
Accurate Run-Time Prediction of Performance Degradation
under Frequency Scaling

David C. Snowdon
NICTA∗

University of New South Wales
Sydney, Australia

Godfrey Van Der Linden
NICTA

University of New South Wales
Sydney, Australia

Stefan M. Petters
NICTA

University of New South Wales
Sydney, Australia

Gernot Heiser
NICTA

University of New South Wales
Open Kernel Labs
Sydney, Australia

ABSTRACT
Dynamic voltage and frequency scaling is employed to minimise
energy consumption in mobile devices. The energy required to
execute a piece of software is highly depedent on its execution
time, and devices are typically subject to timeliness or quality-of-
service constraints. For both these reasons, the performance at a
proposed frequency setpoint must be accurately estimated. The
frequently-made assumption that performance scales linearly with
core frequency has shown to be incorrect, and better performance
models are required which take into account the effects, and fre-
quency setting, of the memory architecture. This paper presents a
methodology, based on off-line hardware characterisation and run-
time workload characterisation, for the generation of an execution
time model. Its evaluation shows that it provides a highly accu-
rate (to within 2% on average) prediction of performance at arbi-
trary frequency settings and that the models can be used to imple-
ment operating-system level dynamic voltage and frequency scal-
ing schemes for embedded systems.

1. INTRODUCTION
Energy consumption is an increasingly important factor in the de-
sign of computing systems. This is particularly true in embedded
systems, where a lower energy consumption improves battery life
and reduces size and cost, and has a significant impact on the com-
mercial viability of a product.

Dynamic voltage and frequency scaling (DVFS) is a technique for
reducing a circuit’s energy consumption by modifying clock fre-

∗NICTA is funded by the Australian Government’s Department of
Communications, Information Technology, and the Arts and the
Australian Research Council through Backing Australia’s Ability
and the ICT Research Centre of Excellence programs.

quencies. Reducing frequency results in a lower power consump-
tion and increased software execution time. It generally allows a
circuit’s supply voltage to be reduced, leading to quadratic savings.

While reducing the frequency to a particular circuit can improve its
energy efficiency, other circuits may use more energy as a result of
the longer execution time. Therefore the slowest frequency is not
necessarily energy-optimal [13], and the energy-optimal frequency
can only be chosen via knowledge of the expected execution time.

For example, in a totally memory-bound system, a reduction in
CPU frequency will not result in an increase in execution time as
the CPU is constantly stalled waiting on the memory bus (which
is unaffected by CPU frequency). The reverse is also true: CPU
bound applications’ execution time will not be reduced by an in-
creased bus or memory frequency, but the overall energy consump-
tion will increase due to the higher bus or memory idle power. Fur-
thermore, the dependence of the total execution time on the fre-
quency is specific to the workload. Figure 1 shows the normalised
execution cycles for two applications running at various CPU, bus
and memory frequency combinations on an Xscale based processor
(see Section 4 for further details). The difference between CPU-
bound and memory-bound tasks is striking. Knowledge of the per-
formance effects of frequency scaling is essential for choosing an
energy-optimal setpoint.

The policy which selects when to switch frequency, and which fre-
quency to switch to, is generally selected by the operating system.

Estimating and predicting the runtime of a piece of software is
an important component in an effective power management sys-
tem. The energy required for a task is heavily dependent on time
(E = Pt). While the CPU’s power consumption will be reduced
by frequency scaling, core frequency is unlikely to have an effect
on the power for the rest of the system. The energy required by
components other than the CPU will be proportional to the overall
execution time, leading to a complex relationship between core fre-
quency and overall energy use. This is further complicated by the
adjustment of memory, bus and IO interface clock frequencies.

In addition, accurate estimation of the execution time of a task is es-
sential for meeting real-time (RT) deadlines and quality-of-service

(QoS) requirements while employing DVFS.

A further factor complicating execution-time estimation is the in-
creasingly dynamic nature of embedded systems. The applications
themselves, the nature of their input data and stimuli, and the en-
vironment in which they are run are dynamic. It is therefore not
practical to characterise the applications’ behaviour a-priori, and
any estimation must be performed at run-time.

This paper presents a methodology and mechanism for the accurate
run-time estimation of the performance of a given piece of soft-
ware at an arbitrary frequency setpoint. Our specific contributions
are: (i) a model providing accurate estimates of the runtime of a
workload at an arbitrary frequency; (ii) a sound methodology for
generating an execution-time model from performance monitoring
counter (PMC) measurements; (iii) a sound methodology for se-
lecting the optimum PMCs; (iv) an efficient algorithm for the cal-
culation of the performance at any frequency setpoint; and (v) an
evaluation of our approach using an extensive and representative
benchmark suite.

We first summarise related work in Section 2. Section 3 describes
our model for the execution time of an application, before detailing
the parameter selection methodology, model generation and finally
discussing runtime performance prediction. We describe our eva-
lutation environment in Section 4 and present the results we have
obtained in Section 5 before concluding with a summary and an
outlook into our future work.

2. RELATED WORK
The performance benefits of DVFS has been an active area of re-
search ever since the pioneering work of Weiser et al. [15]. The
work related to operating-system level scheduling can be divided
into two broad categories based on the OS’s assumed a-priori
knowledge.

Real-time systems, which are required to deliver results by a dead-
line, require knowledge of the system timing, frequently in the form
of worst case execution times (WCET). Previous work explored
the potential for CPU frequency scaling without missing real-time
deadlines [1,12]. This was extended to use the CPU’s memory stall
rate in a feedback loop with the scheduler [9, 11].

Off-line techniques [5, 17] use a detailed static analysis of a work-
load by the compiler. Other approaches include an a priori charac-
terisation of a workload by running it at two different frequencies,
in order to derive a slowdown relation [14]. These off-line results
are then used by a DVFS-aware scheduler to scale the processor
frequency.

Systems where no a-priori characterisation is performed generally
aim to get the best energy efficiency for a given performance im-
pact [7, 8]. Such early work was typically based on the incorrect
assumption that performance was proportional to CPU frequency.
The non-linear dependency has since been the subject of consider-
able investigation.

Most of this research uses PMCs as a guide to predicting the likely
performance impact of a frequency change. Process cruise control
[16] used instructions, memory accesses and cycles to index a pre-
computed table of frequency settings which led to a constant per-
formance impact. Other research groups have investigated a more
flexible technique, using on-line regression to calculate the ratio

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 c
yc

le
s

CPU Frequency (MHz)

bitcnt

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 C
yc

le
s

CPU Frequency (MHz)

gzip

Figure 1: Execution cycles vs. CPU frequency, normalised to
the slowest frequency cycles, for bitcnt and gzip, grouped by
constant bus/memory frequency

of off-chip (CPU frequency independent) to on-chip cycles [2, 4],
however the computational overheads and response time are only
cursorily discussed and there is reason to believe that they are sub-
stantial (i.e. the evaluation of a regression requires significant CPU
time).

A theoretical model of a classification system between memory-
bound and CPU-bound applications [18] assumes the availability
of a large number of concurrently-usable performance counters.
Limitations of this work include a lack of a detailed justification
of performance-counter selection, insufficient evaluation with only
a small number of benchmarks, and lack of statistical rigour (the
evaluation is performed with the same data that is used to obtain
the parameters of the model).

The models and methodology in this paper represent a significant
advance over the above-outlined work. Software is characterised
at run-time and our technique can therefore be used for arbitrary
workloads with dynamic input data (in contrast with off-line tech-
niques [5,14,17]). Compared with the previous state of the art [2,4],
our model and methodology can be applied on arbitrary platforms,
we do not require a run-time regression (resulting in a low over-
head), we present our method of selecting the performance counters
best suited to the task of performance estimation, and an evaluation
has been performed with a much more extensive range of bench-
marks.

3. APPROACH
The objective of this work is to predict the runtime of a workload
at one frequency, given measurements at another frequency. This
execution time model can then be used for making true energy vs.
performance frequency scaling decisions as discussed in Section 1.

3.1 Execution Time Model
While the CPU core is a major contributor to a system’s power con-
sumption, other subsystems, such as memory and I/O, are also sig-
nificant and can in some cases even dominate the CPU. Moreover,
such contributions generally are independent of the core frequency.

For example, the time the CPU stalls while waiting on main mem-
ory depends on the bus and memory clocks, not the core clock. On
a processor with a single issue, in-order pipeline and a simple cache
architecture (the typical scenario in embedded systems) the CPU is
always stalled during memory activity. In this paper, we focus on
this class of system. The effects of a superscalar architecture are
expected to be small, but will be subject to future research.

For this class of system, we have an overall execution time T which
is a function of the various clock rates fx, used in the system:

T =
Ccpu

fcpu
+

Cbus

fbus
+

Cmem

fmem
+

Cio

fio
+ . . . (1)

The coefficients Ccpu , Cbus , Cmem , Cio . . . depend on the instruc-
tion stream of the actual workload. The task of execution-time es-
timation comes down to obtaining good estimates for those param-
eters at run-time, without a priori analysis of the particular work-
load. I/O effects are beyond the scope of the paper, so we will, from
here on, focus solely on the CPU and memory subsystem.

3.2 Application characterisation
While the coefficients Cx depend on the workload, they represent
the total number of cycles used for particular actions (eg. CPU-only
instructions or memory reads); each is the product of the number of
such actions and the cycle cost of such an action. The former is a
characteristic of the workload, the latter of the system architecture.

The fundamental idea behind our approach is to perform an off-line
characterisation of the architectural parameters, and use run-time
measurements, using performance monitoring counters (PMCs),
for workload characterisation. Specifically, we postulate that each
coefficient can be represented by some linear combination of PMC
readings:

Cbus = α1PMC1 + α2PMC2 + . . . (2)
Cmem = β1PMC1 + β2PMC2 + . . . (3)

The accuracy of the model will depend on the architecture and the
suitability of the PMCs. The architecture-specific coefficients αx,
βx, . . . are properties of the hardware platform and can be deter-
mined once, by evaluating a suitable set of benchmarks represent-
ing the range of different workloads. Linear regression on Equa-
tion 2 and Equation 3 will establish the values of the coefficients
and allow selecting the most suitable PMCs. This is important, as
the hardware typically supports the concurrent use of only a small
number of PMCs, and the correct choice is not obvious as will be
shown.

The total number of CPU cycles, Ctot , can be directly obtained
from the CPU’s cycle counter. It is the product of total execution
time, T , and core frequency, fcpu , allowing us to rewrite Equation 1
as

Ccpu = Ctot −
fcpu

fbus
Cbus −

fcpu

fmem
Cmem (4)

Hence, we only need to determine Cbus and Cmem from PMCs.

3.3 Performance prediction
Being able to estimate a workload’s Cx values from PMC readings
at a particular setpoint (characterised by a particular combination
of clock frequencies, fx) it is possible to predict the performance
of the same workload at a different setpoint with frequencies f ′x:

C′
tot = Ctot (5)

−fcpu

fbus
Cbus −

fcpu

fmem
Cmem

+
f ′cpu
f ′bus

Cbus +
f ′cpu
f ′mem

Cmem

We define the performance, s, as the execution time at a particu-
lar setpoint normalised to execution time at maximum frequency
setpoint, fmax

x :

s =
tmax

t′
=

f ′cpu
fmax
cpu

∗ Cmax
tot

C′
tot

(6)

For the present setpoint, f ′cpu = fcpu and C′
tot = Ctot , the latter

being the performance counter reading. Hence, the performance at
the current frequency settings is a linear equation of performance
counter and frequency cross terms. This allows a single regression
to be applied across all workloads to calculate αx and βx, given a
pre-calculated s avoiding the intermediate step of Cx.

scur =
fcpu

fmax
cpu

∗ Cmax
tot

Ctot
(7)

Similarly, we can calculate performance relative to the current set-
point using Ctot in place of Cmax

tot .

4. EVALUATION
Our model and methodology were evaluated on a typical embed-
ded systems platform (Section 4.1) using a number of benchmarks
(Section 4.2). The model was used to implement an on-line estima-
tion system (Section 4.3).

4.1 Platform
The hardware platform used in all experiments was PLEB 2, a sin-
gle board computer based on an Intel PXA255 processor [6]. The
PXA255 is based on an Xscale core, with split L1 caches and TLBs,
write and fill buffers. The data cache supports a write-back policy.
PLEB2 integrates 64MB SDRAM and 8MB Flash memory. The
core voltage remained constant at 1.5V.

Only specific combinations of fcpu , fbus and fmem can be gener-
ated by the processor. For our experiments, we use 22 setpoints

which are detailed in Table 1. Note that most of these setpoints are
outside the manufacturer’s recommended limits, but were found to
work reliably and used in order to obtain more data.

fcpu (MHz) fbus (MHz) fmem (MHz)
1 99.531 49.766 99.531
2 117.964 58.981 117.964
3 132.71 66.354 132.71
4 149.299 49.766 99.531
5 176.946 58.981 117.964
6 199.064 49.766 99.531
7 199.064 66.354 132.71
8 199.064 99.531 99.531
9 235.929 58.981 117.964
10 235.929 117.964 117.964
11 265.420 66.354 132.710
12 265.420 132.710 132.710
13 298.598 49.766 99.531
14 298.598 99.531 99.531
15 353.894 58.981 117.964
16 353.894 117.964 117.964
17 398.131 66.354 132.71
18 398.131 99.531 99.531
19 398.131 132.71 132.71
20 398.131 199.064 99.531
21 471.858 117.964 117.964
22 471.858 235.929 117.964

Table 1: PXA255 frequency setpoints

The PXA255 provides three performance counters – a cycle
counter and two configurable performance counters. The config-
urable counters can each count any one of 14 events [6] (outlined
in Table 2).

PMC Description
0x0 ICache miss
0x1 ICache stall cycles
0x2 Data dependency stalls
0x3 ITLB miss
0x4 DTLB miss
0x5 Branch instruction executed
0x6 Branch mispredicted
0x7 Instruction executed
0x8 DCache buffer stall cycles
0x9 DCache buffer stall
0xa DCache access
0xb DCache miss
0xc DCache write-back
0xd Software changed the PC

Table 2: PXA255 performance counter events

We conducted all experiments on Linux 2.4.19, having written ker-
nel modules and modifications to support per-process performance
counter reading. The PMCs were read and accumulated after each
scheduler invocation.

When executing benchmarks, the only other runnable thread was
kupdated, which flushes the file system buffers. The network de-
vice was disabled during benchmark execution. The timer tick was

not disabled, which will be a small source of error in the measure-
ments since the number of timer ticks which occur during a bench-
mark run is dependent on its real-world execution time.

4.2 Benchmarks
Sound experimental methodology requires that the workloads used
for evaluation must be different from those used for calibration. A
further requirement on the benchmarks is that the total amount of
work is the same in each run, independent of the frequency settings.

For calibration we used a total of 37 benchmarks. Most are from
the MiBench suite [3], a set of real-world applications which
are representative of the tasks found in different types of em-
bedded systems. Several benchmarks (djpeg, susan_corners,
susan_edges, tiff2bw) were removed as their total execution
time was too short to be useful (less than 0.25s at maximum fre-
quencies). Two short-running ones (adpcm and stringsearch)
were modified to iterate a number of times in order to extend the
overall run time. Two others (sphinx, pgp) were removed as
their amount of work differs between runs under identical circum-
stances.

We added further benchmarks to the calibration set. Four (gzip,
mpg123, vision and celp32c) have been previously described [13].
We also added three synthetic benchmarks to cover extreme be-
haviour: cpubound executes an unrolled loop of NOP instructions
entirely in cache. membound and readbound execute an unrolled
loop of out-of-cache writes and reads respectively.

For validation we used SPEC CINT95 benchmarks. vortex was
excluded because of memory constraints, go and m88ksim due to
runtime errors. The “test” dataset was used and the input data size
for compress was reduced to 420000 bytes to reduce overall exe-
cution time. This leaves 5 benchmarks used for validation.

All benchmarks were compiled or assembled using gcc 3.4.4 with
softfloat. The linux kernel and ramdisk was compiled using gcc
3.3.2.

4.3 Implementation
We used the approach presented in Section 3 to estimate, while
executing at a particular frequency setpoint, the performance that
would be achieved at the maximum-frequency setpoint. This can
then be compared to direct measurements of an execution at fmax

x .

For evaluation purposes, we also used the techniques to aim for
a particular pre-determined performance, which can then also be
compared to the actual performance, obtained by measuring the
overall execution time and comparing to the execution time at
fmax

x . While this technique is unlikely to choose an energy-optimal
setpoint, it does demonstrate the ability of the system to predict the
performance of a benchmark at run-time, which we have discussed
as being crucial to energy-optimality.

The approach is based on the well-established model of temporal
locality which underlies many operating-system policies. In our
case this means that we assume that the behaviour of a particular
task does in most cases not change significantly between subse-
quent time slices. At the end of each time slice, the OS collects the
PMC readings and estimates the slowdown at the present setpoint
using our model. When the task is next scheduled, the slowdown
estimate is compared to the target slowdown, and the frequency
setting adjusted if necessary.

bi
c

(I
nt

er
ce

pt
)

X
P

M
C

0

X
P

M
C

1

X
P

M
C

2

X
P

M
C

3

X
P

M
C

4

X
P

M
C

5

X
P

M
C

6

X
P

M
C

7

X
P

M
C

8

X
P

M
C

9

X
P

M
C

10

X
P

M
C

11

X
P

M
C

12

X
P

M
C

13

−1100

−1700

−1800

−2800

−3100

−3200

−3300

−3300

bi
c

(I
nt

er
ce

pt
)

X
P

M
C

0

X
P

M
C

1

X
P

M
C

2

X
P

M
C

3

X
P

M
C

4

X
P

M
C

5

X
P

M
C

6

X
P

M
C

7

X
P

M
C

8

X
P

M
C

9

X
P

M
C

10

X
P

M
C

11

X
P

M
C

12

X
P

M
C

13

−860

−1700

−1900

−2300

−2400

−2500

−2500

−2600

Figure 2: Parameter selection for Cbus and Cmem models

A key advantage of our approach is the lightweight nature of the
estimation calculations. The XScale is typical for embedded pro-
cessors in that it lacks an FPU and a hardware divide instruction.
We therefore use only fixed-point arithmetic and avoid divisions.

5. RESULTS
5.1 Time vs. Frequency validation
Each benchmark in the calibration suite was run at each of the 22
setpoints. Equation 1 was fit to the data for each of the bench-
marks using least-squares linear regression. The fit was extremely
good, the value of 1 − R, which indicates effects in the data that
are not explained by the model, ranging between 5 × 10−4 and
3× 10−8. This is a strong indication that the model can accurately
account for the architectural features of this class of processor. Fur-
thermore, the intercepts were negligible, indicating that, for these
benchmarks, in this system, the execution time depends solely on
these frequencies.

5.2 Performance counter selection
We investigated the best choices of performance counters when
only a small number of them can be used concurrently (as on most
hardware, including ours). The models were formulated by equat-
ing Cbus and Cmem with all possible linear combinations of the
available performance counters, as well as several potentially rele-
vant cross terms.

Each model of each size was compared using a criterion function.
i.e. every possible combination of performance counters was used

to predict each of Cbus and Cmem . The best n-parameter model was
selected using the BIC criterion function (a measure of the model’s
predictive capability), although R2 would rank the models in the
same way. (e.g. the n-parameter model with the highest BIC or
R2 is selected as the best). This procedure was performed using
the regsubsets command in R [10]. In this way we determine
the best performance counters for performance prediction of these
calibration workloads. The results of the parameter selection for
Cbus and Cmem are shown in Figure 2. The figures show which
parameters are selected for each of the n-parameter models (each
row represents a model with one more parameter than the row be-
low). The differences in the graphs are likely due to noise in the
data, insufficient variance in the benchmarks. Our future work has
included a unified approach to the parameter selection.

We observe that, for this benchmark suite, the best single parame-
ter model uses data cache misses (PMC11), the best dual parame-
ter model also uses data TLB misses (PMC4). The best three pa-
rameter model uses PMC11, data cache buffer stalls (PMC9) and
data dependency stall cycles. The best four parameter model uses
PMC11, PMC4, PMC9 and data cache write-backs.

The results also show that the model does not improve significantly
beyond four PMCs, and two PMCs perform almost as well as three
(indicating strong correlations between cache and TLB misses).
The PXA255 only supports two simultaneous measurements (in ad-
dition to the cycle counter), so our on-line prediction system in this
platform is based on data TLB misses and data cache misses.

Importantly, unlike previous work [2, 4] since our model does not
implicitly require the number of instructions, the parameter selec-
tion is free to choose any two events.

5.3 Slowdown prediction
While the actual parameters selected by this procedure depend on
the benchmarks used for calibration, the BIC values indicate that
this should not have a dramatic effect on the overall results. This
can be verified by validation runs using independent benchmarks
(our SPECINT subset).

An offline evaluation (i.e., using end-to-end data obtained running
the validation suite over several executions) yields an average error
of 1.7% and maximum error of 7% for the two parameter model.
For comparison, the same data yields an average error of 10% and
a maximum of 38% if the estimate is based only on the CPU fre-
quency (“naive model”). Figure 3 shows the errors in the naive
model, and Figure 3 for the 2-parameter model. The improvement
over the naive model is obvious.

5.4 Frequency scaling error
We then ran each of the validation benchmarks aiming for 17 pre-
determined performance values ranging from 20 and 100%, each
time recording actual and estimated run time at fmax

x . As the fre-
quency settings are not continuous, the system cannot normally
chose a setting that is estimated to produce exactly the target per-
formance. Instead, the frequency selection policy simply chooses
the setpoint which gives the closest approximation to the desired
performance; the actual performance and desired performance will
therefore differ, even if our estimates were totally correct. To ac-
count for this fact, we present the values again as the error in the
estimated performance (estimated minus actual) against the esti-
mated performance, Figure 5. These are on-line estimation errors:
the performance is calculated for each time slice.

-40

-20

 0

 20

 40

 0 20 40 60 80 100

P
er

fo
rm

an
ce

 P
re

di
ct

io
n

E
rr

or
 (

%
)

Actual Performance (%)

Naive estimation

Figure 3: Naive model estimated performance error vs. actual
performance

-40

-20

 0

 20

 40

 0 20 40 60 80 100

P
er

fo
rm

an
ce

 P
re

di
ct

io
n

E
rr

or
 (

%
)

Actual Performance (%)

PMC based estimation

Figure 4: 2 parameter PMC-based model estimated perfor-
mance error vs. actual performance

The maximum error observed was 7%, the average was 1.9%.
These compare favorably with the most accurate published perfor-
mance estimations (4–6% [2]), and are consistently more accurate
than those presented in other work, despite having been tested with
a much larger variety of workloads. In addition, previous work
generally used the same benchmarks for calibration and validation.
Thus the errors observed in most previous work are not indicative
of their models’ predictive capability.

5.5 Frequency scaling overheads
The cost of the frequency selection calculations were measured
to be 5000—7750 cycles. This averages 24µs, which compares
favourably to Choi’s 100µs [2]. That work requires an on-line re-
gression calculation, yet does not consider multiple memory fre-
quencies.

6. CONCLUSIONS
This paper has first motivated, and then presented a general and
sound model of execution time under frequency scaling. It is based
on an off-line characterisation of the hardware platform, combined
with on-line evaluation of application characteristics using perfor-
mance counters. The model has been implemented and validated

-40

-20

 0

 20

 40

 0 20 40 60 80 100

P
er

fo
rm

an
ce

 p
er

ce
nt

ag
e

er
ro

r
(%

)

Estimated performance (%)

On-line estimation

Figure 5: On-line estimated performance error vs. estimated
performance

on a processor typical for use in high-end mobile systems.

The model, once developed on a set of representative benchmarks,
has demonstrated an excellent ability to predict the performance of
new applications. The on-line evaluation implies that the model can
quickly adjust to changes in application behaviour. The approach
is general in the sense that it should be readily portable to differ-
ent processor platforms providing basic performance monitoring
hardware. The model performed well with only two performance
counters, without the need for time-multiplexing.

In addition, this work has taken a rigorous approach to the model
evaluation, with two large, disjoint published sets of benchmarks
used for calibration and validation. The system was tested with an
order of magnitude more workloads than comparable work.

The model has clear applications as part of an energy-saving frame-
work, which could enable an accurate trade between performance
and energy. Our subsequent work will show the necessity of a per-
formance model when building an accurate model for the predic-
tion of energy consumption under frequency scaling.

In the future we plan to validate the model’s generality by deploy-
ing it on other platforms. Another obvious next step is an evalua-
tion in a multi-processing context. Performance loss related to IO
devices, and the effect of interupts and DMA should be examined.

7. REFERENCES
[1] H. Aydin, V. Devadas, and D. Zhu. System-level energy management

for periodic real-time tasks. Proceedings of the 27th IEEE Real-Time
Systems Symposium, 0:313–322, 2006.

[2] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation times.
IEEE Transactions on CAD ICAS, 24(1):18–28, Jan. 2005.

[3] M. R. Guthaus, J. S. Reingenberg, D. Ernst, T. M. Austing,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In Proceedings of the 4th
IEEE Annual Workshop on Workload Characterization, Dec. 2001.

[4] C.-H. Hsu and W. chun Feng. Effective dynamic voltage scaling
through CPU-boundedness detection. In Proceedings of the 2004
Workshop on Power-Aware Computer Systems, pages 135–149, 2004.

[5] C.-H. Hsu and U. Kremer. The design, implementation, and
evaluation of a compiler algorithm for CPU energy reduction.

SIGPLAN Not., 38(5):38–48, 2003.
[6] Intel Corporation. Intel PXA250 and PXA210 applications

processors developers manual. http:
//www.intel.com/design/pca/products/pxa255/techdocs.htm,
2005.

[7] T. L. Martin and D. P. Siewiorek. Nonideal battery and main memory
effects on cpu speed-setting for low power. IEEE Trans. Very Large
Scale Integr. Syst., 9(1):29–34, 2001.

[8] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and
R. Rajkumar. Critical power slope: understanding the runtime effects
of frequency scaling. In Proceedings of the 16th International
Conference on Supercomputing, pages 35–44, New York, NY, USA,
2002. ACM Press.

[9] C. Poellabauer, L. Singleton, and K. Schwan. Feedback-based
dynamic voltage and frequency scaling for memory-bound real-time
applications. In Proceedings of the 11th IEEE Real-Time and
Embedded Technology and Applications Symposium, volume 00,
pages 234–243, 2005.

[10] R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2006. ISBN 3-900051-07-0.

[11] D. Rajan, R. Zuck, and C. Poellabauer. Workload-aware dual-speed
dynamic voltage scaling. In Proceedings of the 12th International
Conference on Embedded and Real-Time Computing and
Applications, pages 251–256, 2006.

[12] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. FAST:
Frequency-aware static timing analysis. ACM Transactions on
Embedded Computing Systems, 5(1):200–224, 2006.

[13] D. C. Snowdon, S. Ruocco, and G. Heiser. Power Management and
Dynamic Voltage Scaling: Myths and Facts. In Proceedings of the
2005 Workshop on Power Aware Real-time Computing, New Jersey,
USA, Sept. 2005.

[14] V. Venkkatachalam, C. Probst, and M. Franz. A new way of
estimating compute boundedness and its application to dynamic
voltage scaling. International Journal on Embedded Systems,
1(1):64–74, 2006.

[15] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scheduling for
reduced CPU energy. In Proceedings of the 1st USENIX Symposium
on Operating Systems Design and Implementation, pages 13–23,
1994.

[16] A. Weissel and F. Bellosa. Process cruise control—event-driven
clock scaling for dynamic power management. In Proceedings of the
International Conference on Compilers, Architecture and Synthesis
for Embedded Systems, Grenoble, France, Oct. 8–11 2002.

[17] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage
scaling settings: Opportunities and limits. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 49–62, New York, NY, USA, 2003. ACM
Press.

[18] F. Xie, M. Martonosi, and S. Malik. Efficient behavior-driven
runtime dynamic voltage scaling policies. In Proceedings of the 3rd
International Conference on Hardware/Software Codesign and
System Synthesis, pages 105–110, 2005.

http://www.intel.com/design/pca/products/pxa255/techdocs.htm
http://www.intel.com/design/pca/products/pxa255/techdocs.htm

	Introduction
	Related Work
	Approach
	Execution Time Model
	Application characterisation
	Performance prediction

	Evaluation
	Platform
	Benchmarks
	Implementation

	Results
	Time vs. Frequency validation
	Performance counter selection
	Slowdown prediction
	Frequency scaling error
	Frequency scaling overheads

	Conclusions
	References

