
Your System is Secure? Prove it!

Gernot Heiser

NICTA∗ and University of New South Wales
and Open Kernel Labs

Sydney, Australia
gernot@nicta.com.au

Computer security is an old problem which has
lost none of its relevance — as is evidenced by
the annual Security issue of ;login:. The systems
research community has increased its attention to
security issues in recent years, as can be seen by
an increasing number of security-related papers
published in the mainstream systems conferences
SOSP, OSDI, and USENIX. However, the focus is
primarily on desktop and server systems.

I have argued two years ago in this place that
security of embedded systems, whether mobile
phones, smart cards, or automobiles, is a loom-
ing problem of even bigger proportions, yet there
does not seem to be a great sense of urgency about
it. Although there are embedded operating-system
(OS) vendors working on certifying their offerings
to some of the highest security standards, those sys-
tems do not seem to be aimed at, or even suitable
for, mobile wireless devices.

Establishing OS Security

The accepted way for establishing system secu-
rity is through a process called assurance. Assur-
ance examines specification, design, implementa-
tion, operation, and maintenance of a system.

The most widely used assurance process is the
international standard called the Common Criteria
for IT Security Evaluation, or Common Criteria
(CC) for short. CC evaluation is performed against
a protection profile (PP), which represents a stan-
dardized set of security properties the system un-
der evaluation is expected to meet. The idea is that
purchasers of IT systems define their security re-
quirements through a PP (or a combination of PPs)

∗NICTA is funded by the Australian Government’s Back-
ing Australia’s Ability initiative, in part through the Australian
Research Council.

and can then select any system that is certified to
match that PP.

CC compliance is evaluated to a particular eval-
uation assurance level (EAL). These range from
EAL1, the easiest (requiring little more than a
demonstration that the system has undergone some
testing), to EAL7, the toughest. The goal of a CC
evaluation is to obtain certification from an accred-
ited authority that the system satisfies all the re-
quired criteria for a particular PP at a certain EAL.
A higher evaluation level means a more thorough
examination of the system. This does not, how-
ever, guarantee more security; it means only that a
more thorough and systematic attempt is made to
eliminate vulnerabilities.

A number of operating systems have been cer-
tified under CC, including Mac OS to EAL3, ver-
sions of Windows, Linux, and Solaris to EAL4, and
the hypervisor of IBM’s z-Series to EAL5. The
Green Hills Integrity microkernel is said to be un-
dergoing evaluation to EAL6.

But what does this mean? At the toughest assur-
ance level, EAL7 (which to my knowledge has not
yet been achieved by any OS that provides memory
protection), CC evaluation is characterized as “for-
mally verified design and tested.” In a nutshell, this
means two things:

1. The system has an unambiguous specification.
At EAL7 this must be in the form of a formal
(mathematical) model, and there has to be a
formal proof that the specification satisfies the
requirements of the PP (e.g., that no unautho-
rized flow of data is possible in the system).

2. There is a correspondence between the math-
ematical model and the actual implementation
of the system. This is established by a com-
bination of means, including a formal high-
level design, an at least semiformal low-level

gernot@nicta.com.au


2

design, formal or semiformal correspondence
between them, a detailed mapping of design to
implementation, and comprehensive indepen-
dent testing.

There is also a requirement that the system un-
der evaluation be “simple”. This is a reflection of
the security principle of least authority (POLA) and
economy of mechanisms, which imply that a sys-
tem’s trusted computing base (TCB) be as small
and simple as possible.

Testing Required

CC, even at EAL7, relies on testing. Although
mathematical proofs are required for security prop-
erties of the system’s API, there is no proof that
these properties hold for the actual implementation.
This is why testing is still required. Testing, as
Dijkstra famously stated, “can only show the pres-
ence, not the absence, of bugs.” Hence, even a sys-
tem certified at EAL7 must be suspected to contain
security flaws.

Why does CC not go further and require an ac-
tual correctness proof of the implementation? After
all, formal proofs for computer programs have been
around for decades.

Presumably the answer is that it was not consid-
ered feasible. Formal code proofs, doable for small
algorithms, scale very poorly with code size. Sys-
tems that are undergoing CC certification at EAL6
or EAL7 are typically separation kernels, very sim-
ple OS kernels whose sole purpose is to provide
strict (static) partitioning of resources among sub-
systems. A typical separation kernel consists of
maybe 4,000 lines of code (LOC), which may be
small as kernels go but is huge as far as formal ver-
ification is concerned.

The Next Step

So, are we stuck with trusting the security of
our computer systems to traditional debugging ap-
proaches such as testing and code inspection, en-
hanced by model checking (a class of formal meth-
ods that may be able to prove the absence of certain
categories of bugs but not all bugs)?

I think not. One of the most exciting develop-
ments in this respect is that it now seems feasi-
ble to fully verify the implementation of a com-
plete microkernel. A microkernel is a much more

powerful construct than a separation kernel, as it
is a platform on which a general-purpose OS can
be implemented. A well-designed microkernel is a
superset of a separation kernel, in that it can pro-
vide the same functionality, plus more. However, it
is inherently more complex: A minimal microker-
nel that has sufficient functionality to support high-
performance systems of (virtually) arbitrary func-
tionality weighs in at some 7,000–10,000 LOC.

In spite of this, complete formal verification of
a microkernel is nearing completion at NICTA. In
a project that has been running since January 2004,
the API of seL4, the latest member of the L4 micro-
kernel family, has been formalized as a mathemat-
ical model in a theorem prover. A number of se-
curity properties have been proved about this API,
with more to come: The aim is to provide a com-
plete set of proofs corresponding to at least one of
the CC PPs. The seL4 kernel can then be used as
the basis of systems whose TCB is truly trustwor-
thy.

The implementation proof is progressing concur-
rently with the security proofs of the API. It uses
the refinement approach, which is a multistep pro-
cedure involving intermediate representations (be-
tween the specification and the code). Each refine-
ment step proves that the lower-level representation
has all the relevant properties of the higher level.

In the case of seL4, there are three levels: The
formal specification is the highest and the actual
C and assembler code of the kernel implementa-
tion is the lowest. The intermediate level (which
roughly corresponds to CC’s lowlevel design) has
a concrete meaning too: It corresponds to a pro-
totype of the kernel implemented in the functional
programming language Haskell, which serves as an
executable specification for porting and evaluation
purposes.

The first refinement step is completed; the sec-
ond (and final) one is in progress and is due for
completion during the second quarter of 2008.

This still leaves a gap: It assumes that the cor-
rectness of the implementation is established by
showing the correctness of the code (C and as-
sembler). Although CC makes the same assump-
tion, this nevertheless leaves the C compiler and
the assembler as trusted components in the loop.
Given the quality, size, and complexity of a typical
C compiler, this is still an uncomfortable level of
trust.

The problem could be solved by performing a



3

third refinement step, from C/assembler to actual
machine code. This would require a considerable
effort, but it is inherently no more difficult (most
likely easier) than the previous refinement steps.
However, there is promising work performed else-
where on compiler verification. A verified com-
piler could be leveraged to close the gap without a
further refinement step on the kernel.

Let’s Get Serious about Security!

Security has far too long been treated with in-
sufficient rigor, given what’s at stake. CC, de-
spite best intentions, could actually be counter-
productive there. By stopping short of the require-
ment for formal verification at the highest assur-
ance level, CC have the potential to create a false
sense of security. After all, a system certified to
EAL7 can rightly be claimed to have passed the
highest hurdle of security evaluation. The prob-
lem is that this is still incomplete, and a potential
of security flaws remains.

If complete formal verification is possible, it
must become a requirement.

Further reading

The approach taken in designing and implementing
seL4 is described by K. Elphinstone et al., “Ker-
nel Development for High Assurance”, 11th Work-
shop on Hot Topics in Operating Systems, San
Diego, May 2007, USENIX. Further information
on seL4 can be found on the project Web site, http:
//ertos.org/research/sel4/, and the Web site of
the verification project, http://ertos.org/research/
l4.verified/.

The Common Criteria are available at http://
csrc.nist.gov/.

http://ertos.org/research/sel4/
http://ertos.org/research/sel4/
http://ertos.org/research/l4.verified/
http://ertos.org/research/l4.verified/
http://csrc.nist.gov/
http://csrc.nist.gov/

