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ABSTRACT
Minimising energy use is an important factor in the operation
of many classes of embedded systems — in particular, battery-
powered devices. Dynamic voltage and frequency scaling (DVFS)
provides some control over a processor’s performance and energy
consumption. In order to employ DVFS for managing a system’s
energy use, it is necessary to predict the effect this scaling has on
the system’s total energy consumption. Simple (yet widely-used)
energy models lead to dramatically incorrect results for important
classes of application programs.

Predicting the energy used under scaling requires (i) a prediction
of the dependency of program performance (and hence execution
time) on the frequencies and (ii) a prediction of the power drawn
by the execution as a function of the frequencies and voltages.

As both of these characteristics are workload-specific our ap-
proach builds a model that, given a workload execution at one fre-
quency setpoint, will predict the run-time and power at any other
frequency setpoint. We assume temporal locality (which is valid for
the vast majority of applications) so predicting the characteristics
of one time slice, frame, or other instance of a task, will imply the
characteristics of subsequent time slices, frames or instances (e.g.
MPEG video decoding).

We present a systematic approach to building these models for a
hardware platform, determining the best performance counters and
weights. This characterisation, done once for a particular platform,
produces platform-specific but workload-independent performance
and power models.

We implemented the model on a real system and evaluated it
under a comprehensive benchmark suite against measurements of
the actual energy consumption. The results show that the model can
accurately predict the energy use of a wide class of applications and
is highly responsive to changes in the application behaviour.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; D.4.8
[Operating Systems]: Performance—Modeling and prediction
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1. INTRODUCTION
Power consumption is a critical factor in many embedded de-

vices, particularly battery-powered mobile systems, but is also re-
ceiving increasing attention in server systems as a means to cut
costs, prevent overheating and manage air-conditioning load.

Modern processors typically support dynamic voltage and fre-
quency scaling (DVFS) as a means to manage their power con-
sumption. This is based on the fact that reducing the operating
frequency of a CMOS circuit allows a reduction in the supply volt-
age for that circuit, resulting in a lower energy consumed per cycle.
This is usually expressed as

P ∝ fV 2, (1)

where V is the circuit voltage and f the processor’s clock rate. The
intention is that a system’s CPU performance be reduced in order
to obtain a corresponding reduction in power.

While the mechanism exists for throttling a processor’s speed,
when to switch and which speed to choose in order to achieve a
goal (such as minimising average power) is, and remains, a difficult
problem.

We postulate that effective frequency scaling, truly trading qual-
ity of service against energy consumption, requires the following:

1. an accurate prediction of the performance impact of a fre-
quency change

2. an accurate prediction of the power drawn while running the
applications at the changed frequency and voltage settings;

3. knowledge of the costs associated with switching frequen-
cies.

In other words, in order to effectively make performance vs. en-
ergy decisions, it is necessary to know how much performance will
be lost, and how much energy will be saved. However, much of
the related work in frequency and voltage scheduling assumes sim-
plified models for both the performance (postulate 1) and power
(postulate 2) while ignoring switching overheads. These models
have been shown to lead to an increase in power consumption [13],
or missed power saving opportunities [18].



Predicting either power or performance is made more difficult
by application specificity. Workloads’ change in power and per-
formance when changing frequencies is different depending on the
exact instruction mix, memory and IO actions, etc. Applications
can be pre-characterised for the platform, but this does not allow
for dynamic applications or dynamic input data. We are motivated
by modern mobile embedded systems such as mobile phones or
PDAs. Such systems support the execution of downloaded code,
making it infeasible to characterise the behaviour of all application
programs a priori, yet require efficient energy management with-
out human direction. Similarly, these systems deal with dynamic
input data such as MPEG video streams where the data itself has a
significant effect on the workload characteristics. Therefore some
method of characterising the workload must be arrived at in order
to understand the relationship between the frequencies, energy and
performance.

Recently we developed a new solution to the first postulate, by
developing a highly-accurate model that uses performance coun-
ters to predict, at run time, the performance of virtually arbitrary
workloads under frequency scaling [22]. Our approach builds a
model that, given a workload execution at one frequency setpoint,
will predict the run-time and power at any other frequency setpoint.
Assuming temporal locality (which is valid for the vast majority of
applications) means the characteristics of one time slice, frame, or
other instance of a task, will be similar to the characteristics of sub-
sequent time slices, frames or instances in most cases. Typical ex-
amples are MPEG video decoding, interrupt handlers, and decom-
pression. With these models we can therefore reason about the fu-
ture behaviour of a workload when frequency scaling (as shown via
the implementation in our previous work) by observing the work-
load currently running.

System power has often been calculated using Equation 1, and
more recently, using a static power component. However, doing so
makes a number of assumptions. Firstly it assumes that the same
number of transistors switch on each cycle, which is rarely the case
for a complex microprocessor. Similarly, it assumes that every part
of the system is clocked at the same frequency or fraction of that
frequency. Again, this is not the case in modern systems where
there may be many other frequencies, such as those used for driving
the system bus, memory, and peripherals. These clock frequencies
are typically one of several possible fractions of the main core clock
(i.e. not linearly dependent).

Lastly, it does not consider memory and IO device power, which
may be dynamic, depending on the running software. We note that
devices’ time spent in their active, high-power, mode is sometimes
dependent on the CPU performance (i.e. a shorter workload execu-
tion time may relate to a device spending a smaller amount of time
in its run-mode, saving energy). We do not address the effect of
idle modes or variation in IO device power in this paper (other than
including it as a part of the static power), but do note that predict-
ing workload run-time is required in order to calculate a system’s
energy use.

This paper extends our previous work in performance predic-
tion, arriving at a generalised model for the prediction of the sys-
tem power and energy under scaling of CPU, bus and memory fre-
quencies for dynamic workloads at run-time. The methodology for
building this model could be applied to an arbitrary platform with
any number of frequencies, although the accuracy of the model
is limited by the performance instrumentation available. This pa-
per therefore addresses postulate 2, above. This leaves as future
work the evaluation and avoidance of frequency switching over-
heads (postulate 3), focussing, for the present, on the modelling
issues.

The contributions of this paper are:

• an examination of the energy behaviour of a low-power em-
bedded platform;

• the extension of performance-counter-based power estima-
tion models to the accurate prediction of power consumption;

• a generalised power and energy model for frequency and
voltage scaling;

• an instantiation of that model for an actual hardware plat-
form;

• a rigorous evaluation of the model based on measurements
of actual power consumption.

In the remainder of the paper we will first discuss related work.
We will then discuss the unsuitability of naive approaches to
DVFS-based power management and the need for accurate models
that predict a system’s energy response to frequency scaling. We
will then summarise our previous work on the accurate prediction
of performance under DVFS. This work is then extended, becom-
ing a model allowing prediction of the power and energy response.
We will outline the calibration and evaluation of the new model,
and discuss the its accuracy on a real system with real-life bench-
marks. The paper concludes with a discussion of future work.

2. RELATED WORK
DVFS was first discussed as an energy-saving technique by

Weiser et al. [24]. They used millions of instructions per joule
(MIPJ) as a metric when evaluating their scheme, however they ig-
nored static power (which was not unreasonable at the time). Since
then, a large body of work has accumulated based on the idea that
a lower core frequency and thus longer execution time results in
lower energy consumption.

Grunwald et al [8] first published an empirical evaluation of
DVFS algorithms, concluding that the then-developed algorithms
did not save significant amounts of energy.

One clear reason for this is that the algorithms attempted to min-
imise idle time, ignoring the effect of static power. Reducing the
CPU frequency increases execution time, leading to a decrease in
the amount of time spent idle. If the energy benefits of running
at the lower frequency do not offset the energy spent due to the
reduced time in the idle mode (because of the static power), the
total used is increased. These effects were discussed at length by
Miyoshi et al [13]. Of interest in this context is that this Miyoshi’s
work assumed a very simple execution time model.

Martin and Siewiorek [11] discussed system-level speed setting
policies in order to maximise the number of operations per bat-
tery discharge in a mobile computer. They discuss the two big as-
sumptions made by the body of previous work at the time: that
performance is proportional to clock frequency, and that power is
proportional to fCV 2. Their most significant contribution was the
observation that a workload’s execution time is not necessarily lin-
early related to the CPU clock frequency. They also suggested the
need for a more complete power model. This was supported by
measurements on a real system, however, only a single application
has been measured. While they suggest that this non-ideal relation-
ship between frequency and performance needs to be addressed,
they make only a passing reference to the need for an application
specific model.

These observations were discussed and utilised in a paper by
Seth et al [18]. The authors concluded that taking advantage of the
non-linear relationship between CPU frequency and performance



could yield significant extra energy savings when frequency scal-
ing.

DVFS work designed to minimise performance loss, such as that
of Weissel and Bellosa [25] implicitly avoids issues with the overall
system power consumption because the approach explicitly aims to
keep changes in overall execution time small.

Acquaviva et al [1] describe a speed setting policy which saves
energy on a fixed voltage system because of the non-ideal perfor-
mance vs. frequency characteristics caused by memory accesses.
The authors pre-characterise a particular application (an MP3 de-
coder) and verify their conclusions by comparing the results from
a simulator, but no experiments on real hardware were performed.
Also Acquaviva et al do not consider the effect of static power con-
sumption which ultimately lead to their approach of minimising
idel times rather than using available sleep modes.

This paper presents methods for building both performance and
power models for a system. There is various work using perfor-
mance counters to estimate the power used by a processor, but to
our knowledge this model is the first to be used for predicting the
power when frequency scaling (i.e. using frequencies and voltages
as part of the model).

Bellosa [2] demonstrated that it was, in principle, possible to cor-
relate hardware performance-monitoring counter (PMC) readings
with the energy consumption of a CPU. His students Waitz [23]
and Fruth [7] used this approach to implement energy accounting
in Linux on an Intel PXA255 processor. Fruth worked around that
processor’s limitation of only two PMCs by switching PMC set-
tings every 10 ms.

Bircher et al. [3] used the PMC-based approach on the Pen-
tium 4, which has many counters, and investigated the suitabil-
ity of different counters. Research using the IBM Power pro-
cessors [5] developed a predictor of program phases in terms of
power consumption, similar to dynamic branch predictors. This
was later ported to the Intel PXA 255 processor [4]. Peddersen and
Parameswaran [16] investigated custom CPU designs which pro-
vided PMCs counting events specifically selected for estimating the
power consumption of the CPU.

There have been attempts at using hardware sensors to directly
measure the power used in a system. A framework based on ex-
ternal multimeters and a dedicated profiling platform [6] can be
used to characterise the workload of a closed system, but does
not provide feedback to the system under test. We refined this
approach by implementing on-board power-measurement support
that allowed us to account for CPU, memory and I/O power sep-
arately [20]. While this approach supports low-overhead run-time
measurements (and thus avoids the need for a-priori workload or
platform characterisation), the need for extra hardware makes it un-
suitable for off-the-shelf devices, and is a deterrent to manufactur-
ers. Furthermore, without a model for the system behaviour, it is
impossible to predict the power under conditions other than those
being measured.

Similar work has been published regarding performance models.
However, as discussed in our previous work [22], these have a large
performance overhead, and are generally highly platform specific
(compared with our methodology which has a small overhead and
could be deployed on any platform providing PMCs).

In the area of I/O modelling and energy minimisation, Nathuji
et al. [14] investigated the scheduling of I/O activity on an In-
tel PXA255 to increase device idle times. They implemented this
scheme in the Linux kernel, supported by compiler annotations of
the code. The approach did not make any use of online HW in-
formation. Weissel et al [26] examined the effect of deferring I/O
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Figure 1: Normalised cycle count for a CPU bound (bitcnt) and
a memory bound (gzip) workload. Lines join points of equal
bus and memory frequency.

operations on the effective use of sleep states and found significant
energy savings.

Lastly, the realisation that energy use is important in embedded
systems has lead to work that attempts to integrate it with over-
all operating-system resource management. Examples are Neme-
sis [15] and the currentcy model of EcoSystem [27].

3. MOTIVATION: PERFORMANCE VS.
ENERGY

As mentioned, previous work has shown that models which were
commonly used for designing and implementing DVFS schemes
are flawed. In the belief that the lowest frequency leads to the high-
est energy efficiency (Equation 1), the simplest schemes attempt to
run the processor as slowly as possible for given quality of service
constraints. This can counterintuitively lead to lower energy effi-
ciency than consistently running at the highest possible frequency.

Firstly we examined the execution-time issues discussed by Mar-
tin and Siewiorek [11]. In Figure 1 we have depicted two extreme
applications used in our evaluation in Section 6. We varied three
clock frequencies in the XScale processor: the CPU core, the in-
ternal bus, and the memory bus clock. Figure 1 shows the relative
number of cycles of the core clock for different frequency setting
for the CPU core, internal bus, and memory bus clocks. For il-
lustration purposes the cycles have been normalised to the slowest
frequency setpoint for each example. Setpoints having the same



clock frequency respectively for internal bus and memory bus have
been connected by lines.

The CPU bound benchmark has a nearly constant number of cy-
cles to execute and thus behaves ideally as with the simple mod-
els (i.e. the performance is proportional to the CPU clock period).
However, the memory bound benchmark shows that not only does
the number of cycles grow at higher CPU frequencies (i.e. a sub-
linear speed up), there is a dependency on the internal and memory
bus frequencies, which leads to close to a factor of two variation in
the number of cycles.

Alternately, we could consider that, when we reduce the CPU
frequency, the performance impact is less than what would be ex-
pected if we didn’t consider the memory effects. This leads to bet-
ter energy saving opportunities as discussed by Seth et al [18].

The power used by the system is also dependent on more than
the processor performing computations. This is modelled in recent
literature via a static component to the power model. The static
power consumption (Pstatic) of embedded systems has moved now
into the same order of magnitude as the dynamic power consump-
tion (Pdyn ) by the processor and in cases even surpasses it.

Ultimately we are interested in the amount of energy consumed
by an application, which is dependent on the static and dynamic
power consumption as well as the execution time (T ). This is de-
picted here as

E = PstaticT +

Z T

0

Pdyndt (2)

In general terms Pdyn rises with higher clock frequencies, how-
ever, in terms of energy this is partially compensated for by a
shorter execution time. The static power is constant and thus the
static energy consumed is a linear function of the execution time.
The energy function in Equation 2 is highly sensitive to the exe-
cution time as well as the balance of dynamic and static power in
the system. The latter includes the static power drawn by memory
and I/O devices, and as such the details of this balance are highly
platform-specific.

To further illustrate the dependence of the behaviour of total
energy on workload characteristics, we ran two synthetic bench-
marks: CPUBOUND performs no memory accesses after a short
warmup phase, while readbound executes almost exclusively LOAD
instructions. Figure 2 shows total energy as a function of appli-
cation performance, normalised to the highest frequency. Here,
performance at frequency f is expressed as the ratio of execution
times at fmax and f . It therefore represents the true trade off be-
tween execution time and energy. We again varied bus and memory
frequencies and lines connect the data points where those are equal.

It is obvious from the graphs that the energy use of the CPU-
bound process is completely controlled by the CPU frequency (al-
though not at all in the way expected by the naive model of Equa-
tion 1) while this frequency has a minimal effect on the memory-
bound benchmark.

These figures lead us to agree with the previous work suggesting
that conventional DVFS theory has little to do with reality and in
fact breaks down catastrophically in the sense that it can predict the
opposite of what truly happens. It is clear from the above that much
more sophisticated execution time and energy models are required.

4. TIME MODEL
Our previous work [22] developed an accurate model for execu-

tion time under DVFS, which we summarise here for completeness.
The execution time, T , for a given piece of software can be rep-

resented as a sum of the time spent waiting for each component in
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Figure 2: Normalised Energy vs. Performance for cpubound

and readbound on PLEB 2. Lines join points of equal bus and
memory frequency.

the system. This time is, in turn, proportional to the inverse of the
clock frequency for that component:

T =
Ccpu

fcpu
+

Cbus

fbus
+

Cmem

fmem
+

Cio

fio
+ . . . (3)

The coefficients Cx are workload-specific, and can be thought
of as the number cycles (of the component’s clock, fx) the rest of
the system is waiting for component x. In this paper we do not
consider I/O operations’ effect on performance, and power drawn
by I/O peripherals is lumped into static power. An effective model
for the power consumed by I/O devices is the focus of work yet to
be published.

Performance counters can be used to estimate Cbus and
Cmem . This is because the performance counters available
in most modern CPUs count events which relate to the mem-
ory performance (such as stall cycles and cache misses). For
an arbitrary set of performance counters, we represent the bus
and memory coefficients as a linear combination of their read-
ings,

Cbus = α1PMC 1 + α2PMC 2 + . . .

Cmem = β1PMC 1 + β2PMC 2 + . . . (4)

where the constants αi and βi depend on the platform’s charac-
teristics, but not on the workload. Hence it is possible to char-
acterise the platform once and then use the results for all work-
loads. With a separate measurement of execution time (typically



using the processor’s cycle counter), Equation 3 can be rewritten
as

Ccpu = Ctot −
fcpu

fbus
Cbus −

fcpu

fmem
Cmem (5)

leading to the ability to calculate all of the constants in Equa-
tion 3.

This model describes the frequency-dependence of the execution
time of software. We can use this to predict the execution time
at arbitrary frequency settings f ′

x from observations at frequency
settings fx:

C′
tot = Ctot−

fcpu

fbus
Cbus−

fcpu

fmem
Cmem +

f ′
cpu

f ′
bus

Cbus +
f ′
cpu

f ′
mem

Cmem

(6)
The relative performance s under frequency scaling from f to f ′

is

s =
fcpu

f ′
cpu

× C′
tot

Ctot
(7)

where C′
tot is obtained from Equation 6.

We characterised a representative embedded platform and found
the predictions of Equation 6 to be highly accurate [22].

In the same work, the models were then used to implement a fre-
quency scaling scheme in order to demonstrate the validity of us-
ing the model for one time slice to predict the characteristics of the
same software in the next. The linux scheduler was modified such
that on each time-slice interrupt, the performance counters were
measured and the models were used to predict the performance at
every frequency setpoint. The frequency setpoint predicted to have
the closest performance to the target was chosen. End-to-end mea-
surements revealed that the overall performance was very close to
the target performance (with most of the error being caused by the
discrete frequency setpoints). This shows that, for the large number
of benchmark applications tested, the models can be used to predict
the workload’s future performance.

5. ENERGY MODEL
We can use the same line of argument to predict the power drawn

for the execution of a program under DVFS. For the time being
we are making a number of assumptions, some of which will be
reviewed in the future.

Firstly, managing I/O power is beyond the scope of this paper.
Hence we assume that I/O power is unaffected by DVFS, and thus
can be treated as static power. This assumption is accurate for pro-
grams that do not perform any (or very little) physical I/O and the
OS consequently keeps all I/O peripherals in the same power state
throughout the program’s execution.

Secondly, we consider leakage power as part of the system’s
static power. This is not necessarily true, as the processor’s capac-
itances may not get fully charged at the highest clock rates. How-
ever, we could not detect any frequency-dependence of static power
on the processor we used, so this assumption seems justified.

Under these assumptions Equation 1 holds for dynamic power,
and the dynamic energy consumed during a time interval ∆t is

Edyn ∝ fV 2∆t. (8)

If the time interval is expressed in CPU cycles, cyc = f∆t, this
becomes

Edyn ∝ cyc × V 2. (9)

This energy corresponds to the energy E = 1
2
CV 2 of a capacitor

C, it represents the energy used to charge and discharge the circuit’s

capacitances (such as the gate capacitance on a transistor) during
each clock cycle.

However, we cannot assume this dynamic energy to be indepen-
dent of workload properties, as the number of transistors switched
on each clock cycle depends in general on the executing program.
Instead we can use event counters to capture the effects of program
behaviour.

Modern processors have performance counters which can be
used to count a number of different types of events, some of which
are correlated with power [2,25]. The main question is whether the
countable events provide enough information to predict power.

We can try to model the energy consumed during a time interval
∆t as a linear combination of the various system frequencies and
m available event counts:

E = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)∆t+ (10)

V 2
cpu(α0PMC 0 + · · ·+ αmPMCm) +

γ4fmem∆t + β0PMC 0 + · · ·+ βmPMCm +

Pstatic∆t,

where PMC i is the event count of performance monitor i during
the interval ∆t, and αi, βi and γi are the coefficients of the model.
Note that fmem occurs twice, once with a V 2 factor and once with-
out. The reason is that this frequency represents the memory bus,
which interfaces with the on-chip memory controller that is voltage
scaled as well as the memory chips which run at constant voltage.

The rate ri of the event measured by counter i is ri = PMC i
∆t

,
which lets us express power as

P = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)+ (11)

V 2
cpu(α0r0 + · · ·+ αmrm) +

γ4fmem + β0r0 + · · ·+ βmrm + Pstatic

This equation can be used to predict the power at one frequency
setting from measurements obtained at a different setting, similar
to Equation 6. However, the execution-time model is also required
in this process, in order to predict the changes in the performance-
counter rates. The mathematics is straightforward but the resulting
formulas are unwieldy, which is why we do not present them here
explicitly.

Provided that the PMCs cover enough of the relevant events,
Equation 11 should be able to predict the scaled power. Combined
with the model of execution time of Section 4, we should then be
able to predict energy usage under DVFS. The important point is
that the coefficients αi, βi and γi should be independent of work-
load characteristics and only depend on the hardware. They can
therefore be determined once for each platform. This can be done
by running a representative set of calibration programs on the tar-
get system, measuring all events and the energy required to execute
them. To maximise the amount of information gathered, the voltage
should be varied to all allowable settings for each frequency.

While modern processors support counting a reasonably large
number of different events (e.g. 14 on the XScale PXA255) the
number of events that can be counted concurrently tends to be much
smaller (only 2 on the PXA255). In practice we therefore need a
further step: determining the most relevant events to count.

We do this by performing an exhaustive search of all n-parameter
models. Each n-parameter model is fit to the calibration data using
least squares regression. The model with the highest R2 was cho-
sen as the best model for n. While we were able to perform this
operation in reasonable time for up to 50 parameters, well known
statistical methods exist for narrowing the search space for larger
numbers. The parameters thus selected provide the best model



for the calibration workloads used and the performance counters
available. Provided there exists a suitable set of performance coun-
ters, and the calibration workload was representative enough, this
method will find a power model that can be used to manage energy
consumption.

6. EVALUATION
When instantiating and evaluating the models on actual hard-

ware, we used end-to-end measurements of energy, performance
counters and time for real-world benchmark suites at various fre-
quencies on a typical embedded platform. We chose end-to-end
benchmarks over measurements of periodic slices of a workload
in order to provide a constant, predictable workload at varying fre-
quencies. Here we describe our target hardware platform (PLEB 2),
our energy-measurement methodology and the benchmarks used.

6.1 Platform
PLEB 2 is a single-board computer, consisting of an PXA255

processor [10] which, as specified, can be clocked at up to 400MHz
(but was over-clocked to 471MHz for the purposes of collecting
data for this paper). It has 64MB SDRAM and 8MB Flash. The
PXA255 is based on an ARMv5T-compatible XScale core with a
7-stage integer and 8-stage memory pipeline. It has split L1 caches
and TLBs, write, fill and pend buffers. The data cache supports a
write-back policy.

The system includes a LAN91C111 network interface IC, which
was used to transfer benchmark software and results. The interface
was disabled during all measurements to avoid interrupts modify-
ing the workload, but it was not placed in a low-power mode. There
are several other components on-board which are all considered to
use a constant power. These, combined with the CPU, memory and
flash, result in a significant constant static power.

Various voltages are generated by an S1F81100 power-
management chip from a constant 5V source. It consists of three
buck converters which switch to the CPU core, memory and IO in-
terface voltages. The maximum efficiency for the core voltage is
quoted at 80%, with 90% for the memory and IO interface volt-
ages. The S1F81100 technical manual [17] gives graphs showing
approximately constant efficiency for the loads of interest. This
chip can be controlled by the PXA255 via an I2C bus, allowing for
adjustment of the processor’s core voltage. All other circuits run at
a fixed 3.3V. The S1F81100 is supplied with a constant 5V from a
generic laboratory power supply via the energy measurement cir-
cuit outlined in Section 6.2. Further details of the PLEB 2 design
are available [19].

A number of frequencies are generated by the PXA255’s clock
management unit. These include the core clock (fcpu), system bus
clock (fbus), SDRAM clock (fmem), peripheral bus clock (fio),
real-time clock (frtc), etc. Because of the way these clocks are
synthesised, only certain combinations can be generated. We call
each of these clock combinations a setpoint. Typical of a real sys-
tem, only fcpu , fbus and fmem are varied in these experiments.

All possible combinations of fcpu, fbus and fmem were con-
sidered, including those outside the chip’s specifications. The fre-
quencies were limited to reasonable values: fcpu varies between
99 and 471MHz, fbus varies between 50 and 236MHz and fmem

varies between 99 and 133MHz. A total of 22 unique setpoints
were used.

The electrical specifications for the PXA255 give the appropri-
ate CPU core voltage for a number of frequency settings. Since
this information does not specify the core voltage required for ev-
ery possible frequency, a coarsely linear relationship between fre-
quency and voltage was found and used to calculate the voltage

for the unspecified frequencies. Furthermore, the S1F81100 power
supply chip only allows discrete steps of 0.1V. For each frequency
we picked the available voltage closest to a linear interpolation be-
tween frequency-voltage pairs specified in the processor’s docu-
mentation (and confirmed that the processor operated correctly at
that voltage). This does not introduce errors in our model, as it
makes no assumption on the relationship between voltage and fre-
quency.

The PXA255 provides two performance counters and one cy-
cle counter. The configurable counters can each be configured to
count one of 14 events, described in the PXA255 developer’s man-
ual [10].

All experiments were conducted in Linux 2.4.19 with patches
to support the PXA255. Kernel modules and modifications were
made to support the performance-monitoring unit, voltage scal-
ing via the power supply chip, and frequency scaling based on
cpufreq. The PMCs are read and accumulated after each sched-
uler invocation. The present implementation remains un-optimised
for performance.

6.2 Energy Measurements
A device based on an MCP3909 energy-measurement IC [12]

was built and tested for measuring the overall system power and
energy. The MCP3909 measures both current and voltage using
matched, simultaneously sampling, 16-bit sigma-delta ADCs. The
current is measured via a 20mΩ shunt resistor, and the MCP3909’s
built-in differential amplifier. The device has an accuracy of better
than 1mA and 1mV for current and voltage respectively, giving a
power accuracy of about 5mW or 0.4%.

A microcontroller monitors a trigger signal and accumulates
continuous readings from the ADC when the trigger signal is ac-
tive. This signal is controlled by a general-purpose IO line on the
PXA255, which is driven high at the start of a benchmark, and low
at the end. When the trigger signal falls, the energy measurement
is complete and the microcontroller sends the accumulated values
via USB to a host PC. The readings are later matched with data
measured on the target system itself.

The power is measured between a laboratory power supply and
the input to PLEB 2’s power supply chip. This avoids PLEB 2’s
front-end power-supply circuitry (e.g. reverse-polarity protection,
fuse, front-end buck converter, battery charger, etc). This is the
same way a battery would power the device. We could derive
the power-supply input power from the predicted battery power if
needed.

6.3 Benchmarks
Both the time and energy models call for identical workloads to

be executed at different frequencies. We achieve this via the use of
end-to-end measurements of a number of benchmark suites. The
workloads used are similar to those used in our previous work [22].
The validation of the model uses a benchmark set different from
the calibration suite, in order to obtain a sound assessment of the
model’s predictive capability.

The essential requirement of each workload is that the same work
must be done independent of the frequency setting. This means that
the same instructions must be executed on the same input data.

Our calibration suite consisted of 37 benchmarks sourced from
the MiBench suite, SPEC CINT95 and elsewhere. MiBench [9] is
designed to be representative of many different classes of embed-
ded systems. Several benchmarks (adpcm, djpeg, stringsearch,
susan corners, susan edges, tiff2bw) were removed as their
total execution time was too short to be useful (less than 0.25s
at maximum frequencies). Two short-running ones (adpcm and



stringsearch) were modified to iterate a number of times in or-
der to extend the overall run time. Two others (sphinx, pgp) were
removed as their execution is (intentionally) non-deterministic,
making them unsuitable for our purposes. tiff2rgba and
tiffmedian were removed due to their unusually high system-
call rate – managing the power consumed by the operating system
is beyond the scope of this paper.

From SPEC CINT95, vortex was excluded because of mem-
ory constraints, go and m88ksim due to runtime errors, leaving
5 benchmarks. We used the “test” dataset and reduced the input
data size for compress to 420000 bytes to reduce overall exe-
cution time. Several other benchmarks (celp, gzip, mpg123,

vision, as described in our previous work [22]) were added for
further workload variety.

The validation suite consisted of 10 benchmarks from the SPEC
CPU2000-v1.3 CINT2000 suite. All benchmarks were included
aside from mcf, for which there was insufficient memory, eon, for
which the C++ libraries were required, and perlbmk due to run-
time errors. Again, we used the “test” dataset to yield reasonable
running times. gap was changed to use 32MB memory rather than
64MB. We also included some synthetic benchmarks in the vali-
dation, in order to test the accuracy of our model under selected
extreme conditions. cpubound executes an unrolled loop of NOP
instructions entirely in cache. membound and readbound execute
an unrolled loop of out-of-cache writes and reads respectively.

All benchmarks were compiled or assembled using gcc 3.4.4
with softfloat and XScale tuning. The Linux kernel and ramdisk
software were compiled using gcc 3.3.2.

7. RESULTS
We ran the benchmark suites described in Section 6.3 on the

PLEB 2 platform and measured the energy consumed. Each bench-
mark was run at all 22 frequency setpoints. In order to sample a
wider range of voltage settings, the calibration suite benchmarks
were each also run at two constant voltages (1.3V and 1.5V) which
are high enough for safe operation of the processor at all set points.
The collected measurements form three data sets: calibration, vali-
dation and synthetics.

7.1 Time Model
The relative performance, as described by Equation 7, can be

calculated given end-to-end measurements of a workload. We fit
this equation to the measurements obtained from the calibration
runs to obtain the coefficients αi, βi of Equation 4. In the calibra-
tion we always predict the performance at the maximum frequency
f ′ = fmax .

We fitted the performance models to the calibration dataset us-
ing least-squares linear regression. Figure 3 shows the best-fitting
models for up to 15 terms, based on the determination coefficient
R2 (although the parameter priority is the same with bic or other
criteria). The figure shows R2 values (indicated by colour and y-
axis labels) starting with a single-parameter model in the lowest
row, adding one parameter in each higher row. The parameters are
listed as the x-axis labels, “Bus PMCx” indicating PMC x used for
predicting Cbus etc. “Intercept” represents the x-axis intercept of
the linear model.

The best two-parameter model uses DTLB misses (PMC4) for
both bus and memory. Similarly, the best four-parameter model
uses TLB misses and data cache misses (PMC11). The best six-
parameter model is less clear-cut, either using instruction cache
misses (PMC0), data-dependency stalls (PMC2), ITLB misses
(PMC3) or data-cache-buffer-full stalls (PMC9). The good news
from this graph is that in most cases, the same counters are selected
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Figure 3: Parameter selection for the execution time model

for predicting Cmem and Cbus . This means that with n counters we
obtain a good 2n-parameter model.

We chose a 3-counter (6-parameter) model based on PMC4,
PMC9, PMC11, because of its later utility in the power model.
Adding more parameters does not appear to improve the quality of
the model. Both the two- and three-counter models had an excellent
determination R2 > 0.9999, with all parameters significant. Pre-
dicting the performance of the validation benchmarks using these
models gives a 6.1% maximum and 1.4% average error for the 2-
counter model, and a 4.9% maximum and 1.6% average for the
3-counter model. The errors for the latter are plotted in Figure 4.

Checking the model for the extreme cases (synthetic bench-
marks), the maximum error in the relative performance (i.e. the
fraction of the speed at which the workload was run) for cpubound
was 0.2% for the 3-counter model. In contrast, the memory-related
synthetic benchmarks performed badly: membound yielded 155%
error for the 3-counter model, while readbound yielded 11%. We
consider the errors for the latter two to be indicative of the error for
a pathological case (as opposed to the likely error for a real-world
workload, which is much smaller). In particular, it is clear that the
ability of the model to account for the pathological write-bound
case (membound) is lacking, a reflection that the platform has sim-
ply no performance counters which accurately measure memory
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Figure 4: Estimation error for the 3-counter execution-time
model



accesses, this has to be approximated by other counters. It would
be possible to construct other pathological cases. For example, the
execution time for a workload which was bounded by the instruc-
tion cache would be unlikely to be accurately estimated since the
models outlined here do not examine instruction cache events. The
set of workloads used for parameter selection and regression should
be representative of the workloads to be predicted.

7.2 Energy model

7.2.1 Parameter Selection
Similar to the execution-time model, we performed a parameter

selection for the power model presented in Equation 11. In order
to maximise the number of data points available, the samples
from each benchmark were used to predict the power for every
other sample of that benchmark. The resulting calibration data
set contained 142,296 entries. Compared to Equation 11, we
also introduced a few extra parameters. Specifically we included,
besides the V 2fx terms, also al V fx and plain fx terms, even
though their physical interpretation is not obvious.

The results for models up to 20 parameters are presented in Fig-
ure 5. Again, we compare the models based on R2.
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Figure 5: Parameter selection for the power model

The figure shows that the fcpuV 2, fbusV
2 an fmemV 2 terms are

all relevant. We see fcpuV and fcpu also have an effect (most likely
due to a voltage or frequency dependence in the leakage power). Of
less importance is fmem , despite it driving the external bus, we as-
sume some co-linearity with fmemV 2. This is un-surprising, given
PLEB 2’s memory frequency was only varied to three settings. The
intercept is also significant, and represents the system’s static power
(the component of power which we assume to be constant).

From the terms which are proportional to V 2, and therefore
related to the CPU core power, the parameter selections indicated
instructions and cache accesses often had an effect on power. The
selection in Figure 5 shows the importance of data cache accesses
(PMC10). Cache accesses cause an increase in the CPU power
because accessing the cache requires a large amount of circuitry to
be active. Also, since each instruction (PMC7) takes an amount of
energy to execute, the rate at which they are executed is positively
correlated with power.

The external power is dominated by accesses to SDRAM, so the
parameters unrelated to V 2 which are selected tend to attempt to
approximate the number of accesses to main memory. Data-cache
misses (PMC11) and Data TLB misses (PMC4) both have a strong
effect on the model. The two parameters with the next strongest

effect are data-cache-buffer related stalls (PMC9) and instruction
cache misses (PMC0). PMC0, PMC4 and PMC11 are easily
explainable as being indicators of memory accesses. PMC0 and
PMC11 are both cache miss events. PMC4 is a Data TLB miss,
which requires an access to memory (bypassing the cache) in order
to walk the page table.

The behaviour of PMC9 in the parameter selection is less obvi-
ous. In the 6- and 7-parameter models it appears as with a V 2 term,
but at higher models on its own. As noted elsewhere [4, 21], the
counters available are not able to accurately estimate the number of
actual accesses to main memory. This is because of fill and pend

buffers between the cache and memory controller. These allow the
processor to continue execution while the memory is accessed. If
a second miss occurs, it will be counted, but the request will be
serviced when the original access returns. Changing the frequency
changes the likelihood of this event, and therefore the number of
cache misses observed. We surmise that for the calibration data
set, PMC9 helps to provides an estimate of this occurrence.

Section 7.2.2 examines the effect of using more or fewer coun-
ters. Unless otherwise stated, we use a four-counter model using
data-cache accesses, data-TLB misses, data-buffer-full stalls and
data-cache misses. Three of these counters are used in our three-
counter time model. We used PMC9 without the V 2 factor, in ac-
cordance with the best selection for 8+-parameter models. We used
fcpuV 2, fbusV 2 and fmemV 2, although we suspect that, given
more frequency setpoints, a better relationship could be found.

7.2.2 Calibration and Validation
Models using between 3 and 6 counters were selected based on

the parameter selection, again fitting to the calibration data set us-
ing least-squares linear regression. The model was then used to
estimate the power at the sampled setpoint for the validation data.
This estimate was compared with the measured average power for
each benchmark. The rate terms in Equation 11 were calculated
using the measured time. The results are presented in Table 1.

Counters Param. R2 Max Err (%) Avg Err (%)
1 4 0.9836 7.46 2.14
2 5 0.9871 6.94 2.31
3 6 0.9904 4.85 1.26
4 7 0.9922 3.78 1.16
5 8 0.993 3.68 0.92
6 9 0.9938 2.94 0.89
6 11 0.9947 2.75 0.77

Table 1: Regression and validation data for various models

While the PXA255 in PLEB 2 has only 2 performance counters,
other variants, such as the PXA270, have four (usable for the same
events). Furthermore, if on-line estimation for PLEB 2 required
more than two measured events, the counters could be multiplexed
(i.e. the events being counted would be periodically switched. As-
suming no pathological cases, this would allow for an accurate es-
timation of all events considered, at the cost of the responsiveness
of the analysis being reduced. Therefore, for the remainder of this
paper we will use a four counter power model (which uses several
of the same events as the execution time model of Section 7.1).

The error distribution for this model is shown in Figure 6. The
system’s static power was estimated from the model intercept and
found to be 1.14W. The measured and estimated dynamic power
were calculated by subtracting this static power component. The
maximum error in the dynamic power was 20% and the average
error was 6% for the validation dataset and 4-counter model.
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Figure 6: Estimation error for the 4 counter power model

The power was estimated for the three synthetic benchmarks us-
ing the same four-counter model. The estimates for the cpubound
total power had a maximum error of 6%, while membound 56%
and readbound 10% error. Again, we consider these benchmarks
to indicate the worst cases for the power estimation model, since
they are very unlike the benchmarks used for parameter selection
and calibration and exercise features of the CPU which are unmea-
sureable by the performance counters. We consider the synthetic
benchmarks to indicate the extreme cases for power estimation.

7.2.3 Prediction
The 3-counter execution-time model and 4-counter power model

were combined to obtain 4-counter power and energy models. The
power measured at the maximum frequency was observed to vary
between 1.70W and 2.19W for all benchmarks. The 4-counter
power model was used to estimate the power at the maximum fre-
quency for the validation data set, based on each benchmark run
(i.e. from every other frequency). Using the measured time as the
basis for calculating the event rates (therefore isolating the error
of the power model), the maximum error observed was 3.7% and
the average error was 0.72%. Using the time estimated by the time
model, a maximum error of 4.3% and an average error of 0.7%
were observed.

The energy model was used to predict the energy at the highest
CPU frequency setpoint, and the prediction was compared with the
actual energy required to run the workload at that setpoint. Here,
the energy prediction is made using the estimated time model. The
maximum error was 4.9% and the average error was 1.5%. A plot
of the error in energy prediction for the maximum frequency from
all other frequencies is shown in Figure 7. Similar predictions
could be made for any other setpoint.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented a general performance-counter based

model for the prediction of power and energy under voltage and
frequency scaling.

We observed that a system’s energy response to DVFS is highly
dependent on the workload and have developed a technique that
allows us to incorporate the workload-dependence through per-
formance counters. We have furthermore demonstrated how the
platform-specific parameters of the model can be obtained through
a process based on linear regression between performance-counter
readings and power predictions of a family of models.
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Figure 7: Maximum-frequency energy prediction error for the
4-counter energy model

We have performed a sound evaluation of the models by using
a validation benchmark suite that is different from the calibration
suite. It was found that on our target platform, a PXA255-based
system, the energy use of a program at a certain frequency setpoint
can, with a fair degree of accuracy, be predicted from observing the
system at a different setpoint (although we found prediction errors
could be very high in pathological cases). This gives us a tool that
can be used in the future to let an operating system (OS) perform
informed energy-management decisions.

However, it became clear that the two concurrent performance
counters supported by the PXA255 are insufficient for this ap-
proach without multiplexing the counters over several events. For-
tunately, more recent processors provide a larger number of perfor-
mance counters.

While the accuracy of the predictions generally seemed accept-
able, it is also clear that the set of events that can be monitored
on the PXA255 is not sufficient go give a really accurate model
of power consumption, as it was only possible to roughly estimate
the number of bus transactions, or CPU stall cycles. We suspect
that more suitable events could be provided by hardware manufac-
turers [16]. Since the limited number of performance counters do
not capture the entire behaviour of the system, the choice of bench-
marks used for parameter selection and model calibration is impor-
tant in order to achieve good coverage of anticipated application
behaviour.

The results presented in this paper enable a large amount of
follow-on work. For one, we plan to show that our approach works
reliably across a range of hardware platforms, including different
CPU architectures and different performance-monitoring capabili-
ties, but also different balances of static and dynamic power.

Then we plan to use our models as the underlying mechanism
to enable proper OS-level system power management, especially
when dealing with real-time constraints. This includes taking into
account the selection of power states and the cost of using them,
and designing suitable policies. This will also require extending the
approach to deal with multi-tasking workloads, including context-
switching costs and accounting for OS services. Adding extra ex-
ecution contexts will not only increase cache miss rates, but also
introduce the overheads of frequency switching (if two threads run
at dissimilar setpoints).

Finally we would like to incorporate I/O into our power/energy
model.
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