-Time Systems: The PAT Approach. PhD thesis, National Uni-
versity of Singapore, 2009. Draft available at: http://www.comp.nus.edu.sg/~liuyang/thesis/thesis.pdf.
Michael Leuschel, Thierry Massart, and Andrew Currie. How to make FDR spin: LTL model checking of CSP
by refinement. In Proceedings of the International Symposium of Formal Methods Europe on Formal Methods for
Increasing Software Productivity (FME ’01), pages 99-118. Springer-Verlag, 2001.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’96), volume 1055 of Lecture Notes in Computer Science,
pages 147-166. Springer-Verlag, 1996.

Gavin Lowe. On information flow and refinement-closure. In Proceedings of the 7th International Workshop on
Issues in the Theory of Security (WITS ’07), 2007.

Gavin Lowe. Specification of communicating processes: temporal logic versus refusals-based refinement. Formal
Aspects of Computing, 20(3):277-294, 2008.

Gavin Lowe. On CSP refinement tests that run multiple copies of a process. In Proceedings of the Seventh
International Workshop on Automated Verification of Critical Systems (AVoCS ’07), volume 250 of Electronic
Notes in Theoretical Computer Science, pages 153—170, 2009.

Daniel J. Lehmann, Amir Pnueli, and Jonathan Stavi. Impartiality, justice and fairness: The ethics of concurrent
termination. In Proceedings of the 8th Colloquium on Automata, Languages and Programming (ICALP 1981),
volume 115 of Lecture Notes in Computer Science, pages 264-277. Springer-Verlag, 1981.

Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Control and Concurrency
Control. PhD thesis, Johns Hopkins University, 2006.

Toby Murray and Gavin Lowe. Authority analysis for least privilege environments. In Proceedings of the Joint



On the Limits of Refinement-Testing for Model-Checking CSP 37

[ML09)]
[Muk93]
[Mur10]
[Pau94]
[Pnu77]
[Puh03]

[Puho5]
[PVO1]
[RGGT95]
[Ros94]
[Ros97]
[Ros01]
[Ros04]

[Ros05a]

[Ros05b)]

[Ros08]

[Ros09]
[RSRO4]
[Sis94]
[SLD09]
[SLDWO08]
[SRI09]

[VVKO5]

[VWS86]

[WVS83]

Workshop on Foundations of Computer Security and Automated Reasoning for Security Protocol Analysis (FCS-
ARSPA °07), pages 113-130, 2007.

Toby Murray and Gavin Lowe. On refinement-closed security properties and nondeterministic compositions. In
Proceedings of the Eighth International Workshop on Automated Verification of Critical Systems (AVoCS ’08),
volume 250 of Electronic Notes in Theoretical Computer Science, pages 49-68, 2009.

Abida Mukarram. A Refusal Testing Model for CSP. D.Phil. thesis, University of Oxford, 1993.

Toby Murray. Analysing the Security Properties of Object-Capability Patterns. D.Phil. thesis, University of Oxford,
2010.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer Science.
Springer, 1994.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science, pages 46—57, November 1977.

Antti Puhakka. Using fairness in process-algebraic verification. Technical Report 24, Institute of Software Systems,
Tampere University of Technology, 2003.

Antti Puhakka. Using fairness constraints in process-algebraic verification. In Proceedings of the Second Interna-
tional Colloquium on Theoretical Aspects of Computing (ICTAC 2005), volume 3722 of Lecture Notes in Computer
Science, pages 546—-561. Springer, 2005.

Antti Puhakka and Antti Valmari. Liveness and fairness in process-algebraic verification. In Proceedings of the 12th
International Conference on Concurrency Theory (CONCUR ’01), volume 2154 of Lecture Notes in Computer
Science, pages 202—-217. Springer, 2001.

A. W. Roscoe, Paul H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M. Jackson, and J. B. Scattergood. Hier-
archical compression for model-checking CSP or how to check 1020 dining philosophers for deadlock. In Proceedings
of the First International Workshop on Tools and Algorithms for Construction and Analysis of Systems (TACAS
’95), pages 133-152, London, UK, 1995. Springer-Verlag.

A. W. Roscoe. Model-checking CSP. In A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R.
Hoare, pages 353-378. Prentice-Hall, 1994.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River, NJ, USA, 1997.
Available at: http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.

A. W. Roscoe. Compiling shared variable programs into CSP. In Proceedings of the 2001 PROGRESS Workshop,
2001. Available at: http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/82.ps.

A. W. Roscoe. Finitary refinement checks for infinitary specifications. In Proceedings of Communicating Process
Architectures (CPA 2004), 2004.

A. W. Roscoe. On the expressive power of CSP refinement. Formal Aspects of Computing, 17(2):93-112, August
2005.

A. W. Roscoe. Seeing beyond divergence. In Proceedings of Communicating Sequential Processes: the first 25
years: Symposium on the Occasion of 25 Years of CSP, July 7-8, 2004, volume 3525 of Lecture Notes in Computer
Science, page 15. Springer-Verlag, 2005.

A. W. Roscoe. The three platonic models of divergence-strict CSP. In Proceedings of the 5th International
Colloguium on Theoretical Aspects of Computing (ICTAC 2008), volume 5160 of Lecture Notes in Computer
Science, pages 23-49. Springer-Verlag, 2008.

A. W. Roscoe. Revivals, stuckness and the hierarchy of CSP models. Journal of Logic and Algebraic Programming,
78(3):163-190, 2009.

J. N. Reed, J. E. Sinclair, and A. W. Roscoe. Responsiveness of interoperating components. Formal Aspects of
Computing, 16(4):394-411, 2004.

A. P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Computing, 6(5):495-511, 1994.

Jun Sun, Yang Liu, and Jin Song Dong. Model checking CSP revisited: Introducing a Process Analysis Toolkit.
In Leveraging Applications of Formal Methods, Verification and Validation, volume 17 of Communications in
Computer and Information Science, pages 307—-322. Springer, 2009.

Jun Sun, Yang Liu, Jin Song Dong, and Hai H. Wang. Specifying and verifying event-based fairness enhanced
systems. In Formal Methods and Software Engineering, Proceedings of the 10th International Conference on
Formal Engineering Methods (ICFEM ’08), pages 5-24. Springer-Verlag, 2008.

D. Gift Samuel, Markus Roggenbach, and Yoshinao Isobe. The stable revivals model in CSP-Prover. In Proceedings
of the Eighth International Workshop on Automated Verification of Critical Systems (AVoCS ’08), volume 250 of
Electronic Notes in Theoretical Computer Science, pages 119—-134. Elsevier Science Publishers B. V., 2009.
Hagen Volzer, Daniele Varacca, and Ekkart Kindler. Defining fairness. In Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR ’05), volume 3653 of Lecture Notes in Computer Science, pages
458-472. Springer, 2005.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program verification. In
Proceedings of the First IEEE Symposium on Logic in Computer Science (LICS ’86), pages 322-331, 1986.
Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite computation paths. In Proceedings
of the 24th Annual Symposium on Foundations of Computer Science (SFCS ’83), pages 185-194. IEEE Computer
Society, 1983.



38 Toby Murray

A. Ancillary Proofs

Proof of Theorem 12. Given an FNDF predicate Pred from Pred, our strategy is to construct a safety pred-
icate Predg that contains Pred as a subset. We also construct a liveness predicate Predy, that contains Pred
and then show that their intersection is Pred.

To construct Predgs, we define the safety predicate Safe(Pred) for which the (bad) thing that it asserts
cannot happen is a set of executions that cannot be extended so as to satisfy Pred. So Safe(Pred) contains
systems all of whose observations (i.e. finite sets of finite linear observations) can be extended to satisfy Pred.

VM. |M|eNAMC FL[Sys] =
(3P' € CSP . M C FL[P'] A FL[P'] € Pred)

We show that Safe(Pred) is a safety predicate. Consider any system Sys € CSP for which FL[Sys] ¢
Safe(Pred). Then there exists some finite set M where M C FL[Sys] and

V Sys' € CSP . M C FL[Sys'] = FL[Sys'] & Pred. (22)

Because M C FL[Sys], we have that FL[Sys] ¢ Pred. Hence, FL[Sys] ¢ Safe(Pred) = FL[Sys] ¢ Pred
and so (3Sys’ € CSP . M C FL[Sys'] A FL[Sys'] & Safe(Pred)) = (3Sys’ € CSP . M C FL[Sys'] A
FL[Sys'] ¢ Pred) since in both cases we can set Sys’ = Sys. It follows that

(VSys' € CSP . M C FL[Sys'] = FL[Sys'] ¢ Pred) =
(VSys' € CSP . M C FL[Sys'] = FL[Sys'] ¢ Safe(Pred)).

So, combining Equations 22 and 23,
V Sys' € CSP . M C FL[Sys'] = FL[Sys'] & Safe(Pred).

Hence Safe(Pred) satisfies Definition 8 and so is a safety predicate.

To construct Pred; we define the liveness predicate Live(Pred) that asserts that it’s always possible
either to satisfy Pred or for satisfying Pred to become impossible due to Safe(Pred) having been violated.
Formally

Live(Pred) = Pred U Safe(Pred).

We show that Live(Pred) is a liveness predicate. Consider any partial observation M where |M| € N and
M C FL[P] N PLO for some process P € CSP. Suppose there exists some process P’ € CSP for which
M C FL[P'] and FL[P'] € Pred. Then FL[P'] € Live(Pred) as required. Otherwise, we must have that
for all processes P’ € CSP, if M C FL[P'] then FL[P'] ¢ Pred. Let P’ be an arbitrary process such
that M C FL[P’]. Then following the same reasoning that led to Equation 22, FL[P’] ¢ Safe(Pred) so
FL[P'] € Safe(Pred). So FL[P'] € Live(Pred) again. Hence Live(Pred) satisfies Definition 11 and so is a
liveness predicate.

We now show that Pred C Safe(Pred). Consider any process P € CSP for which FL[P] € Pred. Then
for any finite set M C FL[P] there exists a process P’ such that M C FL[P'] and FL[P'] € Pred, namely
P itself. So FL[P] € Safe(Pred). Hence, Safe(Pred) = Pred U Safe(Pred).

Let Preds = Safe(Pred) and Pred; = Live(Pred). Then

Preds N Predy, = Safe(Pred) N Live(Pred)
= (Pred U Safe(Pred)) N (Pred U Safe(Pred))
= Pred N (Safe(Pred) U Safe(Pred))
= Pred N{FL[P] | P € CSP}
= Pred.

Safe(Pred) = {]-'E[[P]] Pe CSP A

(23)

O
Lemma 29. Let M and M’ be two CSP models such that M < M’. Then for all Pred € Pred,
VP e CSP . RCa(Pred)(P) = RC pq (Pred)(P).

Proof. Suppose the conditions of the lemma and consider some predicate Pred € Pred and process P € CSP
such that RC aq(Pred)(P) holds. Let @ € CSP be a process such that P Ty Q; we show that Pred(Q)
holds. Since M < M’ and P Cy Q, we have P Cq Q. Hence, since RC pq(Pred)(P), Pred(Q) holds. [



