
A Rigorous Analysis of AODV and its Variants

Peter Höfner
NICTA, Australia

University of New South Wales,
Australia

Peter.Hoefner@nicta.com.au

Wee Lum Tan
NICTA, Australia

University of Queensland,
Australia

WeeLum.Tan@nicta.com.au

Annabelle McIver
Macquarie University, Australia

NICTA, Australia
annabelle.mciver@mq.edu.au

Rob van Glabbeek
NICTA, Australia

University of New South Wales,
Australia

rvg@cs.stanford.edu

Marius Portmann
NICTA, Australia

University of Queensland,
Australia

marius@itee.uq.edu.au

Ansgar Fehnker
NICTA, Australia

University of New South Wales,
Australia

Ansgar.Fehnker@nicta.com.au

ABSTRACT
In this paper we present a rigorous analysis of the Ad hoc
On-Demand Distance Vector (AODV) routing protocol us-
ing a formal specification in AWN (Algebra for Wireless Net-
works), a process algebra which has been specifically tailored
for the modelling of Mobile Ad Hoc Networks and Wire-
less Mesh Network protocols. Our formalisation models the
exact details of the core functionality of AODV, such as
route discovery, route maintenance and error handling. We
demonstrate how AWN can be used to reason about critical
protocol correctness properties by providing a detailed proof
of loop freedom. In contrast to evaluations using simulation
or other formal methods such as model checking, our proof is
generic and holds for any possible network scenario in terms
of network topology, node mobility, traffic pattern, etc. A
key contribution of this paper is the demonstration of how
the reasoning and proofs can relatively easily be adapted to
protocol variants.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing protocols; Protocol
verification; F.3.1 [Specifying and Verifying and Rea-

soning about Programs]: Invariants

General Terms
Reliability; Theory; Verification

Keywords
AODV; loop freedom; process algebra; routing protocols;
wireless mesh networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’12, October 21–25, 2012, Paphos, Cyprus.
Copyright 2012 ACM 978-1-4503-1628-6/12/10 ...$15.00.

1. INTRODUCTION
Routing protocols are crucial to the dissemination of data

packets between nodes in Wireless Mesh Networks (WMNs)
and Mobile Ad Hoc Networks (MANETs). One of the most
popular routing protocols that is widely used in WMNs
and MANETs is the Ad hoc On-Demand Distance Vec-
tor (AODV) routing protocol [13]. AODV is one of the
four protocols currently standardised by the IETF MANET
working group, and it also forms the basis of new WMN
routing protocols, including HWMP in the upcoming IEEE
802.11s wireless mesh network standard [10]. The details
of the AODV protocol are laid out in the RFC 3561 [13].
However, due to the use of English prose, this specification
contains ambiguities and contradictions. This can lead to
significantly different implementations of the AODV rout-
ing protocol, depending on the developer’s understanding
and reading of the AODV RFC. In the worst case scenario,
an AODV implementation may contain serious flaws, such
as routing loops.

Traditional approaches to the analysis of AODV and many
other AODV-based protocols [5, 10, 16, 18, 15] are simulation
and test-bed experiments. While these are important and
valid methods for protocol evaluation, in particular for quan-
titative performance evaluation, there are limitations in re-
gards to the evaluation of basic protocol correctness proper-
ties. Experimental evaluation is resource intensive and time-
consuming, and, even after a very long time of evaluation,
only a finite set of network scenarios can be considered—no
general guarantee can be given about correct protocol be-
haviour for a wide range of unpredictable deployment sce-
narios [3]. This problem is illustrated by recent discoveries
of limitations in AODV-like protocols that have been under
intense scrutiny over many years [12]. We believe that for-
mal methods can help in this regard; they complement sim-
ulation and test-bed experiments as methods for protocol
evaluation and verification, and provide stronger and more
general assurances about protocol properties and behaviour.

This paper is based on a complete and accurate formal
specification of the core functionality of the AODV rout-
ing protocol using the specification language AWN (Algebra
of Wireless Networks) [7]. AWN provides the right level of
abstraction to model key features such as unicast and broad-
cast, while abstracting from implementation-related details.
As its semantics is completely unambiguous, specifying a

protocol in such a framework enforces total precision and
the removal of any ambiguities. A key contribution is to
demonstrate how AWN can be used to support reasoning
about protocol behaviour and to provide a rigorous proof of
key protocol properties, using the example of loop freedom.
In contrast to what can be achieved, e.g., by model check-
ing, our proofs apply to all conceivable dynamic network
topologies.

We analyse different readings of the AODV RFC, and
show which interpretations do satisfy the loop freedom cri-
terion, and which do not. We also discuss two limitations
of the AODV protocol and propose solutions to them. We
show how our formal specification can be used to analyse the
proposed modifications and show that these AODV variants
are loop free.

The rigorous protocol analysis discussed in this paper has
the potential to save a significant amount of time in the
development and evaluation of new network protocols, can
provide increased levels of assurance of protocol correctness,
and complements simulation and other experimental proto-
col evaluation approaches.

The remainder of this paper is organised as follows. We
briefly describe AWN in Section 2, and use it to formally
specify AODV in Section 3. We discuss one of several ambi-
guities and contradictions in the AODV RFC, and propose
potential resolutions in Section 4. We then summarise the
key points of a detailed proof of loop freedom of AODV in
Section 5, and demonstrate how the reasoning and proof can
relatively easily be adapted to variants of the AODV proto-
col in Section 6. We discuss related work in Section 7, and
summarise our work in Section 8.

2. AWN—AN ALGEBRA FOR WIRELESS
NETWORKS

Process algebras are standard tools to describe interac-
tions, communications and synchronisations between a col-
lection of independent agents, processes or network nodes.
They provide algebraic laws that allow formal reasoning. For
the specification of and for formal reasoning about AODV,
we use AWN [7, 8], a process algebra specifically tailored for
WMNs. AWN allows us to write a protocol specification in a
simple language, which makes it easy to read and to use. Its
key operators are conditional unicast—allowing error han-
dling in response to failed communications while abstract-
ing from link layer implementations of the communication
handling—and local broadcast—allowing a node to send mes-
sages to all its immediate neighbours as implemented by the
physical and data link layer.

In this section we only give an overview of the main oper-
ations (Table 1) and illustrate the use of AWN with a simple
example. Additional explanations and a full description can
be found in [7, 8].

The example considers a network of two nodes on which
the same process is running. One node broadcasts an integer
value. A received message will be delivered to the applica-
tion layer if its value is 1. Otherwise the node decrements
the value and broadcasts the new value. The behaviour of
each node can be modelled by:

X(n)
def
= broadcast(n).Y()

Y()
def
= receive(m).([m=1] deliver(m).Y() + [m6=1] X(m−1))

If a node is in a state X(n) it will broadcast n and continue

X(exp1, . . . , expn) process name with arguments
P +Q choice between processes P and Q
[ϕ]P conditional process;

execute P only if condition ϕ holds
[[var := exp]]P assignment followed by process P
broadcast(ms).P broadcast message ms followed by P
groupcast(dests,ms).P iterative unicast to all destinations

dests (if broadcast is inappropriate)
unicast(dest,ms).P ◮ Q unicast ms to dest; if successful pro-

ceed with P ; otherwise with Q
deliver(data).P deliver data to application layer
receive(msg).P receive a message
P‖Q parallel composition of nodes

Table 1: Process expressions

in state Y(). If a node is in state Y(), and it receives m, it
has two ways to continue. Process [m=1]deliver(m).Y() is
enabled if m=1. In that case m will be delivered to the appli-
cation layer, and the process returns to Y(). Alternatively,
if m 6=1, the process continues as X(m−1). Note that calls to
processes use expressions as parameters, in this case m−1.

Assume that the nodesA andB are within communication
range of each other; node A in state X(2), and node B in Y().
Then, node A broadcasts 2 and continues as Y(). Node B
receives 2, and continues as X(1). Next B broadcasts 1, and
continues as Y(), while node A receives 1, and, since the
condition m=1 is satisfied, delivers 1 and continues as Y().
This gives rise to transitions from one state to the other:

X(2) ‖ Y() A:broadcast(2)−−−−−−−−−−→ Y() ‖ X(1) B:broadcast(1)−−−−−−−−−−→
A:deliver(1)−−−−−−−−→ Y() ‖ Y()

In state Y() ‖ Y() no further activity is possible; the network
has reached a deadlock.

3. A FORMAL SPECIFICATION OF AODV
AODV is a reactive protocol, which means that routes

are only established on demand. If a node S wants to send
a data packet to node D, but currently does not know a
route, it buffers the packet and initiates a route discovery
process by broadcasting a route request (RREQ) message
in the network. An intermediate node A that receives this
message creates a routing table entry for a route towards S,
referred to as a reverse route, and re-broadcasts the RREQ.
This is repeated until the RREQ reaches the destination D,
or alternatively a node with a route to D. In both cases,
the node replies by unicasting a route reply (RREP) back
to the source S, via the previously established reverse route.
When forwarding RREP messages, a node creates a routing
table entry for node D, called the forward route. When the
RREP reaches S, a route between S and D is established
and data packets can start to flow. In the event of link and
route breaks, AODV uses route error messages (RERR) to
notify the affected nodes. AODV uses sequence numbers to
indicate the freshness of routes and to avoid routing loops.
Full details are given in [13].

3.1 Modelling AODV
We present a model of AODV using AWN. The formal-

isation is a faithful representation of the core functionality
of AODV as defined in [13]. We currently do not model
optional features such as local route repair, expanding ring
search, gratuitous route reply and multicast. We also ab-
stract from all timing issues, since AWN currently does not

Process 1 The basic routine

AODV(ip,sn,rt,rreqs,store)
def
=

1. receive(msg) .
2. /* depending on the message, different processes are called*/
3. (
4. [msg = newpkt(data,dip)] /* new DATA packet */
5. PKT(data,dip,ip , ip,sn,rt,rreqs,store)
6. +[msg = pkt(data,dip,oip)] /* incoming DATA packet */
7. PKT(data,dip,oip , ip,sn,rt,rreqs,store)
8. +[msg= rreq(hops,rreqid,dip,dsn,oip,osn,sip)] /*RREQ*/
9. /* update the route to sip in rt */

10. [[rt := update(rt,(sip, 0, val, 1, sip, ∅))]]
11. RREQ(hops,rreqid,dip,dsn,oip,osn,sip , ip,sn,rt,rreqs,store)
12. +[msg = rrep(hops,dip,dsn,oip,sip)] /*RREP*/
13. /* update the route to sip in rt */
14. [[rt := update(rt,(sip, 0, val, 1, sip, ∅))]]
15. RREP(hops,dip,dsn,oip,sip , ip,sn,rt,rreqs,store)
16. +[msg = rerr(dests,sip)] /*RERR*/
17. /* update the route to sip in rt */
18. [[rt := update(rt,(sip, 0, val, 1, sip, ∅))]]
19. RERR(dests,sip , ip,rt,sn,rreqs,store)
20.)
21. +[Let dip ∈ qD(store)∩ vD(rt)] /* send a queued data packet*/
22. . . .

support time. In concrete terms, this means that the AODV
timing parameters ACTIVE_ROUTE_TIMEOUT, DELETE_PERIOD
and PATH_DISCOVERY_TIME are set to infinity.

In addition to modelling the complete set of core func-
tionalities of the AODV protocol, our model also covers the
interface to higher protocol layers via the injection and de-
livery of application layer data, as well as the forwarding of
data packets at intermediate nodes. Although this is not
part of the AODV protocol specification, it is necessary for
a practical model of any reactive routing protocol, where
protocol activity is triggered via the sending and forwarding
of data packets.

Our AODV model consists of the following six processes:

• AODV, the main process, reads a message from the mes-
sage queue (Line 1 of Process 1) and calls the appro-
priate process PKT, RREQ, RREP, or RERR to handle it
(Lines 4–19). The process also handles the forwarding
of any queued data packets if a valid route to their
destination is known (Lines 21 ff.).

• PKT deals with received data packets, including for-
warding if a route exists, and sending an error message
if the route is broken. If the data packet originates at
the local node and no route to the destination exists,
the process buffers the data packet and initiates a new
route discovery process.

• RREQ deals with received RREQ messages, and will be
discussed in detail below.

• RREP deals with received RREP messages, including
the updating of routing tables and handling of errors.

• RERR models the processing of AODV error messages.

• QMSG describes the general handling of incoming AODV
messages: whenever a message is received, it is first
stored in a FIFO queue. As soon as the corresponding
node is able to handle a message it retrieves the oldest
message from the queue and handles it.

Each node in an AODV network maintains a routing table
to keep track of the node’s routing information collected so
far. A routing table consists of sets of entries of the form

(dip, dsn, flag, hops,nhip, pre), with dip being the node iden-
tifier (typically IP address) of the ultimate destination node,
and dsn the destination sequence number, which represents
the “freshness” of this routing table entry. The flag param-
eter indicates whether an entry is valid or invalid, and hops
represents the distance to the destination node dip in num-
ber of hops. nhip identifies the next hop node along the
route to node dip, and pre is the set of precursors—nodes
that “rely” on this routing table entry for their own routes.
Following [13], a routing table entry would also contain a
sequence-number-status flag. In the present paper we ab-
stract from this flag, since (a) the main results are indepen-
dent of the existence of the flag, and (b) none of the common
implementations (AODV-UU [2], Kernel-AODV [1], AODV-
UIUC [11], AODV-UCSB [6], AODV-ns2 1) maintains this
flag.2 Hence the specification here follows the implementa-
tions available.

In a routing table rt there is at most one entry for each
destination dip; sqn(rt,dip) denotes the sequence number of
that entry and flag(rt,dip), dhops(rt,dip) and nhop(rt,dip)
its validity, hop count and next hop. Furthermore the sets
kD(rt) and vD(rt) of destinations contain all entries of rt for
which there is an (arbitrary) entry or a valid entry, resp. The
function update updates a routing table rt with an entry r,
which is one of the major activities of AODV:

update(rt,r) :=

rt∪{r} if π1(r) 6∈ kD(rt) //r is new

nrt∪{nr} if sqn(rt,π1(r))<π2(r) //fresher

nrt∪{nr} if sqn(rt,π1(r))=π2(r)
∧ dhops(rt,π1(r))>π4(r) //shorter

nrt∪{nr} if sqn(rt,π1(r))=π2(r) //replaces
∧ flag(rt,π1(r))=inv invalid

nrt∪{nr′} if π2(r)=0 //unk. sqn

nrt∪{ns} otherwise ,

where the projections π1, π2 and π4 select the respective
component from an entry, namely the destination, the des-
tination sequence number and the hop count. s is the current
entry in rt for destination π1(r) (if it exists); and nrt := rt−s
removes s from rt. The entry nr is identical to r except that
the precursors from the corresponding routing table entry
are added and ns is generated from s by adding the precur-
sors of r. The entry nr′ is identical to nr except that the
sequence number is replaced by the one from the routing
table (route s).

If a route is not valid any longer, instead of deleting it,
AODV sets its validity flag to invalid. This way, the stored
information on the route, such as the sequence number and
hop count, remains accessible. We model route invalidation
by a function invalidate whose arguments are a routing ta-
ble and a set dests of pairs (rip, rsn) of a destination rip to
be invalidated, and the sequence number of the invalidated
routing table entry. Normally, rsn is obtained by increment-
ing the last known sequence number of the route.

In our formalisation, a route request message has the form
rreq(hops ,rreqid ,dip ,dsn ,oip ,osn ,sip), where hops is the
number of hops the RREQ has already travelled from its
origin oip, and rreqid (in combination with oip) is a unique
identifier of the message. dip is the destination node identi-
fier (IP address) of the route request and dsn the last known
corresponding sequence number. The parameter oip is the

1www.auto-nomos.de/ns2doku/aodv_8cc-source.html
2Kernel-AODV implements the flag, but does not use it.

address of the originator of the route request and osn is its
sequence number. Finally, sip represents the sender IP ad-
dress, i.e., the address of the intermediate node from which
the request was received. Any node forwarding such a mes-
sage updates sip with its own address, increments hops, and
retains all other parameters. A reply to such a message has
the form rrep(hops ,dip ,dsn ,oip ,sip), where dip and oip are
copied from the corresponding RREQ message and hops is
the distance from dip to sip. The processes RREQ and RREP

that handle incoming RREQ and RREP messages maintain
variables dip, oip, etc. to store the values of the parameters
of these messages, as summarised below.

Variables Used for
ip address of current node
dip destination address
oip originator of a route request or data packet
rip destination of invalid route
sip sender of AODV control message
nhip next hop towards some destination

The process AODV, specified by Process 1, deals with the
message handling of the node. It stores its own address in
the variable ip, its own sequence number in sn, manages
its routing table rt, records all route requests seen so far
in rreqs and maintains in store data packets to be sent.
Initially, rt, rreqs and store are set to empty, and sn to 1.

3.2 Route Request Handling
In this paper, we discuss only the model of the RREQ

process; see [8] for a complete model of all AODV processes.3

A route discovery in AODV is initiated by a source node
broadcasting a RREQ message. Process 2 shows our process
algebra specification of the handling of a RREQ message
received by a node ip.

If the RREQ with the same oip and rreqid has been seen
previously by the node, it is ignored, and we go back to
the main AODV process (Lines 1–2). If the RREQ is new
(Line 3), we update the routing table by adding a “reverse
route” entry to oip, the originator of the RREQ, via node
sip, with distance hops+1 (Line 5). If there already is a
route to oip in the node’s routing table rt , it is only up-
dated with the new route, if the new route is “better”, i.e.,
fresher and/or shorter and/or replacing an invalid route (cf.
Section 3.1). The process also adds the message to the list
of known RREQs (Line 7).

Lines 9–20 deal with the case where the node receiving
the RREQ is the intended destination, i.e., dip=ip (Line 9).
In this case, a RREP message needs to be sent to the origi-
nating node oip. According to the AODV RFC, the node’s
sequence number is set to the maximum of the node’s cur-
rent sequence number and the destination sequence number
(dsn) in the RREQ message (Line 10).

The RREP message is initialised as follows: hop count
(hops) is set to 0, the destination (dip) and originator (oip)
are copied from the corresponding RREQ message and the
destination’s sequence number is the node’s sequence num-
ber sn. Of course, the sender’s IP address (sip) is set to the
node’s ip (Line 12). The RREP message is unicast to the
next hop along the reverse route back to the originator of
the corresponding RREQ message, and if this is successful,
the process goes back to the AODV process (Line 13).

3There, the sequence-number-status flag is modelled as well.

Process 2 RREQ handling

RREQ(hops,rreqid,dip,dsn,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. [(oip, rreqid) ∈ rreqs] /* the RREQ has been handled before*/
2. AODV(ip,sn,rt,rreqs,store) /* silently ignore RREQ*/
3. +[(oip, rreqid) 6∈ rreqs] /* the RREQ is new to this node*/
4. /*update the route to oip in rt */
5. [[rt := update(rt,(oip, osn, val, hops+ 1, sip, ∅))]]
6. /*update rreqs by adding (oip, rreqid) */
7. [[rreqs := rreqs ∪ {(oip, rreqid)}]]
8. (
9. [dip = ip] /* this node is the destination node*/

10. [[sn := max(sn, dsn)]] /*update the sqn of ip */
11. /* unicast a RREP towards oip of the RREQ*/
12. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .
13. AODV(ip,sn,rt,rreqs,store)
14. ◮ /* if transmission fails, a RERR is generated*/
15. [[dests := {(rip, inc(sqn(rt,rip)))|rip ∈ vD(rt) ∧

nhop(rt,rip) = nhop(rt,oip)}]]
16. [[rt := invalidate(rt,dests)]]
17. [[pre :=

⋃
{precs(rt,rip) | (rip, ∗) ∈ dests}]]

18. [[dests := {(rip, rsn) | (rip, rsn) ∈ dests ∧
precs(rt,rip) 6= ∅]]

19. groupcast(pre,rerr(dests,ip)) .
20. AODV(ip,sn,rt,rreqs,store)
21. +[dip 6= ip] /* this node is not the destination node*/
22. (
23. /* valid route to dip that is fresh enough */
24. [dip ∈ vD(rt) ∧ dsn ≤ sqn(rt,dip) ∧ sqn(rt,dip) 6= 0]
25. /* update rt by adding precursors*/
26. [[rt := addpreRT(rt,dip,{sip})]]
27. [[rt := addpreRT(rt,oip,{nhop(rt,dip)})]]
28. /* unicast a RREP towards the oip of the RREQ*/
29. unicast(nhop(rt,oip),

rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .
30. AODV(ip,sn,rt,rreqs,store)
31. ◮ /* if transmission fails, a RERR is generated*/
32. [[dests := {(rip, inc(sqn(rt,rip))) | rip ∈ vD(rt) ∧

nhop(rt,rip) = nhop(rt,oip)}]]
33. [[rt := invalidate(rt,dests)]]
34. [[pre :=

⋃
{precs(rt,rip) | (rip, ∗) ∈ dests}]]

35. [[dests := {(rip, rsn) | (rip, rsn) ∈ dests ∧
precs(rt,rip) 6= ∅]]

36. groupcast(pre,rerr(dests,ip)) .
37. AODV(ip,sn,rt,rreqs,store)
38. /* no valid route that is fresh enough */
39. +[dip 6∈ vD(rt) ∨ sqn(rt,dip) < dsn ∨ sqn(rt,dip) = 0]
40. /* no further update of rt */
41. broadcast(rreq(hops+ 1,rreqid,dip,

max(sqn(rt,dip), dsn),oip,osn,ip)) .
42. AODV(ip,sn,rt,rreqs,store)
43.)
44.)

If the unicast of the RREP fails, we proceed with Lines 14–
20, in which a route error (RERR) message is generated
and sent. This conditional unicast is implemented in our
model with the AWN construct unicast(dest ,ms).P ◮ Q
(Lines 12ff.) We assume that, as is the case for relevant
wireless technologies such as IEEE 802.11, unicast messages
are acknowledged, and we therefore can determine whether
the transmission was unsuccessful and the link to the next
node towards oip is broken. In this case, the node sends
a RERR message to all nodes that rely on the broken link
for one of their routes. For this, we first determine which
destination nodes are affected by the broken link, i.e., the
nodes that have this unreachable node listed as a next hop
in the routing table (Line 15). Here, the operator inc in-
crements the sequence numbers of those entries. Then, we
invalidate any affected routing table entries (Line 16), and
determine the list of precursors, which are the neighbouring
nodes that have a route to one of the affected destination
nodes via the broken link (Line 17). Finally, using the AWN
groupcast primitive, a RERR message is sent via unicast to
all these precursors (Line 19), listing only those invalidated

destinations with a non-empty set of precursors (Line 18).
Lines 21–42 deal with the case where the node receiving

the RREQ is not the destination, i.e., dip 6= ip (Line 21). The
node can respond to the RREQ with a corresponding RREP
on behalf of the destination node dip, if its route to dip is
“fresh enough” (Line 24). This means that (a) the node has
a valid route to dip, (b) the destination sequence number in
the node’s current routing table entry (sqn(rt,dip)) is greater
than or equal to the requested sequence number to dip in the
RREQ message, and (c) the sequence number is valid, i.e.,
it is not unknown (sqn(rt,dip) 6=0). If these three conditions
are met (Line 24), the node generates a RREP message and
unicasts it back to the originator node oip via the reverse
route. To this end, it copies the sequence number for the
destination dip from the routing table rt into the destination
sequence number field of the RREP message and it places
its distance in hops from the destination (dhops(rt ,dip))
in the corresponding field of the new reply (Line 29). As
usual, the unicast might fail, which causes the same error
handling (Lines 32–35). Just before unicasting the RREP
message, the intermediate node updates the forward routing
table entry to dip by placing the last hop node (sip) into the
precursor list for that entry (Line 26). Likewise, it updates
the reverse routing table entry to oip by placing the first
hop nhop(rt ,dip) towards dip in the precursor list for that
entry (Line 27).

If the node is not the destination and there is either no
route to the destination dip inside the routing table or the
route is not fresh enough, the route request received has to
be forwarded. This happens in Line 41. The information
inside the forwarded request is mostly copied from the re-
quest received. Only the hop count is increased by 1 and
the destination sequence number is set to the maximum of
destination sequence number in the RREQ packet and the
the current sequence number for dip in the routing table. In
case dip is an unknown destination, sqn(rt,dip) returns the
unknown sequence number 0.

4. AMBIGUITIES IN THE RFC
The formal specification of AODV, outlined above and

given in full detail in [8], closely follows the RFC 3561 [13],
the official specification of the protocol. However, the RFC
contains several ambiguities and contradictions; an inven-
tory is presented in [8], and for each ambiguity or contradic-
tion a number of ways to resolve them is listed. An interpre-
tation of the RFC is given by the allocation of a resolution
to each of the ambiguities and contradictions. Each reading,
implementation, or formal analysis of AODV must pertain
to one of its interpretations. The formal specification of
AODV in [8] constitutes one interpretation; the inventory of
ambiguities and contradictions is formalised by specifying
each resolution of each of the ambiguities and contradic-
tions as a modification of this formal specification, typically
involving a rewrite of a few lines of code only.

A crucial contradiction in the RFC concerns the question
of what would happen if a node has a valid routing table
entry for a destination D, with destination sequence num-
ber n, and an error message is received from the next hop
towards D, saying that the route to D is broken, and stating
for this route a destination sequence number m, which may
be smaller than n. Section 6.11 of the RFC unambiguously
states that in such a case the node updates its routing table
entry to D by marking the route as invalid, and copying the

destination sequence number from the incoming route error
message. However, Section 6.1 of the RFC states that if
m < n, any information related to D in the AODV message
must be discarded.

One can show [8] that in case no node will ever store a
routing table entry to itself (a self-entry), the above situa-
tion will never occur. However, the RFC does not explicitly
exclude self-entries4, and they can in fact occur [8] in re-
sponse to the standard handling of RREP messages.

The following ways to resolve this contradiction have been
listed in [8]:

(a) Follow Section 6.11 of the RFC, in defiance of 6.1, i.e.,
always invalidate the routing table entry, and copy the
destination sequence number from the error message to
the corresponding entry in the routing table.5

(b) Follow Section 6.11 only where it does not contradict
6.1, i.e., invalidate the routing table entry and copy the
destination sequence number only if m ≥ n.

(c) Always invalidate the routing table entry, but update
the destination sequence number to max(m,n).

(d) Always invalidate the routing table entry, but update
the destination sequence number to max(m,n+1).

(e) Invalidate the routing table entry and update the desti-
nation sequence number to max(m,n+1) only ifm ≥ n.6

(f) Invalidate the routing table entry only if m > n.7

(g) Forbid self-entries; if an incoming RREP message would
create a self-entry, discard that message.

(h) Forbid self-entries; if an incoming RREP message would
create a self-entry, forward that message without updat-
ing the node’s routing table.

It should be noted that only resolutions (a) and (b) are
compliant with the RFC. However, in [9] we have shown
that any interpretation based on resolutions (a) or (b) gives
rise to routing loops, so in order to arrive at a loop-free
version of AODV, one has to deviate from the RFC. Here,
as in [8], we do so by choosing resolution (f).

The above is only one of many ambiguities; another one
is presented in Section 6.1.

5. LOOP FREEDOM
We now formalise loop freedom and sketch a proof that

our detailed specification of AODV cannot create routing
loops. We also show how such a formal proof can form a
baseline for evaluating variants of AODV—some of them
will be loop free, others can yield loops.

First we formalise what it means for the routing tables
established by AODV (our specification) to be free of loops.
Let IP be the set of network nodes and dip∈ IP a particular
destination; let N be a state of the network, encompassing
the current values of all variables maintained by all nodes.
4The Kernel-AODV, AODV-UIUC, AODV-UCSB and
AODV-ns2 implementations allow self-entries to occur.
5It could be argued that this is not a reasonable interpreta-
tion of the RFC, since Section 6.1 should have priority over
6.11. However, this priority is not explicitly stated.
6The case max(m,n) if m ≥ n need no separate considera-
tion, since it is equivalent to (b).
7Here, it does not matter whether we copy, take max(m,n)
or max(m,n+1); they are all equivalent.

The routing graph RN (dip) for destination dip in state N is
the directed graph (IP, E) with set of vertices IP and set of
edges E ⊆ IP×IP consisting of the pairs (ip, ip′) such that
ip 6= dip and (dip, ∗, val, ∗, ip′, ∗) occurs in the routing table
of ip in state N . Thus, there is an edge (ip, ip′) if node ip is
not the destination dip, but has a valid entry for dip, and ip′

is the next hop according to that entry. Loops in directed
graphs are defined to be paths following edges which return
to a vertex.

A (network) state N is loop free if the routing graphs
RN (dip) are loop free for all dip∈ IP. The specification of
AODV is loop free iff all reachable states are loop free.

Let us now turn towards a proof of loop freedom for AODV.
It relies on a number of invariants—statements that hold for
all reachable states of our model. An invariant is usually ver-
ified by showing that it holds for all possible initial states,
and that, for any transition N

ℓ−→ N ′ derived by our opera-
tional semantics [8], if it holds for state N then it also holds
for state N ′, reached after performing some action ℓ. These
transitions can be traced back to the line numbers in our
process declarations AODV, PKT, RREQ, RREP, RERR and QMSG.

A proof of AODV’s loop freedom using invariants has first
been proposed in [4].8 The main invariant of [4] states that if
node ip has a routing table entry for destination dip with next
hop nhip, then also node nhip has a routing table entry for
dip, and the latter has a larger destination sequence number,
or an equal one with a strictly smaller hop count.

This invariant is claimed to hold regardless whether the
routing table entries for dip at ip and nhip are marked as
valid or invalid. Nevertheless, the following example shows
that it does not hold for the current version of AODV.

S
2

(A,0,inv,1,A)
(D,2,inv,2,A)

A
1

(D,1,val,1,D)
(S ,2,val,1, S)

D
1

(A,0,val,1,A)
(S ,2,val,2,A)

Figure 1: Sequence numbers can go down9

The network state depicted in Figure 1 can occur when, af-
ter a standard RREQ-RREP cycle, a link break is detected.
We assume a simple linear topology of 3 nodes. Below the
node names, the circles list the nodes’ own sequence num-
bers, which we assume to be 1 at the initial state. The exam-
ple starts with empty routing tables and node S searching
for a route to node D. Before broadcasting a RREQ mes-
sage, node S increments its sequence number by 1. Due to
the successful exchange of RREQ-RREP messages, all rout-
ing tables are updated. After that, the link between nodes
S and A goes down, S detects the link break and updates its
routing table: it sets all entries in its routing table with next
hop A to invalid and increases the destination sequence num-
ber of the route to D to 2; the destination sequence number
in the route to A is unknown (0) and hence not incremented.
Now the destination sequence number on the route to node
D is 2 in the routing table of S and 1 inside A’s routing
table, hence this number can go down.

8In fact, the same idea occurs already in [14], but without
the formalisation in terms of invariants. However, that proof
fails to consider some cases that do occur in AODV and
might yield routing loops [9].
9We omit the precursor set; the routing table entries in each
node are represented as (dip, dsn,flag, hops,nhip), described
in Section 3.1.

One way to avoid this problem is to claim the invariant
only for the case that the routing table entries at ip and
nhip are both marked as valid. This is what we do in The-
orem 5.4 below, and it suffices to obtain loop freedom of
AODV. However, in order to prove Theorem 5.4, we need
an invariant that also takes invalid routing table entries into
account (cf. Proposition 5.3), so it is not possible to avoid
the above problem altogether.

To compensate for the increase of a sequence number in
case of route invalidation, we introduce the concept of a net
sequence number of a route to dip according to the routing
table of node ip in state N , which combines “freshness” and
validity:

nsqn
ip
N
(dip):=

{

sqn
ip
N
(dip) if flagip

N
(dip)= val∨ sqn

ip
N
(dip)= 0

sqn
ip
N
(dip)−1 otherwise .

Here, we write sqnipN (dip) for sqn(rt,dip) in case rt happens
to be the routing table maintained by a node with IP ad-
dress ip in state N of the network. Likewise flag

ip
N (dip)

denotes the validity of the route from ip to dip according
to the routing table of ip in state N , dhopsip

N(dip) its hop
count, and nhop

ip
N (dip) its next hop. Furthermore kD

ip
N , ab-

breviating kD(rt), is the set of destinations for which there
is a valid entry in the routing table of ip.

In this section we state the key theorems and sketch some
of the proofs; all details can be found in [8]. In particular,
we show only proofs w.r.t. Process 2, the RREQ handling,
and the displayed portion of Process 1.

Proposition 5.1. If a route request is sent (forwarded)
by a node ipc different from the originator of the request then
the content of ipc’s routing table must be fresher or at least
as good as the information inside the message.

N R:broadcast(rreq(hops
c
,∗,∗,∗,oip

c
,osnc ,ipc))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N ′ ∧ ipc 6= oipc

⇒ oipc ∈ kD
ip
c

N ∧
(

sqn
ip
c

N (oipc)> osnc ∨ (sqn
ip
c

N (oipc)= osnc

∧ dhops
ip
c

N (oipc)≤ hopsc ∧ flag
ip
c

N (oipc)= val)
)

The next proposition says that in the routing table of a node
ip, an entry to a destination dip will never be deleted, and
the net sequence number of the entry will never go down.

Proposition 5.2. Let ip, dip∈IP, and assume N
ℓ−→ N ′,

i.e. the network proceeds from state N to state N ′ by the
occurrence of some action ℓ. If dip ∈ kD

ip
N then dip ∈ kD

ip

N′

and nsqn
ip
N (dip) ≤ nsqn

ip

N′ (dip).

Proof. In our model of AODV, the only way to change a
routing table is by means of the operations update, addpreRT
and invalidate. None of them ever deletes an entry alto-
gether, or decreases its net sequence number.

In this proof it is essential that we use resolution (f) of
the ambiguity in the RFC presented in Section 4. Proposi-
tion 5.2 would not hold under resolutions (a), (b) or (c).

Proposition 5.3. If, in a reachable network state N, a
node ip∈ IP has a routing table entry to dip, then also the
next hop nhip towards dip, if not dip itself, has a routing
table entry to dip, and the net sequence number of the latter
entry is at least as large as that of the former.

dip ∈ kD
ip

N ∧ nhip 6= dip

⇒ dip ∈ kD
nhip
N ∧ nsqn

ip
N(dip) ≤ nsqn

nhip
N (dip) ,

where nhip := nhop
ip

N (dip) is the IP address of the next hop.

Proof. In the initial state, the invariant holds since all
routing tables are empty (cf. Section 3.1). Next we assume
that the property holds and check each line in Pro. 1 and
Pro. 2 which could invalidate it.

A modification of the routing table of nhip is harmless,
as it can only increase kD

nhip
N as well as nsqn

nhip
N (dip) (cf.

Proposition 5.2).
Adding precursors to routes of ip does not harm since

the invariant does not depend on precursors. It remains
to examine all calls of update and invalidate to the rout-
ing table of ip. Without loss of generality we restrict at-
tention to those applications of update or invalidate that
actually modify the entry for dip, beyond its precursors; if
update only adds some precursors in the routing table, the
invariant—which is assumed to hold before—is maintained.

Pro. 1, Lines 10, 14, 18: The entry (sip, 0, val, 1, sip, ∅)
is used for the update; its destination is dip := sip. We
assume this entry is actually inserted in the routing ta-
ble of ip. Since dip = sip = nhop

ip
N (dip) = nhip, the

antecedent of the invariant to be proven is not satisfied.

Pro. 2, Line 5: The entry (oip, osn, val, hops+1, sip, ∗) is
used for the update; again we assume it is inserted into
the routing table of node ip. So dip := oip, nhip :=
sip, nsqnipN(dip) := osn and dhops

ip
N (dip) := hops+1.

This information is distilled from a received route re-
quest message (cf. Lines 1 and 8 of Pro. 1). By Propo-
sition 7.1 of [8], this message was sent before, say in
state N ′; by Proposition 7.8 of [8], the sender of this
message has identified itself correctly, and is sip.

By Proposition 5.1, with ipc :=sip=nhip, oipc :=oip=
dip, osnc := osn and hopsc := hops, and using that
ipc = nhip 6= dip = oipc, we get that dip ∈ kD

nhip

N′ and

sqn
nhip

N′ (dip) = sqn
ip
c

N′(oipc) > osnc = osn , or

sqn
nhip

N′ (dip) = osn ∧ flag
nhip

N′ (dip) = val .

We first assume that the first line holds. Then, by
Proposition 5.2,

nsqn
nhip

N (dip) ≥ nsqn
nhip

N′ (dip) ≥ sqn
nhip

N′ (dip)−1

≥ osn = nsqn
ip

N(dip) .

We now assume the second line to be valid. From this
we conclude

nsqn
nhip

N (dip) ≥ nsqn
nhip

N′ (dip) = sqn
nhip

N′ (dip)

= osn = nsqn
ip

N(dip) .

Pro. 2, Lines 16, 33: In these applications of invalidate,
the next hop nhip is not changed. Since the invari-
ant has to hold before the execution, it follows that
dip ∈ kD

nhip
N also holds after execution. Furthermore,

in view of Lines 15 and 32, the route is invalidated
while the destination sequence number is incremented.
For this reason the net sequence number stays the
same, and the invariant is maintained.

Theorem 5.4. If, in a state N , a node ip∈ IP has a valid
entry to dip, and the next hop is not dip and has a valid dip-
entry as well, then the latter entry has a larger destination
sequence number or an equal one with a smaller hop count.

dip ∈ vD
ip
N ∩ vD

nhip
N ∧ nhip 6= dip

⇒ sqn
nhip
N (dip) > sqn

ip
N (dip) ∨

(

sqn
nhip
N (dip) = sqn

ip
N (dip) ∧

dhops
nhip

N (dip)< dhops
ip

N(dip)
)

,

where nhip := nhop
ip
N (dip), the next hop in the routing table

entry at ip for the route to dip.

The proof [8] is similar to the previous one, but makes use of
Proposition 5.3—including the case where dip /∈ vD

nhip
N —in

an essential way.
From Theorem 5.4, we can conclude

Theorem 5.5. AODV is loop free.

Proof. If there were a loop in a routing graph RN (dip),
then for any edge (ip,nhip) on that loop one would have
sqn

ip
N(dip) ≤ sqn

nhip
N (dip), by Theorem 5.4. Hence the value

of sqnipN(dip) is the same for all nodes ip on the loop. Thus,
by Theorem 5.4, the sequence numbers keep decreasing when
travelling around the loop, which is impossible.

6. ANALYSING VARIANTS OF AODV
In this section, we use AWN to model interpretations and

variants of the AODV protocol. Interpretations are just dif-
ferent readings of the RFC, variants are the result of modi-
fications to address existing limitations. Thanks to the use
of process algebra, we can easily adapt the proofs of estab-
lished correctness properties of the protocol, such as loop
freedom. This is in contrast to the analysis of variants of
existing protocols via simulations and testbed experiments,
where all the work typically has to be redone from scratch
(and even then cannot provide the same level of assurance).

6.1 Interpretations
In this section we briefly discuss two ambiguities of the

RFC together with possible interpretations. More can be
found in [8]. Of course each interpretation may possibly
create routing loops and hence has to be examined sepa-
rately. The specification and the proofs formalised in AWN
can easily be adapted.

6.1.1 Invalidating Routing Table Entries
We have already presented one contradiction of the AODV

RFC in Section 4. It was based on the question of what
would happen if a node that has a valid routing table entry
for a destination D receives an error message and invalidates
the corresponding routing table entry. In the same section
we also list eight possible resolutions. The first two, the
only interpretations compliant with the RFC, violate The-
orem 5.4, and yield routing loops [9]. The same holds for
Interpretation (c). As stated before, to guarantee loop free-
dom one has to create an interpretation of AODV that is
(literally speaking) not compliant with the RFC. Interpre-
tations (d) and (e) are loop free—the proof is identical to the
one of (f), given in Section 5. The remaining two resolutions
can be proven to be loop free as well [8].

6.1.2 Updating with the Unknown Sequence Number
The AODV RFC [13] states that whenever a node receives

a forwarded AODV control message from a neighbour (i.e.,
the neighbour is not the originator of the message), it cre-
ates a new or updates an existing routing table entry to
that neighbour. In the presented specification, this update
is modelled in Lines 10, 14 and 18 of Process 1. In the event
a new routing table entry is created, the sequence-number-
status flag is set to false to signify that the sequence number
corresponding to the neighbour is unknown. This interpre-
tation is modelled in [8] and is compliant with the RFC.

However, in most implementations of AODV (e.g. [2, 6]),
an unknown sequence number is simply represented by the
value 0, rather than by setting a flag. In the specification of
Section 3 we follow this approach of using the value 0.

Since the RFC does not make the update mechanism clear,
different interpretations arise when an existing valid routing
table entry for the neighbour has to be updated. While it
is clear that expiry values for timers associated with the
routing table entry will be updated, it is not clear if a valid
sequence number with value n (>0) will remain unmodified
as it is, or be updated to the value 0. In order to verify
which interpretations are reasonable, we check which ones
satisfy the invariants specified before (e.g., Theorem 5.4).

If we assume that an entry (dip, 0, val, hops′, ∗, ∗) replaces
an entry (dip, dsn, val, hops, ∗, ∗) (where dsn>0) in a routing
table, it is easy to see that Theorem 5.4 is violated. In fact, it
is not hard to exploit this to create a routing loop, since it al-
lows the possibility of decreasing destination sequence num-
bers [8, Sect. 9.1]. This is the interpretation that is imple-
mented by AODV-UIUC and AODV-UCSB. Our interpreta-
tion follows AODV-UU: an entry (dip, dsn, val, hops, nhip, ∗)
is replaced by (dip, dsn, val, 1, sip, ∗), i.e., in the existing en-
try only the next hop and the hop count is updated—the
sequence number stays the same. This interpretation is not
in line with the RFC—the RFC never merges information of
two routes. However, it is loop free (cf. Section 5). AODV-
ns2 does not perform an update if a routing table entry
already exists, i.e., it uses a version of update as in Sec-
tion 3.1, but without the fifth clause. This interpretation is
also loop free; the proof is identical to the one presented in
the previous section.

There are more interpretations possible if the sequence-
number-status flag (the flag indicating whether a sequence
number is known or unknown) is modelled.

(a) Set the flag to unknown and the sequence number to 0.
Using the same argument as before, this can yield rout-
ing loops.

(b) Set the flag to unknown, but keep the destination se-
quence number stored in the routing table. This in-
terpretation is indeed loop free and is most likely the
intention of the AODV RFC.

Detailed proofs can be found in [8].

6.2 Variants
Let us now turn to variants of AODV and look at (known)

shortcomings of the AODV protocol, present possible im-
provements and then use AWN to verify that the modified
AODV is still loop free.

6.2.1 Non-Optimal Route Selection
In AODV’s route discovery process, a destination node

(or an intermediate node with an active route to the des-
tination node) will generate a RREP message in response
to a received RREQ message. The RREQ message is then
discarded and not forwarded. This termination of the route
discovery process at the destination can lead to other nodes
inadvertently creating non-optimal routes to the source node
[12], where route optimality is defined in terms of a met-
ric, for example hop count. In [12] it is shown that during
the route discovery process in AODV, the only nodes that
generally discover optimal routes to the source and desti-
nation nodes are those lying on the selected route between

B

S D A

R
R
E
Q

RREQ

Figure 2: Non-optimal route selection

the source node and the destination node (or the interme-
diate node) generating the reply. All other network nodes
receiving the RREQ message (in particular those located
“downstream”of the destination node) may inadvertently be
creating non-optimal routes to the source node due to the
unavoidable receipt of RREQ messages over other routes.

We illustrate this by the example in Figure 2. There, node
S wants to find a route to node D. It generates and broad-
casts a RREQ message that is received by its neighbours D
and B. Since D is the destination, it responds with a RREP
message. The received RREQ message is discarded and not
forwarded. On the other hand, B continues to forward its
received RREQ message, which eventually arrives at A. At
node A, a routing table entry is created for the source S,
with a hop count of six. This is clearly not optimal, as A
is only two hops away from S. Due to the discarding of the
RREQ message at D, A is prevented from discovering its
optimal route to S.

A possible modification to AODV to solve this problem
is to allow the destination node to continue to forward the
RREQ message. This will then enable A in Figure 2 to
discover its optimal route to S. In addition, the forwarded
RREQ message from the destination node is modified to
include a flag that indicates a RREP message has already
been generated and sent in response to the former message.
This is to prevent other nodes (with active routes to the
destination) from sending a RREP message in response to
their reception of the forwarded RREQ message.

The entire specification of this variant (in [8]) differs only
in five lines from the original—all of which are contained
in the process RREQ; the other processes remain unchanged.
The changes introduce the new flag and a case distinction
based on that, as well as three new broadcasts. For example,
after initiating a route reply at the destination (Process 2,
Line 12), the route request message is forwarded:

broadcast(rreq(hops+1,rreqid,dip,dsn,oip,osn,ip,true)) ,

where the last component of the RREQmessage is the newly
introduced flag. The proofs of important properties (e.g.,
loop freedom) are still valid. The proofs of the invariants
proceed by examining lines in our processes where the in-
variant might be invalidated: The proof of Proposition 5.1,
which can be found in [8], checks all occurrences of sending a
RREQ message, and the proofs of Proposition 5.3 and The-
orem 5.4 check all occurrences of update and invalidate.
For the former, three new broadcast-commands have to be
examined; however these cases are similar to the broadcast
already implemented in the original process RREQ (Line 41).
For the latter, no extra effort is needed, as the modification
does not involve occurrences of update and invalidate.

6.2.2 Failure of Route Discovery Process
In AODV’s route discovery process, a RREPmessage from

the destination node is unicast back along the selected route

D
1

T
1

S
2

A
1

(S,2,val,1,S)RREQ
S�D

(a) S broadcasts a RREQ to D

D
1

T
2

S
2

A
1

(S,2,val,1,S)
(T ,2,val,1,T)

RREQT�D

(b) T broadcasts a RREQ to D.

D
1

(A,0,val,1,A)
(S ,2,val,2,A)

T
2

(A,0,val,1,A)
(S ,2,val,2,A)

S
2

(A,0,val,1,A)

A
1

(S,2,val,1,S)
(T ,2,val,1,T)

RREQS�D

RREQS�D

RREQ
S�D

(c) A re-broadcasts RREQS�D

D
1

(A,0,val,1,A)
(S ,2,val,2,A)
(T ,2,val,2,A)

T
2

(A,0,val,1,A)
(S ,2,val,2,A)

S
2

(A,0,val,1,A)
(T ,2,val,2,A)

A
1

(S,2,val,1,S)
(T ,2,val,1,T)

RREQT�D

RREQ
T�D RREQT�D

(d) A re-broadcasts RREQT�D

D
1

(A,0,val,1,A)
(S ,2,val,2,A)
(T ,2,val,2,A)

T
2

(A,0,val,1,A)
(S ,2,val,2,A)

S
2

(A,0,val,1,A)
(D,1,val,2,A)
(T ,2,val,2,A)

A
1

(D,1,val,1,D)
(S ,2,val,1, S)
(T ,2,val,1,T)

RREPS�D

RREP
S�D

(e) D unicasts RREPS�D to A;
A forwards to S

D
1

(A,0,val,1,A)
(S ,2,val,2,A)
(T ,2,val,2,A)

T
2

(A,0,val,1,A)
(S ,2,val,2,A)

S
2

(A,0,val,1,A)
(D,1,val,2,A)
(T ,2,val,2,A)

A
1

(D,1,val,1,D)
(S ,2,val,1, S)
(T ,2,val,1,T)

RREPT�D

(f) D unicasts RREPT�D to A;
A drops RREPT�D

Figure 3: Failure of route discovery process

towards the originator of the RREQ message. Every inter-
mediate node on the selected route will process the RREP
message and, in most cases, forwards it towards the origina-
tor node. However, there is a possibility that the RREPmes-
sage is discarded at an intermediate node and hence results
in the originator node not receiving a reply. The discard-
ing of the RREP message is due to the RFC specification of
AODV [13] stating that an intermediate node only forwards
the RREP message if it is not the originator node and it
has created or updated a routing table entry to the desti-
nation node described in the RREP message. The latter
requirement means that if a valid routing table entry to the
destination node already exists, and is not updated when
processing the RREP message, then the intermediate node
will not forward the message. We illustrate this problem
with an example.10

Figure 3 shows a four-node topology. In Figures 3(a) and
3(b), source nodes S and T , respectively, initiate a route dis-
covery process to search for a route to D. When generating
a RREQ message, the source node increments its sequence
number before inserting it into the message. In processing
the RREQ messages from S and T , node A creates routing
table entries in its routing table.

In Figures 3(c) and 3(d), node A re-broadcasts the RREQ
messages that it received previously. The destination node
D receives the RREQ messages, and creates corresponding
entries in its routing table. In Figure 3(e), D replies with a
RREP message in response to the RREQ message from node
S. Since the RREQ message from S does not contain any
information on the destination sequence number for D, node
D inserts its sequence number of 1 into the RREP message.
This message is then processed by A (a routing table entry
to D is created) and forwarded to S.

Similarly, in Figure 3(f), node D replies with a RREP
message in response to the RREQ message from node T .
Since the RREQ message from node T does not contain any

10A slightly different example was given on the MANET
mailing list http://www.ietf.org/mail-archive/web/
manet/current/msg05702.html

information on the destination sequence number for node
D, node D again inserts its sequence number of 1 into its
RREP message. When the intermediate node A receives
the RREP message, it processes the message. However, the
existing routing table entry that node A already has for
destination node D contains the same information (same
destination sequence number and same hop count) as in the
received RREP message. Therefore, node A does not update
its routing table entry for node D and thus, according to the
RFC specification, will not forward the RREP message to
the source node T . This then leads to an unsuccessful route
discovery process for node T .

A solution to this problem is to require intermediate nodes
to forward all RREP messages that they receive using the
newest available information on the route to the destination
node: if the node’s routing table contains an entry for the
destination node that is valid and “fresher” than that in the
RREP message, the intermediate node updates the contents
of the RREP message to reflect this. The intermediate node
A will then forward a RREP message containing up-to-date
information on the destination node D.

As in Section 6.2.1, this solution does not violate any of
the invariants; again this follows by adapting the original
proofs [8].

7. RELATED WORK
Previous attempts to prove loop-freedom of AODV have

been reported in [14, 4, 20], but none of these proofs are
complete and valid for the current version of AODV [13].
[14] fails to consider the effect of RERR messages, which can
result in routing loops; [4] analyses an earlier draft of AODV
and uses an invariant that does not hold when following the
AODV RFC; and [20] only considers a restricted version of
AODV, not covering the important case of route replies by
intermediate nodes. Details of the limitations of these proof
attempts are provided in [9].

Graph Transformation Systems were used in [17] to model
DYMO v10, a protocol derived from AODV. The paper pro-
vides a semi-algorithm, based on graph rewriting, which was

used to verify loop-freedom for DYMO. Model checking is
also used to verify properties of routing protocols for WMNs.
For example, [19] shows loop freedom of the ad-hoc protocol
LUNAR, for fixed topologies or set changes in the topology.
Model checking in general lacks the ability to verify proto-
cols for an arbitrary and changing topology. It is used to
check specific scenarios only.

8. CONCLUSIONS
In this paper, we have presented a complete and accurate

model of the core functionality of AODV using the process
algebra AWN, which has been tailored specifically for the
formal modelling of wireless mesh networks and MANETs.
The unique set of features and primitives of AWN allows
the creation of accurate, concise and readable models of rel-
atively complex and practically relevant network protocols,
which we have demonstrated with AODV. This is in con-
trast to some prior related work, which either modelled only
very simple protocols, or modelled only a subset of the func-
tionality of relevant WMN or MANET routing protocols.

The currently predominant practice of informally speci-
fying WMN and MANET protocols via English prose has a
potential for ambiguity and inconsistent interpretation. The
ability to provide a formal and unambiguous specification of
such protocols via AWN is a significant benefit in its own
right. We have demonstrated how AWN can be used as a
basis for reasoning about critical protocol correctness prop-
erties, illustrated with the example of loop freedom. We
have further shown how relevant proofs can relatively eas-
ily be adapted to protocol variants. In contrast to protocol
evaluation using simulation, test-bed experiments or model
checking, where only a finite number of specific network sce-
narios can be considered, our reasoning with AWN is generic
and the the proofs hold for any possible network scenario in
terms of topology and traffic pattern. None of the experi-
mental protocol evaluation approaches can deliver this high
degree of assurance about protocol behaviour.

9. REFERENCES
[1] Kernel AODV (ver. 2.2.2), NIST.

http://www.antd.nist.gov/wctg/aodv_kernel/.

[2] AODV-UU: An implementation of the AODV routing
protocol (IETF RFC 3561).
http://sourceforge.net/projects/aodvuu/.

[3] K. Bhargavan, C. A. Gunter, M. Kim, I. Lee,
D. Obradovic, O. Sokolsky, and M. Viswanathan.
Verisim: Formal analysis of network simulations.
IEEE Transactions on Software Engineering,
28(2):129–145, 2002.

[4] K. Bhargavan, D. Obradovic, and C. A. Gunter.
Formal verification of standards for distance vector
routing protocols. J. ACM, 49(4):538–576, 2002.

[5] I. Chakeres and C. Perkins. Dynamic MANET
on-demand (AODVv2) routing. Internet Draft
(Standards Track), draft-ietf-manet-dymo-22, 2012.
tools.ietf.org/html/draft-ietf-manet-dymo-22.

[6] I. D. Chakeres and E. M. Belding-Royer. AODV
routing protocol implementation design. In Workshop
on Wireless Ad Hoc Networking (WWAN’04), 2004.

[7] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver,
M. Portmann, and W. L. Tan. A process algebra for
wireless mesh networks. In H. Seidl, editor, European

Symposium on Programming (ESOP’12), volume 7211
of LNCS, pages 295–315. Springer, 2012.

[8] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver,
M. Portmann, and W. L. Tan. A process algebra for
wireless mesh networks used for modelling, verifying
and analysing AODV. Technical Report 5513, NICTA,
2012. http://www.nicta.com.au/pub?id=5513.

[9] R. J. van Glabbeek, P. Höfner, W. L. Tan, and
M. Portmann. Sequence numbers do not guarantee
loop freedom—AODV can yield routing loops, 2012.
http://rvg.web.cse.unsw.edu.au/pub/AODVloop.pdf.

[10] IEEE P802.11s. IEEE draft standard for information
technology—telecommunications and information
exchange between systems—local and metropolitan
area networks—specific requirements—part 11:
Wireless LAN Medium Access Control (MAC) and
physical layer (PHY) specifications-amendment 10:
Mesh networking, July 2010.

[11] V. Kawadia, Y. Zhang, and B. Gupta. System services
for ad-hoc routing: Architecture, implementation and
experiences. In Mobile Systems, Applications and
Services (MobiSys’03), pages 99–112. ACM, 2003.

[12] S. Miskovic and E. W. Knightly. Routing primitives
for wireless mesh networks: Design, analysis and
experiments. In Information Communications
(INFOCOM’10), pages 2793–2801. IEEE, 2010.

[13] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
on-demand distance vector (AODV) routing, RFC
3561 (experimental), 2003.
http://www.ietf.org/rfc/rfc3561.txt.

[14] C. Perkins and E. Royer. Ad-hoc On-Demand
Distance Vector Routing. In Mobile Computing
Systems and Applications (WMCSA’99), pages
90–100, 1999.

[15] A. A. Pirzada, M. Portmann, and J. Indulska.
Performance analysis of multi-radio AODV in hybrid
wireless mesh networks. Computer Communications,
31(5):885–895, 2008.

[16] K. Ramachandran, M. M. Buddhikot,
G. Chandranmenon, S. Miller, E. Belding-Royer, and
K. Almeroth. On the design and implementation of
infrastructure mesh networks. In Workshop on
Wireless Mesh Networks (WiMesh’05). IEEE, 2005.

[17] M. Saksena, O. Wibling, and B. Jonsson. Graph
grammar modeling and verification of ad hoc routing
protocols. In C. R. Ramakrishnan and J. Rehof,
editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08), volume 4963 of
LNCS, pages 18–32. Springer, 2008.

[18] A. Subramanian, M. Buddhikot, and S. Miller.
Interference aware routing in multi-radio wireless
mesh networks. In IEEE Workshop on Wireless Mesh
Networks (WiMesh’06). IEEE, 2006.

[19] O. Wibling, J. Parrow, and A. N. Pears. Automatized
verification of ad hoc routing protocols. In
D. de Frutos-Escrig and M. Núñez, editors, Formal
Techniques for Networked and Distributed Systems
(FORTE ’04), volume 3235 of LNCS, pages 343–358.
Springer, 2004.

[20] M. Zhou, H. Yang, X. Zhang, and J. Wang. The proof
of AODV loop freedom. In Wireless Communications
& Signal Processing (WCSP’09). IEEE, 2009.

