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Abstract—The L4.verified project was a rare success in
large-scale, formal verification: it provided a formal, machine-
checked, code-level proof of the full functional correctness
of the sel.4 microkernel. In this paper we report on the
development process and management issues of this project,
highlighting key success factors. We formulate a detailed
descriptive model of its middle-out development process, and
analyze the evolution and dependencies of code and proof
artifacts. We compare our key findings on verification and
re-verification with insights from other verification efforts
in the literature. Our analysis of the project is based on
complete access to project logs, meeting notes, and version
control data over its entire history, including its long-term,
ongoing maintenance phase. The aim of this work is to aid
understanding of how to successfully run large-scale formal
software verification projects.

Keywords-program verification; microkernel; L4; software
process; formal methods

I. INTRODUCTION

Software verification is the discipline of determining
whether the software that has been built is consistent with
its specification. The most common approaches are testing
and code inspection. However, these are limited in rigor
and the extent of possible behaviors that can be checked.
Formal methods (FM) is the application of mathematical
techniques to specify programs (formal specification) and
to prove that programs meet those specifications (formal
verification). Formal verification can check not just all lines
of code or all decisions in a program, but all possible
behaviors for all possible inputs. Most previous industrial
use of formal methods for software has only performed
formal specification, rarely formal verification [1]. While
formal verification is mandated in some standards such
as the Common Criteria for the highest assurance level
(EALY7), even there only design-level verification is required,
rather than full code-level verification [2]. When formal
verification is performed, often only lightweight properties
are proved, rather than proving correspondence to a complete
specification of functionality [3].

The L4.verified project has performed not just formal
specification, but also formal verification; not just at design
level, but down to C source code; and not just for lightweight
properties, but for the full functional correctness of a
highly complex software system—the seL.4 (secure embedded
L4) microkernel. seL.4 is part of the L4 family of high-

performance operating system (OS) microkernels [4]. The
seL4 kernel is designed with the explicit goals of high
performance, formal verification, and secure access control.
The formal verification of sel.4 is the most detailed that has
been performed on software of this size and complexity [5].

The project ran over 4 years from 2005 to 2009, including
the design and implementation of the kernel as well as ongo-
ing maintenance since then. It involved two teams: OS kernel
developers and formal methods practitioners. As a formal
verification project, it was different in many ways to typical
large industrial software engineering projects. This paper
describes the experiences of the L4.verified project in terms
of the software engineering process and management issues
that were encountered. It complements earlier papers that
discussed the role of the project’s executable specification [6];
described experiences in the use of a Haskell prototype [7];
and described the correctness proof itself [5].

In this paper we aim to contribute to the knowledge about
how large formal methods projects can be run successfully.
In particular, the contributions of this paper over previous
publications are 1) a detailed, descriptive process model
supported by project logs and version control data over the
entire project history; 2) a comprehensive analysis of this data;
and 3) an in-depth discussion of our findings and lessons
learned, together with their relation to the perception of
formal methods in the literature. We believe that the process
model of this project will be more generally applicable.

II. THE SEL4 MICROKERNEL AND PROOF
A. The sel4 Microkernel

A kernel is the part of the OS that runs in the privileged
mode of the hardware. It has direct access to all hardware
resources and provides the basic mechanisms for implement-
ing the rest of the system. A microkernel, as opposed to
more common monolithic OS kernels, is reduced to the bare
minimum of functionality and code. This radical reduction
in size comes with a price in complexity. It results in high
coupling and a high degree of interdependency between
different parts of the kernel, as becomes apparent in the
function call graph of seL.4 in Fig. 1.

The seL4 kernel comprises 8,700 lines of C code and 600
lines of assembler, not counting blank lines and comments.
The motivation for the radical reduction in size and for
formally proving functional correctness, is that the OS kernel



Figure 1. The function call graph of the sel.4 kernel.

is one of the most critical components of any system built
on top. If one is to provide assurance for safety, security, or
correct functionality of a system, one of the first steps must
be to provide assurance for the OS kernel. The small size
reduces the amount of this critical code. Formal verification
gives the highest degree of assurance we can provide [8].

B. Conceptual Process Model and Verification Artifacts

It is a challenge to design a formally verifiable kernel while
maintaining high performance. To obtain high performance,
kernel developers usually take a bottom-up approach to
design, focusing on low-level details that allow efficient
management of hardware. In contrast, formal methods
practitioners often prefer a rop-down approach based on
simple models with a high level of abstraction.
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To achieve these two objectives, the L4.verified project
bridged the gap between verifiability and performance using
an iterative, prototype-based, middle-out process shown in
Fig. 2. It is based around an intermediate target that is
used and understood by both the kernel developers and the
formal methods practitioners, with the aim of rapidly iterating

through design, prototype, implementation and formal model
until convergence. This intermediate target is a prototype
of the kernel written in the functional language Haskell. It
is translated automatically into the executable specification
of the kernel in the theorem prover Isabelle/HOL [9]. The
prototype can be used to directly exercise user-level programs
that interface with the kernel and thereby validate the API
under development. The importance of the use of executable
specifications in formal verification in a theorem prover has
been recognized previously in the ACL2 community [10],
focussing on microprocessor verification in particular.

The abstract specification is a formal description of the
functionality of the kernel. It specifies the interface and
effects of system calls, but not the details of how these
effects are implemented. In other words it describes what is
expected from the kernel, whereas the executable specification
describes how the kernel will achieve its purpose. In that
sense the executable specification is a design of the kernel.

The proof that the executable specification refines the
abstract specification (on the right in Fig. 2) was carried out
first. This proof can be seen as design verification. Then a low-
level, high-performance implementation of the kernel was
manually written in the C programming language. The second
proof (on the left in Fig. 2) shows that this C code correctly
implements the executable specification, which we will also
refer to as code verification. Note that the C code is translated
automatically into the theorem prover for verification [11].

III. MODELING THE FORMAL VERIFICATION PROCESS

The formal verification of seL4, and the development of
the kernel itself, were not part of a conventional software
engineering process. Instead they followed the implicit
conceptual process described above. In this section, we
formulate a detailed model of the process applied in this
project, with the aim to identify any reusable process patterns
and potential process factors that contributed to the successful
scaling of formal verification. We find that the middle-
out approach provides advantages over pure top-down and
bottom-up processes.

We created the process model using process elicitation
interviews with the L4.verified project leaders. The interviews
were used by expert process modelers to create initial descrip-
tive process models. These were iteratively corrected and
validated by the project leaders, based on their recollections
from the project and project meeting notes.

We then performed a more detailed validation of the
process model by analyzing and mining data directly from the
project repositories: Mercurial source-code version control
and an internal wiki, supplemented by meeting notes and
email records. The version control repositories provided
detailed information about the number and size of changes
and artifacts, and the time at which activities took place.
The combination of model and data analysis lead to the



identification of phases in the project, and to an appreciation
of how activities may overlap in this middle-out approach.

A. Descriptive Process Model

As shown in the conceptual model in Fig. 2, the L4.verified
project used a middle-out approach, starting with an exe-
cutable specification, which was then proved to be consistent
with a high-level abstract specification, and finally also proved
to be consistent with the low-level source code.

Fig. 3 shows the descriptive process model of L4.verified
created from our analysis. Each activity in the graphic
model is annotated with the performers (OS or FM team),
type (manual or automatic) and its step number (e.g., S1).
We use the terms activity and step interchangeably in
this paper. To keep the presentation concise, we do not
include activities on proof tools and libraries in this version.
The formal verification activities are technical development
processes [12] modelled between the three levels of design
abstraction.

The steps S1 to S7 in Fig. 3 correspond roughly to the
activities in the conceptual model. The main new activity is
performance testing (S7) in the maintenance phase of the
project, which itself is also new compared to Fig. 2.

One of the main design goals of the L4.verified project
was a high-performance kernel, at least in specific critical
areas, to demonstrate that formal verification does not
impact performance adversely. Step S7 shows that low-level
performance tuning was performed after verification was
complete. Performance problems discovered in this step
would lead to low-level code changes or in rare cases also
to small design-level changes in the Haskell prototype re-
starting the process loop in re-verification.

Note that performance testing does not depend on the
verification being completed, it just happened to come last in
this project because the OS team was confident they could
predict performance based on the detailed design. Ideally,
it would commence soon after the C code has stabilized
earlier in the process. Doing this might save overall time
and effort because fewer performance-related changes would
have emerged later that required re-verification.

Further differences between the conceptual model and
the process description in Fig. 3 are explicit information
sources, explicit decision points, and more detail in the project
artifacts that are modeled. The information source artifacts
from outside the process are denoted by dashed lines. They
are the initial kernel requirements on the top left, new feature
& change requests, also top left in the diagram, and feature
& change requests in maintenance on the bottom right. The
decision points in the diagram are mostly explained by their
labels. The project artifacts are more detailed than in the
conceptual model, and as well mostly explained by their
labels in Fig. 3.

An interesting new artifact is the set of invariants of the
kernel. Invariants are proved on the level of the executable

specification as well as the abstract specification. Both are
proved mostly in the design verification step S4, which
consumed roughly 60—70% of time and effort in the process.
The invariants are reused heavily in the code verification step
S6. However, step S6 may induce additional invariants to be
proved on the executable specification. Invariant proofs are
the highest-effort parts of this verification.

The process experienced multiple iterations through steps
S1-S6. They were triggered by feature changes in the
prototype and by defects discovered during either verification
phase. Code-level defects were usually fixed directly in S5
and S6, but in rare case were escalated to the design level. In
theory, S4 and S6 could run in parallel. However, significant
savings in code-level verification were possible because the
invariants from S4 had stabilized. Starting S6 too early may
negate this effect.

In the diagram and in the project, the manual implemen-
tation of the kernel in C was step S5, i.e. after S4 had gone
through its first major iteration. Note that this is not necessary.
This step could start earlier in the process, in parallel with
other activities, to optimize the overall process performance.

More generally, the descriptive model identifies four phases
of the project as shown on the right-hand side of the diagram:
1) the development of the prototype, which clearly appears
first, 2) the definition of the specification and validation of
the design, as an iterative process on the right of the diagram,
3) the implementation of the kernel together with the code
verification, as an iterative process on the left of the diagram,
and finally 4) the maintenance phase where change & feature
requests are propagated to the top of the process, updating
code and models and re-verifying the proofs.

B. Analysis of Project Data

The development and verification of the seL4 kernel from
prototyping through implementation, including all formal
models and proofs, has been managed using version control.
This provides detailed information about the evolution of
artifacts over the full lifetime of the project, including its
ongoing maintenance phase. We first describe how the data
was retrieved from the version control repositories, and then
show graphs of artifact size over time extracted from this
data. The graphs confirm the identification of phases in the
descriptive process model in Fig. 3.

The artifacts of interest resided within three separate
project repositories containing thousands of changesets, not
all of which concern artifacts discussed in this work. For
example, the verification was performed for the ARMI11
architecture, while the C repository also contains code for
other architectures. To make sense of this data, we needed
a higher-level view and developed a tool to iterate over all
changesets in the repositories and match file path names
against user-supplied path patterns chosen to identify the
artifacts related to the formal verification of seL4. If the tool
could not classify a file, more patterns were supplied until
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all files were classified as either artifact-related or irrelevant.
Each changeset identifies who made the change, giving us
an estimate of the total number of people working on each
artifact in any period. However, this is at best a coarse
estimate, because of variation in the frequency and size of
commits by project members.

Instead, we chose to analyze the variation in lines of
code (LOC) for each artifact on a per-changeset basis. This
included the C code, the code for the Haskell prototype, and
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Descriptive process model of L4.verified

the Isabelle/HOL proofs. The resulting graphs were reviewed
by people with experience working on the artifacts. Our
choice of LOC was motivated partly by its ability to act
a common denominator across the variety of artifact types
and file formats in the project (we discuss the choice of
metric further in Sect. IV-C). We counted all lines, including
comments and empty lines. This is justified, especially given
the way we use LOC to analyze productivity trends, not
quality [13]. The raw line counts reported here are different
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to the SLOCCount-based numbers [14] for seL.4 given in
Sect. II-A and previous work, which are normalized and
intended for comparison with other projects.

The graphs provide a view of the project comparing the
changes made to the multiple kinds of artifacts. Fig. 4 shows
the graphs for code and formal specifications, and Fig. 5 for
the two refinement proofs. Early rapid development, later

feature addition, and maintenance phases are visually evident.
Note that some graphs contain rapidly oscillating segments.

These result from use of a distributed version control scheme
in which development may proceed in parallel on separate
branches before merging.

Analysis of the graphs combined with explanatory project

logs enabled us to identify the main phases in the project,
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as shown under each graph. The phases are consistent with
the descriptive model in Fig. 3. We now show how the
graphs validate the process model and reveal the phases. We
have annotated the graphs with explanations of the main
events, so we will not describe these individually. Instead
we concentrate on the conclusions we can draw from them.

The first activity in the project is the development of the
executable specification (Fig. 4 (b)). Following this graph
into the verification phases and noting its stability after the
design proof shows that design defects were mainly revealed
during this design proof, and less during the code proof.
This is the desired behavior. It highlights that the middle-
out process allows early detection of design problems, and
minimizes the impact of code defects on the design.

The graph for the abstract specification (Fig. 4 (a)) shows
that activities there only started once the prototype was
stable. The main takeaways from this graph are that new
features happen at every stage of the kernel lifetime, from
its verification up to its maintenance, and that these are the
main big changes in the specification size. We will see that
these new features are also the main source of re-verification.

The C code graph (Fig. 4 (c)) reveals important points
about the middle-out process. Firstly, the C code was
implemented extremely rapidly. This is because all design
decisions had already been made, and partly validated by the
ongoing design verification; the implementation thus mainly
addresses optimization. Secondly, the process achieves a



separation of concerns between design, specification and
implementation. A change in how the kernel is implemented,
such as the major optimization activity in the graph (fastpath),
had very little impact on the design or the specification. This
is again a desired property of the development process.

The proof graphs in Fig. 5 highlight the different phases
and how they may overlap. Both show the effort on the
first attempt at the proof, and then a succession of cleanup
phases and proof updates due to new features. This is
clearly consistent with the descriptive process model given in
Sect. III-A. It also emphasizes one benefit of the middle-out
process: updates in one proof can be done in parallel with
the development of the other proof, as seen in the bar chart
under the graphs.

IV. DISCUSSION

A number of earlier authors have discussed overall
managerial issues for projects using formal methods [15],
myths about the application of formal methods [16], [17],
and integration of formal methods into the development
process [18], [3], [19]. Authors have drawn lessons from
industrial quasi-experiments [20], and from reviews of
industry experience [21], [1], [22]. In this section we discuss
a number of recurring issues from these papers, and compare
those prior observations with our experience in the L4.verified
project. Many previous large formal methods projects have
only attempted formal specification, so our experiences in
code-level formal verification sometimes provide a new
perspective on these issues.

A. Cost and Effort

Formal methods is often believed to be highly expen-
sive [16]. Although the cost impact of using formal spec-
ification varies [15], some prior industrial projects have
experienced overall cost reductions when using formal
specifications [16], [21], [1]. Nonetheless, complete formal
program verification has rarely been attempted, and is still
often regarded to be infeasibly expensive [16], [8].

As previously reported [5], systems similar to seL4 could
have been expected to take between 4 and 6 person years
to develop. Our experience on the L4.verified project is
that the overall cost of the kernel design, development
and formal verification (excluding costs of more generally-
applicable research and development on theorem prover
technologies and frameworks) was less than 14 person-years.
For the development and formal verification of a comparably-
complex new second system, this might be reduced to 8
person years. [S] Our experiences indicate that although
formal verification at this very detailed level does still
increase overall cost, it is not infeasibly expensive. For critical
systems where high levels of assurance are required, the
additional cost seems reasonable.

One key aspect of a proof of functional correctness by
refinement is that it can reduce the effort for showing further

properties about the kernel. If the property is preserved
by refinement, it need only be shown about the massively
simpler specification, not about the complex C code. For
instance, proving the high-level security properties integrity
and authority confinement of seL.4 merely took 10 person
months. They were proved about the specification, and per
refinement they automatically hold on the implementation
level of sel.4 [23].

In terms of effort, the maintenance period consisted of
one to three team members updating proofs on demand
next to other ongoing verification projects. The effort spent
on maintenance adds up to roughly the equivalent of one
full-time person on average since the end of the proof. For
some significant new features, such as improving the API
for memory allocation, re-verification took on the order of 6
months. This time could have been reduced by adding more
verification team members to the task.

B. Scale and Assurance

Both the scale of the verified code and the level of detail
and assurance provided by the verification set this project
apart from most other formal verification efforts. We posit
that the project succeeded in large part due to the process
used in the project, together with other formal and technical
innovations. We argue that reaching the implementation level
with formal verification brings a significant improvement
in assurance and practical maintainability over previous
approaches such as merely using formal specification or
lightweight properties on higher-level models.

In terms of assurance, the code level is an important barrier.
If formal, machine-checked verification is performed to the
code level, then no trust in human activity is left in the
chain from running system to high-level specification. Even
though formal verification, as any other kind of verification,
is necessarily based on a set of assumptions about the
physical world—in this case, the behavior of the machine, the
compiler, and linker—these are general assumptions that can
be validated for classes of systems. If there is a gap between
formal model and code that needs to be bridged by a human
manually checking correspondence between implementation
and model, this assumption needs to be re-validated every
time for every change to code and system. This kind of
meticulous, detailed work is highly error-prone if performed
manually—even for expert mathematicians [24]. Verifying the
implementation directly avoids some prior problems that have
arisen in practice, where the programming language did not
correspond closely to the one implemented in commercial
compilers [25], or where there were errors in automated
model-driven code-generation [26].

C. Estimation and Metrics

Previous authors have said that estimation for formal
methods projects is hard [17], [15]. It is not known how
to calibrate measures of formal methods work to traditional



metrics approaches [22]. Our experience on the L4.verified
project certainly agrees with this.

We do not yet have a good understanding of what to
measure in formal verification projects. Just as lines of code
is a problematic measure of programs, so too lines of proof
seems to be a problematic measure of proofs. Furthermore
measures similar to structural complexity for source code
cannot be used for machine-checked interactive proofs, in
which the proof commands given to an interactive theorem
prover are often presented linearly, losing the structure of
the proof itself. Similar to programming, different formal
verification team members have different proof styles, and the
different lengths of their proofs is not necessarily an indicator
of differing levels of proof productivity. Shorter proofs are
sometimes harder to construct, but may be easier to maintain.
Different types and amounts of proof automation can also
be used, and time spent to improve proof technology, or to
develop system-specific proof tools, can sometimes reduce
overall verification costs. At this stage, these observations
are qualitative lessons only—we do not yet have appropriate
measures to express these cost tradeoffs quantitatively, nor do
we have explicit decision-making models to inform project
management judgments about these tradeoffs.

The cost of the formal verification effort is related not just
to the number of major sub-systems or functions that must
be proved correct, but also to the complexity of the overall
system. The complexity of the system is manifest not just
during development through coupling between sub-systems,
but also in formal verification through the inter-related
invariant conditions of these sub-systems. As a microkernel,
sel.4 may be more complex than might be expected for many
other embedded systems.

However, the FM team managed to design refinement
calculi for each of the major proof steps that allowed the
work to be divided up among members of the team [27],
[28]. Especially in the code-level proof, individual lemmas
proving the correctness of separate functions in the kernel
implementation could be proved independently. In the design-
level proof, the same could be achieved once the formulation
of invariants had stabilized.

D. Re-verification

In any complex new software development project, the
specification, design, and implementation of the system will
change during development, to add features, improve non-
functional performance, or remove bugs. Instances of all of
these types of change have happened in the L4.verified project.
A well-recognized challenge for formal verification in dealing
with such changes is the need to subsequently re-verify the
system [25], [29], [16], [1]. Failing to re-establish correctness
will result in the loss of assurance about the system [26]. This
sort of problem has arisen in practice, either because a variant
of the verified specification was used by developers [29], or
because the final code used in the system had received some

incorrect manual “tidying-up” [26]. These are not inherent
problems with formal verification, but arise from inadequacies
in the broader software development process and environment
within which formal verification was used. There has been
some concern that these inadequacies may not be easily
avoidable—prior authors have been skeptical that ongoing re-
verification is feasible [25], especially for formal verification
using interactive theorem provers [3].

Our experience in the L4.verified project is that re-
verification of full functional correctness is feasible using
modern interactive theorem provers. As discussed in an earlier
paper [5], the cost of re-verification can vary significantly.
The cost depends on the nature of the change—changes to
the top-level specification, changes to the system design
(including major interface specifications), or to system
invariant conditions can all entail significant proof re-work.
In the worst case, one change to less than 5% of the code
base resulted in proof rework equivalent to 17% of the entire
original proof effort [5]. However, in the common case, for
local changes to the implementation of a specific sub-system,
the effort to re-verify the system is low, proportional to the
effort for the change to the code, often a factor of roughly
3-5. For instance, a small performance optimization may
take 2h to implement and measure and about an additional
6h to update and re-verify the relevant proofs.

Note that after code-level verification finished, there were
zero code-level defects, and so no maintenance changes
occurred for this otherwise common reason. There may well
be specification fixes as described above and there may also
be code fixes in assumed, unverified parts of the system, for
instance in the 600 lines of sel.4 assembly code, but the proof
guarantees the absence of disagreements between code and
specification. Code fixes in assumed parts require traditional
forms of re-verification, e.g. a regression test suite, but do
not impact the formal proof unless they change assumptions.

Although code-level formal verification has some addi-
tional cost, there are also some significant advantages for
system assurance in the face of ongoing system change.
In the maintenance period, the team has integrated formal
verification into an automated proof checking suite, similar
to an automated test suite, but using machine-checked formal
proofs instead of executable tests. This provides an automatic
check of the state of the code verification, and identifies which
specific portions of the proof must be re-established. If the
check fails, a visible green light in the office changes to red,
and the problem can be quickly addressed. This situation
contrasts with previous industrial use of formal specification
without verification supported by mechanized proof—in such
projects, the ongoing assessment of the consistency of the
system must be manually determined, including an analysis
of the full extent of the impact of the change.

Another advantage of verification during the maintenance
phase was that the detailed knowledge about code behavior,
mostly encoded in invariants, could be further exploited. A



proposed performance optimization, for instance, initially
concerning small changes in multiple files could be reduced
to a single line change, because of already verified invariants.
In performing worst-case execution-time analysis using static
analysis, the analysis team could rely on invariants to exclude
infeasible code paths [30].

E. Restrictions on Design Style

One issue of concern about the use of formal methods is
whether it imposes any design constraints on the software
being developed. A simple design is usually easier to formally
verify than a more complex one. The possibility is that this
may lead designers to make a tradeoff in favor of making
formal verification easier by create a simplistic system that
sacrifices design elements that may have normally been
introduced, e.g. to improve non-functional performance. [25]
Against this view, earlier literature has said that formal
methods does influence design style, but only in “good”
ways [18], [3], [25], e.g. by encouraging an increasing effort
in the design phase, by better decomposing the system, and
by better (and more abstractly) defining internal interfaces.

Our L4.verified experience agrees with the earlier literature.
There need be no significant deleterious constraint on design
brought about by the use of formal verification. However,
formal code-level verification does induce an additional,
significant cost factor into design considerations, and some
design choices become disproportionately more expensive
than others. This constrains design, but need not eliminate
every design option that allows non-functional requirements
to be achieved.

A key goal for seL4 was to be within 10% of the perfor-
mance of an earlier (not formally verified) high performance
L4 microkernel. This was achieved, and in some cases the
performance of seL.4 exceeds the earlier kernel [5].

F. Expertise and Collaboration

A common perception about formal methods is that it
requires highly trained mathematicians [16], or practitioners
with hard-to-acquire expertise [31], [25]. However, much of
the reported industrial use of formal methods indicates that,
although some training or assistance by consultants may be
required [15], [20], [18], formal methods capability is readily
acquired by technical experts [19], [20]. In particular, it may
be easier to train domain experts in formal methods than
formal methods practitioners in the domain [19].

Our experience in the L4.verified project agrees with this.
The project began as a joint activity between two teams: OS
microkernel developers, and formal methods practitioners.
While initially distinct, the capability of the two teams blurred
over the course of the project. This enabled a move from a
parallel approach to more of an integrated approach [18]
during the project. Unlike [18], we conceptualized this as a
change in resource allocation options, rather than as a change
to our process model.

The OS team consisted on average of 1 senior expert, 1
PhD student, and 1-2 engineers. The FM team consisted on
average of 3-4 senior experts, 1-3 PhD students, and 2-6
engineers who were mostly recent university graduates. The
total time commitment was roughly 7 full-time equivalent
(FTE) persons on average. Our detailed FTE data per artifact
(not presented in this paper) shows that never more than 5
FTE were spent on the artifacts described here, the rest was
spent on proof tools and other infrastructure. This tool effort
would be greatly reduced for subsequent verifications.

During later phases of the project, all members of the OS
team volunteered to learn how to use the theorem prover.
Almost all of the OS team then directly contributed to the
proof in some form. The time to become productive for
new verification team members, be it from outside or the
OS team, averaged 2-3 months, with some people becoming
productive after as little as two weeks. While Isabelle comes
with ample, high-quality documentation, a key factor in
coming up to speed with the tool and the proof was the
availability of an existing team of FM experts willing to offer
direct advice and training. The other direction of verification
team members contributing to OS design and implementation
was less frequent, but did occur as well, in particular with
long-standing team members. In the maintenance phase, it
was frequently one of these team members that had deep
insight into how design and implementation changes would
affect the kernel and proof.

G. Tool Support

Some industrial projects that have performed formal
specification but not formal verification have either not used
supporting tools, or deemed tools not to be critical. [22]
However, code-level formal verification demands extreme
precision and accuracy for a massive amount of proof
detail. The formal verification of large software systems
must be supported by appropriate tools [1]. The situation
is similar to the use of high-level programming languages.
It is theoretically possible (and was historically practiced)
to translate source code to machine code manually. But
it would be impractical to do this for large programs on
modern machines—compilers are required. Similarly, it
would be impractical to undertake formal verification of
a large software system without mechanized proof support.

The L4.verified project used the Isabelle/HOL theorem
prover [9], an interactive LCF-style [32] theorem prover that
offers a high degree of proof automation. A significant degree
of tool customization was performed within the L4.verified
project—within the bounds of safety provided by Isabelle’s
LCF architecture [32]. As well as theory definition at the
various levels of abstraction, some system-specific proof
search tools were created. There is a cost to developing such
supporting infrastructure, but it can reduce the overall formal
verification effort.



As discussed above, machine-checked proofs were vital not
just to ensure that mistakes were not made in the initial proofs,
but also to quickly and automatically ensure no mistakes
were made during subsequent changes to the specification,
implementation, or proofs.

Aside from theorem provers, other technologies exist for
formal verification, such as model checking. However, for
the depth and scale of formal verification performed in the
L4 .verified project, model-checking is unlikely to be sufficient
by itself. Model-checkers can verify some complex properties
of simple systems, or some simple properties of complex
systems. The proof of correctness for seL4 was a complex
property of a complex system, for which the flexibility and
power of interactive theorem proving is well-suited.

V. FUTURE DIRECTIONS

The key needs for future research arising from the work
reported here are for metrics, estimation models, and process-
management tools that support formal verification projects.

As discussed, lines of proof is not an entirely adequate mea-
sure for mechanized interactive proofs to assess productivity.
Better metrics are required. Related to this, better estimation
models are required for formal verification projects. These
are both open questions. Answering them will help to bring
about decision-making tools for formal verification project
management, to address what-if questions such as evaluating
feature change options, and to manage productivity tradeoffs,
such as the balance between testing and formal verification,
and between proof development and productivity-improving
system-specific proof tool development.

We expect these estimation and decision-making models
to be based on, or partially validated by, calibrated process
simulation models based on the descriptive middle-out
process model reported in this paper. The development and
validation of these simulation models will be a significant
area of future research. Another interesting avenue would be
to repeat the analysis on other code-level verification projects
such as the type safety proof for Verve [33], or the pervasive
verification approach in Verisoft [34].

Finally, the major thrust of future technical work will be
to build very large verified systems on top of selL4, in the
order of millions of lines of code. The use of code-level
formal verification for a highly critical OS microkernel has
been considered entirely appropriate, but doubts remain about
whether formal verification should extend further [8]. The
decision to use formal verification is a tradeoff between higher
cost and higher assurance. We believe that it is appropriate
and feasible to use formal verification for very large highly-
critical systems. Our working hypotheses are that the costs of
engineering a software component are only a constant factor
higher when using formal verification, and that it is possible
to provide system-level guarantees not by formally verifying
everything, but instead by formally verifying key components
in a high-assurance system architecture that relies on the

formally-verified isolation guarantees provided by seL.4. No
doubt this will place new demands on seL.4, with ongoing
system maintenance and proof maintenance.

VI. CONCLUSION

This paper has described experiences and lessons from
a process perspective drawn from the L4.verified project, a
successful large-scale software systems formal verification.

The major contribution of this paper is a descriptive middle-
out process model that was recovered from the experience
and validated with reference to data extracted from source
code repositories, project logs, and minutes. The phases in the
L4.verified project reflected shifting resource allocation over
time. However, there is not necessarily a sharp distinction
between work at different levels—the process model allows
activities to occur in parallel either side of the middle artifact,
here the executable specification. In the L4.verified project,
although work in later phases shifted from design-level
verification to code-level verification, there was nonetheless
ongoing change in the abstract and executable specifications.

In addition to process model and data analysis, we have
further discussed a number of lessons learned.

The first is that formal verification of complex software
systems on the order of 10,000 LOC is feasible. This includes
maintenance: when changes inevitably occur to specifications,
implementations, or proofs, re-verification is feasible. The
cost of re-verification varies, and seems largely to depend
on the impact of the change on system-wide invariants.

The second is that machine-checked formal verification
in a modern interactive theorem prover is vital to handle
the extreme detail and accuracy required for a large formal
verification effort tackling full functional correctness. Code-
level machine-checked verification has significant benefits
for managing proof maintenance and re-verification, because
it can provide an automated assessment of whether proofs,
specification, and implementation are still consistent. When
previous formal verification projects performed design verifi-
cation, there remained a manual assessment of the correctness
of the implementation. The code-level formal verification in
L4.verified in almost all cases fully eliminates the need for
such manual impact analysis.
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